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Abstract—This paper is aimed at studying the electromag-
netic radiation pattern of a multipactor discharge occurring in a
parallel-plate waveguide. The proposed method is based on the
Fourier expansion of the multipactor current in terms of time-
harmonic currents radiating in the parallel-plate region. Classical
radiation theory combined with the frequency domain Green’s
function of the problem allows the calculation of both the electric
and the magnetic radiated fields. A novel analytical formula for
the total radiated power of each multipactor harmonic has been
derived. This formula is suitable for predicting multipactor with
the third-harmonic technique. The proposed formulation has been
successfully tested with a particle-in-cell code.

Index Terms—Microwave discharges, multipactor effect,
parallel-plate waveguide, radiated power, third-harmonic detec-
tion technique.

I. INTRODUCTION

THE MULTIPACTOR effect is a phenomenon of RF
breakdown occurring in microwave components for space

telecommunications subsystems [1] and accelerator structures
[2] working under high-power conditions, which represents
a possible failure mechanism. Multipactor dissipates power,
loads cavities, degrades components, increases system noise
level, and generates undesirable harmonics [3], [4]. As it is
well known, multipactor occurs when a harmonic electric field
exists in a parallel-plate region, which accelerates the electrons
from one surface to the other. After impact, more electrons
are released: If certain resonant conditions are satisfied, and
the secondary-electron-yield coefficient is higher than unity, an
electron avalanche is generated. Classical multipactor theory
derives analytical expressions for such resonant conditions of
the electron phases and voltages in which steady-state mul-
tipactor may exist [5]–[7]. In addition, multipactor has been
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recently studied in more complex structures, such as the rec-
tangular waveguide [8].

The main effort of previous works has been focused on
the prediction of the multipactor threshold voltage, the study
of the higher order resonant modes, the analysis of steady-
stable trajectories, and the study of multipaction detection
methods. Also, different technical aspects, as the modeling
of dielectric windows used in high-power RF systems, have
been investigated [9]. However, the problem of the radiated
power by a multipactor discharge has not been studied in detail.
Such problem is very important from a practical point of view,
because the noise created by a discharge is a method typically
used to experimentally detect the phenomenon (third-harmonic
detection technique) [4], [10], [11]. From a qualitative point of
view, the total radiated power of an electron can be estimated
by means of the Larmor formula, which states that such power
is proportional to the square of the electron acceleration [4].
Larmor formula evaluates the total radiated power by an elec-
tron moving in free space, not considering the effect of the
realistic parallel-plate scenario. Our main goal has been to
calculate the total radiated power by a discharge in the context
of the parallel-plates classical multipactor theory.

In this paper, we present a simple and novel model to evaluate
the electric and magnetic radiated fields as well as the radiated
power by a multipactor discharge excited in a parallel-plate
region driven by an RF electric field. In this first approach to the
problem, the discharge is modeled as a uniform electric current
radiating inside an infinite parallel-plate waveguide region. The
electromagnetic field radiated by the multipactor current has
been evaluated using the frequency domain Green’s function of
the problem, which allows the direct calculation of the complex
Poynting’s vector of the radiated fields for each harmonic. Next,
the total radiated power is expressed in terms of the most
relevant parameters of the problem. Finally, comparisons with
numerical results using a particle-in-cell (PIC) code validates
this novel formulation.

II. THEORY

A. Time-Harmonic Representation of the Multipactor Current

For simplicity, we shall use a 1-D model where multipactor
occurs inside a parallel-plate region of width d driven by the
RF voltage V (t) = VRF cos(ω t), where VRF is the voltage
amplitude, f = ω/(2π) is the RF frequency, and t is the time;
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Fig. 1. Parallel-plate waveguide region driven by an RF voltage V (t).

the period of this signal is T = 1/f , and the direction of motion
is z (see Fig. 1). The discharge is described using an effective
electron model which operates in perfect multipactor resonant
conditions: An electron launched from one plate is accelerated
by a uniform electric field �E = (V/d) ẑ impacting to other plate
in a transit time which is N half RF periods (N is odd). We have
considered that the initial velocity is constant in all launches,
as stated in Sombrin’s [12] model. Assuming that the electron
is emitted at time tα = α/ω, the equation of motion (directly
derived from the Lorentz force) can be analytically integrated
by just obtaining both electron velocity ve(t) and electron
position ze(t) as a function of time; obviously, ve = (dze/dt).
Thus, by considering that the electron is launched from the
plate situated in z = 0, with initial velocity ve(tα) = ve0 , and
operating under multipactor order N = 1, 3, 5 . . ., the electron
velocity can be expressed as follows:

ve(t) =


ve0 + G (sin(α) − sin(ωt))

t ∈
[
tα, tα + NT

2

]
−ve0 − G (sin(α) + sin(ωt))

t ∈
[
tα + NT

2 , tα + NT
] (1)

where G = (e VRF)/(me ω d), being me and −e the electron
mass and charge, respectively. Note that the electron velocity
is a periodic function of period N T . In this context, the
multipactor RF breakdown voltage can be simply calculated as
described in [6], resulting

