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Abstract

This paper presents a numerical study of the flow of molten metal in the shot sleeve of
horizontal high-pressure die-casting machines during the injection process. The analysis
of the wave of molten metal created by plunger motion can be of help in reducing porosity
in manufactured parts caused by entrapment in the molten metal of a certain amount of
the initial air in the die cavity and in the shot sleeve. The amount of trapped air can be
reduced by selecting appropriate operating conditions during the injection process, which
are mainly determined by the law of plunger motion, the initial shot sleeve filling fraction,
and the geometrical characteristics of the shot sleeve. The proposed model, which consid-
ers the problem as two-dimensional, is based on the conservation equations of mass and
momentum, and treats the free surface using a capturing method (Scalar Equation Method).
Surface tension and solidification effects are neglected. Different approaches are considered
to simulate plunger motion, in which either the plunger surface or the end wall of the sleeve
moves and contracts a Cartesian grid. In the second case, a horizontal body force per unit
mass is introduced and the plunger is assumed to be at rest. When numerical results for
the wave profile were compared with those obtained using an analytical model based on the
shallow-water approximation, and also with numerical results obtained from a CFD code
specifically designed for free-surface flow modeling, a good degree of agreement was found.

The calculations were carried out using PHOENICS Version 3.1 on a HP C240 under HP-UX
10.20.
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Introduction

In many die casting injection processes, molten metal is injected into a die cavity from a
horizontal shot sleeve in which the metal is pushed by a plunger (Figure 1). The sleeve is
partially filled with a volume of molten metal and the plunger then moves the length of the
sleeve. In the injection process, a certain amount of the initial air contained in the mold and
in the shot sleeve may be trapped in the molten metal and cause porosity when the metal
solidifies. The injection process is usually divided into two stages: a stage during which the
plunger moves slowly in order to reduce the amount of trapped air, and a fast stage that
begins when the shot sleeve is completely filled with molten metal. This work focuses on the
slow stage, in which the plunger first forces the molten metal to rise and fill the upper (ini-
tially empty) part of the shot sleeve, and then moves at constant speed until the shot sleeve
is completely filled with molten metal (Figure 1). The plunger speed needed to raise the wave
to the ceiling of the shot sleeve can be easily determined (Tszeng and Chu, 1994; López et al.,
2000b). To reach this critical speed, the plunger must be accelerated, and the evolution of
the wave profile will obviously depend on the plunger acceleration law employed. Although
there are some theoretical (Thome and Brevick, 1993; Brevick et al., 1994; Tszeng and Chu,
1994) and experimental (Karni, 1991; Duran et al., 1991) studies concerning the influence of
plunger acceleration on the injection process, in practice relatively little attention has been
paid in planning die casting processes to controlling the acceleration of the plunger as it
moves to reach its critical speed. An injection system that controls the plunger acceleration
at different plunger positions is described by Koch (1974).

Analysis of the free-surface profile evolution for different plunger acceleration law pa-
rameters can be of help in determining the operating conditions that minimize the volume
of trapped air. Some analytical (López, 2000; López et al., 2000b) and numerical simula-
tions of the flow in the shot sleeve of injection die casting machines (Kuo and Hwang, 1998;
Hernández et al., 1999; López, 2000; López et al., 2000a) have been published recently. The
objective of this paper is to describe a model of the flow in the shot sleeve implemented
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Figure 1: Schematic representation of a die casting machine with horizontal cold chamber.
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Figure 2: Schematic representation of the problem and coordinate system.

