
Automatic Ada Code Generation Using a
Model-Driven Engineering Approach�

Diego Alonso, Cristina Vicente-Chicote, Pedro Sánchez, Bárbara Álvarez,
and Fernando Losilla

División de Sistemas e Ingenierı́a Electrónica (DSIE)
Universidad Politécnica de Cartagena, Campus Muralla del Mar, E-30202, Spain

{diego.alonso,cristina.vicente,pedro.sanchez,balvarez}@upct.es

Abstract. Currently, Model-Driven Engineering (MDE) is considered one of the
most promising approaches for software development. In this paper, a simple but
complete example based on state-machines will be used to demonstrate the bene-
fits of this approach. After defining a modelling language (meta-model) for state-
machines, a graphical tool will be presented which is aimed at easing the descrip-
tion and validation of state-machine models. These models will then be used as
inputs for another tool which will automatically generate the corresponding Ada
code, including a simulation program to test the correctness and performance of
the implemented application.

1 Introduction

In the last decades, programming languages and Computer Aided Software Engineering
(CASE) tools promised an important improvement in the way software was developed.
This improvement was due to the increase of the level of abstraction provided by the
languages and tools used for software development. However, there have been several
factors that have led to lower benefits than expected, such as: (1) the lack of accuracy
of the used notations and, as a result, the loss of very relevant attributes (e.g. safety,
reliability, etc); (2) the strong dependency of software on the execution infrastructure,
i.e. the use of code-oriented designs; and (3) the impossibility of reusing most of the de-
veloped software artefacts in other projects (except when applying design patterns [9]).
The main reason why all of these tools have failed to accomplish their promises can be
summarized in the following sentence: all of them provide higher levels of abstraction
in the solution space rather than in the problem space.

Model-Driven Engineering (MDE) is an emerging paradigm aimed at raising the
level of abstraction during the software development process further than third-
generation programming languages can. MDE technologies offer a promising approach
to address the inability of third-generation languages to cope with increasing software
complexity, allowing designers to describe domain concepts effectively [13]. This new
paradigm uses models as first-class artefact’s, making it possible to model those con-
cepts needed to fully describe new systems, together with the relationships existing

� This work has been partially funded by the Spanish CICYT project MEDWSA (TIN2006-
15175-C05-02) and the PMPDI-UPCT-2006 program (Universidad Politécnica de Cartagena).

N. Abdennahder, F. Kordon (Eds.): Ada-Europe 2007, LNCS 4498, pp. 168–179, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

mailto:diego.alonso@upct.es

Automatic Ada Code Generation Using a MDE Approach 169

between them. Objects are replaced by models, and model transformations appear as a
powerful mechanism for incremental and automatic software development [7].

The benefits of raising the level of abstraction from code blocks (either functions or
classes) to models are clear. When generative techniques become more mature, MDE
will exhibit all its potential for automating code generation, while keeping the final
system compliant with the original requirements, following the correct-by-construction
philosophy [5]. For this reason, MDE can be considered a very promising approach, es-
pecially in those domains where certain requirements must be guaranteed, a traditional
field for Ada applications.

1.1 The Model-Driven Approach

MDE promotes a software development process centred on models which are system-
atically used everywhere. In this approach, models play a central role guiding not only
the software development and documentation processes but also its management and
evolution. In MDE [12] models are created starting from formal meta-models, which
may describe complementary views of the same system, observed at different abstrac-
tion levels. The use of formal meta-models allow designers to build both models and
transformations between them in a more natural way.