VRF =
me

e

ωd(ωd − Nπve0)
Nπ sin(α) − 2 cos(α)

. (2)

The multipactor current created by the effective electron Jz

can be expressed as a single current density which is function
of the position z and time t

Jz(z, t) = −eveδ (z − ze(t))

where δ is the Dirac Delta function, ve is the electron velocity
given in (1), and ze(t) is the electron position. For far-field
observation points, we might consider that such multipactor
electric current is homogeneously distributed throughout the
gap. Thus, we define an equivalent multipactor thin wire current
I(t) as the spatial average of the current

I(t) ≡ 〈Jz(z, t)〉 =
1
d

d∫
0

−e veδ (z − ze(t)) dz =
−e

d
ve(t).

(3)

In order to study its power radiation pattern, we consider that
this current radiates in the parallel-plate region. Note that,
although ve(t) in (3) is not a harmonic function, I(t) is a
periodic function of period NT , so we can expand it in terms
of an infinite Fourier series

I(t) =
−e

d

+∞∑
m=1

cm cos
(
m

ω

N
t + ψm

)
. (4)

The Fourier coefficients cm and ψm have been analytically
calculated as cm =

√
a2

m + b2
m and ψm = −arctan(bm/am),

where

am =
−2 (1 − (−1)m) (ve0 +G sin α) sin(mα/N)

mπ

bm =−Gδm,N +
2 (1−(−1)m) (ve0 + G sin α) cos(mα/N)

mπ

m = 1, 3, 5, . . .

where δm,N is the Kronecker Delta function; note that for even
values of m both coefficients am and bm are equal to zero.
Following the standard complex notation for harmonic fields,
we define the complex currents im as

im ≡ −e

d
cm ejψm , m = 1, 3, 5, . . . (5)

corresponding to the mth Fourier harmonic of frequency fm =
m(f/N); thus, the instantaneous value of the equivalent mul-
tipactor current can be expressed as the real part of these
complex forms

I(t) = �
(

+∞∑
m=1

imejm ω
N t

)
.

At this point of the formulation, we can use the classical radi-
ation theory to study the power radiated by the time-harmonic
multipactor currents im in the parallel-plate region.

B. Radiation of the Time-Harmonic Multipactor Currents in
the Parallel-Plate Waveguide

We need to calculate the electromagnetic fields radiated by
a uniform time-harmonic current of length d and frequency fm

placed in a parallel-plate region, as shown in Fig. 1; cylindrical
coordinates will be used along this paper. In order to proceed,
we will use the scalar and vectorial potentials formulation
for time-harmonic fields in free-space, which is based on the
calculation of both the electric scalar (φ) and the magnetic
vector potentials ( �A), satisfying the Lorentz gauge [13]. For the
case of a current im oriented in the z axis, the vector potential
will have only nonzero z component, denoted as Azm

, which
satisfies the Helmholtz differential equation

∇2Azm
+ k2

mAzm
= −µ0im

where km = m(k/N) is the wavenumber of the mth Fourier
harmonic, being k = ω/c the free-space wavenumber; note that
c is the speed of light in vacuum, and the form ej m (ω/N) t



Fig. 2. Description of the multipactor current. (a) Infinite reflections of a point
current between two parallel plates. (b) Uniform multipactor current is infinitely
reflected in the parallel-plate region. (c) Multipactor current in the parallel-plate
region is equivalent to an infinite wire uniform current.

has been omitted in the formulation. The solution of such
equation can be expressed in integral form as a function of the
z component of the vector potential Green’s function gz(�r, �r ′)

