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AN AMPLITUDE AND COVARIANCE MATRIX ESTIMATOR
FOR SIGNALS IN COLORED GAUSSIAN NOISE

Jesper Højvang Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen

Deptartment of Electronic Systems
Aalborg University, Denmark
{jhj,mgc,shj}@kom.aau.dk.

ABSTRACT
We show that by considering the estimation of the amplitudes
of sinusoids in colored, Gaussian noise as a joint amplitude
and noise covariance matrix estimation problem, we obtain
an iterative estimator that has the Capon spectral estimator
as a special case. The estimator is also closely related to the
amplitude and phase estimator (APES). In experiments, the
proposed joint estimator in most cases outperforms Capon
and APES.

1. INTRODUCTION

The estimation of the amplitudes of sinusoids in colored,
Gaussian noise has a long history with applications such as
radar imaging and audio coding (see e.g. [1] and the refer-
ences therein). The simplest approach is to ignore the color-
ing of the noise and use methods such as least squares that as-
sume white noise. A refinement is e.g. the Capon spectral es-
timator that uses the signal covariance matrix as an estimate
of the noise covariance [2] (see also [3, 4]). An evolution
of this is the amplitude and phase estimator (APES), which
uses a cheap amplitude estimate to obtain a refined noise co-
variance estimate [4,5]. A related approach for audio signals
can be found in [6]. The single-sinusoid APES algorithm
was originally derived as an approximation to the exact joint
maximum likelihood amplitude and noise covariance matrix
estimator [5], similar to what we propose here for multiple
sinusoids. However, when the multiple sinusoids APES al-
gorithm was derived in [4], the noise covariance matrix was
estimated prior to the amplitudes, not jointly.

In this paper, we do not consider the estimation of the
noise covariance matrix and the sinusoid amplitudes as two
separate tasks, but rather estimate them jointly. The resulting
estimator is indeed closely related to both the Capon ampli-
tude estimator and APES. While the joint estimator is com-
putationally more demanding than the former two, it has the
advantage that it avoids ad hoc noise covariance estimates.

In Section 2, we derive the joint noise covariance and
sinusoid amplitude estimator, in Section 3 we evaluate it, and
in Section 4 we conclude on the proposed approach.
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2. MAXIMUM LIKELIHOOD PARAMETER
ESTIMATION

We are concerned with the following complex-valued signal
model:

x(n) = e(n) +

L∑
l=1

αl exp(iωln) for n ∈ {0,1, . . . ,N −1}, (1)

where x(n) is the observed signal, ωl are the known frequen-
cies of the complex sinusoids, αl are the unknown, complex
amplitudes, and e(n) is complex, colored, zero-mean Gaus-
sian noise. The assumption of zero-mean noise is without
loss of generality, since a non-zero mean is equivalent to an
additional sinusoid with a frequency of zero. We define the
vectors

x(n) =
[
x(n) · · · x(n + M−1)

]T
, (2)

e(n) =
[
e(n) · · · e(n + M−1)

]T
, (3)

sl(n) =
[
exp(iωln) · · · exp(iωl(n + M−1))

]T
, (4)

α =
[
α1 · · · αL

]T
, (5)

and the matrix
S(n) =

[
s1(n) · · · sL(n)

]
. (6)

Letting G = N−M +1 be the number of observed vectors, (1)
is equivalent to

x(n) = S(n)α+ e(n) for n ∈ {0,1, . . . ,G−1}. (7)

We will assume that the noise vectors e(n) are indepen-
dent and Gaussian with M × M covariance matrix Q =
E[e(n)e(n)H]. In this case, the maximum likelihood estimates
of α and Q, denoted by α̂ and Q̂, are given by

[α̂, Q̂] = argmax
α,Q

J(α,Q) (8)

where

J(α,Q) =
1
G

G−1∑
n=0

log p(x(n)) (9)

=
1
G

G−1∑
n=0

log
[ 1
πM |Q|

exp
(
−e(n)HQ−1e(n)

)]
, (10)

with e(n) = x(n)−S(n)α.



We find α̂, Q̂ in a two-step process. We first find the max-
imum likelihood estimate of Q̂ given the amplitudes, i.e.,

Q̂(α) = argmax
Q

J(α,Q). (11)

Next, inserting Q̂(α) in J, we find the α that maximizes J
with Q̂(α) inserted for Q:

α̂ = argmax
α

J(α, Q̂(α)). (12)

If all values exist and are unique, α̂ and Q̂(α̂) found in this
way are identical to α̂ and Q̂ found by directly maximizing
(8) (this can be proven by assuming the opposite and show
that this leads to contradictions). Using this procedure, we
show that maximizing the log-likelihood of the observed data
is equivalent to minimizing the determinant of the estimated
noise covariance matrix, before we derive an iterative esti-
mator that finds this minimum.