The Model Driven Architecture (MDA) proposal [1] is the particular view of the
MDE process proposed by the Object Management Group (OMG). MDA defines a
software development process aimed at separating the business logic from the techno-
logical platform. To achieve this, MDA proposes three modelling abstraction levels.
Firstly, a Computation Independent Model (CIM) represents the system seen as a busi-
ness process. Secondly, this CIM is refined into a Platform Independent Model (PIM)
which describes different aspects of the CIM in more detail but which does not con-
tain information about any specific execution platform. This PIM can evolve, through
model transformations, to other more specific PIMs. Finally, when a PIM can not fur-
ther evolve without specifying certain platform-dependent details, it evolves to one or
more Platform Specific Models (PSMs), one for each platform being considered for sys-
tem deployment. Each PSM can then evolve independently to other more specific PSMs
until the final application code can be automatically generated.

The OMG has defined a series of standards to support MDA and to achieve interop-
erability among all the tools involved in the software development process defined by
this approach. Among these standards, it is worth highlighting the Meta-Object Facility
(MOF) [2] and the XML Metadata Interchange (XMI) standards. The MOF specifi-
cation defines a meta-language and a set of standard interfaces aimed at defining and
manipulating both models and meta-models. The XMI specification enables to store
MOF artefact’s into XML files, so they can be freely interchanged between tools that
conform to these two standards. Although both MOF and XMI have been defined to
support the MDA approach, they can also be used in the more general MDE approach,
as it will be shown in this paper.

1.2 Goals of the Paper

The main goal of this paper is to highlight the advantages of the MDE approach by
means of a complete example, i.e. from the meta-model definition, to the implementation

170 D. Alonso et al.

of a graphical modelling tool and a model transformation to enable automatic Ada code
generation. To achieve this goal, the following sub-goals will be addressed:

– The first step when using a MDE approach is to define the modelling language
(meta-model) which should include those concepts relevant to the application do-
main being considered. We have chosen to define a simplified version of the UML
2.0 state-machine meta-model, since these artefacts are quite simple and well
known in the real-time community. This sub-goal will be covered in section 2.

– A graphical modelling tool, based on the previously defined meta-model, has been
implemented in order to help designers to build new state-machine models. This
tool, together with a couple of example state-machines built with it, will be pre-
sented in subsection 3.1.

– Finally, the Ada code corresponding to one of the example state-machines will be
automatically obtained using a model-to-text (M2T) transformation. This transfor-
mation will be described in subsection 3.2.

After covering these goals, the paper will present some related work together with
some conclusions and future research lines.

2 A Motivation Example: Modelling State-Machines

This section presents an example based on the description of state-machines, which will
be used through the rest of this paper to illustrate the benefits of the MDE approach.
We have chosen state-machines since they are quite simple and widely used to describe
high-integrity and safety critical systems, well-known application domains for the Ada
community.

Applying a MDE approach to model state-machines (or any other general-purpose
or specific application domain) requires selecting or defining the most appropriate
modelling language (meta-model) for describing them. As stated in section 1, the
OMG currently offers a set of standards related to MDA, which include MOF as
the top level meta-meta-modelling language (language for describing meta-models,
e.g. UML).

Nowadays, the most widely-used implementation of MOF is provided as an Eclipse1

plug-in called Eclipse Modelling Framework (EMF) [6]. Although EMF currently sup-
ports only a subset of MOF, called Essential MOF (EMOF), it allows designers to
create, manipulate and store (in XML format) both models and meta-models. Actually,
many other MDE-related initiatives are currently being developed around EMF, such
as Graphical Modelling Framework (GMF), EMF Technology (EMFT) or Generative
Modelling Technologies (GMT).

All meta-models designed using EMF look very much like UML class diagrams
where: (1) domain concepts are represented using boxes (EClass in EMOF), (2) in-
heritance arrows define concept specialisation (EMOF supports multiple inheritance),

1 Eclipse is an open source, platform-independent software framework both for developing soft-
ware (like a classical development environment) and for deploying final applications (what the
project calls “rich-client applications”). It is available at http://www.eclipse.org

http://www.eclipse.org

Automatic Ada Code Generation Using a MDE Approach 171

and (3) association arrows represent relationships between concepts (EReference in
EMOF) with or without containment (composition). All these EMF elements will be
shown in the state-machine meta-model which is presented in the following
subsection.