Azm
(�r) = µ0

d∫
0

gz(�r, �r ′)imdz′ (6)

with �r ′ = z′ẑ. The Green’s function satisfies the scalar
Helmholtz equation

∇2gz(�r, �r ′) + k2gz(�r, �r ′) = −δ(�r − �r ′)

with the Neumann boundary condition.
The next step in the formulation is to obtain such a Green’s

function in a closed form for an easy integration of (6). The
response of a z-directed infinitesimal current located at the
source point �r ′ = z′ẑ can be obtained using the classical theory
of images [13]: The point current is successively reflected as
an infinite images series in both metallic plates, as shown in
Fig. 2(a). In this particular case, the multipactor current im is
spatially uniform, which makes possible to directly transform
the wire current, infinitely reflected in both plates, into an
infinite uniform current radiating in free space, as shown in
Fig. 2(b). As a consequence, the finite current of length d,
radiating between the two conducting parallel plates, might be
replaced by an infinite wire carrying the constant current im
radiating in free space, as shown in Fig. 2(c). At this point,
the well-known free space 3-D Green’s function of the scalar
Helmholtz equation g0(�r, �r ′) can be applied

g0(�r, �r ′) =
e−jkR

4πR
(7)

being R the magnitude of the vector �R (R ≡ ‖�R‖), which is
defined as �R ≡ �r − �r ′.

We now turn to proceed with the integration of (6), which is
reduced to

Azm
(�r) = µ0im

+∞∫
−∞

g0(�r, �r ′)dz′ (8)

where the field and source points are �r = rr̂ + zẑ and �r ′ = z′ẑ,
respectively. By substituting (7) in this integral, we obtain

Azm
(�r) =

µ0

4π
im

+∞∫
−∞

exp
(
−jkm

√
r2 + (z − z′)2

)
√

r2 + (z − z′)2
dz′

=
µ0

4π
im(−j)πH

(2)
0 (kmr)

=µ0im

(
H

(2)
0 (kmr)

4j

)
(9)

where H
(2)
0 is the zeroth-order Hankel function of the second

kind. Note that the term between brackets is typically referred
as the free-space 2-D Green’s function, remarking that our
original 3-D problem has been converted into a 2-D one. In
fact, the dependence with the z-coordinate has consequently
disappeared. Then, the Lorentz gauge dictates that the electric
scalar potential φm vanishes

φm = j
c

km
∇ · (Azm

ẑ) = j
c

km

∂Azm

∂z
= 0. (10)

The far-fields radiated by the multipactor current can now be
easily evaluated utilizing the asymptotic expansion of H

(2)
0 for

large arguments

H
(2)
0 (x) ≈

√
2

πx
e−j(x−π/4)

just obtaining

�Em = −jkmcAzm
ẑ ≈ −ηim

√
km

8πr
e−j(kmr−π/4)ẑ

�Hm =
1
µ0

∇× (Azm
ẑ) ≈ im

√
km

8πr
e−j(kmr−π/4)ϕ̂.

Note that higher order terms of r−1/2 have been neglected; η
is the intrinsic impedance of the vacuum, η =

√
µ0/ε0. To get

a suitable expression for the power radiated by the multipactor
current in the parallel-plate region, we calculate the complex
Poynting’s vector of each Fourier harmonic

�Nm ≡ 1
2

�Em × �H∗
m = η|im|2 km

16πr
r̂

where ∗ indicates complex conjugate. We remark that this
vector only has radial component, which implies a net flow of
energy in the radial direction. The final objective of this paper
is to find such energy. The integration of the real part of the
Poynting’s vector in a cylinder of radius r and height d centered
in the z axis, allows to get a simple formula for the total power
radiated by the mth multipactor current, thus obtaining

Pm =
π

4
µ0m

f

N
d|im|2, m = 1, 3, 5, . . . (11)

Inserting (5) into (11) and using the value of the multipactor RF
breakdown voltage (2), we have found, after simple algebraic



manipulations, the following formula:

Pm =
ωµ0me2

8Nd

[
δm,N

(
G2− 8UQ(−2+WS)

mπ

)
+

(
4U

mπ

)2
]

(12)

where the terms Q, S, T , and U have been defined as follows:

Q ≡ ωd − Nπve0

4 + N2π2

S ≡

√
e2V 2

RF(4 + N2π2)
(ωd − Nπve0)2

− (meωd)2

T ≡Nπ +
2S

ωdme

U ≡ ve0 + QT

W ≡ Nπ

ωdme
.