in the PHOENICS code, and to assess its capability in obtaining accurate predictions for
the shape of the free surface of molten metal in the shot sleeve. Hernández et al. (1999)
presented some preliminary numerical results obtained with this model assuming that the
plunger is at rest and reproducing the plunger motion effects by considering a horizontal
body force per unit mass acting on the molten metal and imposing the appropriate equiv-
alent boundary conditions. The aim of that preliminary approach, which obviously did not
allow the effects of wave reflection against the end wall of the sleeve to be reproduced, was
to validate a simplified analytical model based on the shallow-water approximation (López
et al., 2000b). In the present work, we basically use the same model employed by Hernández
et al. (1999), based on the conservation equations of mass and momentum and the scalar
equation method, but we reproduce the relative motion between plunger and the end wall of
the sleeve using a Cartesian grid, which is contracted by moving either the plunger surface
or the end wall. In the last case, a horizontal body force per unit mass is introduced and
the plunger is assumed to be at rest. Numerical results for the wave profile evolution are
compared with those obtained using a model based on the shallow-water approximation,
which takes into account effects of wave reflection against the end wall of the sleeve (López
et al., 2000a), and also with numerical results (Hernández et al., 1999; López et al., 2000a)
obtained from a CFD code that was principally developed for free-surface flow modeling
(Sant and Backer, 1995).

Governing equations and boundary conditions

Figure 2 shows a schematic representation of the problem and the coordinate system. The
problem will be considered as two-dimensional. A single phase treatment has been used for
computing the flow of both fluids, molten metal and air. The following governing equations
for an incompressible transient flow of a Newtonian fluid will be considered:

∂u
∂x

+ ∂w
∂z

= 0, (1)

ρ
(
∂u
∂t
+ ∂u

2

∂x
+ ∂uw

∂z

)
= −∂p

∂x
+ µ

(
∂2u
∂x2

+ ∂
2u
∂z2

)
− gρ, (2)

ρ
(
∂w
∂t

+ ∂uw
∂x

+ ∂w
2

∂z

)
= −∂p

∂z
+ µ

(
∂2w
∂x2

+ ∂
2w
∂z2

)
−apρ, (3)
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where u and w are the velocity components in the Cartesian coordinates x and z, p is the
pressure, ρ and µ are the fluid density and viscosity, respectively, and g is the gravitational
acceleration. The origins of x and z are at the shot-sleeve floor and the initial plunger face
position, respectively. ap stands for a body force per unitmass corresponding to the plunger
acceleration, that will be introduced in some cases, as mentioned above. Surface-tension and
solidification effects have been neglected.

In addition to equations (1), (2) and (3), a conservation equation for a scalar ’fluid-marker’
variable, F , is solved:

∂F
∂t
+ ∂Fu
∂x

+ ∂Fw
∂z

= 0. (4)

Initially, F = 0 in cells containing air and F = 1 in cells containing liquid. The location of
the free surface is obtained from the solution of equation (4), as defined by points at which
F = 0.5.

The continuity equation is solved in PHOENICS as the basis of the GALA algorithm in
terms of volumetric conservation, avoiding the need of evaluating an average density. Nev-
ertheless, density and viscosity, which change with the type of fluid, are required to solve the
momentum conservation equations. This makes it necessary to update the fields of these
properties at every instant, which are obtained from the distribution of F using (Liu Jun and
Spalding, 1988)

ρ =max
{
ρa, min

[
ρm,ρa + (ρm − ρa) F − FaFm − Fa

]}
,

µ =max
{
µa, min

[
µm,µa + (µm − µa) F − FaFm − Fa

]}
,

(5)

where subscripts a and m indicate air and molten metal, respectively, and Fm and Fa are
the values above and below which the cell will be regarded as being full of molten metal and
air, respectively.

It is well known that the numerical resolution of equation (4) using continuum advec-
tion techniques produces high levels of numerical diffusion. The scalar equation method
implemented in PHOENICS tries to reduce the numerical diffusion by using the explicit dis-
cretization scheme of Van Leer (1977), in which the Fi value of F convected across the cell
face between cells I and I + 1 is calculated according to the following expressions:

Fi = FI +
(
∂F
∂x

)
I
(∆x −ui∆t)/2, for ui > 0,

Fi = FI+1 −
(
∂F
∂x

)
I+1
(∆x +ui∆t)/2, for ui < 0,

(6)

where ∆x is the size of the grid cell, ∆t is the time step, and the values of F and ∂F/∂x at I
and I + 1 are those corresponding to the start of the time step.

