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Abstract

Subdivision schemes are iterative procedures to construct curves
and constitute fundamental tools in Computer Aided Design. Start-
ing with an initial control polygon, a subdivision scheme refines the
computed values at the previous step according to some basic rules.
The scheme is said to be convergent if there exists a limit curve. The
computed values define a control polygon in each step. This paper is
devoted to estimate error bounds between the “ideal” limit curve and
the control polygon defined after k subdivision stages. In particular,
a stop criteria of convergence is obtained. The considered refinement
rules in the paper are widely used in practice and are associated to
the well known two-scale refinement equation including as particular
examples Daubechies’ schemes. Companies such as Pixar have made
subdivision schemes the basic tool for much of their computer graphics-
modelling software.

1 Introduction

Non-uniform rational B-spline (NURBS) is a mathematical tool widely used
in computer graphics for generating curves. The development of NURBS
started in the 1950s by engineers who were in need of precise representations
of freeform surfaces like those used in car and ship industry.

Other important method for generating smooth curves are the use of
subdivision schemes [1]-[3]-[4]. Their flexibility and simplicity are their best

∗Departamento de Matemática Aplicada y Estad́ıstica. Universidad Politécnica
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properties. They have been used in many applications in Computer Graphics
and Computer Aided Geometric Design in the last decades. Companies such
as Pixar have made subdivision schemes the basic tool for much of their
computer graphics-modelling software [10].

Both approaches are included in the control polygon paradigm. In the
applications of this type of procedures emerges an important question:

How well the control polygon approximates the limit curve?.
Several researchers give several answers in the NURBS framework [5]-

[6]-[9]. These methods, for computing the bounds on the approximation of
polynomials and splines by their control structures, are based on param-
eterizations, so that it is very difficult for them to be generalized to the
subdivision schemes.

In [8], the authors estimate error bounds for binary subdivision schemes
in terms of the maximal differences of the initial control point sequence
and constants that depend on the subdivision mask. The technique is inde-
pendent of parameterizations and therefore it can be easily and efficiently
implemented. Nevertheless, there exist widely used masks for which their
hypotheses are not satisfied. A very interesting example, commonly used
in practice, is the class of subdivision schemes based on the well known
two-scale equation (see for instance the Daubechies’ filters in [2], p. 195).
Our purpose is to obtain error bounds of this general and important class
of subdivision schemes. Furthermore, our results will improve the bounds
given in [8] (Theorem 1).

1.1 The two-scale equation and the associated class of sub-
division schemes

The two-scale refinement equation [7], p. 228,

ϕ(x) =
∑

n∈Z

hn ϕ(2x− n) (1)

with ∑

n∈Z

h2n = h2n+1 = 1, (2)

constitutes the starting point in the construction of orthonormal wavelet
bases and also it plays a central role in the subdivision schemes for curve
generations. The approximation coefficients of the reconstruction algorithm
associated to an orthogonal basis are obtained by the use of fast algorithms in
terms of convolutions with the filter h. More precisely, we use the following
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notation: The convolution product, ?, of two vectors is given by (u ? h)i =∑
n∈Z un hi−n. The operation “insertion of zeros” is denoted by:

v0
i =

{
vm i = 2m
0 i = 2m + 1.

Usually, the vector vi represents the approximation coefficients associated
to certain level of resolution k, i.e., vi = fk

i , k ∈ N, then we will denote v0
i

as fk;0
i .
With this notation, the reconstruction algorithm used to define the ap-

proximation coefficients at stage k + 1 in terms of the coefficients at stage k
is given by ([7], p. 255):

fk+1
i =

∑

n∈N

hi−2n fk
n = (fk;0 ? h)i. (3)

Equation (3) defines the subdivision rule associated to the two-scale
refinement equation. This type of schemes are studied in detail, for instance,
in [1]. The sequence of points {fk

i } represents the values associated with the
diadic mesh points xk

i = i
2k , i ∈ Z. The initial stage is defined by the set

{f0
n, n ∈ Z}, (4)

with each f0
n ∈ Rm, m ≥ 2, which is called the initial control polygon

and H = {hn}n∈Z is usually called the mask associated to the subdivision
scheme.

The subdivision scheme with mask H converges if, for each bounded
initial control polygon, there exists a continuous function, F : R 7→ Rm,
such that

lim
k→∞

sup
i∈Z

∣∣∣∣F
(

i

2k

)
− fk

i

∣∣∣∣ = 0.

