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Abstract

We extend the traditional formulation of Gauge Field Theory by incorporating the
(non-Abelian) gauge group parameters (traditionally simple spectators) as new dy-
namical (nonlinear-sigma-model-type) fields. These new fields interact with the usual
Yang-Mills fields through a generalized minimal coupling prescription, which resem-
bles the so-called Stueckelberg transformation [1], but for the non-Abelian case. Here
we study the case of internal gauge symmetry groups, in particular, unitary groups
U(N). We show how to couple standard Yang-Mills Theory to Nonlinear-Sigma Mod-
els on cosets of U(N): complex projective, Grassman and flag manifolds. These
different couplings lead to distinct (chiral) symmetry breaking patterns and Higgs-less
mass-generating mechanisms for Yang-Mills fields.

1 Introduction

Although there has been many successful applications Non-Linear Sigma Models (NLSM)
in (Quantum Gauge) Field Theory, String Theory and Statistical Mechanics, their basic
role in Fundamental Physics is still rather unexplored. Generally speaking, NLSM con-
sists of a set of coupled scalar fields ϕa(xµ), a = 1, . . . ,D, in a d-dimensional Minkowski
spacetime M,µ = 0, 1, 2, . . . , d− 1, with the action

Sσ = λ

∫

M

ddxgab(ϕ)∂µϕa∂µϕ
b, (1.1)

where ∂µ = ηµν∂ν , ∂ν = ∂/∂xν , η = diag(+,−, . . . ,−) the Minkowski metric and λ a
coupling constant. The field theory (1.1) is called the NLSM with metric gab(ϕ) (usually a
positive-definite field-dependent matrix). The fields ϕa themselves can also be considered
as the coordinates of an internal Riemannian manifold Σ with metric gab. In particular,
we shall consider the case in which Σ is a (semisimple) Lie group manifold G.

The relevance of NLSM in Quantum (Gauge) Field Theory originates from the paramount
importance of symmetry principles in fundamental physics. From the String Theory point
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2 M Calixto, V Aldaya, F F López-Ruiz and E Sánchez-Sastre

of view, the two-dimensional space M represents a string world sheet, whereas gab is iden-
tified with the ‘truly’ spacetime metric representing the gravitational background where
the string propagates. In two dimensions we also have (infinite) conformal symmetry and
the possibility of adding new Wess-Zumino terms to our NLSM.

NLSM also provides a useful field-theoretical laboratory for studying some two-dimensional,
exactly solvable systems on a lattice, such as the Ising model of the Heisemberg antifer-
romagnetism, in statistical mechanics. Some particular O(n)-invariant two-dimensional
NLSM are frequently used in condensed matter physics in connection with antiferromag-
netic spin chains and the quantum Hall effect. Also, the effective Lagrangian for superfluid
He 3 is described by a NLSM. In four dimensions, pions and nucleons are described by a
(Skyrme) NLSM model, as solitonic solutions (‘skyrmions’).

We shall concentrate in the role that NLSM plays in the spontaneous symmetry breaking
mechanism, which is crucial for phenomenological applications of QFT like the Higgs-
Kibble mechanism in the Standard Model of Strong and Electro-Weak interactions, by
means of which some vector bosons acquire mass in a renormalizable way. According to
the well known Goldstone theorem (see e.g. [2]), there are as many massless (Nambu-
Goldstone) particles as broken symmetry generators. If these Nambu-Goldstone fields are
scalars, their low energy effective action often appears to be a NLSM. Usually, Goldstone
bosons are eliminated from the theory by gauge fixing.

Despite the undoubted success of the Standard Model in describing strong and electro-
weak interactions, a real (versus artificial) mechanism of mass generation is still lacking.
Needless to say that the discovery of a Higgs boson (a quantum vibration of an abnormal
Higgs vacuum) would be of enormous importance; nevertheless, at present, no dynamical
basis for the Higgs mechanism exists and, as said, it is purely phenomenological. It is
true that there is actually nothing inherently unreasonable in the idea that the state
of minimum energy (the vacuum) may be one in which some field quantity has a non-
zero expectation value; in fact, many examples in condensed-matter physics display this
feature. Nevertheless, it remains conjectural whether something similar actually happens
in the weak interaction case. Also, the ad hoc introduction of extra (Higgs) scalar fields in
the theory to provide mass to the vector bosons could be seen as our modern equivalent
of those earlier mechanical contrivances populating the plenum (the ether), albeit very
subtly. As in those days, new perspectives are necessary to explain why it is really not
indispensable to look at things in this way at all.