Three different approaches are used to reproduce the plunger movement. In the first
one, a fixed computational mesh is employed, and a body force per unit mass acting on the
molten metal, equal to the plunger acceleration at every instant, is introduced. Obviously,
with this approach we cannot reproduce the flow in the vicinity of the end wall of the sleeve.
In a second approach, in addition to the inertial body force, the end wall of the sleeve moves
towards the plunger and contracts the grid, so that effects of wave reflection against the
end wall of the sleeve can be simulated. Finally, in a third approach, the plunger moves and
contracts the grid, and no body force is required.
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A non-slip condition is imposed at the shot sleeve walls and the pressure is fixed at
the gate to the mold cavity. At the moving walls the fluid is assumed to have a horizontal
velocity (in the appropriate direction) given by the following plunger speed law:

wp = αβ(eαt − 1), t ≤ tH, (7)

wp = 2[(gH)1/2 − (gh0)1/2], t > tH, (8)

where α and β are positive constants and

tH = 1
α
ln

[
2(
√
gH − √gh0)
αβ

+ 1

]
. (9)

When a body force is introduced to simulate plunger motion, assuming that the plunger is
at rest, it is not only the end wall of the sleeve that moves at velocity wp relative to the
plunger, but also the ceiling and bottom walls of the shot sleeve.

As mentioned in the introduction, the numerical results obtained with the proposed
model will be compared with those yielded by a model based on the shallow-water approx-
imation, which neglects viscous and non-hydrostatic effects and takes into account the ef-
fects of wave reflection against the end wall of the sleeve. The governing equations of this
shallow-water model were solved numerically using the method of characteristics and a
finite-difference grid based on the inverse marching method. The time tH defined in equa-
tion (9) is the time at which the molten metal would reach the sleeve ceiling according to the
shallow-water approximation model.

Computational procedure and PHOENICS settings

The PHOENICS settings used to solve the problem are presented in the q1 file of Appendix A.
Remeshing of the domain is carried out by means of a modified GXPIST subroutine that

is activated by making W1AD = ZMOVE in the input file q1 and that includes a special grid
remeshing procedure, in combination with an additional subroutine that performs a natural
cubic spline interpolation of the variable fields between meshes. In both cases when either
the plunger or the end wall of the sleeve moves, only the first cell adjacent to the moving
wall is deformed. Although remeshing may require expensive and potentially inaccurate
interpolations of solutions, in the cases solved the computing time did not substantially
increase and the accuracy was checked as explained below. The reason for using the special
grid remeshing procedure just described is that, when the ZMOVE subroutine was used to
contract all the grid cells at every time step, a horizontal component of momentum higher
than expected was convected in the direction of wave propagation (later, we made some
modifications in GROUND subroutine that seemed to overcome these difficulties; these will
be published elsewhere). This caused the wave of molten metal to propagate too fast and
reach the shot sleeve ceiling too late.

Two different convection discretization schemes, hybrid and MUSCL, were used in the
momentum equations. Although MUSCL produced grid-independent solutions for grids ap-
preciably coarser than those required by the hybrid scheme, the advantages of using MUSCL
for conditions that make the wave roll up were not so evident when computing time and
convergence difficulties were also taken into account.

The explicit formulation used in the conservation equation for the scalar variable meant
that the size of the time step had to be limited to ensure stability of the numerical procedure.
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The choice of the time step followed the Courant condition:

∆t <min{|∆x/u|, |∆z/w|}, (10)

where ∆x and ∆z are the sizes of a grid cell in the x and z directions, respectively, and the
minimum refers to every cell in the grid.

Discussion of results and conclusions

The results presented in this section correspond to the plunger motion law of equations (7)
and (8), H = 5.08 cm, L/H = 9, β/H = 0.5, and a relatively low value of the initial shot
sleeve filling fraction f = h0/H = 0.254 (we found greater numerical difficulties for low
values of the initial shot sleeve filling fraction). The dynamic viscosity and density of pure
aluminum at its freezing point (1.3× 10−3 Pa s and 2385 kgm−3, respectively) were used in
all computations.

