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THE ELECTRON DENSITIES OF
PSEUDORELATIVISTIC EIGENFUNCTIONS ARE

SMOOTH AWAY FROM THE NUCLEI

SØREN FOURNAIS AND THOMAS ØSTERGAARD SØRENSEN

Abstract. We consider a pseudorelativistic model of atoms and
molecules, where the kinetic energy of the electrons is given by√

p2 + m2 − m. In this model the eigenfunctions are generally
not even bounded, however, we prove that the corresponding one-
electron densities are smooth away from the nuclei.

1. Introduction and results

It was proved recently [3, 4] that the one-electron densities of atomic
and molecular eigenstates are smooth away from the nuclei (actually,
real analyticity was proved in [5]). The model studied was the non-
relativistic Schrödinger operator with fixed nuclei. The proofs in [3,
4] depend heavily on special properties of the non-relativistic kinetic
energy operator −∆. However, the strategy of large parts of the proof
is very robust. In the present paper we generalise the result to the case
of so-called pseudorelativistic molecules.

We consider anN -electron molecule with L fixed nuclei. The pseudo-
relativistic Hamiltonian is (in units where ~ = c = 1) given by

HN,L(R,Z) =
N∑

j=1

{
T (pj)−

L∑
ℓ=1

Zℓα

|xj − Rℓ|
}

+
∑

1≤i<j≤N

α

|xi − xj | ,

(1.1)

where the kinetic energy T (pj) of the j’th electron is given by the
operator

T (p) =
√
p2 +m2 −m =

√
−∆ +m2 −m,

with m ∈ [0,∞) being the mass of the electron; α is the fine structure
constant (in these units, α = e2, with e the unit charge). In (1.1),
R = (R1, R2, . . . , RL) ∈ R3L, Rℓ 6= Rk for k 6= ℓ, denote the positions of
the L nuclei whose positive charges are given by Z = (Z1, Z2, . . . , ZL).
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The positions of the N electrons are denoted by x = (x1, x2, . . . , xN) ∈
R3N where xj denotes the position of the j’th electron in R3; ∆j is
the Laplacian with respect to xj . We write ∇ = (∇1, . . . ,∇N) for the
gradient operator in R3N . In (1.1) we have omitted the nucleus-nucleus
interaction,

∑
ℓ<k

ZℓZkα
|Rℓ−Rk| , since this is just an additive constant.

The natural space for studying the operator HN,L(R,Z) is, in view
of the Pauli Exclusion Principle, the antisymmetric spinor space,
∧N

j=1L
2(R3; C2), however, our results will not depend on spin and we

do therefore not impose this antisymmetry condition. Instead we work
on the space L2(R3N).

We will assume that 0 < Zℓα < 2/π for all ℓ ∈ {1, . . . , L}.1 In this
case we get from [2, Proposition 2.2] (see also [6] and [11] for the case
of Hydrogen) that the negative Coulomb potentials constitute a small
form perturbation of the (total) kinetic energy (i.e., it is relatively form
bounded with relative bound less than one). The electron-electron
interactions being positive, and relative form bounded too, we get that
the quadratic form

q(u, v) :=
〈
u ,

N∑
j=1

T (pj) v
〉
−

〈
u ,

N∑
j=1

L∑
ℓ=1

Zℓα

|xj −Rℓ| v
〉

(1.2)

+
〈
u,

∑
1≤i<j≤N

α

|xi − xj | v
〉
, u, v ∈ H1/2(R3N) ,

is closed and semi-bounded. Here, 〈·, ·〉 is the scalar product in L2(R3N ).
Hence, we can define the operator H ≡ HN,L(R,Z) as the correspond-
ing (unique) self-adjoint operator. It satisfies

H1(R3N ) ⊂ D(H) ⊂ H1/2(R3N) ,

and

q(u, v) = 〈u,Hv〉 , v ∈ D(H) , u ∈ H1/2(R3N) . (1.3)

Here, D(H) denotes the operator domain of H; we denote its form
domain by Q(H). All this follows from (the statements and proofs
of) [9, Theorem X.17] and [10, Theorem VIII.15]. See [8] for further
references on HN,L(R,Z).

Suppose ψ ∈ L2(R3N) is an eigenfunction of H, i.e., there exists
E ∈ R such that

Hψ = Eψ .