One of the purposes of this paper is to provide a new formulation of gauge theory
in which the mass of gauge vector fields enters the theory in a ‘natural’ way without
damaging gauge invariance. In this sense we shall generalize the so-called Stueckelberg
model for electrodynamics [1] to account for a Higgs-less mass-generating mechanism for
gauge fields. In our new approach we shall nearly restrict the external information to the
symmetry group and, therefore, the group parameters, described by Lagrangians of NLSM
type, will acquire dynamical content as ‘exotic’ matter fields.1. By the time being, we shall
not enter into the possible physical meaning of these σ-matter fields. Just to mention that,

1It is worth pointing out that the incorporation of group parameters into some dynamical framework
has already been considered in other contexts, for example, in [3]. There, conventional Eulerian fluid
mechanics is extended to encompass the possibility of describing a plasma state of quarks and gluons
produced as the result of high-energy collisions of heavy nuclei [4] due to the fact that such fluid may
posses degrees of freedom indexed by group variables.
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when this idea is applied to the Weyl group (Poincaré+dilations), and the corresponding
gauge gravitational theory is developed, σ-fields appear to be a natural source to account
for some sort of dark matter intrinsically related to the gauge-group parameter associated
with scale transformations [5].

The underlying mathematical framework relies on the idea of jet-gauge group [6] in-
troduced in Sec. 2. In Sec. 3 we revise the Lagrangian formalism on jet-gauge groups
and generalize the well known Utiyama theorem [7] which provides a prescription to ‘min-
imally’ couple Yang-Mills fields to σ-matter fields. In Sec. 4 we discuss several chiral
gauge symmetry breaking patterns related to different mass matrices. Sec. 5 is devoted
to some comments on the quantization of this model.

2 Jet-Gauge Groups and Nonlinear σ-Fields

Definition 1. (Gauge group) Let G be a (matrix) Lie group (the “rigid” group) and
M the Minkowski space-time (or any other orientable space-time manifold). The gauge
group G(M) (“local” or current group) is the set of mappings

G(M) = {g : M → G, x 7→ g(x)} = Map(M,G) (2.1)

with point-wise multiplication (gg′)(x) = g(x)g′(x). The corresponding Lie algebra G(M)
is the tensor product F(M)⊗G = {faXa, a = 1, . . . ,dimG}, where F(M) is the multiplica-
tive algebra of (C∞) differentiable functions f onM , and G is the Lie algebra ofG with gen-
erators Xa. The commutation relations of this local algebra are [f⊗X,h⊗Y ] = fh⊗[X,Y ]
since, for internal symmetries, the “rigid” group G does not act on the space-time manifold
M .

We shall mainly consider special unitary groups G = SU(N), the Lie algebra of which
G = su(N) = 〈Xa, a = 1, . . . , N2 − 1〉 can be expanded in terms of traceless hermitian
matrices, Xa, whose Lie-algebra commutators [Xa,Xb] = Cc

abXc are given in terms of
totally antisymmetric structure constants Cc

ab. The generators Xa can also be chosen to
be orthogonal in the sense Tr(XaXb) = δab. A given group element g ∈ G can be written in
terms of a (local) system of canonical coordinates {ϕa, a = 1, . . . ,dim(G)} at the identity
element as g = eiϕ

aXa . Thus, the composition group law g′′ = g′g can also be locally
written as:

ϕ′′a = ϕ′a + ϕa +
1

2
Ca

bcϕ
′bϕc + higher-order terms, (2.2)

by using the Baker-Campbell-Hausdorff formula. Let us denote an element g(x) ∈ G(M)
simply by its coordinates ϕa(x) (the exotic matter σ-fields) .

