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Abstract
A new, configuration-space picture of a formalism of group quantization, the GAQ

formalism, is presented in the context of a previous, algebraic generalization. This pre-
sentation serves to make a comprehensive discussion in which other extensions of the
formalism, principally to incorporate gauge symmetries, are developed as well. Both
images are combined in order to analyse, in a systematic manner and with complete gen-
erality, the case of linear fields (abelian current groups). To ilustrate these developments
we particularize them for several fields and, in particular, we carry out the quantization
of the abelian Chern-Simons models over an arbitrary closed surface in detail.

PACS numbers: 11.15.-q, 03.70.+k, 02.20.Tw



I Introduction

At present the main goal of Theoretical Physics is to unify Quantum Theory and General
Relativity. Symmetry is increasingly important in both theories and, because of that, it is
expected to play a principal role in the future fundamental theory whatever it might be.
Therefore it is desirable to understand as much as possible about Physics without using
information other than that provided by the symmetries of the systems. The formalisms of
quantization on a group, such as the Group Approach to Quantization (GAQ) formalism,
are intended to perfom this task as far as the process of quantization is concerned.

The GAQ formalism was introduced several years ago [1] as an improved version, in
some respects, of Geometric Quantization and the Kirillov coadjoint-orbit methods of
quantization [2, 3]. It is conceived basically as an algorithm for associating quantum sys-
tems with already given groups. However, most classical systems are commonly specified
by a set of different equations or by a classical Lagrangian. Therefore in order to quantize
these system with the GAQ formalism, it would be important to be able to derive, from
the equations of motion or the Lagrangian, a group naturally associated with the system
and large enough so as to reproduce, in some way, the classical theory. In so doing, solving
the classical equations of motion has been required up to now. Nevertheless, in ref. [4]
indications have been presented that there must be a way of circumventing this difficulty
so that the basic steps, at least, of the GAQ formalism – such as finding out the quantiz-
ing group – may be carried out without previously solving the equations of motion. This
procedure constitutes the configuration-space picture of the GAQ formalism and its
further development is the main purpose of the present paper. As our first step, we shall
consider linear fields only while non-abelian fields will be analysed in future studies.

An improvement of the GAQ formalism which is specially relevant to our purposes
is its algebraic reformulation, which, instead of the infinitesimal calculus, uses the finite
(algebraic) properties of the group [5]. This reformulation, therefore, enables us to in-
corporate discrete symmetries and to deal with non-Lie groups, that is, groups with no
differential structure. The basic aspects of this reformulation were previously presented in
ref. [5]. Here this picture of the formalism is presented in a unified manner so as to clarify
several previous, heterogeneous developments. To make the discussion as self-contained
as possible, the algebraic formulation is also further developed, in particular the charac-
terization of gauge symmetries (gauge subgroup) is presented, and the way in which the
GAQ formalism incorporates them at the quantum level is also shown.

When working in configuration space, with no explicit expression for the group in terms
of the phase-space coordinates of the fields, to use the differential calculus over this group
is clearly not feasible. It is necessary, therefore, to use algebraic group transformations.
This fact provides additional support for using the algebraic picture of the GAQ formalism.

The quantization of linear fields, unlike non-linear ones whose quantization is consid-
ered to be a completely different and a much more difficult problem, is generally assumed
to be well understood. There is in fact one good reason for such a different behaviour
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between one case and the other: the huge (abelian) symmetry which underlies abelian
fields. However, in spite of this fact, the usual way of presenting the quantization of linear
fields does not make it explicit whether or not this underlying symmetry is involved. This
fact does not help to identify the real difficulties in quantizing non-linear fields. Also, if
the difference lies in the great symmetry which underlies linear fields, we should examine
whether or not it is possible to construct non-linear fields, related to non-abelian current
groups, which could be quantized with procedures similar to those applied in the linear
case.

In addition to all this, and in spite of the (almost) general assumption, the quantization
of linear fields is not always so trivial. There are many important cases, such as the one
of fields in curved space (see for instance [6]), or when topological issues arise, in which
the quantization presents difficulties and ambiguities with no simple solution.

The motivation to study linear fields is therefore twofold: on the one hand, they are
important on their own, and, on the other hand this analysis may provide the key to
generalize to non-linear fields.

In the present paper linear fields are thoroughly studied, relying as much as possible
on their underlying symmetry and trying to be as general as possible. The structure of
this paper is as follows: In Part 1, after a brief review of the Geometric Quantization
and the GAQ formalism over a connected Lie group, the algebraic and configuration-
space pictures of the GAQ formalism are considered. The results of this part are valid for
arbitrary groups and fields. In Part 2, the theory of linear fields is thoroughly analysed by
applying to it the (algebraic) GAQ formalism on configuration space. As an ilustration
of how to apply the formalism, several aspects of the electromagnetic field are briefly
considered in section V – the interested reader may also consult ref. [7] and, above all,
refs. [8, 9] where the development in this section have been carried further – and the
Abelian Chern-Simons theory is quantized in section VI. For the sake of clarity, in this
part –except in the last section– the analysis is restricted to linear (abelian) fields, even
though one of our main motives is to extend, in the future, as much as possible of our
results to non-abelian fields. In the last section, we discuss very briefly the difficulties in
trying to extend our formalism to non-linear fields (non-abelian current groups).

Since this paper is aimed to present the unifying theory behind some previous or
parallel (and to clear the way to future) developments of the GAQ formalism – those which
only involve linear fields – the examples has been carried on only up to the point that
they provide a link with those developments but do not significantly overlap with them.
For more details on how the GAQ formalism is actually applied, the reader may consult
the bibliography here provided where diverse applications can be found. In particular ref.
[4], where quite a few examples of quantizing groups in configuration space are also given,
complements the present analysis in several respects.
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PART 1. THE GENERAL FORMALISM

II The Geometric Quantization and the Group Ap-

proach to Quantization

Before considering the GAQ formalism, we shall briefly describe the basic features of
Geometric Quantization (GQ) which is a formalism from which the former derived.

A Geometric Quantization

The Geometric Quantization (see for instance [2]) is a formalism which intends to place
the familiar canonical quantization rules of Quantum Mechanics in a rigorous setting:

qi −→ q̂i;
(
q̂iΨ

)
(q) ≡ qiΨ(q)

pj −→ p̂j ; (p̂jΨ) (q) ≡ −ih̄
∂

∂qj
Ψ(q) (2.1)

where qi, pj fulfil the classical relationships

{pi, qj} = δj
i (2.2)

[From here on we shall make h̄ = 1.]
The basic idea in this formalism is that the quantum theory should be an irreducible

representation of the Poisson algebra F(P ) of observables of the classical phase space P ,
which should act in a Hilbert space H which is also constructed in a natural manner out
of the classical system. Thus, with any function f : P −→ ℜ, it should be associated a
linear self-adjoint operator f̂ , which acts on H and such that,

̂{f, g} = [f̂ , ĝ], ∀f, g ∈ F(P ) (2.3)

It is well known that this program cannot be fully executed because obstructions arise,
mainly due to ordering problems, which prevent the whole F(P ) from being represented.
These obstructions are not a major problem if one is able a) to represent a subset of F(P )
which is big enough to generate the whole F(P ), and b) to obtain without ambiguities the
basic observables of the theory such as the Hamiltonian (≡ quantum temporal evolution),
the quantum angular momentum operators, etc.