In this paper a simplified version of the UML 2.0 state-machine meta-model has
been chosen to illustrate the power and benefits of the MDE approach. Thus, some
of the concepts currently included in the original UML 2.0 state-machines have been
removed for the sake of simplicity, e.g. regions and certain kinds of pseudo-states (join,
fork, choice, etc.).

As shown in Fig. 1, the simplified state-machine meta-model contains a set of
vertices and transitions. Two different kinds of vertices can be defined:
states and pseudo-states. The difference between them is quiet subtle: al-
though a state-machine can only be in a certain observable state at a time and never
in a pseudo-state, pseudo-states are needed to fully describe state-machine be-
haviour, e.g. defining the initial pseudo-state as the starting execution point of the state-
machine. Conversely, a finalstate is observable and thus it should be considered a
state, more specifically, the state where the state-machine execution ends.

StateMachine

name

Vertex

State

stateName

Transition

transitionName
transitionKind

PseudoState

pseudoStateKind

FinalState

PseudoStateKind

InitialState

TransitionKind

internal
external

transitions vertex

owner

source

target

1..* 2..*1

1

1

Fig. 1. The state-machine meta-model

Two different kinds of transitions have been included in the meta-model. On the one
hand, external transitions exit the current state (calling its onExit activity) and, after
executing their fire activity, they enter the same or another state (calling the correspond-
ing onEntry and do activities). On the other hand, internal transitions do not change the
current state. They only execute their fire activity and make the current state call its do
activity (neither the onEntry nor the onExit activities are executed).

Transitions are not triggered by events and they have no guards (actually, these two
concepts have not been included in the meta-model). Conversely, transitions are trig-
gered by their names; this is why, in order to obtain a deterministic behaviour, all tran-
sitions leaving from the same state must have different names.

172 D. Alonso et al.

3 Tools for Modelling and Implementing State-Machines

This section presents the two tools implemented as part of this work, both of them based
on the state-machine meta-model previously described. First, we describe a graphical
modelling tool which allows designers to create and validate new state-machine models
in a very intuitive way. The section ends showing a tool for automatically generating
Ada code from any state-machine graphical model correctly built (and validated) with
the previous tool.

3.1 A State-Machine Graphical Modelling Tool

A state-machine graphical modelling tool has been implemented using the facilities
provided by the Graphical Modelling Framework (GMF) Eclipse plug-in. This tool
is aimed at developing graphical model editors from any EMF meta-model. GMF in-
tegrates the facilities provided by other Eclipse plug-ins, namely: Graphical Editing
Framework (GEF) and EMFT-OCL. The first of these plug-ins enables the definition of
graphical elements that will represent the concepts included in the meta-model, while
the second one enables the evaluation of OCL [4] queries and constraints in the models
depicted using the GMF tool.

The steps of the process and the elements required to build a graphical modelling
tool using GMF are illustrated in Fig. 2. Firstly, the EMF meta-model (.ecore file) must
be defined using either the basic EMF tree-editor or the graphical meta-modelling tool
provided with GMF (see the GMF ecore diagram shown in Fig. 1). Secondly, a set of
graphical elements that intuitively represent the concepts included in the meta-model
must be created (.gmfgraph file). Then, a tool palette has to be designed to allow the
user to create each graphical element with the corresponding tool (.gmftool file). Finally,
a mapping between the elements defined in the three previous files must be described,
i.e. the domain concepts included in the meta-model must be mapped to its graphical
representation and to the corresponding creation tool in the palette.

Domain concepts
(.ecore file)

Graphical concepts
(.gmfgraph file)

Tool palette
(.gmftool file)

State State

ExternalTransition

Transition internal
InternalTransition

...