It is well-known that the maximum likelihood estimate
of the noise covariance matrix given the amplitudes is given
by [1]

Q̂(α) =
1
G

G−1∑
n=0

e(n)e(n)H, (13)

still with e(n) = x(n)−S(n)α.
To see that maximizing the log-likelihood is equivalent

to minimizing the determinant of the estimated noise covari-
ance matrix (as shown by e.g. [7] and [5]), we first insert (13)
in (10):

J(α, Q̂(α)) =
1
G

G−1∑
n=0

log
[

1
πM |Q̂(α)|

e−e(n)HQ̂(α)−1e(n)
]

(14)

= −M logπ− log|Q̂(α)| −
1
G

G−1∑
n=0

e(n)HQ̂(α)−1e(n). (15)

Traditionally in maximum likelihood amplitude estimation,
the first two terms of (15) are considered constant, while the
last term is maximized. However, when Q̂ is given by (13)
instead of being independent of the estimated amplitudes, we
can show that the last term vanishes, leaving only the second
term to be optimized. Inserting (13) in the last term, we ob-
tain

1
G

G−1∑
n=0

e(n)HQ̂(α)−1e(n) = tr
[
Q̂(α)−1 1

G

G−1∑
n=0

e(n)e(n)H
]

= tr
[
Q̂(α)−1Q̂(α)

]
= M.

(16)

In the above, tr[·] denotes the trace operator. Thus,
J(α, Q̂(α)) is given by

J(α, Q̂(α)) = −M logπ− log|Q̂(α)| −M. (17)

The maximum likelihood estimates α̂ and Q̂ are therefore
simply given by

α̂ = argmin
α

J(α, Q̂(α)) (18)

= argmin
α

log|Q̂(α)| (19)

and

Q̂ = Q̂(α̂). (20)

For S(n) being a single sinusoid, a closed form expression
for α̂ was derived in [5]. To compute α̂ and Q̂ in the general
case, we find the derivative of log|Q̂(α)|with respect to α and
find where it equals zero. First, we use the chain rule to see
that

d log|Q̂(α)|
dαl

= tr
(
∂ log|Q̂(α)|

∂Q̂(α)T

∂Q̂(α)
∂αl

)
. (21)

Using the relation ∂ log|Q̂(α)|
∂Q̂(α)T = Q̂(α)−1 (see [8, 9]), we first

compute the partial derivative with respect to a single am-
plitude:

d log|Q̂(α)|
dαl

= tr
(
Q̂(α)−1 ∂Q̂(α)

∂αl

)
(22)

= tr

Q̂(α)−1 ∂

∂αl

1
G

G−1∑
n=0

(x(n)−S(n)α)(x(n)−S(n)α)H


(23)

= −
1
G

tr

Q̂(α)−1
G−1∑
n=0

sl(n)(x(n)−S(n)α)H

 (24)

= −
1
G

tr

G−1∑
n=0

(x(n)−S(n)α)HQ̂(α)−1sl(n)

 (25)

= −
1
G

G−1∑
n=0

(x(n)−S(n)α)HQ̂(α)−1sl(n). (26)

From this we see that the derivative with respect to α is given
by

d log|Q̂(α)|
dαT =

1
G

G−1∑
n=0

(x(n)−S(n)α)HQ̂(α)−1S(n). (27)

Setting this equal to zero, we obtain

α̂ =

G−1∑
n=0

S(n)HQ̂(α̂)−1S(n)


−1 G−1∑

n=0

S(n)HQ̂(α̂)−1x(n)

 . (28)

However, this is not a closed form solution, since the Q̂(α̂)
term also depends on α̂. Nevertheless, we can choose an ini-
tial guess for α̂, e.g. α̂0 = 0, and cyclically compute refined
covariance matrix and amplitude estimates:

Q̂(α̂k) =
1
G

G−1∑
n=0

(x(n)−S(n)α̂k)(x(n)−S(n)α̂k)H (29)

and

α̂k+1 =

G−1∑
n=0

S(n)HQ̂(α̂k)−1S(n)


−1 G−1∑

n=0

S(n)HQ̂(α̂k)−1x(n)

 .
(30)

Note that the maximum likelihood amplitude estimator for
sinusoids in additive Gaussian noise with known covariance



matrix is identical to (30) with Q̂(αk) replaced by the true
covariance matrix. This is surprising, since the latter max-
imizes the last term of (15), while the joint estimator maxi-
mizes the second term. Since (29) is the maximum likelihood
estimate of the covariance matrix given the amplitudes, we
cyclically compute the maximum likelihood estimate of one
parameter using the current estimate of the other parameter.
This guarantees that the log-likelihood of each refined esti-
mate never decreases, whereby convergence is guaranteed. It
is an open question, though, whether convergence is always
to the global optimum or if it is only to local optima. In prac-
tice, we have observed that when using the zero vector as
the initial estimate of α, the iterations converge in very few
iterations.

Using the zero vector as the initial estimate, the first esti-
mate of Q computed from (29) becomes

Q̂(0) =
1
G

G−1∑
n=0

x(n)x(n)H, (31)

and the first non-trivial amplitude estimate becomes

α̂1 =

G−1∑
n=0

S(n)HQ̂(0)−1S(n)


−1 G−1∑

n=0

S(n)HQ̂(0)−1x(n)

 , (32)

which is nothing but the Capon amplitude estimator. The
Capon estimator is thus the special case of the proposed joint
estimator where we use the zero vector as the initial ampli-
tude estimate and stop after a single iteration.