Definition 2. (Jet prolongations) Given a gauge group G(M), we define the group
J1(G(M)) of the 1-jets of G(M) as the quotient:

J1(G(M)) ≡ G(M) ×M/ ∼1

where the equivalence relation ∼1 is defined as follows:

(ϕ, x) ∼1 (ϕ′, x′) ⇐⇒





x = x′,
ϕ(x) = ϕ′(x),
∂µϕ(x) = ∂µϕ

′(x)
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for all (ϕ, x), (ϕ′, x′) belonging to G(M) ×M . This definition may be easily extended
from order r = 1 to r-th order. A coordinate system for J1(G(M)) is {xµ, ϕa, ϕa

µ}.

The formal definition of J1(G(M)) is fully analogous to that of the (qi, q̇j) phase-

space in Lagrangian Mechanics, or (ψα, ψβ
µ) in Lagrangian Field Theory, when one desires

to vary independently coordinates and velocities (momenta) according to the modified
Hamilton principle.

Definition 3. (Jet-gauge group) We define the (infinite-dimensional) jet-gauge group
G1(M) as the set of mappings from M into J1(G(M)):

G1(M) ≡ Map(M,J1(G(M))).

It is parametrized by the coordinate system {ϕa(x), ϕa
µ(x)} and has the composition group

law (2.2), at each point x ∈M , together with:

ϕ′′a
µ = ϕ′a

µ + ϕa
µ +

1

2
Ca

bcϕ
′b
µϕ

c +
1

2
Ca

bcϕ
′bϕc

µ + higher order. (2.3)

In this formalism, ϕa
µ are essentially the standard gauge vector potentials (Yang-Mills

fields) Aa
µ or connections, the actual relationship being:

Aa
µ ≡ θa

b (ϕ)ϕb
µ , (2.4)

where θa
b (ϕ) is the (non-constant) invertible matrix defining the (left-) invariant canonical

1-form on the group

θLa
= θa

b (ϕ)dϕb = Tr(ig−1dgXa), (2.5)

dual to the (left-invariant) vector fields

XL
a = Xb

a(ϕ)
∂

∂ϕb
, Xb

a(ϕ) ≡
∂ϕ

′′b(ϕ
′

, ϕ)

∂ϕa
|ϕ=0,ϕ′=ϕ, (2.6)

that is: θa
bX

b
c = δa

c . Writing then Aµ = ig−1gµ, the group law (2.3) for Yang-Mills fields
is simply:

A′′
µ(x) = g−1(x)A′

µ(x)g(x) +Aµ(x).

Note that ϕa
µ comprises all possible values of derivatives of ϕa, but in general ϕa

µ 6= ∂µϕ
a.

That is, not all Yang-Mills fields Aµ are “pure gauge”, θµ = ig−1∂µg, except for the
particular inmersion (1-jet-extension) of the gauge group G(M) into the jet-gauge group:

j1 : G(M) → G1(M), ϕ 7→ j1(ϕ) = (ϕa, ∂µϕ
a). (2.7)

3 Lagrangian Formalism on Jet-Gauge Groups: General-

ized Utiyama Theorem

In the standard formulation of gauge theories, the well-known Minimal Coupling Principle
(or Utiyama theorem [7], see also [6]) for internal gauge symmetries establishes that if the
action of some matter fields ψα, α = 1, ..., n

S =

∫
Lm(ψα, ∂µψ

α)d4x,
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is invariant under a rigid internal Lie group G, then the modified action

Ŝ =

∫
[Lm(ψα,Dµψ

α) + L0(F
a
µν)]d4x

is invariant under the gauge group G(M), where

Dµψ
α ≡ ∂µψ

α − eAa
µ(Xa)

α
βψ

β

is usually known as the covariant derivative (e is a coupling constant), and

F a
µν ≡

1

e
[Dµ, Dν ]

a = ∂µA
a
ν − ∂νA

a
µ +

e

2
Ca

bc(A
b
µA

c
ν −Ab

νA
c
µ)

is known as curvature of the connection Aa
µ.