Given a classical phase space with Poisson bracket {, } (≡ simplectic form ω), with
any f ∈ F(P ) we associate a natural operator Xf : F(P ) −→ F(P ), defined through:
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Xf(g) = {f, g}, ∀g ∈ F(P ) (2.4)

Because of the Jacobi identity, these operators also fulfil eq. (2.3). These relationships
give us a basic guide to the expected nature of the Hilbert space of the quantum theory,
H ∼ F(P ), and the quantum operators: f̂ ∼ Xf . The difficulty is that the correspondence
f → Xf is not faithful because the constant functions are in its kernel. To overcome
this problem a new term has to be added to the operators X so as to associate the
natural constant operators with the constant functions. This is achieved by (non-trivially)
enlarging P with a new parameter ζ ∈ U(1) to give rise to a new manifold QP −which is
called a quantum manifold− with a structure of U(1) principal bundle over P , so that
QP /U(1) = P . The dependence of the wave functions with respect to the new co-ordinate
ζ ∈ U(1) is fixed by means of the condition

Ψ(ζp) = ζΨ(p), ∀ζ ∈ U(1) (2.5)

If Xζ is the vector field which generates the action of U(1) on QP , the constraint (2.5)
reads:

XζΨ = iΨ (2.6)

This condition together with the natural requirement that the constant functions must
be properly represented implies that the new (pre-)quantum operator associated with
f ∈ F(PQ) has the (local) expression:

X̃f = −i
[
Xf −

(
iXf

λ − if
)

Xζ

]
(2.7)

where λ is a symplectic potential to ω.
Let now Θ be the connection 1-form on QP −→ P , which is defined by the conditions

iXζ
Θ = 1, iXζ

d Θ = 0 and (QP , d Θ)/U(1) ∼ (P, ω). Then, the operators X̃f will be
defined by the relationships:

i
X̃f

Θ = f, i
X̃f

d Θ = −d f (2.8)

(This relationships imply in particular that L
X̃f

Θ = 0.)

With this procedure, we make sure that the correspondence f −→ X̃f is faithful.

However, it will in general be reducible: there are non-trivial operators, X̃a, a ∈ I, which
commute with the basic ones of the representation, X̃qi , X̃pj

. The irreducibility has to be
achieved by imposing further that (some of) these operators act trivially on the physical
Hilbert space:

X̃aΨ = 0, for some a ∈ I, ∀Ψ ∈ H (2.9)
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This last condition roughly amounts to requiring that the wave functions depend only on
the qi’s or the pj’s (or a particular combination of these such as the creation/annihilation
operators).

B The GAQ formalism over a connected Lie group

The GAQ formalism was originally conceived [1] to improve GQ by freeing it from several
limitations and technical obstructions. Among them we point out the impossibility of
considering quantum systems without classical limit, the lack of a proper (and naturally
defined) Schrödinger equation in many simple cases and the ineffectiviness in dealing with
anomalous systems [10].

The main ingredient which enable GAQ to avoid these limitations is a Lie group struc-
ture on the manifold G̃ replacing the quantum manifold QP of GQ. G̃ is also a principal
bundle with structure group U(1), but now G̃/U(1) is not forced to wear a symplectic
structure. This way, non-symplectic parameters associated with symmetries like time
translations, rotations, gauge transformations, etc. are naturally allowed and give rise to
relevant operators (Hamiltonian, angular momentum, null charges, etc). Needless to say
that the requirement of a group structure in G̃ represent some drawback, although it is
lesser, in practice, than it might seem. In particular constrained quantization (see below
and ref. [11]) as well as higher-order polarizations [12, 13] allow GAQ to be applied to
phase spaces that do not wear a group structure, thus greatly expanding the range of
applicability of the formalism.

Nonetheless, we should remark that the GAQ formalism is not meant to quantize a
classical system (a phase space) but, rather, the quantizing group is the primary quantity
and in some cases (anomalous groups [13], for instance) it is unclear how to associate a
phase space with the quantum theory obtained.

As a general rule, and roughly speaking, G̃ is a central extension of a group G which
represent a phase space enlarged by the (usually semi-direct) action of additional (non-
symplectic) symmetries. As mentioned in the Introduction, GAQ proceeds associating
quantum systems with already given groups G̃, but also the possibility exists of looking
for an appropriate group G̃ out of a given (classical) Lagrangian L. In this case the
solution manifold of L (as a phase space) should be the starting point to construct the
manifold of G̃.

The basic structure in the GAQ formalism, is, therefore, a Lie group G̃ (see next section
where generalizations are discussed) which is called the quantizing group. In this group,
there are naturally defined left-invariant (right-invariant) vector fields, X̃L

i (X̃R
i ) as well

as left-invariant (right-invariant) forms θLi
(θRi

). As in Geometric Quantization a major

role is played by the left-invariant form, θLζ
, which is dual of the generator of the central

subgroup U(1) after a basis of the Lie algebra has been chosen.

Definition 2.1: The 1-form Θ ≡ θLζ
dual to the vertical generator X̃ζ is called quantiza-

tion form.
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The space of wave functions will now be constructed on the functions on G̃ which fulfil
the condition of being U(1)-functions, which is now written:

ΞΨ = iΨ, ∀Ψ ∈ F
(
G̃

)
(2.10)

where Ξ = X̃L
ζ = iζ ∂

∂ζ
= X̃R

ζ .
The quantum operators are the right-invariant vector fields.
Now there are two main points to be taken into account:
a) Some of the parameters of the group are not symplectic; that is, there are left

invariant vector fields XL
i such that

iXL
i
Θ = 0 = iXL

i
d Θ (2.11)

b) The left-invariant and right-invariant vector fields commute. Therefore, the right-
invariant vector fields do not provide an irreducible representation of G̃ when acting on
the space of U(1)-functions.
Definition 2.2: Let G̃ be the Lie algebra of G̃. The characteristic subalgebra C of G̃ is
the subalgebra which is expanded by the vector fields which fulfil eq. (2.11).
Definition 2.3: We shall say that a left subspace S is horizontal iff

iXLΘ = 0, ∀XL ∈ S (2.12)

Definition 2.4: A polarization subalgebra P is a maximal horizontal subalgebra of G̃
such that C ⊂ P.

Points a) and b) are taken into account together by imposing the polarization condi-
tions on the wave functions:
Definition 2.5: A wave functions Ψ is said to be polarized iff

X̃Ψ = 0, ∀X̃ ∈ P (2.13)

where P is a polarization. With this requirement, and in the absence of constraints
(see below), the quantization procedure is completed if we further specify a G̃-invariant
integration measure. This measure has, in practice, turned out to be derivable from the
natural one θL1 ∧ θL2 ∧ ... on G̃, though the general case has not yet been addressed. The
physical Hilbert space H is then expanded by the integrable polarized wave functions.
The physical operators are the right-invariant vector fields acting in this space and they
are unitarily represented.

Gauge subalgebra

Definition 2.6: We shall say that a right-invariant vector field X̃R is gauge if

i
X̃RΘ = 0 (2.14)
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The subalgebra expanded by all the gauge vector fields will be denoted N and will be
termed gauge subalgebra.

Since for all X̃R and θL, L
X̃RθL = 0, eq. (2.14) implies iXRdΘ = 0. This agrees

with the usual description of the gauge symmetries as the ones which are generated by
vector fields in the kernel of the presymplectic 2-form (see, for instance, [14] and references
therein). Also, in the GAQ formalism, the conserved (Noether) charge associated with X̃R

corresponds to i
X̃RΘ. Therefore, the definition above is consistent with the well-known

fact that gauge symmetries have null conserved charges (see, for instance, ref. [15] for a
direct proof).
Proposition 2.1: Let N be the subspace expanded by the gauge vector fields. Then N is
an ideal of G̃.
Proof: It follows inmediately by making use of the equality i[X,Y ] = LXiY − iY LX .

For X̃R gauge, X̃R ∈ KerΘ ∩ KerdΘ = C. Since C is expanded by the characteristic
subalgebra, X̃R must be of the form

X̃R =
∑

j∈c

f jX̃L
j (2.15)

Therefore the polarized wave functions are automatically gauge invariant:

X̃R(Ψ) = 0, ∀ X̃R gauge (2.16)

and no new (right) constraints need to be imposed.