1The experimental value of the fine structure constant is α ≈ 1/137. For this
value of α, 2/(πα) ≈ 87
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We define the one-electron density ρ ∈ L1(R3) (associated to ψ) by

ρ(x) =
N∑

j=1

ρj(x)

=

N∑
j=1

∫
R3N

|ψ(x1, . . . , xN )|2 δ(x− xj) dx1 · · · dxN . (1.4)

The main result of this paper is the following.

Theorem 1.1. Let ψ ∈ L2(R3N) be an eigenfunction of H. Let the
associated density ρ be as defined in (1.4).

Then

ρ ∈ C∞(
R3 \ {R1, . . . , RL}

)
. (1.5)

Remark 1.2.

(i) Theorem 1.1 will follow from the more general abstract Theo-
rem 2.2 below.

(ii) We state Theorem 1.1 for Coulomb interactions, but it holds for
more general potentials. For instance, one can use the Yukawa

potential e−c|x|
|x| , with c > 0, in one or all of the two-particle in-

teractions. See Theorem 2.2 below for a more general statement
of the result.

(iii) Since we are only interested in regularity properties of ρ, we
can study each of the (finitely many) terms in (1.4) separately.
We will restrict ourselves to proving the statement in (1.5) for

ρ1(x) :=

∫
R3N−3

|ψ(x, x2, . . . , xN)|2 dx2 · · · dxN , (1.6)

the proof for the other terms being analogous. Furthermore, to
simplify the presentation, we limit ourselves to the atomic case
(L = 1, R1 = 0, Z1 = Z, 0 < Zα < 2/π).

Notation. We denote by B∞(U) the smooth functions with bounded
derivatives on the open set U , i.e.,

B∞(U) =
{
u ∈ C∞(U)

∣∣ ∂αu ∈ L∞(U) for all α
}
.

2. The abstract theorem

Our main interest in this paper is the regularity of one-electron den-
sities of pseudorelativistic atoms and molecules with Coulomb interac-
tions, as stated in Theorem 1.1. However, our result holds in a more
general case, which we will state here.
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It is known that, in the case of relativistic atoms, the potential en-
ergy is not a small operator perturbation of the kinetic energy, if the
values of α,N , and Z become too large. (This is also the case in
other relativistic models than the one studied here.) In this case, as
discussed in the introduction, the Hamiltonian is only defined as the
(unique) self-adjoint operator associated to a semi-bounded closed qua-
dratic form. On the other hand, the pseudorelativistic kinetic energy
has an extra, important property: It is the generator of a positivity
preserving semigroup.

Our abstract conditions below are thus based on the kinetic energy T
below being the generator of a positivity preserving semigroup. This
fact follows from the explicit formula for the integral kernel of the
semigroup generated by T (p); see e.g. [7, 7.11(11)].

The Hamiltonians considered will be of the form

H = T + V , (2.1)

where (with p = (p1, . . . , pN) ∈ R3N)

T = T(p) =
N∑

j=1

T (pj) =
N∑

j=1

√
−∆j +m2 −m, (2.2)

V = V(x) =

N∑
j=1

Vj(xj) +
∑

1≤j<k≤N

Wj,k(xj − xk) . (2.3)

The following are the assumptions on the potential V.

Assumption 2.1. (i) – For all j ∈ {1, . . . , N},
Vj ∈ C∞(

R3 \ {0}) ∩ B∞(
R3 \B(0, 1)

)
.

– For all Q ⊂ {1, . . . , N}, the quadratic form on ⊗j∈QL
2(R3)

given by the multiplication operator VQ :=
∑

j∈Q Vj(xj) is

a small form perturbation of TQ :=
∑

j∈Q |pj| .
(ii) For all j, k ∈ {1, . . . , N} with j 6= k,

– Wj,k ≥ 0 pointwise and Wj,k(x) = Wk,j(−x).
– Wj,k ∈ C∞(

R3 \ {0}) ∩ B∞(
R3 \B(0, 1)

)
.

– Multiplication by Wj,k defines a bounded operator from
H1(R3) to L2(R3) (by interpolation boundedness from
H1/2(R3) to H−1/2(R3) therefore follows).

Under the above assumptions it is clear that H = T + V is well
defined as the (unique) self-adjoint operator of the the corresponding
closed and semi-bounded quadratic form (see the introduction for de-
tails).