Figure 3 shows a comparison between the numerical results for the wave surface profiles
at various instants obtained with PHOENICS and those predicted with the model based on
the shallow-water approximation, for three different values of the acceleration parameter α:
1.8, 2.1 and 2.4 (in what follows, instead of α, the dimensionless parameter ξ = 2c0/(3αβ),
which is the inverse of a Froude number appearing in the analytical study presented by López
et al. (2000b), will be used). The shallow-water model predicts that, for ξ = 4.45 (α = 2.1)
and ξ = 3.89 (α = 2.4), the wave would begin to break (i.e., the wave surface height would
become a multi-valued function of z) at t/tf = 0.9564 and t/tf = 0.8933, respectively, so
that the model is no longer valid after those instants. The corresponding wave profiles have
therefore not been depicted in Figure 3. Also in accordance with the shallow-water model,
for a value of ξ = 4.804, which is intermediate between those corresponding to Figures
3a and 3b, the wave reflected from the end wall of the sleeve would begin to break just
at the instant at which the molten metal reaches the gate to the die cavity. The numerical
results from PHOENICS in Figure 3 have been obtained considering a body force acting on
the fluid and using a grid which is contracted by a moving shot-sleeve end wall. The hybrid
discretization scheme for the convective terms in momentum equations has been used in
all cases. From the results of Figure 3 and from those presented in Hernández et al. (1999),
it can be observed that there is good agreement between both types of results at sufficiently
large distances from the end wall of the sleeve, although the numerical results predict a
slightly delayed wave breaking and smoother wave profiles, which is to be expected because
the shallow-water model neglects non-hydrostatic effects. For larger values of the initial
filling fraction, for which results are not presented here, the delay is more pronounced. In
the vicinity of the end wall, wave reflection accentuates the differences between the results
of the two models, particularly in regard to the instant at which the molten metal reaches
the gate to the die cavity for large values of ξ, which is delayed in numerical results (López
et al., 2000a).

In Figure 4 we present a comparison between the numerical results obtained for the free
surface height at the plunger face as a function of time and those predicted with the model
based on the shallow-water approximation, for the case of Figure 3c. It can be observed that
the agreement is very good, and that only for values of t/tH which are close to 1 do very
slight differences appear.

Figure 5 shows, for the same values of the dimensionless parameter ξ of Figure 3, a
comparison between the same numerical results of Figure 3 for the wave surface profiles
obtained with PHOENICS, and those obtained using the finite-element Wrafts code (Sant and
Backer, 1995), which was primarily developed for free-surface transient flow analysis. In
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Figure 3: Comparison between results for wave profiles obtained with PHOENICS and those
predicted by the shallow-water approximation model. H = 5.08 cm, f = 0.254, β/H = 0.5
and L/H = 9. a) ξ = 5.18; b) ξ = 4.45; c) ξ = 3.89.
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Figure 4: Comparison between numerical and analytical results obtained for the free surface
height at the plunger face as a function of time, for the case of Figure 3c.

that code, the momentum equations are solved using an explicit time integration for the
velocities, and the pressure is calculated from a Poisson equation at each time step, using
the projectionmethod developed by Chorin (1969). The VOFmethod (Hirt and Nichols, 1981)
is used to calculate the position of the free surface, and the mesh is moved and deformed
using a technique similar to the Arbitrary Lagrangian-Eulerian method (Hirt et al., 1974). A
non-slip condition was imposed at the sleeve walls and the pressure was fixed at the gate to
the die cavity. More information on the numerical procedure and details on grid dependence
of results can be found in Hernández et al. (1999) and López et al. (2000b). The numerical
results from PHOENICS in Figure 3 were obtained considering a body force acting on the
fluid and a grid which is contracted by a moving shot-sleeve end wall. It can be observed
that the degree of agreement between the results of both codes is good, and that differences
are larger in the vicinity of the shot-sleeve end wall. In general, Wrafts results show slightly
steeper wave profiles than those obtained with PHOENICS.