The function F is known as the limit curve associated to the subdivision
scheme. This function is usually denoted by R∞, where Rk represents the
interpolating polygonal at the points {fk

i }i.
The previous subdivision procedure can be easily formulated as a binary

subdivision scheme (see [2], p. 207). Consider, for each n ∈ N, h
[E]
n = h2n

and h
[O]
n = h2n+1. In practice, hn has finite length. We use the notation

length (hn) = 2(L + 1), L ≥ 0. Then, (3) is equivalent to the following
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formulation: 



fk+1
2i =

L∑

m=0

h[E]
m fk

i−m,

fk+1
2i+1 =

L∑

m=0

h[O]
m fk

i−m,

(5)

where, by (2)
L∑

m=0

h[E]
m =

L∑

m=0

h[O]
m = 1. (6)

Equations (5) define a scheme where fk+1
2i replaces the value fk

i at xk+1
2i =

xk
i and fk+1

2i+1 is inserted at the new point xk+1
2i+1 =

xk
i +xk

i+1

2 .
The organization of the paper is as follows. Section 2 is devoted to

give the error bounds for ‖Rk+1 − Rk‖∞. We will use some results which
will be proved in a final Appendix. In Section 3 we give the error bounds
between subdivision curves and their control polygons, i.e., ‖R∞ − Rk‖∞.
Section 4 is devoted to some numerical experiments and, finally, a complete
analysis concerning the main properties of the derived upper bounds will be
presented in the Appendix.

2 Error bounds for two consecutive subdivision
stages

This section is composed of a collection of expressions and inequalities in
order to find an upper bound for ‖Rk+1 −Rk‖∞. We consider the notation
described in [8] and that it was also recalled in Section 1.

More precisely, we consider the initial control polygon (4) and the values
fk

i , k ≥ 0, given by (5). As in [8], we introduce

Ek = max
i
‖fk+1

2i − fk
i ‖, (7)

Ok = max
i
‖fk+1

2i+1 −
1
2
(fk

i + fk
i+1)‖. (8)

the maximum difference between Rk+1 and Rk is attained at a point on the
(k + 1)-th mesh, then

‖Rk+1 −Rk‖∞ ≤ max{Ek,Ok}. (9)
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We denote

h̃
[E]
j =

L∑

i=j+1

h
[E]
i

and 



h̃
[O]
0 =

L∑

i=1

h
[O]
j − 1

2
,

h̃
[O]
j =

L∑

i=j+1

h
[O]
i , j ≥ 1.

From (5) and (6), by the procedure applied in [8], it follows that

fk+1
2i − fk

i =
L−1∑

j=0

h̃
[E]
j

(
fk

i−j−1 − fk
i−j

)
, (10)

and

fk+1
2i+1 −

1
2
(fk

i + fk
i+1) =

L−1∑

j=0

h̃
[O]
j

(
fk

i−j−1 − fk
i−j

)
. (11)

In order to find upper bounds for Ek and Ok, it follows from (10) and (11)
that we have to control the quantities

max
i
‖fk

i−1 − fk
i ‖. (12)

We analyze the following two cases that correspond to the possibilities to
express (12).

By using (6) we obtain the following expressions, analogously to the
given ones in [8]:

fk
2i − fk

2i+1 =
L∑

j=0

(h̃[E]
j − h̃

[O]
j ) (fk−1

i−j−1 − fk−1
i−j ), (13)

and

fk
2i+1 − fk

2i+2 =
L∑

j=0

(h[O]
j − (h̃[E]

j − h̃
[O]
j )) (fk−1

i−j−1 − fk−1
i−j ). (14)

From (6) it follows that

h̃
[E]
j = 1−

j∑

n=0

h[E]
n and h̃

[O]
j = 1−

j∑

n=0

h[O]
n . (15)
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From (15) it holds that (13) and (14) can be respectively expressed as follows:

fk
2i − fk

2i+1 =
L∑

j=0

cj (fk−1
i−j−1 − fk−1

i−j ), (16)

fk
2i+1 − fk

2i+2 =
L∑

j=0

dj (fk−1
i−j−1 − fk−1

i−j ), (17)

where

cj =
j∑

n=0

(h[O]
n − h[E]

n ) and dj = h
[O]
j − cj . (18)

Expressions (16) and (17) are analogous to the given ones in [8], Eqs.
(9) and (10), respectively. The proof of Theorem 1 in [8] strongly uses the
conditions

sc =
L∑

j=0

|cj | < 1 and sd =
L∑

j=0

|dj | < 1. (19)

Our analysis does not require (19). This explains that, in what follows, we
will develop another strategy.