Here we shall treat the gauge group parameters ϕa ∈ G(M) as “exotic matter” σ-
fields, so that our configuration space is now J1(G(M)), with coordinates {xµ, ϕa, Aa

µ},
and Lagrangians are accordingly functions

L(xµ, ϕa, Aa
µ; ∂νϕ

a, ∂νA
a
µ).

We shall proceed to formulate some sort of Minimal Coupling Principle on J1(G(M)):

Theorem 1. (Generalized Utiyama’s Theorem) If the action

Sσ =

∫
Lσ(ϕa, ∂µϕ

a)d4x,

of the “exotic matter” σ-fields ϕa, a = 1, ...,dimG is invariant under the global (rigid)
internal Lie group G, i.e.

δglobal
a Lσ(ϕb, ∂µϕ

b) ≡ Xb
a

∂Lσ

∂ϕb
+
∂Xb

a

∂ϕc
∂µϕ

c ∂Lσ

∂(∂µϕb)
= 0,

then the modified action Stot = S̃σ + S0, with

S̃σ ≡

∫
Lσ(ϕa, D̃µϕ

a)d4x, S0 =

∫
L0(F

a
µν)d4x, (3.1)

is invariant under the gauge (local) group G(M), where

D̃µϕ
a ≡ ∂µϕ

a − eAb
µX

a
b

is the “covariant derivative” for σ-fields.

Proof. As the local invariance of S0 is already well-known in the standard gauge theory,
we shall focus on the local invariance of S̃σ. We must prove that the new Lagrangian
describing the gauge-group parameters as well as their interaction with the gauge fields
Aa

µ (according to the prescription of Minimal Coupling, i.e. supposing that the group
parameters interact only with the gauge fields and not with their derivatives),
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L̃σ(ϕa, ∂µϕ
a, Aa

µ) ≡ Lσ(ϕa, ∂µϕ
a − eAb

µX
a
b ),

is invariant under the gauge group G(M) in the sense that

δL̃σ(ϕa, ∂µϕ
a, Aa

µ) ≡ faXb
a

∂L̃σ

∂ϕb
+

(
fa∂X

b
a

∂ϕc
∂µϕ

c +Xb
a

∂fa

∂xµ

)
∂L̃σ

∂(∂µϕb)

+

(
gf bCa

bcA
c
µ +

∂fa

∂xµ

)
∂L̃σ

∂Aa
µ

= 0,

where fa denote gauge-algebra parameters.
Let us consider the following change of variables:

φa = ϕa,

φa
µ = ∂µϕ

a − eAb
µX

a
b ,

Ba
µ = Aa

µ.

Then, the partial derivatives related to the old variables can be expressed in terms of
the new ones:

∂

∂ϕa
=

∂

∂φa
−Bc

µ

∂Xb
c

∂φa

∂

∂(φb
µ)
,

∂

∂(∂µϕa)
=

∂

∂(φa
µ)
,

∂

∂Aa
µ

=
∂

∂Ba
µ

−Xb
a

∂

∂(φb
µ)
.

After this change of variables it is now straightforward to arrive at

δL̃σ = faδglobal
a Lσ(φa, φa

µ) = 0,

equality which follows from the hypothesis of invariance of the σ-matter action under the
global group. �

As a consequence, the new “minimal coupling” ∂µϕ
a → ∂µϕ

a − eAb
µX

a
b now occurs in

an affine manner. Indeed, the matrix Xa
b is invertible, and therefore the minimal coupling

above is proportional to

θa
b [∂µϕ

b − eXb
cA

c
µ] ≡ θLa

µ − eAa
µ,

where θLa is the canonical (left-)invariant 1-form in (2.5). The new minimal coupling,
when written in the form θL −A, strongly suggests the introduction of “exotic matter” of
the σ-model type:

Lσ =
λ2

2
TrG(θL

µθ
Lµ

) = −
λ2

2
TrG(g−1∂µgg

−1∂µg) . (3.2)
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This Lagrangian is G-invariant (left- and right-invariant, that is, chiral) and the new
minimal coupling gives rise to

L̃σ =
λ2

2
TrG[(θL

µ − eAµ)(θLµ
− eAµ)], (3.3)

which is gauge-invariant even though it contains mass terms λ2

2 e
2TrG[AµA

µ] for the Aµ

fields, a piece which spoils gauge invariance in the traditional framework of Yang-Mills
theories.