Although remeshing increases the difficulty of demonstrating grid independence of the
results, different grids were used to check the grid dependence of the solution for the three
approaches used to simulate the plunger motion. Except for the wave profiles at the end
of the slow stage in working conditions that produce wave rolling (e.g., for t/tf above a
value around 0.95 for ξ = 3.89 in Figure 3c), and although a more detailed analysis is
probably necessary, nearly grid-independent results were generally obtained when using
contracting grids for a grid size of around 160×400 (NX×NZ) elements. Similar conclusions
were reached for fixed grids with a higher equivalent initial refinement degree in a zone
of the computational domain, of length L/3.6, close to the plunger surface (notice that,
in this case, the computational domain must extend beyond the end wall of the sleeve;
we say that the initial refinement is equivalent when the size of the grid cells near the
plunger surface is initially the same in both types of grids). As already mentioned, a grid
of size 160× 400 was used to obtain the results presented in Figures 3 and 5. Typical time
steps varied from 1 ms at the beginning of plunger movement to less than 0.01 ms during
wave breaking. Figures 6 and 7 show wave surface profiles at t/tf = 0.972 computed with
PHOENICS for the same operating conditions of previous figures and the particular case with
ξ = 3.89, using different grid sizes, two different discretization schemes for the convective
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Figure 5: Comparison between results for wave profiles obtained with PHOENICS and Wrafts
codes. H = 5.08 cm, f = 0.254, β/H = 0.5 and L/H = 9. a) ξ = 5.18; b) ξ = 4.45; c) ξ = 3.89.
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Figure 6: Wave surface profiles at t/tf = 0.972 computed using a fixed grid. Dependence on
grid size and discretization scheme of the convective terms. a) Hybrid scheme. b) MUSCL
scheme. (H = 5.08 cm, f = 0.254, ξ = 3.89, β/H = 0.5 and L/H = 9.)
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Figure 7: Dependence on grid size of wave surface profiles at t/tf = 0.972 computed using
the hybrid scheme, for two different approaches to simulate plunger motion: a) Moving
plunger. b) Inertial body force/moving end wall. (H = 5.08 cm, f = 0.254, ξ = 3.89,
β/H = 0.5 and L/H = 9.)
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Figure 8: Dependence on grid size of profiles obtained using the MUSCL and Hybrid schemes
with a fixed grid. Operating conditions as in Figures 6 and 7 and t/tf = 0.972.

terms in momentum equations, and the three different approaches considered to simulate
plunger motion: fixed grid/inertial body force (Figures 6a and 6b); grid contracted by end-
wall motion/inertial body force (Figure 7b), and grid contracted by plunger motion (Figure
7a). The hybrid and MUSCL schemes have been used to obtain the results of Figures 6a and 7,
and Figure 6b, respectively. The grid sizes indicated in Figure 6 correspond to an equivalent
initial refinement degree of a deforming grid as defined above. From these figures, it is clear
that grid independence is more difficult to obtain using a grid contracted by the plunger
motion. This was the reason for using the alternative approaches based on introducing an
inertial body force. Notice that the existence of the shot-sleeve end wall cannot be considered
when a fixed grid is used (Figure 6), although in this case the effects of wave reflection against
the end-wall still seem to be negligible (at subsequent t/tf this is not so). The wave profiles
obtained introducing a body force and using either a fixed grid or a moving end wall seem
to get closer as the grid is refined, although a further and more detailed analysis is required.
In the case of a fixed grid, the size of the grid cells at the end of the filling process is
obviously larger than that reached when a moving end wall contracts the grid, although this
drawbackmay perhaps be compensated by the advantage that no additional global numerical
diffusion is introduced by the remeshing and interpolation procedures required in the case
of considering a moving end wall.

Figure 6b shows a comparison between wave profiles obtained using the MUSCL dis-
cretization scheme and a fixed grid of different sizes. As expected, this scheme yielded
results of a given accuracy for considerably coarser grids, although certain convergence dif-
ficulties arose in some cases. In Figure 8 we present numerical results for wave profiles
obtained using the MUSCL and Hybrid schemes with a fixed grid of different sizes, which
for grid sizes of 160× 800 and 320× 1600, respectively, can be considered as nearly grid-
independent, except possibly around the foremost part of the rolling wave.
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Figure 9: Comparison of profiles obtained using the MUSCL and Hybrid schemes with a fixed
grid, and the Hybrid scheme with a moving end wall, with an initially equivalent grid size of
160× 800 in the three cases. Operating conditions as in Figures 6 and 7 and t/tf = 0.972.