III The (algebraic) GAQ formalism over a group

In this section the GAQ formalism will be presented in a pure algebraic language. That is,
we shall make use of finite quantities and algebraic operations only: composition of group
elements, subgroups, etc. A (desired) consequence of this reformulation is that nowhere
it is needed a differential structure on the quantizing group, that is, now G̃ need not to
be a Lie group. It can be a discrete or even finite group.

We shall consider only the case in which the quantizing group G̃ is provided with a
central subgroup T0 which, in this paper, will be called canonical subgroup. Natural
extensions of the formalism to more general cases have already been discussed in the
literature (see for instance [16]) but will not be considered here.

The canonical subgroup is the centre of gravity around which the group quantization
formalism is formulated.

The GAQ formalism requires us to singularize, appart from the canonical subgroup,
two other subgroups of G̃: the characteristic subgroup and the polarization subgroup. In
addition, the gauge subgroup is also naturally defined.
Definition 3.1: We shall say that a subgroup H ⊂ G̃ is horizontal if H ∩ T0 = {1

G̃
},

where 1
G̃

is the neutral element of G̃.
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Definition 3.2: Given g, g′ ∈ G̃, we define the commutator of g, g′ as [g, g′] = gg′g−1g′−1.
If S, S ′ are two subsets (not necessarily subgroups) of G̃, then [S, S ′] ≡ {[g, g′]/g ∈ S, g′ ∈
S ′}.
Definition 3.3: The characteristic subgroup C of G̃ is the maximal horizontal subgroup
such that [C, G̃] ∩ T0 = {1

G̃
}.

Definition 3.4: A polarization subgroup P is a maximal horizontal subgroup of G̃ such
that C ⊂ P .
Definition 3.5: The gauge subgroup N of G̃ is the maximal horizontal normal subgroup
of G̃.
Note: Since N is horizontal and [G̃, N ] ⊂ N , then N ⊂ C.

When G̃ is a Lie group the above definitions lead to the ones for the Lie algebras
in the previous section. In particular, because of the following proposition, which is
the reciprocal of Proposition 2.1, the Definition 3.5 corresponds to the one for a gauge
subalgebra:
Proposition 3.1: Let H be a horizontal normal subgroup of a Lie quantizing group G̃ and
let X̃R

i be the right invariant vector fields which generate H , then

i
X̃i

RΘ = 0. (3.1)

Proof: Consider any function Ψ : G̃ −→ C such that Ψ(gh) = Ψ(g) for all g ∈ G̃, h ∈ H .
Then, because H is normal, Ψ(hg) = Ψ(g) also. This fact requires that, at any g ∈ G̃, any
right-invariant vector field X̃R

i which generates the left action of H can be expressed as
a linear combination of the left-invariant vector fields X̃L

j which only involves the vector
fields which generate the (right) action of H , and the other way round. Therefore, since
H is horizontal, the charges which are associated with the invariant vector fields tangent

to H and to Θ ≡ θLζ
are zero.

The proper quantization proceeds as follows:
We start with the space F(G̃) of complex funtions on G̃ and pick up a representation

DT0
of T0, and a right-representation DP of a polarization P , on F(G̃).

Definition 3.6: We shall say that Ψ ∈ F(G̃) is a DT0
-function iff

Ψ(zg) = DT0
(z)Ψ(g), ∀g ∈ G̃, ∀z ∈ T0 (3.2)

Definition 3.7: A function Ψ ∈ F(G̃) is called polarized (DP -polarized) iff

Ψ(gp) = DP (p)Ψ(g), ∀g ∈ G̃, ∀p ∈ P (3.3)

In absence of constraints, these conditions fully determines the Hilbert space of the
theory: it is given by the set of all (square integrable) polarized DT0

-functions in F(G̃).
The dynamical operators are all the elements in G̃, and they act as finite left traslations
on the Hilbert space:
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(ĝΨ)(g′) = Ψ(g−1g′), ∀g, g′ ∈ G̃ (3.4)

Therefore the gauge subgroup, which corresponds to gauge constraints which have
been solved classically, is automatically and trivially represented.

Constraint quantization and good operators

As is well known (see basis references in [17], see also [18]), there is a close relationship
between constraints and gauge symmetries. Loosely speaking, the existence of a gauge
symmetry suffices to have a constrained system, and first-class constraints generate gauge
symmetries. Constraints are not, however, always due to the presence of gauge symmetries
in the system: the former are more general than the latter.

Here we shall consider only the case in which the constraints close into a subgroup
T̃ ⊂ G̃. The constraint subgroup T̃ is required to be a fibre group of G̃, i.e., G̃ −→ G̃/T̃
is a principal bundle and to contain T0 as a fibre group, i.e. T̃ −→ T̃ /T0 is also a principal
bundle. In particular, T̃ should be regarded as a quantizing group with the same canonical
subgroup T0 as G̃.

When there are constraints the procedure described above has to be completed with
additional conditions on the wave functions. Now the physical Hilbert space is made up
of all the polarized T0-functions which are constrained:
Definition 3.8. A wave function Ψ : G̃ −→ C is termed constrained iff

Ψ(t ∗ g) = D
T̃
(t)Ψ(g), ∀t ∈ T̃ , g ∈ G̃ (3.5)

where D
T̃

is an irreducible representation of T̃ .

Representations of T̃ which are compatible with DT0
are naturally found by applying

the GAQ formalism to T̃ . We, therefore, need the same collection of subgroups of T̃ in
relation to T0 as just described for G̃. When there is danger of confusion, these subgroups
of T̃ will be signalled by placing a prefix T̃ before them. Thus, we shall have the T̃ -
characteristic subgroup, the T̃ -polarization subgroup and so on.

Clearly not all the operators in G̃ will preserve the representation D
T̃

of T̃ ; for the
dynamical operators that do we shall use the name good operators [5]. The group of all
the good operators thus constitutes the natural generalization of the concept of normalizer
of T̃ . This is the manner in which the concept of gauge subgroup (gauge symmetries) is
incorporated into the quantum level.

In some cases (where T̃ is connected and is not a direct product T̃ 6= T0 ⊗ T ) the
T̃ -function condition (3.5) may not be compatible with the representation DT0

for T0.
Then we must soften that requirement and consider, rather than the whole T̃ , a subgroup
T0⊕PT , where PT is a polarization subgroup of T̃ . This subtlety does not arise, however, in
the models we shall consider in the present paper, in which the whole T̃ can be represented
in a way compatible with the T0-function condition.
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When T̃ is a non-trivial central extension, it is sometimes said that the gauge symme-
tries are “anomalous”. Nonetheless, these “anomalies” do not necessarily imply obstruc-
tion to quantization, and do not particularly when the condition (3.5) can be imposed for
the entire T̃ .
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PART 2. LINEAR FIELDS

IV Linear fields

Throughout this section, we shall consider a theory with fields ϕa, a = 1, ..., N, and action

S =
∫

M
µL(ϕa, ∂µϕa) (4.1)

The space-time manifold M, with volume element µ = d D+1x, will always be homeomor-
phic to Σ × ℜ where ℜ represents the time-like directions and Σ is any (D-dimensional)
spacelike hypersurface. When picking up a particular Lagrangian, we shall make use, if
necessary, of the indetermination under a total divergence.

The set of all fields, irrespective of whether or not they satisfy the Euler-Lagrange
equations of motion will be denoted by F . We shall term any solution of the (classical)
equations of motion as trajectory, or classical trajectory. T will be the set of all the
trajectories of the system.