The main abstract result of this paper is the following.
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Theorem 2.2. Let m ≥ 0 and let T be the (total) pseudorelativistic
kinetic energy operator

T =

N∑
j=1

√
−∆j +m2 −m. (2.4)

Let functions

Vj : R3 → R, j ∈ {1, . . . , N},
Wj,k : R3 → R, j, k ∈ {1, . . . , N}, j 6= k ,

be given such that Assumption 2.1 is satisfied, and let

V(x) =

N∑
j=1

Vj(xj) +
∑

1≤j<k≤N

Wj,k(xj − xk) .

Let H = T+V be the self-adjoint operator associated to the correspond-
ing quadratic form (closed on H1/2(R3N)). Let finally ψ ∈ L2(R3N) be
an eigenfunction of H and let ρ be the associated density as defined in
(1.4).

Then

ρ ∈ C∞(
R3 \ {0}) . (2.5)

Remark 2.3. As pointed out in Remark 1.2 (i), Theorem 1.1 follows
from Theorem 2.2.

Proof of Theorem 2.2.
The smoothness of ρ is a direct consequence of Propostion 3.1 below.
The argument is exactly the same as the one given in [4, Section 3] in
the proof of [4, Theorem 1.1]. We therefore omit the details. �

All that remains is to (state and) prove Proposition 3.1 below.

3. The parallel differentiation

The fact that one is allowed to differentiate the eigenfunction ψ par-
allel to the singularities of the (total) potential V is the key ingredient
in proving the smoothness of the density ρ. This approach was car-
ried out for the non-relativistic Schrödinger operator—that is, with
T (pj) = −∆j in (1.1)—in [3, Proposition 1] (see also [4]). We sketch
the main ideas before giving the exact statement of the result (Propo-
sition 3.1 below) and its proof.

Let u ∈ L2(Rd) and V ∈ L∞(Rd), and assume that

∆u = Vu . (3.1)
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Then (3.1) implies that u ∈ H2(Rd), in particular, ∂u ∈ L2(Rd) for any
derivative ∂. Assume furthermore that, for some specific directional
derivative ∂a =

∑
j aj∂j , aj ∈ R, we have ∂aV ∈ L∞(Rd). As just

argued, ∂au ∈ L2(Rd). Then, by differentiation of (3.1), we find that

∆(∂au) = V∂au+ (∂aV)u , (3.2)

from which it follows that, in fact, ∂au ∈ H2(Rd). Moreover, the above
argument is easily localised: If ∂aV ∈ L∞(U) for some open set U ⊂ Rd,
then we can conclude that ∂au ∈ H2(U).

Using this idea (and an induction argument) on the eigenvalue equa-
tion one finds that eigenfunctions of the non-relativistic molecular Hamil-
tonian are smooth in certain directions and on certain open sets (see
Proposition 3.1 for a precision of the geometry, which is the same as in
the non-relativistic case). In the molecular case the (Coulomb) poten-
tial is not a bounded function, but one easily sees that the argument
carries over to the case of potentials V which are a small operator per-
turbation of the kinetic energy.

For the pseudorelativistic operator in (1.1) this procedure does not
work immediately, since we cannot separate the kinetic and potential
energies: Since the potential V is only a small quadratic form pertur-
bation of the kinetic energy T, the operator H = T + V is only given
as a form sum.

The idea is then to move the term Vu to the left hand side in (3.1) to
find the following substitute for the argument above. Let the operator
H be self-adjoint with operator domain (contained in) Hs(Rd), for some
s ≥ 1. Suppose u ∈ L2(Rd) satisfies (in the weak sense) the equation

Hu = v ∈ L2(Rd) . (3.3)

It follows that u ∈ D(H) ⊂ Hs(Rd). If furthermore v ∈ H1(Rd) one can
then take a derivative in (3.3) and use arguments as above to conclude
that ∂u ∈ D(H) ⊂ Hs(Rd).

However, in our case it is not easy to identify the operator domain
of H. By the definition as a form sum, we only get that H1(R3N ) ⊂
D(H) ⊂ H1/2(R3N ). That is, we cannot take one derivative on some-
thing in D(H) as explained above and still be sure to obtain a function
in L2(R3N). Furthermore, the relativistic kinetic energy is not local,
so introduction of cut-off functions in the induction argument becomes
somewhat more complicated.