We introduce, for each l ∈ Z,

rk
l = fk

l − fk
l+1, (20)

and also, for j = 0, · · · , L,

g2j = cj and g2j+1 = dj . (21)

Then, (16) and (17) take (respectively) the form:

rk
2i =

L∑

j=0

g2j rk−1
i−j ,

rk−1
2i+1 =

L∑

j=0

g2j+1 rk
i−j ,

and also (see (3) and (5)),

rk
2i = (rk−1;0 ? g)2i, rk

2i+1 = (rk−1;0 ? g)2i+1.

Hence,
rk
i = (rk−1;0 ? g)i. (22)
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By the use of the analysis developed in the final Appendix, it follows
from Corollary 4 that

max
i
‖rk

i ‖ ≤ Gk max
i
‖r0

i ‖, (23)

where Gk is (see Definition 1 and (53)), the associated constant of a k-th
convolution with filter g.

From (7), (8), (9), (10), (11) (20) and (23), we obtain

‖Rk+1 −Rk‖∞ ≤ max





L−1∑

j=0

|h̃[E]
j |,

L−1∑

j=0

|h̃[O]
j |



 max

i
‖rk

i ‖

≤ max





L−1∑

j=0

|h̃[E]
j |,

L−1∑

j=0

|h̃[O]
j |



 Gk max

i
‖r0

i ‖.

By the use of the notation

γ = max





L−1∑

j=0

|h̃[E]
j |,

L−1∑

j=0

|h̃[O]
j |



 , β = max

i
‖r0

i ‖,

it holds
‖Rk+1 −Rk‖∞ ≤ γ β Gk. (24)

Finally, we state the main result of this Section.

Theorem 1 Consider the initial control polygon (4) and the values fk
i , k ≥

1, recursively defined by (5) with (6). Consider:

• Rk the piecewise linear interpolation at the values fk
i .

• h̃
[E]
j =

L∑

i=j+1

h
[E]
i .

• h̃
[O]
0 =

L∑

i=1

h
[O]
j − 1

2
, h̃

[O]
j =

L∑

i=j+1

h
[O]
i , j ≥ 1.

• cj =
j∑

n=0

(h[O]
n − h[E]

n ), dj = h
[O]
j − cj.

• g2j = cj , g2j+1 = dj.
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• rk
l = fk

l − fk
l+1, l ∈ Z.

• γ = max





L−1∑

j=0

|h̃[E]
j |,

L−1∑

j=0

|h̃[O]
j |



 , β = maxi ‖r0

i ‖.

• Gk is the constant associated to the k-th convolution with filter g, given
by (53).

If g is given such that the conditions of Theorem 3 are satisfied, then

‖Rk+1 −Rk‖∞ ≤ γ β Gk.

3 Error bounds between the limit curve and the
k-th control polygon

This section is devoted to prove the following result:

Theorem 2 Under the same assumptions that Theorem 1, let R∞ be the
limit curve associated to the subdivision process (5) and consider k0 ≥ 1, a
natural number, satisfying Gk0 < 1.

• If k0 = 1, then

‖R∞ −Rk‖∞ ≤ γ β
Gk

1

1−G1
. (25)

• If k0 ≥ 2, then

‖R∞ −Rk‖∞ ≤ γ β G1

(
Gα

k0

1−G
1/k0

k0

)
,

where α = α(k, k0) = k−k0+1
k0

.

Proof:
By the use of the triangle inequality, we obtain from (24) that

‖R∞ −Rk‖∞ ≤ γ β
+∞∑

m=k

Gm. (26)

The series in (26) converges. This fact easily follows by applying, for
instance, D’Alembert’s criteria. It is possible to find a geometric series that
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is an upper bound for
+∞∑

m=k

Gk. From Corollary 5 in the Appendix, it follows

that there exists k0 ∈ N, k0 ≥ 1, such that

Gk0 < 1 (27)

Let q = q(m) and r be dependent on each m such that

m = q k0 + r, r ∈ {0, 1, 2, · · · , k0 − 1}. (28)

Then

Gm ≤





Gq
k0

, if r = 0,

Gq
k0

G1, if r = 1,

Gq
k0

G2, if r = 2,

· · ·
Gq

k0
Gk0−1, if r = k0 − 1.