Mapping
(.gmfmap file)
 + Graphical

OCL constraints modelling

 editor

external

State

Fig. 2. Sketch of the process and the elements required for building a GMF tool

Automatic Ada Code Generation Using a MDE Approach 173

Fig. 3. A graphical state-machine model correctly validated

Fig. 4. Another graphical state-machine model. In this case, the validation process detects some
incorrect elements (marked with small crosses).

174 D. Alonso et al.

Only the association relationships included in EMF meta-models can be somehow
restricted by defining their upper and lower bounds. Actually, there are no means to
include any further restrictions or any semantics into a meta-model using only EMF.
However, GMF allows designers to define what should be considered a correct model
and what should not, according not only to the meta-model but also to some OCL
constraints defined in the mapping file.

The constraints included in our meta-model are very similar to those defined for the
UML 2.0 state-machines. Some of these constraints are: (1) Initial
pseudo-states have one and only one outgoing and no incoming Transitions;
(2) FinalStates can not have any outgoing Transition; (3) All outgoing
Transitions from a certain State must have different names; etc. As an exam-
ple, the OCL code for testing the last constraint has been defined as follows:

self.owner.transitions -> forAll (t1, t2 | ((t1.source = self)
and (t2.source = self) and (t1.target <> t2.target))
implies (t1.transitionName <> t2.transitionName)

)

Next, two state-machine models built using the GMF graphical modelling tool im-
plemented as part of this work are presented. Fig. 3 shows a valid state-machine model,
while Fig. 4 illustrates another model that has not been correctly validated according
to the OCL constraints defined in the GMF mapping file. Actually, as shown in the
”Problems” tab under the diagram depicted in Fig. 4, six OCL constraints are violated,
e.g. the following three errors appear associated to the initial state: (1) it can only have
one outgoing transition (init or WrongInitToFinal has to be removed), (2) it can not
have any incoming transition (WrongToInitial has to be removed), and (3) it can not be
directly linked to a final states (WrongInitToFinal has to be removed).

The state-machine model shown in Fig. 3 will be used to obtain the corresponding
Ada code with the model-to-text transformation described in subsection 3.2. Part of the
XML file corresponding to this state-machine model is shown below.

Excerpt of the XML code corresponding to the state-machine model shown in Fig. 3:

<?xml version="1.0"
encoding="UTF-8" ?>

<StateMachineTool:StateMachine xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:StateMachineTool="StateMachineTool" name="SMExample">

<transitions transitionName="init"
source="//@vertex.0" target="//@vertex.1"
transitionKind="external"/>
...

<transitions transitionName="check"
source="//@vertex.3" target="//@vertex.3"
transitionKind="internal"/>

<vertex xsi:type="StateMachineTool:PseudoState"/>
<vertex xsi:type="StateMachineTool:State" stateName="Init"/>
<vertex xsi:type="StateMachineTool:State" stateName="Error"/>
<vertex xsi:type="StateMachineTool:State" stateName="Idle"/>
<vertex xsi:type="StateMachineTool:State" stateName="Processing"/>

</StateMachineTool:StateMachine>

Automatic Ada Code Generation Using a MDE Approach 175

3.2 Model Transformations: From Graphical State-machines to Ada Code

As already commented in section 1, model transformation is one of the key concepts
of the MDE process, being one of the most powerful tools for designers. Actually,
the OMG is about to finish the specification of the MOF Query-View-Transformation
(QVT) [3], as the standard language for model transformations for their MDA
approach.

Models can be transformed into other models or into any textual representation.
Model-to-Model (M2M) transformations allow designers to refine abstract models (de-
fined at the beginning of the design process) to obtain models that are closer to the final
solution. These M2M transformations require defining a mapping between the corre-
sponding meta-models, i.e. a transformation between the concepts represented in each
meta-model. Once models are close enough to implementation, they can be transformed
into a textual representation (e.g. code), using a Model-to-Text (M2T) transformation.
Currently, it is possible to find some tools that make it possible to define both M2M and
M2T transformations. Probably in the future, these tools will provide some interactive
environment that will allow designers to guide the transformation process.

