
Experiences Using a Component-Oriented
Architectural Framework for Robots and its

Improvement with a MDE Approach*

Francisco J. Ortiz, Juan A. Pastor, Diego Alonso, Bárbara Álvarez, Pedro Sánchez
Division of Electronics Engineering & Systems (DSIE)

Universidad Politécnica de Cartagena, Campus Muralla del Mar s/n
30202 Cartagena, Murcia (SPAIN)

francisco.ortiz@upct.es

Abstract. This paper describes the experience of the DSIE research group in
the developing of the EFTCoR family of robots using an abstract architectural
framework ACRoSeT, following the component-based paradigm. Using
abstract components allow us to define very different architectures in a platform
independent way. The translation of the abstract components to platform
specific code is a hard and difficult task that can be partially automated with the
help of the model transformation tools provided by the MDE approach.

Keywords: MDE, component-based software architecture, teleoperated robot.

1. Introduction

This paper describes the authors’ experiences using software architectures in the
development of teleoperated cranes and vehicles for ship hull cleaning in the context
of the EFTCoR project. This development was specially challenging due to:

• The use of different execution platforms and different programming languages.
• Different functional requirements makes impossible to use a single architecture.

We needed a way to define different architectures sharing common components. With
these ideas in mind, we defined ACRoSeT [1], an abstract architectural framework for
the domain of teleoperated robots.

Teleoperated robotic systems cover a broad range of mechanisms that usually perform
a small number of highly specialized tasks. Such specialization implies high
variability that makes very difficult to design a single architecture flexible enough to
deal with such heterogeneity. For this reason it is required a flexible and extensible
architectural framework that (1) does not impose a concrete architecture, but allow
defining different architectures, (2) allows reusing components in systems with
different architectures, (3) allows the integration of components may be software or

* This work was partially supported by the Spanish CICYT project MEDWSA, ref. TIC2006-

15175-C05-02 and the Regional Government of Murcia Seneca Program, ref. 02998-PI-05.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Digital de la Universidad Politécnica de Cartagena

https://core.ac.uk/display/60414542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

hardware, and (4) makes possible to integrate “intelligence,” or to interoperate with
“intelligent systems”.

There have been numerous efforts to provide developers of software for robots with
component frameworks to ease the development of robotic systems. Among these
frameworks it is possible to highlight the following: OROCOS [3], CLARAty [9],
MCA [6], ORCA [2], CARMEN [4] and PLAYER [8]. All of them make very
valuable contributions that simplify the systems development.

2. Software Architecture for the Teleoperated Devices of the
ETFCoR Family.

The EFTCoR system comprises a family of teleoperated systems which mission is to
retrieve and confine paint, oxide and marine adherences from ship hulls. The working
environments are not fixed, there is a great variety of ship types, hull areas and
shipyards characteristics, the systems consider different degrees of autonomy and
different systems may have to work cooperatively at the same time.

ACRoSeT provides a common framework of abstract components to design software
for teleoperated robots with very diverse behaviours. The subsystems defined by
ACRoSeT are the following (see Fig. 1):

• Coordination, Control and Abstraction Subsystem (CCAS): abstracts and
encapsulates the functionality of the system physical devices.

• Intelligence Subsystem (IS): comprises the subsystems that provide intelligence to
the global system. These systems are considered users of the CCAS functionality.

• User Interaction Subsystem (UIS): interprets, combines and arbitrates between
orders that may come simultaneously from different users of the CCAS.

• Safety, Management and Configuration Subsystem (SMCS): Initializes,
configures and manages the application.

Fig. 1. An overview of the subsystems of ACRoSeT

The CCAS comprises components that are defined in four levels of granularity: (1)
atomic components: abstract the characteristics of sensors and actuators, (2), Simple
Controllers, (3) Mechanisms Controllers, and (3) Robot Controllers.

3. Instantiations of ACROSET for the EFTCoR family

Fig. 2. XYZ table mounted on a crane. Tests in NAVANTIA shipyards

In response to the special industrial requirements of the EFTCoR project, the cranes
(see Fig. 2) has been implemented using a PLC SIMATIC S7-300 and a Field-Bus
(PROFIBUS-DP). The second instantiation is a caterpillar vehicle capable of scaling a
hull thanks to permanent magnets (Fig. 3), carrying a manipulator that holds a
cleaning tool. The execution platform is an on-board embedded PC with RTLinux
Operating System.

Fig. 3. Lazaro climbing vehicle

4. MDE

Model-Driven Engineering (MDE) [5] is an approach to software development in
which models are first-class entities that guide each and every step of the design
process. The other key concept in which rests MDE is model transformation [7].

We have adopted a MDE approach to develop the software architecture of robotic
systems based on the abstract components proposed by ACRoSeT, using the Eclipse
development environment and plug-ins. Different transformations make possible to
map the ACRoSeT components to different platforms.

5. Conclusions

It is not possible to define a software architecture generic enough to be adapted to the
entire domain, but usually there is no need to develop such architecture. The aim is to
reuse components in different architectures and this is just what CBD and component
frameworks propose.
Current component frameworks for robotic applications generally impose a concrete
programming language and execution platform. As it is desirable to be able to define
components that are independent of both system architecture and execution platform,
ACROSET defines abstract components. However, the translation of the ACROSET
abstract components into concrete, platform specific components is a difficult and
error prone task. So, the ACROSET approach will only show its full potential if we
are able to find a way to automatically translate abstract components into concrete
components. The adoption of the MDE approach is a key step to achieve this goal.

References

1. Álvarez B, Sánchez P, Pastor JA, Ortiz F,: An Architectural Framework for Modeling
Teleoperated Service Robots, ROBOTICA. ISSN 0263-5747, Cambridge University Press.
Volume 24, Issue 04, pp 411-418.

2. Brooks, A.; Kaupp, T.; Makarenko, A.; Williams, S.; Oreback, A.: Towards component-
based robotics. 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems., Vol., Iss., 2-6 Aug. 2005, pp 163- 168

3. Bruyninckx, H., Konincks, B. & Soetens, P.,2002. A Software Framework for Advanced
Motion Control, Dpt. of Mechanical Engineering, K.U. Leuven. OROCOS project inside
EURON. Belgium.

4. Montemerlo, M.., Roy, N., and. Thrun S. Perspectives on standardization in mobile robot
programming: The Carnegie Mellon Navigation (CARMEN) Toolkit. In IEEE/RSJ Intl.
Workshop on Intelligent Robots and Systems, 2003.

5. Schmidt, D.: Model-Driven Engineering. IEEE Computer, 2006, 39(2), IEEE Computer
Society. ISSN 0018-9162. doi: 10.1109/MC.2006.58.

6. Scholl, K.U. Albiez, J. & Gassmann, B. (2001) MCA: An Expandable Modular Controller
Architecture, Karlsruhe University, 3rd Real-Time Linux Workshop, Milano, Italy

7. Sendall, S. and Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software, 2003, pp. 42-45, 20(5), IEEE Computer
Society. ISSN 0740-7459. doi: 10.1109/MS.2003.1231150.

8. Vaughan R,. Gerkey B, and Howard A.. On device abstractions for portable, reusable robot
code. Proc. of the IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems (IROS), 2003.

9. Volpe, R.; Nesnas, I.; Estlin, T.; Mutz, D.; Petras, R.; and Das, H.,2001. The CLARAty
architecture for robotic autonomy. In IEEE Proceedings., ed., Aerospace Conference, vol.
1, pp 121-132, 2001 Montana, USA.