Figure 9 shows a comparison between wave profiles obtained using the Hybrid discretiza-
tion scheme, for cases corresponding to both fixed grid and moving end wall calculations,
and those obtained using the MUSCL scheme and a fixed grid (the same initially equiva-
lent grid refinement was used in the three cases). Notice that this last profile, which in
principle represents a more accurate solution, is intermediate between the first two. This
suggests that using a contracting grid in combination with an inertial body force improves
the accuracy of the solution obtained using a moving plunger, and allows the effects of wave
reflection against the end wall of the sleeve to be reproduced. It should also be pointed out
that, although the shot-sleeve operating conditions which the previous discussion on grid
dependence refers to are the most severe among those corresponding to the results pre-
sented in this work, more cases need to be solved in order to analyze in more detail the grid
dependence of results obtained using a moving end wall for broader ranges of operating
conditions.

One of the purposes in future works will be to eliminate the unacceptable broadening
of the region where the fluid marker variable F varies, which in many operating conditions
is unavoidable even when the higher-order monotonic scheme of Van Leer (1977) or other
similar techniques are used.
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Nomenclature

ap Plunger acceleration.
c0 Wave speed relative to the fluid for a depth h0, (gh0)1/2.
f Initial shot sleeve filling fraction, h0/H.
F Fluid-marker conserved scalar.
g Gravitational acceleration.
h Height of the free surface.
h0 Initial depth of molten metal.
H Height of the shot sleeve.
L Length of the shot sleeve.
p Pressure.
t Time from start of plunger motion.
tf Filling time of the shot sleeve.
tH Time at which the molten metal reaches the sleeve ceiling, according to the shallow

water model.
u, w Velocity components.
wp Plunger speed.
x, z Coordinates (Figure 2).
α, β Parameters in the exponential velocity law of equation (7).
µ Dynamic viscosity.
ρ Density.
ξ Dimensionless parameter, 2c0/(3αβ).

Subscripts
a Air.
m Molten metal.

Appendix A. The q1 file

TALK=f;RUN( 1, 1)
GROUP 1. Run title and other preliminaries

text(Flow in the shot sleeve of high pressure die casting machines)
real(zlast,zlast1,zlast2,timh,timi)
real(xlast,xlast1,xlast2,f,alpha,beta)
integer(nz1,nz2)
integer(nx1,nx2,nnn)
boolean(continuar,zoom,impacto,remesh,inercia,zmove2)
integer(esquema)

** MALLA grosera ** STEADY=F;nx1=10;nx2=30;NY=1;nz1=50;NZ2=50;nnn=1
** MALLA FINA ** STEADY=F;nx1=20;nx2=60;NY=1;nz1=100;NZ2=100;nnn=2
** MALLA MUY FINA ** STEADY=F;nx1=30;nx2=90;NY=1;nz1=150;NZ2=150;nnn=3
** REFINA ** STEADY=F;nx1=40;nx2=120;NY=1;nz1=200;NZ2=200;nnn=4

STEADY=F;nx1=10;nx2=30;NY=1; nz1=50;NZ2=50;nnn=1
STEADY=F;nx1=20;nx2=60;NY=1;nz1=100;NZ2=100;nnn=2
STEADY=F;nx1=40;nx2=120;NY=1; nz1=200;NZ2=200;nnn=4
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STEADY=F;nx1=40;nx2=120;NY=1; nz1=200;NZ2=200;nnn=8
tfirst=1.204

alpha=2.4
beta =0.0254
zmove2=f
impacto=t
remesh=t
inercia=t
zoom=f
f=0.254
timh=1.052
timi=1.18
xlast=.0508;zlast=.4572
zlast1=zlast/2.
zlast2=zlast/2.
xlast1=xlast*f
xlast2=xlast*(1.-f)