If a (classical) theory of fields, (S, F) is linear, the space T of all the solucions of the
equations of motion is a vector space. That is, if ϕ and φ are solutions, so is λϕ + βφ for
any λ, β ∈ ℜ. Therefore T can be regarded as an (abelian) group of symmetries of the
theory with composition law:

ϕ′′ = ϕ′ + ϕ (4.2)

This group will be denoted as G(ϕ).
Theorem 4.1: If (S, F) is a classical theory of linear fields, with Euler-Lagrange equations
of motion ([E − L]ϕ)a = 0, then

a) L(ϕ + φ) = L(ϕ) + L(φ) + ([E − L]φ)a ϕa + ∂µJ
µ(ϕ, φ), ∀ ϕ, φ ∈ F

b) A Lagrangian is given by:

L(ϕ) =
1

2
([E − L]ϕ)a ϕa (4.3)

Therefore, there exists a Lagrangian which vanishes “on-shell”, i.e. L(ϕ) = 0 for any
classical trajectory ϕ.
Proof: The point a) follows inmediately if we look at L(ϕ + φ) as a variation of the
Lagrangian, a variation similar to the one which gives the Euler-Lagrange equations of
motion.

If in the equality a) we make ϕ = φ = 1
2
κ, we obtain:

L(κ) =
1

2
([E − L]κ)a κa +

1

2
∂µJ

µ(κ, κ) (4.4)
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The new Lagrangian

L̂(κ) = L(κ) −
1

2
∂µJ

µ(κ, κ) (4.5)

fulfils part b).
Corollary 4.1.1: Since the current Jµ(ϕ, φ) is bilinear, it can be chosen to be:

a) Divergenceless on trajectories.
and

b) Antisymmetric.
Proof:

a) This is a consequence of part a) of Theorem 4.1 if a Lagrangian that vanishes on
shell is chossen.

b) It is sufficient to show that Jµ(κ, κ) is identically null. If Jµ(κ, κ) were not iden-
tically null, then J̃µ(κ, κ), where J̃µ(ϕ, φ) = Jµ(ϕ, φ) − 1

2
Jµ(ϕ, ϕ) − 1

2
Jµ(φ, φ) is also

an admisible current, would. However, both Jµ and J̃µ have to be bilinear. Therefore,
Jµ(κ, κ) = 0 ∀κ and J̃µ = Jµ.
Definition 4.1: The current Jµ for which a) and b) hold will be called the canonical
current of (S, F).
Note: There is, in fact, a shorter but equivalent way of obtaining the canonical Jµ. If in
Theorem 4.1.a) we exchange ϕ and φ and then antisymmetrize, we get:

∂µ

(
1

2
Jµ(ϕ, φ) −

1

2
Jµ(φ, ϕ)

)
=

1

2
([E − L]ϕ)a φa −

1

2
([E − L]φ)a ϕa (4.6)

The current
(

1
2
Jµ(ϕ, φ) − 1

2
Jµ(φ, ϕ)

)
is the canonical current of (S, F).

Corollary 4.1.2: If L̃ = L + ∂µΛ, then J̃µ = Jµ

Definition 4.2: For all ϕ, φ ∈ T we define the canonical product Ω (ϕ, φ) by means of:

Ω (ϕ, φ) =
∫

Σ
d σµ Jµ(ϕ, φ) (4.7)

where Σ is any Cauchy hypersurface in M. Therefore it is bilinear, antisymmetric and
independent on the Σ hypersurface.

The canonical product of two solutions ϕ and φ is nothing other than the Noether
charge associated with the symmetry generated by ϕ in the point φ ∈ T , or (minus)
the other way round. It measures the degree to which the classical trajectories ϕ, φ are
coordinate-momentum conjugate to each other.
Note: Notice that the potential current of the theory is jµ = Jµ(ϕ, δϕ). The symplectic
form is therefore given by [19, 14]:

ω = −
∫

Σ
dσµδj

µ (4.8)

Theorem 4.2: With Ω defined above, the following composition law defines a central
extension of G(ϕ) which will be denoted G̃(ϕ):
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ϕ′′(x) = ϕ′(x) + ϕ(x) (4.9)

ζ ′′ = ζ ′ζ exp iΩ (ϕ′, ϕ) (4.10)

where the fields ϕ, ϕ′... are trajectories and ζ, ζ ′... ∈ U(1).

A Space-time and internal symmetries

In addition to the symmetries in G(ϕ), which act additively, there are in general other
symmetries, such as space-time or internal ones, which act multiplicatively. In this section,
we shall study the conditions under which the group G̃(ϕ) can be enlarged with these other
symmetries.

First of all we note that since the composition of two symmetries is another symmetry,
any two groups of symmetries U1 and U2, can be enlarged to obtain a new group U3 such
that U1, U2 ⊂ U3. Therefore, without loss of generality, we can consider a single group of
symmetries U = {u, v, ..}. The requirement of being symmetries is that, if ϕ ∈ T , then
u(ϕ) ∈ T .

These symmetries (which should be thought of as being like SU(2), the Poincaré, the
conformal or the Virasoro groups) usually act on F (T ) through a previous representation
in the space-time.

For any field X which generates the action of U on F , we have

LXLµ = d ΛX (4.11)

with ΛX a space-time D-form.
Eq. (4.11) together with Corollary 4.1.2 imply that the following lemma holds:

Lemma 4.1: Let U0 be the component of U which is connected to the identity, then
Ω (u(ϕ), u(φ)) = Ω (ϕ, φ) , ∀ϕ, φ ∈ T , ∀u ∈ U0.

For symmetries which are not connected to the identity, such as parity or temporal
inversion, this lemma has to be relaxed, as we can have anticanonical symmetries,
that is, symmetries u for which Ω (u(ϕ), u(φ)) = −Ω (ϕ, φ). In general, the action of U
on Ω defines a representation ǫ of U on Z2 = {+,−}. Then we shall have:
Theorem 4.3: With the fields as defined above, the following composition law is a group:

u′′ = u′ ∗ u, u, u′, u′′ ∈ U

ϕ′′(x) = ϕ′(x) + (u′(ϕ)) (x), ϕ, ϕ′, ϕ′′ ∈ T (4.12)

ζ ′′ = ζ ′ζǫ(u′) exp iΩ (ϕ′, (u′(ϕ))) , ζ, ζ ′, ζ ′′ ∈ U(1)

This group will be denoted G̃(S, F). Note that when there are anticanonical symmetries
in U , it is no longer a central extension.
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For the sake of brevity we shall consider only canonical symmetries; that is, symme-
tries for which ǫ(u) = 1. Anticanonical transformations, which give rise to interesting
subtleties, will be the subject of a separate study [20].

Depending on the context, expressions for the group G̃(S, F) which are different from
eq. (4.12) –where the symmetry group U acts from the left– and which are obtained from
it by means of a change of variables, may appear to be more natural ones. For instance

u′′ = u′ ∗ u, u, u′, u′′ ∈ U

ϕ′′(x) =
(
u−1(ϕ′)

)
(x) + ϕ(x), ϕ, ϕ′, ϕ′′ ∈ T (4.13)

ζ ′′ = ζ ′ǫ(u)ζ exp iΩ
((

u−1(ϕ′), ϕ
))

, ζ, ζ ′, ζ ′′ ∈ U(1)

where the symmetry group U acts on the left instead. In the rest of this paper, we shall
make use of combinations of these two presentations in which some subgroups of U act
from the left and others from the right.

Example: the non-relativistic free particle and the Galilei group

As a first example of the construction above, let us consider the non-relativistic free
particle –regarded as a (0 + 1)-dimensional field theory – and construct the quantizing
group for it. In spite of its simplicity, we follow the same steps as for a standard field
in contrast with the quantum-mechanical treatment of the free particle [1]. For more
examples, see below and ref. [4] where the harmonic oscillator, which provides an useful
link between mechanics and field theory, is also considered.