Hence,

Gm ≤ max{Gq
k0

, Gq
k0

G1, G
q
k0

G2, · · · , Gq
k0

Gk0−1} =

{
Gm

1 if k0 = 1,

Gq
k0

G1 if k0 ≥ 2.

(29)
By (29) it holds that

+∞∑

m=k

Gm ≤





+∞∑

m=k

Gm
1 , if k0 = 1,

G1

+∞∑

m=k

G
q(m)
k0

, if k0 ≥ 2.

(30)

From (28), it follows that

m− k0 + 1
k0

≤ q(m) ≤ m

k0
. (31)

Denoting α(m, k0) = m−k0+1
k0

, from (27) and (31), we obtain

G
q(m)
k0

≤ G
α(m,k0)
k0

. (32)

Hence, by (30) and (32), the proof is complete.

It is possible to improve the bound in (25). In order to find a bound
smaller than the given one in (25), let us suppose, at first, that G2 is also
known. By Theorem 3, we have that G2 < G1 < 1 and hence:
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• If k = 2j with j ≥ 1, then

+∞∑

m=2j

Gm = G2j + G2j+1 + G2j+2 + G2j+3 + · · ·

≤ Gj
2 + Gj

2 G1 + Gj+1
2 + Gj+1

2 G1 + · · ·

= (1 + G1)
+∞∑

m=j

Gm
2

= (1 + G1)

(
Gj

2

1−G2

)
. (33)

• If k = 2j + 1 with j ≥ 1, then

+∞∑

m=2j+1

Gm ≤ Gj
2 G1 + (1 + G1)

+∞∑

m=j+1

Gm
2

= Gj
2 G1 + (1 + G1)

(
Gj+1

2

1−G2

)
. (34)

It only remains for analyzing the case k = 1. Taking into account that

+∞∑

m=1

Gm = G1 +
+∞∑

m=2

Gm, (35)

then, by the use of (33) in the second sum in (35), it holds

+∞∑

m=1

Gm ≤ G1 + (1 + G1)
+∞∑

m=1

Gm
2

= G1 + (1 + G1)
(

G2

1−G2

)
. (36)

Remark 1 The bound which improves (25) is given by substituting the term
Gk

1

1−G1
in (25), by (33) for even k, or (34) for odd k ≥ 3, or (36) for k = 1.

It is possible to give a general result by supposing that G1, G2, · · · , GN0

are known, for some fixed N0 > 2. Then, by Theorem 3, GN0 < GN0−1 <
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· · · < G2 < G1 < 1, and

Gm ≤





Gj
k0

, if m = N0 j,

Gj
N0

G1, if m = N0 j + 1,

Gj
N0

G2, if m = N0 j + 2,

· · ·
Gj

N0
GN0−1, if m = N0 j + (N0 − 1).

In order to simplify the notation, we denote G0 = 1 and consider for s ≥ 0,

G̃s =
N0−1∑
n=s

Gn.

Then, we obtain, for j ≥ 1,

+∞∑

m=k

Gm ≤





G̃0

+∞∑

m=j

Gm
N0

if k = N0 j,

G̃1 Gj
N0

+ G̃0

+∞∑

m=j+1

Gm
N0

if k = N0 j + 1,

G̃2 Gj
N0

+ G̃0

+∞∑

m=j+1

Gm
N0

if k = N0 j + 2,

· · ·

G̃N0−1 Gj
N0

+ G̃0

+∞∑

m=j+1

Gm
N0

if k = N0 j + (N0 − 1).

It only remains for analyzing the cases k ∈ {1, 2, · · · , N0 − 1}. Analogously
to the particular case N0 = 2, it follows

+∞∑

m=k

Gm ≤ G̃k + G̃0

+∞∑

m=1

Gm
N0

.