Nevertheless, the above idea of a proof and therefore the main tech-
nical step in [4]—Proposition 3.1 below—can still be justified. That is,
the strategy of repeatedly differentiating an equation of the form (3.3)
in ‘good’ directions remains: We partially identify the operator domain
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D(H) in order to be able to take one parallel derivative (∂xP
below) on

functions therein.

Proposition 3.1. Let P,Q be a partition of {1, . . . , N} satisfying

P 6= ∅, P ∩Q = ∅, P ∪Q = {1, . . . , N} .
Define, for P,Q as above and ǫ > 0,

UP (ǫ) =
{
(x1, . . . , xN) ∈ R3N

∣∣ |xj | > ǫ for j ∈ P,
|xj − xk| > ǫ for j ∈ P, k ∈ Q}

. (3.4)

Define also

xP =
1√|P |

∑
j∈P

xj (∈ R3) . (3.5)

Let furthermore H be as in Theorem 2.2, and let ψ ∈ L2(R3N ) be an
eigenfunction of H, i.e., there exists E ∈ R such that

Hψ = Eψ .

Then

∂γ
xP
ψ ∈ L2(UP (ǫ)) for all γ ∈ N3 .

Proof. Since the proof is somewhat technical we split it in a number of
steps in order to make the structure more transparent. We first prove
a lemma on localization.

Lemma 3.2. Let ϕ ∈ B∞(R3N) and u ∈ D(H). Then ϕu ∈ D(H) and

H(ϕu) = ϕ(Hu) +Bu , (3.6)

where B ∈ B(L2(R3N)) is the commutator [T, ϕ].

Proof. Notice first that ϕu ∈ Q(H) since u ∈ D(H) ⊂ Q(H) =
H1/2(R3N ) and multiplication by ϕ maps Hs(R3N ) into itself for all
s ∈ R. Let v ∈ D(H) ⊂ Q(H), then also ϕv ∈ Q(H), and, since
u ∈ D(H) and q is symmetric (see (1.2)),

q(ϕu, v) = 〈ϕu,Hv〉 , q(u, ϕv) = 〈Hu, ϕv〉 . (3.7)

Now, we can calculate on a form core (C∞
0 (R3N )) to obtain

q(ϕu, v) = q(u, ϕv) + 〈Bu, v〉 , (3.8)

where B is the operator [T, ϕ], which is bounded on L2(R3N ) since
ϕ ∈ B∞(R3N) (see Lemma A.2 below). It follows from (3.7) and (3.8)
that

〈ϕu,Hv〉 = 〈ϕHu+Bu, v〉 for all v ∈ D(H) . (3.9)
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Since ϕHu+Bu ∈ L2(R3N ) and D(H) is dense in L2(R3N ) we deduce
from (3.9) that ϕu ∈ D(H∗) = D(H) and that (3.6) holds. This proves
the lemma. �
An auxiliary operator. We introduce the following two operators:

HQ =
∑
j∈Q

(
T (pj) + Vj(xj)

)
+

∑
j,k∈Q,j<k

Wj,k(xj − xk) , (3.10)

on ⊗j∈QL
2(R3), and

HP =
∑
j∈P

T (pj) +
∑

j,k∈P,j<k

Wj,k(xj − xk) , (3.11)

on ⊗j∈PL
2(R3).

By Assumption 2.1 (notice that the Wj,k are non-negative, and that
T (pj)−|pj| is a bounded operator on L2(R3)) the quadratic form defined
by HQ is closed and bounded from below on H1/2(R3|Q|). The operator
HQ is then defined as the (unique) self-adjoint operator associated to
this form; see [10, Theorem VIII.15].

It follows from Lemma A.1 in Appendix A that HP is self-adjoint
with domain H1(R3|P |). We here used Assumption 2.1 (ii) and that
T (p) (and therefore,

∑
j∈P T (pj)), as mentioned earlier in this section,

is the generator of a positivity preserving semigroup.
Define furthermore

Ĥ = HQ ⊗ 1 + 1⊗HP

on

L2(R3N) ≃ (⊗j∈QL
2(R3)

)⊗ (⊗j∈PL
2(R3)

)
.