A Lagrangian for the non-relativistic free-particle is:

L′
FP (x) =

m

2
ẋ2 (4.14)

We have

L′
FP (A + B) =

m

2

[
Ȧ2 + Ḃ2 − 2B̈A + 2

d

d t

(
ḂA

)]
(4.15)

Thus, the associated on-shell-vanishing Lagrangian, the equations of motion and the
canonical product are, respectively:

LFP = −
m

2
ẍx

−
m

2
ẍ = 0

ΩFP (A, B) =
m

2

[
ȦB − AḂ

]
(4.16)

Now we can consider the spatial rotations and time translations as the group of space-
time symmetries. These act on FFP as follows
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(RA)i(t) = Ri
jA

j(t), Ri
j ∈ O(3)

(Tb(A)(t) = A(t − b), b ∈ ℜ (4.17)

Now the general solution to the equations of motion is:

x(t) = Q + Vt, Q, V ∈ ℜ3 (4.18)

and Q, V can be taken as the coordinates in TFP . It is simple to see that

R(Q)i = Ri
jQ

j, R(V)i = Ri
jV

j

Tb(Q) = Q − Vb, TbV = V

The group G̃FP is therefore given by

b′′ = b′ + b

Q′′ = Q′ + V′b + R′ (Q)

V′′ = V′ + R′ (V) (4.19)

ζ ′′ = ζ ′ζ exp
i

2
m [(Q′ + V′b) R′ (V) −V′R′ (Q)]

which is the Galileo group (extended by the Bargmann cocycle [1]).

B Quantization

Now that we have found out the quantizing group G̃(S, F), we shall apply to it the GAQ
formalism presented in Part 1.

To identify the characteristic subgroup, we have to construct the commutator of two
generic elements g = (u, ϕ, ζ) ∈ G̃(S, F) , g′ = (u′, ϕ′, 1) ∈ C. C will be the maximal
subgroup such that [g , g′] = (1U , 0, ζ) implies ζ = 1.

We have

g′g = (u′u, u−1(ϕ′) + ϕ, ζ ′ζ exp
i

2
Ω(u−1(ϕ′), ϕ))

g−1 = (u−1,−u(ϕ), ζ−1)

gg′ = (uu′, u′−1(ϕ) + ϕ′, ζζ ′ exp
i

2
Ω(u′−1(ϕ), ϕ′) (4.20)

g′g(gg′)−1 =
(
u′u(uu′)−1, uu′[u−1(ϕ′) + ϕ] − uu′[u′−1(ϕ) + ϕ′],

exp
i

2

[
Ω(u−1(ϕ′), ϕ) − Ω(u′−1(ϕ), ϕ′)

−Ω(uu′[u−1(ϕ′) + ϕ], uu′[u′−1(ϕ) + ϕ′])
])
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Therefore, g′ = (u′, ϕ′, 1) has to fulfil

Ω(ϕ′, u(ϕ) + u′−1(ϕ)) = 0 ∀g = (u, ϕ, ζ) ∈ G̃(S, F ) (4.21)

This implies

C = U ⊕ N (4.22)

with N = gauge subgroup = {(1U , ϕ′, 1)/Ω(ϕ′, ϕ) = 0 ∀g = (u, ϕ, ζ) ∈ G̃(u, ϕ, ζ)}.
[U ⊕ N stands for the subgroup generated by U ∪ N and it also means U ∩ N = {1

G̃
}.]

We recall now that a polarization subgroup is a maximal horizontal subgroup P such
that C ⊂ P . Thus, any P is generated by

P = C ∪ Pϕ (4.23)

where Pϕ is the maximal horizontal subgroup such that Ω(v(ϕ), ϕ′) = 0 ∀g = (1U , ϕ, 1) ,
g′ = (1U , ϕ′, 1)} ∈ Pϕ, ∀v ∈ U
Definition 4.3: A Lagrangian subgroup is any subgroup L = {(1U , ϕ, 1)} such that
Ω (ϕ, ϕ′) = 0, for any (1U , ϕ, 1), (1U , ϕ′, 1) ∈ L. If U(L) ⊂ L it will be called invariant
Lagrangian subgroup.

We, therefore, have:
Proposition 4.1: Any polarization subgroup P is generated by U ∪ N ∪ L, where L is a
maximal invariant Lagrangian subgroup.

C Holomorphic quantization

We now consider the case when there are two subgroups L, L̄ ⊂ G̃ which fulfil
a) L̄ is a Lagrangian subgroup (not necessarily invariant),
b) L is an invariant Lagrangian subgroup,
c) G̃(S, F) = U ⊕ L ⊕ L̄ ⊕ U(1).
Therefore, any trajectory ϕ has a unique decomposition

ϕ = a + ā, where (1U , a, 1) ∈ L, (1U , ā, 1) ∈ L̄ (4.24)

Note: In general, to find L and L̄ with the properties above, it is necessary to go to F̄ , the
complexified F , and to consider instead the group G̃(S, F̄) ⊃ G̃(S, F) over that complexified
space. In this case, the third condition above takes the form:

c’) G̃(S, F) ⊂ U ⊕ L ⊕ L̄ ⊕ U(1) = G̃(S, F̄).
If we take ϕ = ā + a, the polarization P = U ⊕ L, and we pick up the trivial

representation for it, one of the DP -polarization conditions reads:

Ψ(u, ā + a, ζ exp iΩ(ā, a)) = Ψ(u, ā, ζ) (4.25)

This equality, together with the U(1)-function condition on Ψ(u, ϕ, ζ), implies:
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Ψ(u, ϕ, ζ) = ζΦ(u, ā) exp[−iΩ(ā, a)] (4.26)

The rest of the polarization conditions reads:

Ψ(u′u, u−1(ϕ), ζ) = Ψ(u, ϕ, ζ) (4.27)

Therefore
Φ(u′u, u−1(ā)) = Φ(u′, ā) (4.28)

where we have made use of the fact that L is an invariant Lagrangian subgroup. Since L̄
may not be invariant, u−1(ā) is not in general in L̄ However, whatever the case, eq. (4.28)
gives the (finite) action of the space-time and internal symmetries in the wave functions.
The infinitesimal action, and in particular the Schrödinger equation, can be obtained as
the first-order terms in the power series in the parameters of the symmetries.

In the quantum theory of relativistic fields a splitting which fulfils the requirements
above – and where both L̄ and L are invariant under the (proper) Poincaré group –
is the usual one into negative- and possitive-frequency parts. On the other hand, the
non-relativistic free particle provides an interesting and simple example in which the
trajectories x split as x = a + ā where a is invariant under U whereas ā is not. Here
U is generated by the time translations and the spatial rotations, the trajectory a is
defined by a(t) = x(t0) and the trajectory ā is defined by ā(t) = x(t) − x(t0), for all
t ∈ ℜ and a fixed t0 ∈ ℜ. This splitting corresponds to the familiar parametrization of
the phase space with position and momenta. The fact that the subspace of positions –
that is, the subset of trajectories with null momentum– is invariant whereas the one of
momenta – that is, the subset of trajectories with null initial position – is not invariant
only apparently contradicts the usual transformation of the corresponding classical and
quantum operators.

V The Maxwell theory in Minkowsky space

From here on in the present paper we shall ilustrate over the Maxwell field and the abelian
Chern-Simon models some aspects of the GAQ formalism we have theorized about in the
previous sections. The quantization of the electromagnetic field has been carried further in
several papers. In particular, refs. [9] and [8] can both be regarded as natural continuation
of the present section. Ref. [7], where the Klein-Gordon field as well as the Proca field
are quantized, may also be consulted.