GROUP 2. Transience; time-step specification
NREGT=2
IREGT=1;GRDPWR(T,10*nnn,.1213917*2,1.0)
IREGT=2;GRDPWR(T,30*nnn,.1213917*2,1.0)
IREGT=3;GRDPWR(T,30*nnn,.1213917*1,1.0)
IREGT=4;GRDPWR(T,40*nnn,.1213917*1,1.0)
IREGT=5;GRDPWR(T,60*nnn,.1213917,1.0)
IREGT=6;GRDPWR(T,100*nnn,.1213917,1.0)
IREGT=7;GRDPWR(T,180*nnn,.1213917,1.0)
IREGT=8;GRDPWR(T,60*nnn,.1213917*.3,1.0)
IREGT=9;GRDPWR(T,180*nnn,.1213917*.6,1.0)
IREGT=10;GRDPWR(T,100*nnn,.1213917*.1,1.0)

GROUP 3. X-direction grid specification
NREGX=2
IREGX=1;GRDPWR(X,Nx1,xlast1,1.0)
IREGX=2;GRDPWR(X,Nx2,xlast2,1.0)

GROUP 5. Z-direction grid specification
NREGZ=2
IREGZ=1;GRDPWR(Z,nz1,zlast1,1.0)
IREGZ=2;GRDPWR(Z,nz2,zlast2,1.0)

GROUP 6. Body-fitted coordinates or grid distortion
GROUP 7. Variables stored, solved & named

SOLUTN(P1,Y,Y,Y,P,P,P); OUTPUT(P1,Y,Y,Y,Y,Y,Y)
SOLUTN(U1,Y,Y,Y,P,P,P); OUTPUT(U1,Y,Y,Y,Y,Y,Y)
SOLUTN(W1,Y,Y,Y,P,P,P); OUTPUT(W1,Y,Y,Y,Y,Y,Y)
esquema=1

scheme(smart,u1,w1);esquema=3
scheme(muscl,u1,w1);esquema=3

STORE(RHO1,PRPS); SOLVE(VFOL,SURN); STORE(ENUL)
GROUP 8. Terms (in differential equations) & devices

GALA=T; TERMS(VFOL,N,N,N,N,P,P);TERMS(SURN,N,N,N,N,P,P)
GROUP 9. Properties of the medium (or media)

RHO1=GRND10;ENUL=GRND10
GROUP 11. Initialization of variable or porosity fields

FIINIT(P1)=0.0;FIINIT(U1)=0.0;FIINIT(V1)=0.0;FIINIT(W1)=1e-10
FIINIT(PRPS)=0;FIINIT(SURN)=0.0;FIINIT(rho1)=1.189;INIADD=F

GROUP 13. Boundary conditions and special sources
PATCH(WATER,INIVAL,1,nx1,1,ny,1,nz,1,1)
COVAL(WATER,VFOL,0,1)
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COVAL(WATER,SURN,0,1)
COVAL(WATER,PRPs,0,67)
restrt(all);continuar=t
integer(nzsal,nzsal2)
nzsal=nz*9/10-2*nnn
nzsal2=nz*1/10+2*nnn
if(inercia) then
PATCH(SALI,east,nx,NX,1,1,nzsal,nz,1,LSTEP)
else
PATCH(SALI,east,nx,NX,1,1,1,nzsal2,1,LSTEP)
endif
COVAL(SALI,p1,1.0,0.0)
COVAL(SALI,surn,fixflu,grnd1)
PATCH(TCON,CELL,1,NX,1,NY,1,NZ,1,LSTEP)
COVAL(TCON,SURN,GRND,GRND)
WALL(wall1,low,1,nx,1,ny,1,1,1,lstep)
WALL(wall3,high,1,nx,1,ny,nz,nz,1,lstep)
if(inercia) then
wall(wall2,east,nx,nx,1,ny,1,nzsal-1,1,lstep)
value(wall2,w1,grnd)
else
if(zmove2.eq.false) then
wall(wall2,east,nx,nx,1,ny,nzsal2+1,nz,1,lstep)
value(wall2,w1,0.0)
endif
endif