Since HQ and HP are bounded below, it follows from results on tensor

products [1, p. 86] that Ĥ is self-adjoint with domain

D(Ĥ) =
[D(HQ)⊗ L2(R3|P |)

] ∩ [
L2(R3|Q|)⊗D(HP )

]
⊆ L2(R3|Q|)⊗D(HP ) = L2(R3|Q|)⊗H1(R3|P |) . (3.12)

Choose V̂j ∈ B∞(R3) for j ∈ P and Ŵj,k ∈ B∞(R3) for j ∈ P, k ∈ Q
(and k ∈ P, j ∈ Q) satisfying

V̂j = Vj on R3 \B(0, ǫ/2) and Ŵj,k = Wj,k on R3 \B(0, ǫ/2) .

This is possible by Assumption 2.1. Define finally

H̃ = Ĥ + IP , (3.13)

IP (x) =
∑
j∈P

V̂j(xj) +
∑

(j∈P,k∈Q)∪(j∈Q,k∈P )

Ŵj,k(xj − xk) .
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The operator H̃ is self-adjoint, with D(H̃) = D(Ĥ), since V̂j , Ŵj,k ∈
L∞(R3). We have (in the form sense)

H̃ = T + Ṽ (3.14)

with

Ṽ(x) = IP (x) +
∑
j∈Q

Vj(xj) +
∑

(j,k∈P,j<k)∪(j,k∈Q,j<k)

Wj,k(xj − xk) . (3.15)

Let q̃ be the quadratic form associated with H̃. An approximation
argument, using that C∞

0 (R3N) is a form core for both q and q̃, gives
that for u, v ∈ H1/2(R3N ) with supp u ⊂ UP (ǫ/2),

q(u, v) = q̃(u, v) . (3.16)

The parallel differentiation. Let f1, f2 ∈ C∞(R) be a partition
of unity on R satisfying that f1 is non-increasing and f1(t) = 1 for
t ≤ 5/4, f1(t) = 0 for t ≥ 2, f1 + f2 = 1.

For ǫ > 0 and P ⊂ {1, . . . , N}, P 6= ∅ define

ϕP,ǫ(x) :=
∏
j∈P

f2(2|xj|/ǫ)
∏

j∈P,k∈Q

f2(2|xj − xk|/ǫ) . (3.17)

Then ϕP,ǫ ∈ B∞(R3N ) and suppϕP,ǫ ⊂ UP (ǫ/2).
We will prove the following lemma, by induction in k ∈ N∪{0}. No-

tice that part (1) in the lemma implies that ∂γ
xP
ψ ∈ L2(UP (ǫ)). There-

fore, Proposition 3.1 clearly follows once we have proved Lemma 3.3.

Lemma 3.3. For all k ∈ N ∪ {0} the following holds:
For all ǫ > 0, all P ⊂ {1, . . . , N} with P 6= ∅, and all γ ∈ N3 with
|γ| ≤ k:

(1) ∂γ
xP

(ϕP,ǫψ) ∈ D(H) ∩ D(H̃).
(2) If γ = γ1 + · · ·+ γk, with |γj| = 1 for all j, then

H(∂γ
xP

(ϕP,ǫψ)) = E∂γ
xP

(ϕP,ǫψ) + ∂γ
xP

[T, ϕP,ǫ]ψ (3.18)

−
k∑

j=1

∂γ1+···+γj−1
xP

{
(∂γj

xP
IP )∂γj+1+···+γk

xP
(ϕP,ǫψ)

}
.

Proof : We proceed by induction.
It follows from Lemma 3.2 that the statement is correct for k = 0

(in which case (3.18) reduces to (3.6), when using that Hψ = Eψ).
Suppose that the statement is true for some k ≥ 0. Let γ ∈ N3 with

|γ| = k, and write uγ = ∂γ
xP

(ϕP,ǫψ).
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Let eP be any of the three unit vectors in R3N which define the
directions of xP . More precisely, introduce the canonical basis for R3N ,
{ek

j} with j ∈ {1, . . . , N}, k ∈ {1, 2, 3}. Then the vector eP is one of
the three possibilities

ek
P :=

1√|P |
∑
j∈P

ek
j , k ∈ {1, 2, 3} . (3.19)