The usual action for the Maxwell field is:

S ′
em =

∫
d 4x

{
−

1

4
Fµν F µν

}
(5.1)

where
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Fµν = ∂µAν − ∂νAµ (5.2)

It is, however, more natural, and the best for our purposes, to consider F µν and Aµ as
independent fields, related only by the (now equations of motion) eq. (5.2). The action
which mirrors this point of view is:

Sem =
∫

d 4x
{

1

4
Fµν F µν −

1

2
F µν (∂µAν − ∂νAµ)

}
(5.3)

As is well known, the Maxwell action is invariant under the conformal group, which
is made up of compositions of the following operations on the space-time:

a) Space-time translations: (ux)α = xα + aα

b) Lorentz transformations: (ux)α = Λα
µxµ

c) Dilatations: (ux)α = eλxα

d) Special conformal transformations: (ux)α = xα+cαx2

1+2cx+c2x2

The quantizing group for the electromagnetic group is therefore [4]

u′′ = u′ ∗ u Conformal (sub)group

A′′
µ(x) =

∂uα

∂xµ
A′

α(ux) + Aµ(x) (5.4)

≡ (S(u−1)A′)µ(x) + Aµ(x)

F ′′
µν(x) =

∂uα

∂xµ

∂uβ

∂xν
F ′

αβ(ux) + Fµν(x) + (5.5)

≡ (S(u−1)F ′)µν(x) + Fµν(x)

ζ ′′ = ζ ′ζ exp iΩem

(
S(u−1)(A′), A

)
(5.6)

where S is the representation of the conformal group that acts on the electromagnetic
vector field. This action is the natural one and means that the potential vector has null
conformal weight.

The canonical current is

J µ
em (g′, g) (x) =

1

2
[F ′µν(x)Aν(x) − A′

ν(x)F µν(x)] (5.7)

A Non-covariant approach

Let us write down the action (5.3) in terms of the electric field E and the potentials
Aµ = (A0, A). In doing so we solve the constraint B = ∇× A and place it back into the
Lagrangian. This takes the form (save for total derivatives)

LM = EiȦi −
1

2
{E2 + (∇× A)2} + A0∂iE

i (5.8)
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The Lagrangian is constrained with A0 as a Lagrange multiplier and constraint

∂iE
i = 0 (5.9)

The gauge symmetry of this constrained Lagrangian is the usual one: Aµ −→ Aµ + ∂µΛ.
If space-time symmetries are not considered, the quantization of this system with our

formalism is straightforward – it amounts to the quantization of three Klein-Gordon fields
in a fixed reference frame – and reproduces the quantum theory of the electromagnetic
field in the (non explicitly covariant) radiation gauge. The quantizing group is

(A′′
0 = A′

0 + A0)

A′′ = A′ + A

E′′ = E′ + E (5.10)

ζ ′′ = ζζ ′ exp
i

2

∫
d 3x

∑

i=1,2,3

{
A′

iE
i − E ′iAi

}

and the subgroup of constraints is T̃ = {(A, 0, ζ)/A = ∇Λ for some Λ}.

B Covariant gauge fixing, ghost term and bosonic BRST sym-

metry

In this section, we construct the quantizing group for the covariant gauge-fixed Maxwell
Lagrangian and show how the (bosonic) BRST transformation arises as a one-parameter
group of internal symmetries (in ref. [9] the present development was carried further; see
[8] for a thorough an unified treatment of the electromagnetic and Proca fields).

Let us therefore consider the Lagrangian

L = −
1

4
F µνFµν − ϕ∂µA

µ +
1

2λ
ϕ2 + ∂µc∂µc (5.11)

where ϕ is a gauge-fixing Lagrange multiplier and c are ghost fields. It is straightforward
to show that this Lagrangian is invariant under the following (bosonic BRST) symmetry
with parameter Λ:

δAµ = Λ∂µc

δc = −
1

2
ϕΛ (5.12)

δϕ = 0

The finite transformations are given by
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uΛ(A)µ = Aµ + ∂µcΛ −
1

2
∂µϕΛ2 (5.13)

uΛ(c) = c −
1

2
ϕΛ (5.14)

The general theory shows us that the quantizing group, which includes the BRST
bosonic symmetry but no space-time or internal symmetries, is (b ≡ Λ):

A′′
µ = A′

µ + Aµ − ∂µc
′b −

1

2
∂µϕ

′b2

ϕ′′ = ϕ′ + ϕ

c′′ = c′ + c +
1

2
ϕ′b (5.15)

b′′ = b′ + b

ζ ′′ = ζ ′ζ exp i
∫

Σ
d σµJµ

with

Jµ =
1

2

(
(A′

ν − ∂νc
′b −

1

2
∂νϕ

′b2)F µν(x) − Aν(x)F ′µν
(x)

)

+
1

2

(
Aνϕ′ − (A′ν − ∂νc′b −

1

2
∂νϕ′b2)ϕ

)

+
(
(c′ +

1

2
ϕ′b)∂µc − (∂µc′ +

1

2
∂µϕ′b)c

)
(5.16)

Now, if we Fourier transform the fields and make use of the equation of motion

ϕ = λ∂µA
µ (5.17)

we shall obtain the group law in ref. [9].

VI The abelian Chern-Simons theory

Let M be a three-dimensional manifold which can be decomposed into the form M =
Σ ×ℜ with Σ an orientable two-dimensional surface.

The action for an abelian Chern-Simon model is given by [21]:

SACS =
k

4π

∫

M
(A ∧ d A) (6.1)
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where A is a one-form with takes values on the Lie algebra G of some abelian lie group
G [There is in fact a direct generalization of the abelian Chern-Simons theories to higher
(odd) dimensions. In these generalization, Σ is a 2D manifold and A a D-form for
arbitrary natural number D. Many of the results we present here can be extended to
these theories, with one-dimensional quantities replaced with higher dimensional ones].
It is simple to show that SACS is invariant under gauge transformation A → A + d Λ for
any Λ : M −→ g.

It is straightforward to show that the equations of motion and the canonical product
are, respectively:

dA ≡ F = 0 (6.2)

ΩACS (A′, A) =
∫

Σ
J =

k

4π

∫

Σ
A′ ∧ A (6.3)

Thus, TACS ≡ FC where FC is the set of all flat connections over M.
The exterior derivative commutes with the pullback operator ∗. Therefore, if f is a

diffeomorphism of M and A and A′ are solutions of the equation of motion (6.2), then
A′ + f ∗A is also a solution.

All this, together with the general theory, implies that the following composition law
defines a group, G̃CS, the quantizing group for the abelian Chern-Simons model:

f ′′ = f ′ ◦ f , f, f ′, f ′′ ∈ Diff0(M)

A′′ = f−1∗A′ + A (6.4)

ζ ′′ = ζζ ′ exp ΩCS

(
f−1∗A′, A

)

The general theory shows that the characteristic subgroup is CCS ≡ NCS = {(f, A, 1)/
A = d Λ for some Λ}. The quantum conditions (3.3) imply then that the quantum
wave functions should be functions of topological and gauge invariant quantities only.
To best deal with these conditions let us remind the reader that all the gauge invariant
information of a connection can be extracted from the Wilson loops. These are quantities
defined by

W (A, γ) = exp
∫

γ
A ≡ A(γ) (6.5)

for any loop γ on M. Therefore (the gauge invariant part of) a connection can be seen
as an application

A : LM → G /A(γ′ ◦ γ) = A(γ′)A(γ) (6.6)

where LM is the group of loops on M [With a slight abuse of notation, we shall use the
same letter for the connection 1-forms as for the applications they define]. Eq. (6.2) also
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implies that the diffeomorphisms of M which are connected with the identity act trivially
on the applications A. This is not the case with the non-connected diffeomorphisms
which give rise to a non-trivial actuation of the modular group Diff(M)/Diff0(M). This
and others aspects of diffeomorphisms will not be further developed here but rather in a
separate study.