4 Numerical experiments

We have considered the normalized Daubechies’s filters (see [2] p. 195),
such that (2) is satisfied. According to (18), we have computed cj and dj .
The conditions (19), required in [8], Theorem 1, are not satisfied for the
filters corresponding to db1, db6, db7, db8, db9, and db10. These conditions
are neither satisfied for dbN , N ≥ 11.
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For each Daubechies’s filter db1, · · · , db10, we have computed the con-
stants {Gi}5

i=1, associated to the filter g given by (21). The following table
shows sc, sd, (defined in (19)) and {Gi}5

i=1 for the normalized Daubechies’s
filters.

sc sd G1 G2 G3 G4 G5

db1 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
db2 0.5000 0.8660 0.8660 0.6830 0.5123 0.3728 0.2660
db3 0.8413 0.5406 0.8413 0.5061 0.2977 0.1639 0.0847
db4 0.9933 0.5657 0.9933 0.6058 0.3430 0.1791 0.0922
db5 0.9471 0.7832 0.9471 0.5869 0.3247 0.1735 0.0878
db6 0.7237 1.0087 1.0087 0.6455 0.3263 0.1651 0.0835
db7 0.5974 1.1499 1.1499 0.5943 0.3241 0.1664 0.0834
db8 0.7933 1.1532 1.1532 0.6278 0.3167 0.1601 0.0805
db9 1.0367 1.0007 1.0367 0.6685 0.3405 0.1712 0.0857
db10 1.2330 0.7079 1.2330 0.6919 0.3569 0.1809 0.0909

Table 1. Constants sc, sd and Gi, i = 1, · · · , 5, for Daubechies’ filters
db1, · · · , db10.

The main purpose of the following example is to improve the bound
given in [8], corollary 3, in connection with one of the most used subdivi-
sion process. More precisely, in connection with the 4-point interpolatory
subdivision rule [3].

The subdivision mask is defined by

h[E]
n = (0, 1, 0, 0)

h[O]
n = (−ω,

1
2

+ ω,
1
2

+ ω,−ω).

We will consider 0 < ω < (−1+
√

5)/8 ≈ 0.1545 to guarantee a C1 continuous
limit curve.

The subdivision rule is given in [8], eq (1). Hence, the sequences cj and
dj are given in [8], Eqs. (9) and (10). By the use of cj and dj in (21), we
obtain the following filter

g = (ω,−ω,
1
2
,
1
2
,−ω, ω). (37)

From (56), it follows that G1 = G1(ω) = 1
2 + 2 |ω|. Note that G1 = δ in

[8], corollary 3. Hence, the bound in (25),

‖R∞ −Rk‖∞ ≤ γ β
Gk

1

1−G1
,
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is the same that the given one in the reference just mentioned. In order to
improve the previous bound, we will consider (33) and (34). In this case,
we have computed G2 and, taking into account (55) and the range for ω, it
follows that G2 is given by

G2 = G2(ω) = 2 |ω|2 +
∣∣∣∣
1
4
− ω

2
− ω2

∣∣∣∣ +
∣∣∣ω
2

+ ω2
∣∣∣ . (38)

We use the following notation:

B1(ω, k) =
Gk

1(ω)
1−G1(ω)

,

B
[E]
2 (ω, k) = (1 + G1(ω))

(
G

k/2
2 (ω)

1−G2(ω)

)
, for even k,

B
[O]
2 (ω, k) = G

(k−1)/2
2 (ω) G1(ω) + (1 + G1(ω))

(
G

(k+1)/2
2 (ω)

1−G2(ω)

)
, for odd k ≥ 3.

According to Remark 1, the bound in (25) is improved by considering

• B
[E]
2 (ω, k) instead of B1(ω, k) for even k.

• B
[O]
2 (ω, k) instead of B1(ω, k) for odd k ≥ 3.

0 0.05 0.1 0.15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 1: B1(ω, 4) (with +) and B
[E]
2 (ω, 4).

Figure 1 shows a comparative between B1(ω, 4) and B
[E]
2 (ω, 4), for 0 <

ω < (−1 +
√

5)/8 ≈ 0.1545.
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We have also computed different values for B1(ω, k), B
[E]
2 (ω, k) and

B
[O]
2 (ω, k), in order to complete a comparative between them. We have

defined five uniformly distributed values for ω in (0, 0.1545), i.e.,

ω1 = 0.0140, ω2 = 0.0421, ω3 = 0.0702, ω4 = 0.0983, ω5 = 0.1264.

and k = 5, 10, 25, 50. The results show that the given bounds in [8], corollary
3, are notoriously improved by our analysis. The values are collected in Table
2.