4 Chiral Symmetry Breaking Patterns

The virtue of a kinetic term like (3.2) is the two-side symmetry, that is, chirality. In fact,
any function of θL is of course left-invariant, but only a scalar sum on all the group indices
a = 1, . . . ,dim(G) can provide also right invariance. Therefore, several chiral symmetry
breaking patterns are possible by considering a partial trace σ-Lagrangian

L(λ)
σ =

1

2
Tr

(λ)
G (θL

µθ
Lµ

) ≡
1

2
TrG(θL

λ

µ
θL
λ µ), (4.1)

where we have defined

θL
λ ≡ [θL, λ] (4.2)

the ‘projection’ of θL by the mass matrix λ = iλaHa, with λa ∈ R and Ha the Lie algebra
generators of the toral (Cartan, maximal Abelian) subgroup H of G (see later on this
section for an example). Defining

Λ ≡ gλg−1, g ∈ G,

(the adjoint action of G on its Lie algebra) we have an alternative way of writing (4.1) as

L(λ)
σ =

1

2
TrG(∂µΛ∂µΛ),

which is singular due to the constraint TrG(Λ2) = TrG(λ2) = λaλ
a =constant. Introducing

Lagrange multipliers, the equations of motion read:

∂µ∂
µΛ = −

TrG(∂µΛ∂µΛ)

TrG(Λ2)
Λ, (4.3)

which describe a set of coupled Klein-Gordon-like fields φa = TrG(ΛXa) with variable
mass m2 = TrG(∂µΛ∂µΛ)/TrG(Λ2).

Let us explicitly consider the case of the unitary group G = U(N). We shall take, as the
Lie algebra generators Xa, the step operators Xαβ defined by the usual matrix elements:

(Xαβ)γρ = δαγδβρ, α, β, γ, ρ = 1, . . . , N, (4.4)

fulfilling the commutation relations:

[Xαβ ,Xγρ] = δγβXαρ − δαρXγβ , (4.5)
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and the usual orthogonallity relations:

Tr(XαβXγρ) = δαρδγβ. (4.6)

Note that the step generators Xαβ are not hermitian but X†
αβ = Xβα, where X† denotes

hermitian conjugate. This fact introduces some minor modifications with respect to the
general theory exposed before. For example, the canonical left-invariant 1-form θL can be
written in this Lie-algebra basis as (we shall drop the upper-script L for convenience):

θµ =

N∑

α,β=1

θαβ
µ Xαβ , (4.7)

with θαβ = θ̄βα in order to make θ† = θ (hermitian). The mass matrix λ is now

λ = i

N∑

α=1

λαXαα, (4.8)

where the complex i has been introduced in order to make the projected 1-form

θλ = [θ, λ] = −i

N∑

α,β=1

θαβ(λα − λβ)Xαβ (4.9)

hermitian too.
When minimally coupled, like in (3.3), the partial trace σ-Lagrangian (4.1) only assigns

mass mαβ = e2(λα − λβ)2 to those Yang-Mills fields Aαβ living on a certain coset G/Gλ

of the group G, where Gλ represents the ‘unbroken’ chiral symmetry subgroup. Indeed,

the Lagrangian L
(λ)
σ is left-invariant under the whole group G, but right-invariant under

the unbroken subgroup Gλ only.
For G = U(N) we can consider several symmetry breaking patterns according to dis-

tinct mass matrix λ choices:

1. For the case λα 6= λβ,∀α, β = 1 . . . , N the unbroken symmetry is Gλ = U(1)N ,
so that we give mass to all of N(N − 1)/2 charged (complex) Yang-Mills fields
Aαβ , α > β (the analogue of W± in U(2) invariant electro-weak model [2]) living on
the flag manifold (coset) FN = G/Gλ = U(N)/U(1)N . The neutral (not charged)
vector bosons Aαα remain massless.