At this point, it is important to understand that (12) gives
the power spectrum for a single electron, according to the
proposed theory. However, since the multipactor current is
directly proportional to the number of electrons involved in the
multipactor discharge (5), the power emitted by ne electrons
in resonance would be simply given by n2

ePm, thus being (12)
universal and valid for any electron density. On the other hand,
we want to emphasize that the radiated power by multipactor
occurs at odd multiples of f/N , which means that harmonics
will be generated at lower frequencies than the RF signal
frequency f for multipactor orders N > 1. Moreover, the first
term of (12), which is multiplied by δm,N , will be different
from zero when m = N , i.e., for the harmonic located at the RF
frequency. For the rest of the harmonics, the formula predicts a
decreasing power level with harmonic order following a 1/m
behavior. Another interesting result is that (12) breaks up the
traditional dependence of all multipactor parameters related
with the prediction of the RF threshold voltage on the ω d
product [5], [6]. In fact, the power level depends on ω/d for
all the harmonics, if working with a fixed ω d. This implies,
for instance, that the predicted harmonic levels for real low
band waveguides (low frequency, large gap) would be lower
than for high band ones, even if working with the same ω d.
In addition, multipactor in typical large gap structures, such as
bandpass filters, would considerably generate lower harmonics
than other structures with shorter gaps, such as transformers or
low-pass filters. Such implications should be also considered
when measuring multipactor in real devices.

III. RESULTS

First, we present results for the convergence of the time-
harmonic representation of the multipactor current. In Fig. 3,
such a current is plotted as a function of the normalized time
t/T ; these numerical results have been computed with both the
exact (3) and the Fourier series (4) for multipactor order N = 3.
Different number of odd terms have been considered in the
summation, demonstrating that we need at least 200 odd har-
monics to reach the convergence region. The data employed for

Fig. 3. Multipactor current as a function of the normalized time t/T for
order N = 3. Comparison between the analytical expression (3) and the Fourier
expansions evaluated with different number of odd terms (4).

these simulations in order to get perfect resonance conditions
are the following: f = 2 GHz, d = 2.5 mm, ve0 = 3.68 eV,
VRF = 442.9 V, α = 72◦.

In Fig. 4, the total radiated power of a multipactor current
obtained with (12) is successfully compared to simulations
performed with an electromagnetic PIC code based on a finite-
difference in time-domain solver [14]. In order to check the pre-
sented algorithm, four cases have been analyzed for multipactor
orders N = 1, 3, 5, 11. In the four cases, the RF frequency
was f = 1 GHz, and the initial speed is ve0 = 3.68 eV. Other
relevant parameters in the simulations are the following: For
N = 1, we used d = 1 mm, α = 92.49◦, VRF = 30 V; for
N = 3, we used d = 5 mm, α = 101.96◦, VRF = 383.64 V;
for N = 5, we used d = 7 mm, α = 97.15◦, VRF = 412.34 V;
for N = 11, we used d = 15.65 mm, α = 93.30◦, VRF =
953.14 V. The numerical results match perfectly the analytical
predictions for both harmonic frequency and power level. The
power levels of the results are extremely low (on the order
of −200 dB · W) as corresponds to the emission of a single
electron. In fact, as stated before, in real situations, the mul-
tipactor avalanche consists of several resonant electrons (ne)
that would increase the presented nominal power by a factor n2

e.
For instance, for a typical avalanche of, for example, ne = 108

electrons, all the curves in Fig. 4 would be shifted +160 dB
upwards. These results verify, as predicted by (12), that the
power level of the harmonics generated by a multipactor dis-
charge decreases as 1/m for all the harmonics orders m except
for the m = N order, in which the maximum power is emitted.

Finally, we want to make some remarks on the third-
harmonic technique for multipactor detection [4], [11]. In the
case of multipactor order N = 1, the mentioned third harmonic
coincides indeed with the m = 3 harmonic, being detected at
a frequency three times higher than the RF one. As it is well
known, this is due to the fact that this harmonic is the one with
highest level that appears for all the multipactor orders (apart
from the main one at the RF frequency f , which is obscured
by the carrier in an experiment). However, for higher order



Fig. 4. Power spectrum generated by a multipactor discharge for different
multipactor orders: N = 1, N = 3, N = 5 and N = 11.

multipactor orders N > 1, more harmonics appear to both sides
of the RF carrier, at odd multiples of f/N , whose amplitudes
are higher than the third-harmonic one (see Fig. 4). In the cases
in which such harmonics are propagated and are not obscured
by the carrier, they could give a more precise reference for
detecting multipactor.

IV. CONCLUSION

In this paper, we present an analytic model to calculate the
total radiated power by a multipactor current occurring in a
parallel-plate waveguide region. The proposed formulation is
based on the time-harmonic representation of the multipactor
discharge current. A closed-form expression for the radiated
power of each harmonic involving the relevant parameters
of the phenomenon has been derived in detail. In order to
check such expression, comparisons to numerical results ob-
tained with a PIC code have been shown, obtaining excel-
lent agreement, and fully validating the presented approach.
The formulation derived might be easily used to predict the
full radiated spectrum of a multipactor discharge, helping to
correlate theoretical predictions with experimental results, and
ultimately giving a more precise reference for multipactor
detection.
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