Among the M2T transformation tools currently available, we have chosen MOF-
Script2 to generate Ada code from the state-machine models previously built using the
GMF tool presented in section 3.1. MOFScript enables the description of M2T trans-
formations both in a declarative and in an imperative way. An excerpt of the MOFScript
code implemented to obtain Ada code from any of the state-machine models previously
defined, is shown below.

Excerpt of the MOFScript code implemented for transforming models into Ada code:

texttransformation SM_Model2Ada1 (in MetaModel:"StateMachineTool")
{

MetaModel.StateMachine :: main (){
...
// Writing StateMachine.adb
file sm_adb (self.name + ".adb")
var initialTransitions:List=self.transitions->select (

t: MetaModel.Transition |
t.source.oclIsTypeOf(MetaModel.PseudoState))

var initial:MetaModel.Transition=initialTransitions.first()
sm_adb.println("with Ada.Text_Io; use Ada.Text_Io;");
sm_adb.print ("with " + self.name+"_Code" + "; use ");
sm_adb.println(self.name + "_Code" + ";");
sm_adb.println("package body " + self.name + " is")
sm_adb.print("\t Current_State : T_State := ")
sm_adb.println (initial._getFeature("target").stateName+";")
writeFunction("Get_Current_State","T_State","return Current_State;")
transitionNames -> forEach (tn:String) { writeProcedure (tn) }
sm_adb.println ("end " + self.name + ";")
...

} // main
} // texttransformation

As stated in [9], state-machines can be implemented using (1) big if..else (or
case) like blocks, that define state changes depending on the transition being fired;

2 http://www.eclipse.org/gmt/mofscript/

http://www.eclipse.org/gmt/mofscript/

176 D. Alonso et al.

(2) a look-up table that relates transitions and states; or (3) applying the State pattern.
Each of these possible ways of coding the logic of a state-machine can be implemented
by simply defining different M2T transformations. Due to limitations of space, only
one of the possible transformations of type (1) will be presented. This transformation
produces two Ada packages (both specification and body) and an animator for the gen-
erated state-machine. One package contains the logic of the transitions between the
different states, while the other defines all the activities present in the model (onEn-
try, do, onExit and fire). In the first package, each Transition is associated to an Ada
procedure, and each State is part of an enumerated type. An excerpt of the Ada
code resulting from applying this M2T transformation to the model depicted in Fig. 3 is
shown below. The package SMExample contains the logic of transition between states,
while package SMExample Code (not shown here) defines the activities. This schema
follows a separation of concerns approach and avoids the unnoticed modification of the
logic of the state-machine while the user was filling the code of the different activities.

Excerpt of the Ada code generated from the model shown in Fig. 3:

with Ada.Text_Io; use Ada.Text_Io;
with SMExample_Code;
package body SMExample is

-- -------------------------------------
Current_State : T_State := Init;
-- -------------------------------------
function Get_Current_State return T_State is
begin

return Current_State;
end Get_Current_State;
-- -------------------------------------
procedure Start is
begin

case Current_State is
when Init =>

SMExample_Code.Init_onExit;
SMExample_Code.Start_fire;
SMExample_Code.Idle_onEntry;
Current_State := Idle;
SMExample_Code.Idle_do;

when others => null;
end case;

end Start;
-- -------------------------------------
...
-- -------------------------------------
procedure Check is
begin

case Current_State is
when Idle => SMExample_Code.Idle_do;
when others => null;

end case;
end Check;
-- -------------------------------------

end SMExample;

Lastly, the null statement in the when others line defines the reaction of the
state-machine when the transition just triggered is not defined for the current state. This
is just another way of handling semantic variation points, as stated in UML and [8].