ω1 ω2 ω3 ω4 ω5

B1(·, 5) 0.0870 0.1637 0.2997 0.5408 0.9783
B

[O]
2 (·, 5) 0.0651 0.0721 0.0821 0.0959 0.1145

B1(·, 10) 0.0035 0.0111 0.0322 0.0887 0.2365
B

[E]
2 (·, 10) 0.0020 0.0022 0.0026 0.0032 0.0043

B1(·, 25) 2.4768e− 007 3.5210e− 006 4.0419e− 005 3.9207e− 004 0.0033
B

[O]
2 (·, 25) 6.3083e− 008 7.9240e− 008 1.1536e− 007 1.9264e− 007 3.6391e− 007

B1(·, 50) 2.8949e− 014 5.1540e− 012 5.8739e− 010 4.6633e− 008 2.7663e− 006
B

[E]
2 (·, 50) 1.8833e− 015 2.6821e− 015 5.1801e− 015 1.3279e− 014 4.3889e− 014

Table 2. Comparative.

Similar results are obtained for certain values of ω outside (0.0.1545).
More precisely, the functions B1(ω, k), B[E]

2 (ω, k) and B
[O]
2 (ω, k) are defined

on the following domain for ω:

{ω ∈ R : 1−G1(ω) > 0} ⋂ {ω ∈ R : 1−G2(ω) > 0}
= (−0.2500, 0.2500)

⋂
(−0.6123, 0.4478). (39)

Note that, the resulting interval in (39), i.e., (−0.2500, 0.2500), is con-
tained in the interval where the application T , introduced in Definition 2, is
contractive:

{ω ∈ R : G2(ω) < G1(ω)} = (−0.9478, 0.5756).

Figure 2 is an extension of Figure 1. We have represented B1(ω, 4) and
B

[E]
2 (ω, 4) for ω ∈ (−0.2500, 0.2500).

By taking another values for k, we obtain analogous graphics and values.
The rest of examples given in [8] can be also improved by a similar analysis.
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Figure 2: B1(ω, 4) (with +) and B
[E]
2 (ω, 4).

5 Appendix

This appendix is devoted to obtain a sequence, Gk, depending on the filter
g such that, for a given vector v, if v(0) is denoted according to (3), the
following k convolutions are bounded as:

‖(· · · (((v(0) ? g)(0)) ? g)(0) ? · · · ? g)(0) ? g‖∞ ≤ ‖v‖∞Gk.

In the first part of this section we obtain an useful reformulation of the
k convolutions

(· · · (((v(0) ? g)(0)) ? g)(0) ? · · · ? g)(0) ? g. (40)

5.1 Reformulation of the successive convolutions

The convolution of two vectors (vn)n≥0, (un)n≥0 of finite lengths Lv and Lu

defines a new vector (v ? u)j of length Lv + Lu − 1 given by

(v ? u)j =
min{j,Lv−1}∑

n=max{j−(Lu−1),0}
vn uj−n, j = 0, 1, · · · , Lv + Lu − 2. (41)

From now on, we assume that the indexes n and j are as appeared in (41).
For simplicity, we start with the case of k = 1 and k = 2 convolutions and
later on we analyze the general case.
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• Case k = 1

Let us consider (vn)n≥0 as a vector of finite length and (gn)n∈N =
(hn)2N−1

n=0 , with gn = 0 if n ≥ 2N .

From (41), it follows that (v(0) ? g)j is given by

(v(0) ? g)j =
[j/2]∑

n=0

vngj−2n, (42)

where, as usual, [x] denotes the integer part of x. Then

|(v(0) ? g)j | ≤ ‖v‖∞
[j/2]∑

n=0

|gj−2n|

and

‖(v(0) ? g)‖∞ ≤ ‖v‖∞ sup
j
{
[j/2]∑

n=0

|An,j |},

where, for each n and j, the terms An,j are defined by gj−2n. We also
introduce C

[1]
n,j = An,j .