Let ∂eP
= eP · ∇ be the directional derivative in the direction eP , and

define the self-adjoint operator eP · p = −ieP · ∇ with domain

D(eP · p) = {f ∈ L2(R3N)
∣∣ ∂eP

f ∈ L2(R3N)} .
Let furthermore, for t ∈ R, τteP

be the translation operator (τteP
f)(x) =

f(x + teP ). Clearly t 7→ τteP
defines a strongly continuous semigroup

with generator eP · p.
Notice that for t sufficiently small, supp τteP

uγ ⊂ UP (ǫ/2). Since

uγ ∈ D(H̃) ⊂ L2(R3|Q|) ⊗ H1(R3|P |) by the induction hypothesis, we
know that

∂eP
uγ ∈ L2(R3N) ,

so uγ ∈ D(eP · p) and

lim
t→0

1

t
(τteP

uγ − uγ) = ∂eP
uγ , (3.20)

in L2(R3N ).
Let v ∈ D(H) and consider 〈Hv, ∂eP

uγ〉. Using (3.20) and (3.16),
we get

〈Hv, ∂eP
uγ〉 = lim

t→0
t−1〈Hv, τteP

uγ − uγ〉 = lim
t→0

t−1q(v, τteP
uγ − uγ)

= lim
t→0

t−1q̃(v, τteP
uγ − uγ) . (3.21)

Since the translation τteP
commutes with Ĥ = HP + HQ (see (3.10)

and (3.11)), we get that, with IP from (3.13),

H̃τteP
= τteP

H̃ + [IP , τteP
] .

Thus, using (3.16)

〈Hv, ∂eP
uγ〉 = lim

t→0
t−1q̃(v, τteP

uγ − uγ)

= lim
t→0

t−1〈v, τteP
(H̃uγ)− H̃uγ〉 − 〈v, (∂eP

IP )uγ〉 . (3.22)

To prove that ∂eP
uγ ∈ D(H∗) = D(H) from this, it remains to show

that when applying ∂eP
to H̃uγ we obtain a function belonging to

L2(R3N ). Then, from (3.22), also

H(∂eP
uγ) = H∗(∂eP

uγ) = ∂eP
(H̃uγ)− (∂eP

IP )uγ .
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By (3.18), localization and (1) from the induction hypothesis, we
find

H̃uγ = Huγ = E∂γ
xP

(ϕP,ǫψ) + ∂γ
xP

[T, ϕP,ǫ]ψ (3.23)

−
k∑

j=1

∂γ1+···+γj−1
xP

{
(∂γj

xP
IP )∂γj+1+···+γk

xP
(ϕP,ǫψ)

}
.

We will show that when applying ∂eP
to each term on the right side of

(3.23) we obtain a function belonging to L2(R3N).

For the first term, since ∂γ
xP

(ϕP,ǫψ) ∈ D(H̃) ⊂ L2(R3|Q|)⊗H1(R3|P |)
by (3.12) and the induction hypothesis, we know that

∂eP
∂γ

xP
(ϕP,ǫψ) ∈ L2(R3N) . (3.24)

For the third term, the function IP from (3.13) satisfies IP ∈ B∞(R3N ),
and, as just shown, ∂α

xP
(ϕP,ǫψ) ∈ L2(R3N) for all |α| ≤ k + 1, so, by

Leibniz’ rule,

∂eP

( k∑
j=1

∂γ1+···+γj−1
xP

{
(∂γj

xP
IP )∂γj+1+···+γk

xP
(ϕP,ǫψ)

})
∈ L2(R3N ) . (3.25)

Finally, we consider the commutator term ∂γ
xP

[T, ϕP,ǫ]ψ in (3.23).
Define ϕ1 = ϕP,ǫ/4, ϕ2 = 1−ϕ1. Notice that, by the definition of f1, f2,

f1(8t/ǫ)f2(2t/ǫ) = 0 . (3.26)

By using that f1 + f2 = 1 we find

ϕ2 =
∑

({sj},{sj,k})

∏
j∈P

fsj
(8|xj |/ǫ)

∏
j∈P,k∈Q

fsj,k
(8|xj − xk|/ǫ) , (3.27)

where the sum is over all tuples ({sj}, {sj,k}) ∈ {1, 2}|P |+|P |·|Q| with at
least one entry different from 2. Write the commutator term ∂γ

xP
[T, ϕP,ǫ]ψ

as

∂γ
xP

[T, ϕP,ǫ]ψ = ∂γ
xP

[T, ϕP,ǫ](ϕ1ψ) + ∂γ
xP

[T, ϕP,ǫ](ϕ2ψ) , (3.28)