Automatic Ada Code Generation Using a MDE Approach 177

Of course there can be different M2T transformations to support different policies for
this semantic variation point, e.g. raise an exception. Another possible implementation
for type (1) transformation could be to define both transitions and states as enumerated
types, while using a unique and big procedure to specify the behaviour of the state-
machine; again, it is also possible to define yet another M2T transformation to do this,
which shows the potential benefits of developing software using a MDE approach.

4 Related Work

As already stated in the introduction, the purpose of this paper is to present a simple but
complete example, based on state-machines, to demonstrate the benefits of applying a
Model-Driven approach to software development. Although there are some tools that
support the MDE approach (actually not many), we have chosen Eclipse as it is an open
source project. Some of the alternative MDE environments we also considered were
MetaEdit+3 and Microsoft Visual Studio with Domain-Specific Language Tools4, both
of them available as commercial tools.

MetaEdit+ enables domain specific meta-model definition, graphical model speci-
fication and template-based model-to-code transformation. However, MetaEdit+ lacks
two of the cornerstones of MDE, namely: (1) the underlying meta-meta-model is not
available (Eclipse uses the MOF standard) and (2) it is not possible to define model-to-
model transformations. Without a meta-meta-model it is not possible to clearly define
and manipulate the meta-model elements, while without model-to-model transforma-
tions it becomes impossible to define different modelling abstraction levels.

On the other hand, the Visual Studio DSL Tools are the Microsoft answer to the
OMG MDA initiative and they tightly integrated with other Microsoft and .NET tools.
According to [10], “software factories use custom collections of DSLs to provide sets
of abstractions customised to meet the needs of specific families of systems, instead of
taking a generic, one-size-fits-all approach”.

Although the state-machine graphical modelling tool and the model-to-Ada code
transformation have only been developed as an example of the benefits of the MDE
approach, it is worth to compare these tools with other well-known state-machine CASE
tools. State-machines have been used in software system design since the early 1970s,
being particularly useful in the embedded system domain. As a consequence, many
different tools are currently available for describing and implementing state-machines
in different programming languages. Among them, probably one of the most widely
used is STATEMATE [11]. Later on, the UML adopted state-machines for describing
the behaviour of the elements being modelled. Thus, new visual and UML-compliant
tools appeared in the marketplace (e.g. Rational Rose, Raphsody or Poseidon, among
many others), allowing designers to model and implement this artefacts. As the scope
of these tools is wider than just generating code for state-machines, they commonly
produce complex and cumbersome code making it difficult to extract the state-machine
code. In this sense, the main advantage of the MDE approach is that developers can

3 http://www.metacase.com
4 http://msdn2.microsoft.com/en-us/vstudio/aa718368.apx

http://www.metacase.com
http://msdn2.microsoft.com/en-us/vstudio/aa718368.apx

178 D. Alonso et al.

decide the abstraction level and the scope of their applications and the way models are
transformed into code, giving them the full control of the development process.

5 Conclusions and Future Research Lines

Currently, Model-Driven Engineering (MDE) is considered one of the most promising
approaches for software development. MDE merges new and matured technologies and
is supported by an increasingly growing academic and commercial community.

In this paper we have presented a simple but complete example that demonstrates
the great benefits of applying a MDE approach, both for modelling and implementing
software systems. State-machines have been chosen as our example domain since these
artefacts are quite simple and well known in the real-time community.

In order to allow designers to describe state-machines, we have defined a modelling
language (meta-model) which is a simplified version of the one included in the UML
2.0. From this meta-model we have implemented a graphical modelling tool aimed at
easing the specification and validation of state-machine models. These models can then
be used to automatically generate Ada code using a model-to-text transformation also
implemented as part of this work. All the specifications and applications presented in
this paper have been implemented using some of the currently available MDE tools
offered by Eclipse: such as EMF, GMF, EMFT-OCL and MOFScript, among others.