2. For λα = λβ ,∀α, β = 2, . . . , N the unbroken symmetry is Gλ = U(N − 1)×U(1), so
that we haveN−1 massive charged Yang-Mills fieldsA1α, α > 1 living on the complex
projective space CPN−1 = U(N)/U(N − 1)×U(1), in addition to (N − 1)(N − 2)/2
massless charged vector bosons Aαβ, α 6= β 6= 1 andN massless neutral vector bosons
Aαα.

3. For other choices like:

λ1 = λ2 = · · · = λN1
6= λN1+1 6= · · · 6= λN−N2

= · · · = λN

the unbroken symmetry group is Gλ = U(N1) × U(N2) × U(1) giving N1(N1 −
1)/2 + N2(N2 − 1)/2 massless charged vector bosons, N massless neutral vector
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bosons and massive charged vector bosons corresponding to the complex Grasman-
nian CG(N1, N2) = U(N)/U(N1) × U(N2) × U(1) (see [8] for suitable coordinate
systems on these coset spaces).

Note that this ‘partial trace’ mechanism always keeps the N neutral vector bosons Aαα

massless. However, we could always supply mass to the neutral vector boson Z0, related to
the central generatorH0 =

∑N
α=1Xαα (which commutes with everything), without spoiling

the previous mechanism, using the conventional Stueckelberg model for the Abelian case
G = U(1).

These whole scheme agrees with nature, where we find just one intermediate massive
neutral vector boson Z0 (inside weak currents); the rest of intermediate neutral vector
bosons (photon and gluons) remain massless.

5 Comments and Outlook

The fact that both the gauge functions ϕ and the vector potentials A themselves may
be considered as parameters of a group, G1(M), which constitutes the basic symmetry
group of the theory (in the sense that the corresponding Noether invariants parametrizes
the solution manifold), permits to face the quantum theory under the perspective of a
non-perturbative group-theoretical framework (according to the scheme outlined in Ref.
[9]) where questions such as renormalizability, finiteness, unitarity, etc., are much better
addressed. The Hilbert space of our theory will be the carrier space of unitary irreducible
representations of a centrally extended infinite-dimensional Lie group G̃, incorporating
G1(M) and the phase space of our theory.

Let us make a brief discussion of the physical field degrees of freedom of our theory.
This analysis of the dynamical content of the theory can be achieved without the need of
writing down the explicit expression of the (linearized) field equations of motion. Instead,
we shall resort again to a group-representation viewpoint at the Lie algebra level (see [9]
for more precise details on a Group Approach to Quantization of Yang-Mills theories). In
fact, for pure, massless, SU(N)-Yang-Mills theory we can fix the (Weyl) gauge and set
the temporal part Aa

0 = 0, a = 1, . . . , N2 − 1. The equal-time Lie algebra commutators
between non-Abelian vector potentials Aa

j , j = 1, 2, 3; a = 1, . . . , N2 − 1, electric field Ea
j

and gauge-group generators ϕa (in natural ~ = 1 = c unities) turn out to be (see e.g. the
Reference [10]):

[
Aa

j (x), E
b
k(y)

]
= iδjkδ

abδ(x− y),
[
~Ea(x), ϕb(y)

]
= −iCab

c
~Ec(x)δ(x − y),

[
~Aa(x), ϕb(y)

]
= −iCab

c
~Ac(x)δ(x − y) −

i

e
δab ~∇xδ(x − y),

[
ϕa(x), ϕb(y)

]
= −iCab

c ϕ
c(x)δ(x − y). (5.1)

From the first commutator we see that Aa
j and Ea

j are conjugated variables, so that we have

in principle three field degrees of freedom for each “colour” index a = 1, . . . , N2 − 1, that
is, f = 3(N2 − 1) original field degrees of freedom. All σ-fields ϕa, a = 1, . . . , N2 − 1, do
not have dynamics this time, so that we can impose all of them as constraints ϕa(x)Ψ = 0
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(the Gauss law) on wave functionals Ψ in the corresponding quantum field theory. This
operation takes away c = N2 − 1 field degrees of freedom out of the original f , leaving
f ′ = f − c = 2× (N2 − 1). These field degrees of freedom correspond to (N2 − 1) massless
vector bosons (remember that transversal fields have two polarizations only).