The term with ϕ1 we write, using Leibniz’ rule, as

∂γ
xP

[T, ϕP,ǫ](ϕ1ψ) =
∑
β≤γ

(
γ
β

)
[T, ∂β

xP
ϕP,ǫ]∂

γ−β
xP

(ϕ1ψ) ,
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so,

∂eP
∂γ

xP
[T, ϕP,ǫ](ϕ1ψ) =

∑
β≤γ

(
γ
β

)
[T, ∂eP

∂β
xP
ϕP,ǫ]∂

γ−β
xP

(ϕ1ψ)

+
∑
β≤γ

(
γ
β

)
[T, ∂β

xP
ϕP,ǫ]∂eP

∂γ−β
xP

(ϕ1ψ) .

By Lemma A.2 and the induction hypothesis, we therefore see that

∂eP
∂γ

xP
[T, ϕP,ǫ](ϕ1ψ) ∈ L2(R3N ) . (3.29)

Now we consider the term with ϕ2 in (3.28). We will prove that also

∂eP
∂γ

xP

[
T, ϕP,ǫ

]
(ϕ2ψ) ∈ L2(R3N) . (3.30)

Since T is a finite sum and ϕP,ǫϕ2 = 0 it suffices, up to renumbering
of the terms, to prove that

−∂eP
∂γ

xP

[√
p2

1 +m,ϕP,ǫ

]
(ϕ2ψ)

= ∂eP
∂γ

xP
ϕP,ǫ

√
p2

1 +m (ϕ2ψ) ∈ L2(R3N) . (3.31)

Proof of (3.31).
Case 1. 1 ∈ P .
The case P = {1} being immediate by Lemma A.2, we will assume
that P1 6= ∅, where P1 := P \ {1}.

Since
√
p2

1 +m commutes with multiplication operators in other
variables, and using the support condition (3.26), we find

ϕP,ǫ

√
p2

1 +mϕ2 =
∏
j∈P1

f2(2|xj|/ǫ)
∏

j∈P1,k∈Q

f2(2|xj − xk|/ǫ)

×
{
f2(2|x1|/ǫ)

∏
k∈Q

f2(2|x1 − xk|/ǫ)
√
p2

1 +mf
}
,

with

f :=
∑

σ

fσ1(8|x1|/ǫ)
∏
k∈Q

fσk
(8|x1 − xk|/ǫ) , (3.32)

where the sum is over all σ ∈ {1, 2}1+|Q| with σ 6= (2, . . . , 2). Since at
least one factor for each summand has to be f1 we find

supp f ⊂ {
x

∣∣ min
(|x1|,min

k∈Q
|x1 − xk|

) ≤ ǫ/4
}
.

Thus, by the triangle inequality

supp
( ∏

j∈P1

f2(2|xj|/ǫ)
∏

j∈P1,k∈Q

f2(2|xj − xk|/ǫ)f
)
⊂ UP1(ǫ/4) .
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Since ϕP1,ǫ/4 = 1 on UP1(ǫ/4) we get the identity

ϕP,ǫ

√
p2

1 +mϕ2 =
(
ϕP,ǫ

√
p2

1 +mϕ2

)
ϕP1,ǫ/4 . (3.33)

By the induction hypothesis

∂γ′
xP

(
ϕP1,ǫ/4ψ

) ∈ L2(R3N ) , (3.34)

for all |γ′| ≤ n. Furthermore, since suppϕP,ǫ∩ suppϕ2 = ∅, Lemma A.2
yields that

(∂α
xP
ϕP,ǫ)

√
p2

1 +m (∂β
xP
ϕ2)(1 + p2

1)
M

is a bounded operator on L2(R3N) for all α, β,M .
By Leibniz rule and (3.33),

∂γ′
xP

(
ϕP,ǫ

√
p2

1 +mϕ2

)
=

∑
α1+α2+α3=γ′

cα1,α2,α3

{
∂α1

xP
ϕP,ǫ)

√
p2

1 +m (∂α2
xP
ϕ2)(1 + p2

1)
M

}
× {

(1 + p2
1)
−M∂α3

xP

(
ϕP1,ǫ/4ψ

)}
, (3.35)

for some constants cα1,α2,α3 .