For any abelian group G, there is a natural group structure in the set of all A:

(A′ ∗ A)(γ) = A′(γ)A(γ) (6.7)

This, of course, is just another expression for the composition law for A in eq. (6.4).
Now, the equation of motion F = 0 implies that any A can be considered a function

on the homotopy classes {[γ]} = π1(ℜ×Σ). Since any loop on ℜ×Σ can be continuously
projected onto Σ, we have π1(ℜ× Σ) = π1(Σ).

Any application, and in particular any connection, is completely characterized by its
graph. Thus, since any connection is required to satisfy the condition (6.6), it is completely
characterized by the images of the elements of a generating subgroup of π1(Σ). Therefore
we have

G(A) ≡ G ⊗ G ⊗ 2g
... ⊗ G (6.8)

where 2g is the cardinal of π1(Σ).
As is well known, the fundamental group π1(Σ) ≡ {[α]} of any closed surface Σ is

generated by a finite-dimensional subset PΣ. The generator subset PΣ can be decomposed
into two non-intersecting subsets P, P̄ such that to any [α] ∈ P there is associated a
unique [ᾱ] ∈ P̄ (and the other way round) so that there exists a representative α of
[α] ∈ P and a representative ᾱ of [ᾱ] ∈ P̄ which intersects the one with the other exactly
once. This property gives in fact a natural Poisson structure to the fundamental group
of orientable surfaces [Although as far as we know this analysis has not been considered
in the literature, it would be useful to study, by also considering improper loops; that
is, loops that begin and end in the puntures, how much of our analysis can be extend to
surfaces Σ with punctures].

For the sake of clarity we shall restrict ourselves to the groups ℜ and U(1). In both
case, ℜ or U(1), any connection is identified with a pair of vector a, ā

a = (a1, a2, ...ag) , ā = (ā1, ā2, ...āg) (6.9)

where

A([αi]) = e2πai , if G = ℜ

A([αi]) = ei2πai , if G = U(1) (6.10)

The numbers ai, āi are (local) parameterizations of the connection.
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In the non-compact case, G = ℜ, there are no constraints. The quantizing group is
simply

a′′ = a′ + a

ā′′ = ā′ + ā (6.11)

ζ ′′ = ζ ′ζ exp iΩ ((a′, ā′), (a, ā))

with

Ω ((a′, ā′), (a, ā)) = πk
∑

i∈P

(a′ · ā − a · ā′) (6.12)

It is merely a Heisenberg-Weyl-like group whose quantization is straightforward.

A Quantization of the U(1) Chern-Simons model

The quantizing group for the U(1) Chern-Simons theory is also given by (6.11) with a
canonical product of the form:

Ω ((a′, ā′), (a, ā)) = −πk
∑

i∈P

(a′ · ā− a · ā′) (6.13)

This case is more involved and more subtle due to the non-trivial topology of the group
U(1). This non-trivial topology requires, in the present case, that two numbers ai (āi)
that differ by an integer ni (n̄i) have to be considered as equivalent. The equivalence

ai ∼ ai + ni āi ∼ āi + n̄i, ni, n̄i ∈ Z (6.14)

should be seen as a symmetry of the theory under gauge transformations which are not
connected to the identity. The commutator of two group elements is given by:

[(a′, ā′, ζ ′), (a, ā, ζ)] = (0, 0, exp{−i2πk(a′ · ā − a · ā′)}) (6.15)

From now on, and for the sake of simplicity, we shall deal with a single coordinate-
momentum pair (ai, āi) or, what is the same, we shall restrict ourselves to one of the
handles (g = 1) of the surface. The total Hilbert space H will clearly be:

H = ⊗i=1,...gHi (6.16)

where Hi is the Hilbert space associated with the ith coordinate-momentum pair (≡
handle).

The gauge invariance (6.14) is incorporated into the quantum theory by considering
the constraint subgroup T̃ to be the following one:
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T̃ = {(n, n̄, ζ), n, n̄ ∈ Z} (6.17)

We shall consider only the case in which k is a rational number; k = p
d

with p and d
relative prime integers, d > 0.

Representing the constraint subgroup T̃

The (T̃ -)characteristic subgroup is

C = {(dn, dn̄, 1), n, n̄ ∈ Z} (6.18)

and it is easy to show that any (T̃ -)polarization subgroup P can be written in the form:

P ≡ Pp/qq̄ = {(qn, q̄n̄, 1), n, n̄ ∈ Z} (6.19)

where q, q̄ are any two natural numbers such that qq̄ = d.
To impose the polarization conditions properly we need to know the general repre-

sentation of the polarization subgroup. Since these (sub)groups are abelian and finitely
generated, its irreducible representations are given by:

D ((qn, q̄n̄, 1)) = e−i2πr̄nei2πrn̄, r ∈ [0, 1), r̄ ∈ [0, 1) (6.20)

The polarization conditions are:

Ψp/qq̄(a + qn, ā, ζ exp {ikπqnā}) = e−i2πr̄nΨp/qq̄(a, ā, ζ), r ∈ [0, 1)

Ψp/qq̄(a, ā + q̄n̄, ζ exp−{ikπq̄n̄a}) = ei2πrn̄Ψ(p/qq̄(a, ā, ζ), r ∈ [0, 1) (6.21)

These conditions imply that there are only q× q̄ = d independent wave functions; that
is, the Hilbert space has dimension d. A natural basis is given by:

Bp/qq̄ = {|l, l̄ >}l=0,...q−1, l̄=0,...q̄−1 (6.22)

where

|l, l̄ > (n, n̄, ζ) = ζδl,n δl̄,n̄, ∀ n = 0, ...q − 1, n̄ = 0, ...q̄ − 1. (6.23)

The action of the group operators P(n,n̄,ζ) in this basis is generated by the following
ones:

P(n,0,1)|l, l̄ > = e−iπknl̄|l − n l̄ >, ∀n ∈ Z

P(0,n̄,1)|l, l̄ > = eiπkn̄l|l, l̄ − n̄ >, ∀n̄ ∈ Z (6.24)

P(0,0,ζ)|l, l̄ > = ζ |l, l̄ >, ζ ∈ U(1)
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where the following equivalence conditions have to be taken into account:

|l − qn, l̄ > = e−iπkl̄qne−i2πr̄n|l, l̄ >, ∀n ∈ Z

|l, l̄ − q̄n̄ > = eiπklq̄n̄ei2πrn̄|l, l̄ >, ∀n̄ ∈ Z (6.25)

Constraint quantization

Once we know the irreducible representations of T̃ we can carry out the (constraint)
quantization of the U(1) Chern-Simons model.

Let us choose as polarization the subgroup

P = {(a, ā, 1)/a = 0} (6.26)

The P -polarized U(1)-functions are given by:

Ψ(a, ā, ζ) = ζ exp{ikπaā}ϕ(a) (6.27)

Now we are ready to impose the contraining conditions. As we already know the irre-
ducible representations of T̃ , we can straightforwardly impose the constraining conditions
on our wave functions. However, since H|00>, the vacuum subspace of the representations

of T̃ , is, by construction, invariant under the (T̃ -)polarization subgroup Pp/qq̄ in eq. (6.19),
we shall firstly consider the action of this subgroup on the polarized wave functions.

Moreover, since the operators

P(n,n̄,1), n = 1, ...q, n̄ = 1, ...q̄ (6.28)

behave, in the representation of T̃ , as step operators, we can limit ourselves to the vacuum
subspace of the T̃ -representation and generate, afterwards, the whole Hilbert space by
repeated application of these step operators.