When we give dynamics to some of the σ-fields ϕa through a partial-trace σ-Lagrangian
like (4.1), and perform minimal coupling θµ → θµ − eAµ, we introduce new conjugated
variables given by the new Lie-algebra commutators:

[
Aa

0(x), ϕ
b(y)

]
= −iCab

c A
c
0(x)δ(x − y) −

i

e
Cab

c λ
cδ(x− y), (5.2)

where (in the hope that no confusion arises) we mean here by Aa
0(x) the generator of

translations in the temporal component of the vector potential. It should be stressed that
the central term proportional to λc in the previous commutator can also be considered as
associated with some sort of “symmetry breaking” in the sense that it can be hidden into
a redefinition, Ac

0 → Ac
0 + λc

e
, of Ac

0, which now acquires a non-zero vacuum expectation
value proportional to the mass λc, that is:

〈0|Ac
0|0〉 = 0 −→ 〈0|Ac

0|0〉 = −
λc

e
.

This is one of the differences between the vacua of the massless and the massive theory.
Moreover, σ-fields could also acquire non-zero vacuum expectation values, 〈0|ϕc|0〉 = ωc,
which could be mimicked by new central terms in the last commutator of (5.1). See Ref.
[9] for the physical consequences of this particular case.

Let us proceed by counting the new physical field degrees of freedom of the massive
theory. We shall restrict ourselves to G = SU(2) (i.e., N = 2), for the sake of simplicity,
and take λ = iλ3T3 (the “isospin” charge). Let us also use the Cartan basis 〈T± =
T1 ± iT2, T0 = T3〉, with commutation relations:

[T±, T0] = ∓T±, [T+, T−] = 2T0.

The commutation relations (5.2) say that the temporal part W±
0 ≡ A1

0±iA
2
0 (we adopt the

usual notation in the Standard Model of electro-weak interactions for charged weak vector
bosons) are conjugated fields of ϕ∓ ≡ ϕ1∓ϕ2, since they give central terms proportional to
the mass matrix element λ3. On the contrary, the temporal part B0 ≡ A3

0 and the σ-field
ϕ0 ≡ ϕ3 remain without dynamics. Thus, in addition to the original f = 3(N2 − 1) = 9
field degrees of freedom connected to the spatial part ~Aa, a = 1, 2, 3, we have two additional
field degrees of freedom attached to the temporal part W±

0 , which results in f̃ = f+2 = 11
field degrees of freedom. If we wished to be consistent with the massless case, we should
gauge fix σ-fields to zero as constraints ϕa(x)Ψ = 0 in the quantum theory. This operation
would take away c = (N2 − 1) = 3 field degrees of freedom out of the original f̃ = 11,
leaving f̃ ′ = f̃ − c = 8 = 2 × 1 + 3 × 2. These field degrees of freedom correspond to 1
massless vector boson B (two polarizations) plus 2 massive vector bosons W±. We could
say that the dynamics of the σ-fields ϕ± has been transferred to the vector potentials W±

(the longitudinal part) to conform massive vector bosons. Hence, we do not need an extra
(Higgs) field to give mass to vector bosons but it is the gauge group itself which acquires
dynamics and transfers it to Yang-Mills fields.
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A deeper (Lagrangian) analysis of the particular case of electro-weak gauge group
SU(2) ⊗ U(1), in the framework of the Standard Model, is in preparation [11]. Also,
a proper Group Approach to Quantization of this theory, clarifying the vacuum and in-
cluding interaction with fermions and comparisons with the Standard Model, as well as a
deeper discussion on the physical status of σ-fields, is being investigated by the authors.
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