The APES algorithm uses a cheap estimate of the sinu-
soids’ amplitudes to obtain a refined noise covariance esti-
mate. For the multiple sinusoid version in [4], the refined
noise covariance matrix is given by

Q̂ =
1
G

G−1∑
n=0

x(n)x(n)H−

L∑
l=1

gl gH
l , (33)

where

gl =
1
G

G−1∑
n=0

x(n)exp(−iωln). (34)

This has some resemblance to the second iteration of the pro-
posed estimator, where the first amplitude estimate is used to
obtain a refined noise covariance estimate. However, since
no further iterations are performed with the APES algorithm,
it does not converge to the maximum likelihood estimate.

Note that in showing that maximizing the log-likelihood
is equivalent to minimizing the estimated noise covariance
matrix, we only use that the same error signal estimate is
used for calculating the noise covariance estimate and for
computing the log-likelihood. Hence, this property holds for
all signals in additive Gaussian noise, whether it is a linear
or a nonlinear combination of deterministic signals, and it
also holds if we use the forward-backward estimate for both
the covariance matrix and the log-likelihood. In deriving the
iterative estimator in (29) and (30), we restrict ourselves to
linear combinations of signals, although they do not need to
be sinusoids. Furthermore, since the function we end up
optimizing in (19) is the determinant of the noise covari-
ance matrix, we can analyze its properties using asymptotic
eigenvalue properties. In particular, if the covariance matrix
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Figure 1: The mean square estimation error of α1 in (35), lo-
cated at f1 = 0.1 with f2 interfering at 0.11. ML2 and ML5
are the proposed estimator with two and five iterations, re-
spectively, and CRB is the Cramér-Rao lower bound.

is Toeplitz and obeys certain regularity properties, a special
case of Szegő’s theorem asymptotically relates the log deter-
minant to the logarithm of the Fourier spectrum of the auto-
correlation function [10].

3. EVALUATION

We have tested the proposed estimator in the same setup as
used in [4], where a sum of three complex sinusoids are
buried in autoregressive Gaussian noise. The observed signal
is given by

x(n) = e(n) +

3∑
l=1

αl exp(i2π fln) (35)

with α1 = exp(iπ/4), α2 = exp(iπ/3), α3 = exp(iπ/4), and f1 =
0.1, f2 = 0.11, and f3 = 0.3. The colored noise e(n) is given
by

e(n) = 0.99e(n−1) + v(n), (36)

where v(n) is white, Gaussian noise. The observation length
N is 32, and the dimension of the covariance matrix, M, is
8. The mean square error for the first and third sinusoid are
shown in Figure 1 and 2, respectively, for different signal to
noise ratios. The mean square error of the first sinusoid, lo-
cated at frequency 0.1 with a neighboring sinusoid at 0.11,
shows how well the different estimators handle spectral leak-
age from sinusoids at neighboring frequencies. The mean
square errors of the third sinusoid, located at 0.3, are indica-
tive of performance when no other sinusoids are close. Con-
sequently, the mean square errors in Figure 2 are much lower
than in Figure 1. The mean square errors are averaged over
1000 realizations. We have compared APES and Capon to
the proposed estimator with two and five iterations of (29)
and (30).

In Figure 1, we see that in the case of an interfering
neighboring sinusoid, the proposed estimator has uniformly
good performance at all SNR and is consistently close to the
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Figure 2: The mean square estimation error of α3 in (35), lo-
cated at f3 = 0.3 with the closest interfering sinusoid located
at 0.11.

Cramér-Rao lower bound. At low SNR, additional iterations
decrease performance slightly, and the Capon amplitude esti-
mator (which corresponds to a single iteration) has best per-
formance. At higher SNR, the proposed estimator with five
iterations performs best. In Figure 2, the estimation errors
are much lower due to the less dominant interference. APES
and the proposed estimator with five iterations seem to have
nearly identical performance close to the Cramér-Rao bound,
while two iterations and the Capon estimator sees a perfor-
mance decrease at high SNR.

4. CONCLUSION

We have shown that maximizing the log-likelihood of a sig-
nal in colored, Gaussian noise is equivalent to minimizing the
determinant of the estimated noise covariance matrix, and we
have derived an iterative algorithm to find the optimum for
a sum of sinusoids with unknown amplitudes. The derived
algorithm has the Capon amplitude estimator as a special
case, and experimentally, the new estimator shows consis-
tently good performance. The proposed estimator has inter-
esting theoretical implications, since it demonstrates that si-
nusoidal amplitude estimation in colored noise can elegantly
be cast as a joint amplitude and noise covariance matrix es-
timation problem, instead of using ad hoc noise covariance
estimates, and because it allows the use of asymptotic de-
terminant properties such as Szegő’s theorem for the analy-
sis of maximum likelihood estimators. The latter may also
be useful for deriving computationally cheap, asymptotically
efficient estimators.
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