• Case k = 2

From (42) we obtain

((v(0) ? g)(0) ? g)j =
[j/2]∑

m=0

(v(0) ? g)m gj−2m

=
[j/2]∑

m=0




[m/2]∑

n=0

vngm−2n


 gj−2m, (43)

then (43) is equal to

[j/22]∑

m=0

vm




[j/2]∑

n=2m

gn−2mgj−2n


 , (44)
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therefore

((v(0) ? g)(0) ? g)j =
[j/22]∑

m=0

vm




[j/2]∑

n=2m

Am,n An,j




=




[j/2]∑

n=2m

Am,n C
[1]
n,j




=
[j/22]∑

m=0

vmC
[2]
m,j ,

where, by definition,

C
[2]
m,j =

[j/2]∑

n=2m

Am,n C
[1]
n,j .

Thus,

‖(v(0) ? g)(0) ? g‖∞ ≤ ‖v‖∞ sup
j





[j/22]∑

m=0

∣∣∣∣∣∣

[j/2]∑

n=2m

Am,n C
[1]
n,j

∣∣∣∣∣∣





= ‖v‖∞ sup
j
{
[j/22]∑

m=0

|C [2]
m,j |}.

• General Case

With a similar process, we obtain the following reformulation for k
convolutions:

((· · · (((v(0) ? g)(0)) ? g)(0) ? · · · ? g)(0) ? g)j =
[j/2k]∑

m=0

vmC
[k]
m,j ,

where C
[k]
m,j is a sequence defined recursively by





C
[1]
m,j = Am,j ,

C
[k]
m,j =

[j/2k−1]∑

p=2m

Am,p C
[k−1]
p,j , k ≥ 2.

(45)
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Hence,

‖(· · · (((v(0) ? g)(0)) ? g)(0) ? · · · ? g)(0) ? g‖∞

≤ ‖v‖∞ sup
j





[j/2k]∑

m=0

∣∣∣∣∣∣

[j/2k−1]∑

n=2m

Am,n C
[k−1]
n,j

∣∣∣∣∣∣





= ‖v‖∞ sup
j
{
[j/2k]∑

m=0

|C [k]
m,j |}, (46)

where j depends on Lv.

In the following subsection, we present some results concerning the ex-
pressions

sup
j
{
[j/2k]∑

m=0

|C [k]
m,j |}.

5.2 Some previous results

Lemma 1 In the above conditions, the constants verify

C
[k]
m,j = C

[k]

m+1,j+2k . (47)

Proof:
We consider an induction process over k.

• k = 1

C
[1]
m,j = Am,j = gj−2m = gj+2−2(m+1) = Am+1,j+2 = C

[1]
m+1,j+2. (48)

In particular, we have also Am+1,j = Am,j−2, and so on.

• k → k + 1

C
[k+1]
m,j =

[j/2k]∑

p=2m

Am,p C
[k]
p,j =

[(j/2k)+2]∑

n=2(m+1)

Am,n−2 C
[k]
n−2,j .
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Applying the first case and twice the induction hypothesis we obtain

C
[k+1]
m,j =

[(j/2k)+2]∑

n=2(m+1)

Am+1,n C
[k]

n−1,j+2k

=
[(j/2k)+2]∑

n=2(m+1)

Am+1,n C
[k]

n,(j+2k)+2k

=
[(j+2k+1)/2k]∑

n=2(m+1)

Am+1,n C
[k]

n,j+2k+1 = C
[k+1]

m+1,j+2k+1 .

As consequence of Lemma 1 we have

Corollary 1
C

[k]
m,j = C

[k]

m−1,j−2k . (49)

Lemma 2 Assume that g = (g0, g1, · · · , g2N−1), with N ∈ N and σ(k,N) =
(2k − 1) (2N − 1). Then

C
[k]
0,j = 0, for all j > σ(k,N). (50)

Proof:
We consider an induction process over k.

• k = 1

C
[1]
0,j = A0,j = gj = 0, if j > (2N − 1) = σ(1, N).

• k → k + 1
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C
[k+1]
0,j =

[j/2k]∑

p=0

A0,p C
[k]
p,j =

[j/2k]∑

p=0

gp C
[k]
p,j

=
[j/2k]∑

p=0

gp C
[k]

p−1,j−2k =
[j/2k]∑

p=0

gp C
[k]

p−2,j−2 2k

· · ·

=
[j/2k]∑

p=0

gp C
[k]

0,j−p 2k .

We assume that 0 ≤ p ≤ 2N − 1, since otherwise C
[k+1]
0,j = 0 for all j.