Gravity-force source of V1
PATCH(GRAV,PHASEM,1,NX,1,NY,1,NZ,1,LSTEP)
COVAL(GRAV,u1,FIXFLU,-9.81)
if (inercia) then
COVAL(GRAV,w1,FIXFLU,grnd)
endif

GROUP 15. Termination of sweeps
LSWEEP=12

GROUP 16. Termination of iterations
LITER(SURN)=1

GROUP 17. Under-relaxation devices
real(dtf); dtf=1.
if(scheme.gt.1) then
RELAX(V1,FALSDT,dtf);RELAX(W1,FALSDT,dtf)
endif
USEGRX=T;USEGRD=t

GROUP 19. Data communicated by satellite to GROUND
w1ad=ZMOVE; AZW1=alpha ; BZW1=beta; CZW1=4.0; IZW1=nz-1
real(dist1,dist2,dist3,dist4)
real( ZWO1,ZWO2,ZWO3,ZWN1,ZWN2,ZWN3)
integer(IZW2,IZW3)
izw2=nz;izw3=nz
if (impacto) then
izw1=nz;izw2=nz;izw3=nz
endif
SPEDAT(PISTO, timh, R,timh)
SPEDAT(PISTO, timi, R,timi)
SPEDAT(PISTO, continuar, L,continuar)
SPEDAT(PISTO, impacto, L,impacto)
SPEDAT(PISTO, zoom, L,zoom)
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SPEDAT(PISTO, remesh, L,remesh)
SPEDAT(PISTO, dist4, R, 1.e-7)
SPEDAT(PISTO, inercia, L,inercia)
SPEDAT(PISTO, esquema, I,esquema)
SPEDAT(PISTO, zmove2, L,zmove2)
if(.not.continuar) then
SPEDAT(PISTO, IZW1, I, :izw1:)
SPEDAT(PISTO, IZW2, I, izw2)
SPEDAT(PISTO, IZW3, I, izw3)
SPEDAT(PISTO, dist3, R, 0.0)
else
dist1 = 0.0; dist2 = 1.945E-05; dist3 = .000E+00
izw1=400;izw2=400;izw3=400
SPEDAT(PISTO, IZW1, I, izw1)
SPEDAT(PISTO, IZW2, I, IZW2)
SPEDAT(PISTO, IZW3, I, IZW3)
SPEDAT(PISTO, dist1, R,dist1)
SPEDAT(PISTO, dist3, R,dist3)
SPEDAT(PISTO, zwo(1), R, ZWO1)
SPEDAT(PISTO, zwo(3), R, ZWO3)
endif
IPRPSA=67;IPRPSB=0
IDISPA=30*nnn
IHOLA=1
SURF=T;RLOLIM=0.49;RUPLIM=0.51
csg1=c;csg2=XYZ
VARMIN(SURN)=0.0; VARMAX(SURN)=1.0
tstswp=-1;ixmon=nx1;iymon=1;izmon=nz-1

GROUP 23. Field print-out and plot control
NPLT=1
NTPRIN=LSTEP/100;OUTPUT(P1,Y,Y,Y,Y,Y,Y);OUTPUT(V1,Y,Y,Y,Y,Y,Y)
OUTPUT(W1,Y,Y,Y,Y,Y,Y);OUTPUT(vfol,Y,N,y,N,N,N)
OUTPUT(DEN1,Y,N,y,N,N,N)
IPLTF=20;XZPR=T;itabl=1
if(:czw1:.eq.4) then
mesg(
mesg( ##########################################################
mesg( # CONTRACCION GRADUAL #
mesg( ##########################################################
mesg(
endif
mesg(
mesg( ##########################################################
mesg( # alpha=:azw1:, beta=:bzw1:, f=:f: #
mesg( ##########################################################
mesg(
if(:tfirst:.ne.0.and.continuar) then
mesg(
mesg( ##########################################################
mesg( # continua en :tfirst: #
mesg( ##########################################################
mesg(
mesg(
endif
STOP
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