Therefore, the constraining conditions, which are produced by the (T̃ -)polarization
subgroup (6.19), together with eq. (6.24,6.25), provide us with the full Hilbert space of
T̃ -constrained wave functions.

Thus, let us consider the action, from the left, of the (T̃ -)polarization subgroup Pp/qq̄

on the functions in the vacuum subspace of the representation of T̃ . This gives rise to the
following two conditions:

Ψ(qn + a, ā, ζ exp {−ikπqnā}) = e−i2πr̄nΨ(a, ā, ζ), r ∈ [0, 1)

Ψ(a, q̄n̄ + ā, ζ exp {ikπq̄n̄a}) = ei2πrn̄Ψ(a, ā, ζ), r ∈ [0, 1) (6.29)

The first condition implies for polarized wave functions
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ϕ(a + qn) = e−i2πr̄nϕ(a) (6.30)

The other condition implies that the wave functions ϕ are supported only on the
connections a that obey

p

q
a − r ∈ Z (6.31)

Therefore the wave functions ϕ are of the form

ϕ(a) =
∑

s∈Z

Bsδ(
p

q
a − r − s) (6.32)

where the numbers Bs are not arbitrary but are required to satisfy the quasiperiodicity
condition

Bs+p = e−i2πr̄Bs (6.33)

Therefore, in the sum (6.32) there are only p independent complex numbers.
Thus, the Hilbert subspace H|00> has dimension p. Now if we repeatedly apply to this

subspace the operators P(n,n̄,1), which generate the whole T , we generate a Hilbert space
Hr,r̄

p

qq̄

with finite dimension p× q × q̄ = p× d. We have thus recovered the well known fact

that compact phase spaces give rise to finite-dimensional Hilbert spaces [22].
The good operators split naturally into two subgroups: firstly, the subgroup B̃|00>

which is made with the operators that preserve the subspace H|00>, and, secondly, the

subgroup T̃ which transforms the subspace H|00> into the subspaces H|l,l̄>.

It is easy to show that the subgroup B̃|00> is the maximal subgroup of G̃ which obeys

Ad(G̃)[P
T̃
, B̃|00>] ⊂ P (6.34)

In the particular case at hand this condition reduces to

[P
T̃
, B̃|00>] = {1

G̃
} (6.35)

and implies

B̃|00> = {(
q

p
n,

q̄

p
n̄, ζ)/ n, n̄ ∈ Z} (6.36)

Therefore, the subgroup B̃ of good operators is given by

B̃ ≡ B̃|00> + T̃

= {(
q

p
n,

q̄

p
n̄, ζ)/ n, n̄ ∈ Z} ⊕ {(m, m̄, ζ)/ m, m̄ ∈ Z} (6.37)

= {(
n

p
,
n̄

p
, ζ)/ n, n̄ ∈ Z}
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Therefore, imposing the condition that the Hilbert space must be in a single irreducible
representation of T̃ forces us to only represent a subgroup B̃ (in the present case, discrete)
of the whole G̃. Applying to this Hilbert space operators which are not in B̃ will produce
states in different representations of T̃ .

The operators which are not in B̃ can be classified as

P(s′,s̄′,ζ) with s′, s̄′ ∈ (0,
1

p
) (6.38)

Now, it is easy to show that

P(s′,s̄′,1)H
r,r̄
p

qq̄

= H
r+ p

q
s′,r̄+ p

q̄
s̄′

p

qq̄

(6.39)

Therefore, the Hilbert space H p

qq̄
which represents the whole G̃ splits into a (contin-

uum) sum

H = ⊕s,s̄H
r+s,r̄+s̄
p

qq̄

, s ∈ (0,
1

q
), s̄ ∈ (0,

1

q̄
) (6.40)

Finally, there is a noteworthy point to be discussed. The approach to the quantum
theory in the present subsection has led us to an irreducible representation Dr,r̄

p

qq̄

of a

subgroup of good operators B̃. Instead, we could have determined this subgroup B̃
firstly, and have quantized it afterwards (by applying the algebraic GAQ formalism). It
is interesting to point out that in this way we would have obtained representations of B̃
which would be different from the ones we have actually obtained. These representations
can arise, for instance, by taking as T̃ -polarization P p

qq̄
= {(qn, q̄n̄, 1)/n, n̄ ∈ Z} and as

polarization

P u,ū
p

q′, ¯q′
= {(q′

n

u
, q̄′

n̄

ū
, 1)/n, n̄ ∈ Z} (6.41)

where u ∈ N, ū ∈ Z/ uū = p, q′, q̄′ ∈ N/ q′q̄′ = d and, in general, q′ (q̄′) might be taken to
be different from q (q̄) (the representations we have found in the present subsection are
the ones with u = p, ū = 1 and q′ = q , q̄′ = q̄). This way of proceeding would constitute
a refined version of the approaches in which the constraints are imposed firstly and the
quantization is carried out afterwards.

VII Final comments. Perspectives

We have further developed the algebraic and configuration-space pictures of the GAQ for-
malism of group quantization. We have combined both in order to make a comprehensive
and completely general analysis of the theory of linear fields. We have shown that, for
linear fields, the formalism is extremely poweful and this power is best employed when
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the pictures just mentioned are combined. It has also been shown that the formalism is
specially well suited to deal with topological issues (in this respect see also [11]).

We would like to remark here that the GAQ formalism can, in principle, be applied to
any group. It gives as a result a quantum dynamical system. However, for an arbitrary
group, it is unclear what physical interpretation, if any, the resulting dynamical system
will have. On the other hand, classical systems with a clear physical interpretation are
commonly described, not by a group, but by a Lagrangian or a set of differential equations.
How to go from Lagrangian (∼ differential equations) to a quantizing group (and the other
way round) is an important question in the GAQ formalism but not much is known yet
about its general answer. The present paper, however, addresses this question for the case
of linear fields. It turns out that for linear fields the set of solutions of the equations of
motion – that is, the (covariant) phase space of the theory [19, 14] –, when extended, is
a suitable quantizing group.

A particularly attractive direction of development is, therefore, towards non-linear
fields. However, there appear to be obstructions for the phase space of non-linear fields
to have a group structure. In particular, ref. [4] presented indications that for non-
abelian current groups with group law of a pointwise type, any equation of motion which
preserves the group structure would have to be first order in derivatives of the space-
time co-ordinates. A rigorous theorem is, however, still lacking and, after all, first-order
equations may give plenty of room for interesting developments as recent studies, relevant
to our approach, indicate [23]. On the other hand, constraint quantization might be used
to circumvent the problem of not having a group structure in the phase space of the
theory. In addition to all this, it was also shown in ref. [4] that for some current groups
with group laws of a non-pointwise type, we can actually find higher-order differential
equations which preserve them.

Let us finally consider the case of non-linear gauge fields. For linear gauge fields, if
A, A′ : LM → G are connection and we define a composition law ∗ by means of the
equality

(A′ ∗ A)(γ) = A′(γ)A(γ), (7.1)

then A′∗A is also a connection. As we have shown the composition law ∗ is also compatible
with the equations of motion, and thus defines the natural group law for the theory.
However, when G is non-abelian, A′′ = A′ ∗ A defined by eq. (7.1) does not satisfy the
condition

A′′(γ′ ◦ γ) = A′′(γ′)A′′(γ) (7.2)

and thus A′′ is not a connection. Therefore, a “naive” extension of the configuration-space
approach to non-abelian gauge fields is problematic even before the equations of motion
are considered.

Summarizing we would say that, because of obstructions which arise, the analysis we
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have performed in this paper for linear fields cannot be straightforwardly extended to
non-linear fields. However, the real importance of the obstructions is still not clear and
further investigations are in order.
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