By definition, ∂α
xP

=
∑

β≤α cα,β∂
β
1 ∂

α−β
xP1

for some constants cα,β. So

using (3.34) and choosing ∂γ′
xP

= ∂eP
∂γ

xP
and M ≥ |γ|+ 1 in (3.35), we

see that

∂eP
∂γ

xP

(
ϕP,ǫ

√
p2

1 +mϕ2

) ∈ L2(R3N) .

This finishes the proof of (3.31) in the case 1 ∈ P .
Case 2. 1 /∈ P .
This case is similar but simpler than Case 1. In this case we define
P1 = P . Arguing as previously we realize that the identity (3.33)
remains valid. Also (3.34) follows from the induction hypothesis. Since
P = P1, we can in this case choose M = 0 in (3.35) and get the desired
result. This finishes the proof of (3.31) in the case 1 /∈ P and combining
with Case 1, we get the general result. �

Combining (3.24), (3.25), (3.30), and (3.29), we get that

∂eP
(H̃uγ) ∈ L2(R3N ) . (3.36)

So we see from (3.22) that for all v ∈ D(H),

〈Hv, ∂eP
uγ〉 = 〈v, ∂eP

(H̃uγ)− (∂eP
IP )uγ〉 . (3.37)

From (3.36), (3.37), and (3.16) we conclude that

∂eP
uγ ∈ D(H∗) ∩ D(H̃∗) = D(H) ∩ D(H̃) , (3.38)
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and

H(∂eP
uγ) = ∂eP

(Huγ)− (∂eP
IP )uγ . (3.39)

The equations (3.38) and (3.39) combine to give the statement in
Lemma 3.3 for k + 1.

This finishes the induction step, and by induction the statement in
Lemma 3.3 therefore holds for all k ∈ N ∪ {0}. �
As mentioned above, this finishes the proof of Proposition 3.1. �

Appendix A. Auxiliary results from operator theory

In the proof of Lemma 3.1 we need the following consequence of the
Davies-Faris Theorem ([9, Theorem X.31]).

Lemma A.1. Suppose T ≥ 0 is self-adjoint with domain D(T ), and
that T is the generator of a positivity preserving semigroup. Let V be a
positive multiplication operator, which is bounded relative to T . Then
H = T + V is self-adjoint on D(T ).

Proof. Choose g > 0 such that gV is relatively bounded with respect
to T with bound a < 1. We will prove by induction that Kn = T+ngV
is self-adjoint on D(T ) for all n ∈ N. In order to do so, let us consider
the following statement S(n):

(1) Kn = T + ngV is self-adjoint on D(T ).
(2) ‖gV ϕ‖ ≤ a‖(Kn + 1)ϕ‖ for all ϕ ∈ D(T ).
(3) Kn is the generator of a positivity preserving semigroup.

Note first that S(0) is true by assumption.
Suppose now S(n) holds true for some n ≥ 0. By S(n) point (2),

gV is a small operator perturbation of Kn, so Kn+1 = Kn + gV is (by
the Kato-Rellich Theorem [9, Theorem X.12]) self-adjoint on D(Kn) =
D(T ). Furthermore, using the Trotter product formula [9, Theorem
X.51] and the induction hypothesis, it is easy to see that e−tKn+1 is
positivity preserving (for t > 0). Then, by the Davies-Faris Theorem
[9, Theorem X.31], it follows that gV satisfies the bound

‖gV ϕ‖ ≤ a‖(Kn+1 + 1)ϕ‖ for all ϕ ∈ D(T ) .

Therefore S(n + 1) holds. This finishes the proof that S(n) implies
S(n+ 1) for any n ≥ 0.

The proof of Lemma A.1 now follows by induction. �
We also state the following lemma which is used repeatedly in Sec-

tion 3. The proof is standard and is omitted.
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Lemma A.2. Let χ, φ ∈ B∞(R3N ) have disjoint support and let m ≥
0. Then [

√
p2

j +m,ϕ] defines a bounded operator on Hs(R3N) for all

s ∈ R and (1 + p2
j)

Mχ[
√
p2

j +m,ϕ](1 + p2
j )

M is a bounded operator on

L2(R3N ) for all M .
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d’Orsay, Univ Paris-Sud, Orsay CEDEX, F-91405, France.

(T. Østergaard Sørensen) Department of Mathematical Sciences, Aal-
borg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg East, Den-
mark.

E-mail address : sorensen@math.aau.dk