With this we have

j − p 2k ≥ j − (2N − 1) 2k.

By the induction hypothesis for C
[k]

0,j−p 2k , we obtain C
[k+1]
0,j = 0 if

j − (2N − 1) 2k > σ(k, N).

That is,
j > σ(k, N) + (2N − 1) 2k = σ(k + 1, N).

In particular we have proved (50). Now, applying (47), we obtain the
following result.

Corollary 2

C
[k]
m,j = 0, for all j > σ(k, N) + 2k m. (51)

Finally, using (47), (49) and (51) we arrive at the following corollary.

Corollary 3

sup
j





[j/2k]∑

m=0

|C [k]
m,j |



 = sup

j∈Σ(k,N)





[j/2k]∑

m=0

|C [k]
m,j |



 ,

where

Σ(k, N) = {σ(k, N)− 2k + 1, σ(k, N)− 2k + 2, · · · , σ(k, N)}. (52)
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We end this section with a definition.

Definition 1 We define the associated constant of a k-th convolution with
filters g = (g0, g1, · · · , g2N−1) as

Gk = sup
j∈Σ(k,N)





[j/2k]∑

m=0

|C [k]
m,j |



 . (53)

As consequence of Corollary 3, the quantity Gk is independent of Lv. In
other words, the supreme of (46) is independent of Lv. We remark that the

number of summands in
[j/2k]∑

m=0

|C [k]
m,j | for j ∈ Σ(k, N) is maximum, as in (22)

by taking N = L + 1.

Corollary 4 From (46) , Corollary 3, (53) and taking into account the
notation (3), it follows that

‖vk‖∞ ≤ Gk ‖v(0)‖∞.

In the next subsection, we analyze the monotonicity of the sequences
{Gk}k≥1.

5.3 Monotonicity of {Gk}k≥1

As we said in the last section, the constants Gk are independent of the finite
length Lv. In particular, for each N , we can compute (independently of v)
the constants G1 and G2 and check if

G2 < G1, (54)

or
G2 ≥ G1,

comparing the sums

[j/22]∑

m=0

∣∣∣∣∣∣

[j/2]∑

p=2m

gp−2m gj−2p

∣∣∣∣∣∣
, j ∈ Σ(2, N) = {6N − 6, · · · , 6N − 3} (55)
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and
[j/2]∑

p=0

|gj−2p|, j ∈ Σ(1, N) = {2N − 2, 2N − 1}. (56)

First we introduce a definition.

Definition 2 We say that the transformation

[j/2]∑

m=0

|C [1]
m,j |

T−→
[j/22]∑

m=0

∣∣∣∣∣∣

[j/2]∑

p=2m

Am,p C
[1]
p,j

∣∣∣∣∣∣
=

[j/22]∑

m=0

|C [2]
m,j |

is contractive if it verifies (54).

The following result relates the two definitions introduced before.

Theorem 3 Let N be fixed. If T is contractive then the sequence {Gk}k≥1

is decreasing, it converges and

lim
k→+∞

Gk = 0. (57)

Proof:
For each k ≥ 1 we consider the transformation

[j/2k]∑

m=0

|C [k]
m,j |

T [k]−→
[j/2k+1]∑

m=0

|C [k+1]
m,j |.

T [k] is contractive, since

T [k] = T ◦ T◦ k· · · ◦T,

and, in particular, the monotonicity holds.
By definition, 0 ≤ Gk and, since the sequence is decreasing, it is con-

vergent. Therefore, if the constant Gk is reached for J(k, N) ∈ Σ(k, N),
then 




[J(k,N)/2k]∑

m=0

|C [k]
m,J(k,N)|





k≥1

,

is convergent. In particular there exists λ ∈ R such that

lim
k→∞

C
[k]
m,J(k,N) = λ.
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Moreover, for each k ≥ 1,
[
J(k, N)

2k−1

]
≤

[
σ(k,N)

2k−1

]
< 2 (2N − 1).

Then, the number of terms in the recursive formula (45) for C
[k]
m,J(k,N) is

finite (it does not increase with k) and if we consider the limit in (45) we
obtain

λ = α λ,

with α 6= 0. Thus λ = 0, and (57) holds.

Corollary 5 There exists k0 ∈ N such that for each k ≥ k0 we have

Gk < 1.
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