Although we have outlined different possible implementations of state-machines in
Ada, only one of them has been addressed in this paper by means of a model-to-Ada
code transformation. This transformation generates, among other Ada files, a simulation
program that allows users to test the correctness and performance of the generated code.

Currently we are working on the definition of new model-to-text transformations in
order to test the performance of other Ada state-machine implementations. We are also
working in the definition of other model-to-code transformations to test different lan-
guage implementations, in particular Java and VHDL. In the future we plan to extend
the state-machine meta-model (and thus the graphical modelling tool) in order to in-
clude new domain concepts such as orthogonal regions and new pseudo-state kinds (i.e.
join, fork, etc.).

Despite of the promising results shown by the MDE approach, it is still at a very early
stage and there is a lot of research to be done before it can exhibit all its potential. Never-
theless, the increasingly growing interest of the software engineering community in the
MDE approach envisages very good results in the coming years. Probably, one of the
most promising features of this approach, in particular for the safety-critical real-time
systems community, is in the field of automatic software V&V and certification. Some
related research areas in this field include, among others: formal model transformations,
automatic test generation, and robust and efficient code generation.

References

[1] Model Driven Architecture Guide Version v1.0.1, omg/2003-06- 01. Object Management
Group (OMG) (2003), Available online:
http://www.omg.org/docs/omg/03-06-01.pdf

http://www.omg.org/docs/omg/03-06-01.pdf

Automatic Ada Code Generation Using a MDE Approach 179

[2] Meta-Object Facility (MOF) Specification v2.0, ptc/04-10-15. Object Management Group
(OMG) (2004), Available online:
http://www.omg.org/technology/documents/modeling spec catalog.
htm#MOF

[3] Meta-Object Facility (MOF) v2.0 Query/View/Transformation Specification,
ptc/05-11-01. Object Management Group (OMG) (2005), Available online:
http://www.omg.org/technology/documents/modeling spec catalog.htm#QVT

[4] Object Constraint Language (OCL) Specification v2.0, formal/06-05- 01. Object Manage-
ment Group (OMG) (2006), Available online:
http://www.omg.org/technology/documents/modeling-spec- catalog.htm#OCL

[5] Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Developing ap-
plications using model-driven design environments. IEEE Computer, vol. 39(2), IEEE Com-
puter Society (2006) ISSN 0018-9162. doi: 10.1109/ MC.2006.54

[6] Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling Frame-
work. Eclipse series. Addison-Wesley Professional, Reading (2003) ISBN 0131425420

[7] Bézivin, J.: On the unification power of models. Software and Systems Modeling 4(2), 171–
188 (2005) doi: 10.1007/s10270-005-0079-0

[8] Chauvel, F., Jézéquel, J.M.: Code Generation from UML Models with Semantic Varia-
tion Points. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp.
54–68. Springer, Heidelberg (2005) ISBN 3-540-29010-9. ISSN 0302-9743, 2005. doi:
10.1007/11557432-5

[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, Reading (1995) ISBN 0201633612

[10] Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories: Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools, 1st edn. Wiley, Chichester (2004)
ISBN 0471202843

[11] Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. In: ACM Trans.
Softw. Eng. Methodol., vol. 5(4), ACM Press, New York (1996), ISSN 1049-331X
doi:10.1145/235321.235322

[12] Kent, S.: Model Driven Engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002) ISBN 3-540-43703-7. ISSN
0302-9743

[13] Schmidt, D.C.: Model-Driven Engineering. In: IEEE Computer, vol. 39(2), IEEE Computer
Society Press, Los Alamitos (2006) ISSN 0018-9162 doi:10.1109/MC.2006.58

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF

	Introduction
	The Model-Driven Approach
	Goals of the Paper

	A Motivation Example: Modelling State-Machines
	Tools for Modelling and Implementing State-Machines
	A State-Machine Graphical Modelling Tool
	Model Transformations: From Graphical State-machines to Ada Code

	Related Work
	Conclusions and Future Research Lines

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

