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Abstract.1. Teleoperated robots are used to perform tasks that human operators 

cannot carry out because of the nature of the tasks themselves or the hostile 

nature of the working environment. Though many control architectures have been 

defined for developing these kinds of systems reusing common components, none 

has attained all its objectives because of the high variability of system behaviors. 

This paper presents a new architectural approach that takes into account the latest 

advances in robotic architectures while adopting a component-oriented approach. 

This approach provides a common framework for developing robotized systems 

with very different behaviors and for integrating intelligent components. The 

architecture is currently being used, tested and improved in the development of a 

family of teleoperated robots which perform cleaning of ship-hull surfaces. 

                                                 
1 This work was partially supported by the CICYT with ref. TIC2003-07804-C05-02 and the Regional Government of 

Murcia (Séneca Programs with reference PB/5/FS/02) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Digital de la Universidad Politécnica de Cartagena

https://core.ac.uk/display/60414534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Keywords:  Software Architectures. Distributed objects, components, containers. 

Commercial robots and applications.  

1. Introduction 

The purpose of this paper is to present a reference system architecture for service robot 

control applications. These applications are used to teleoperate mechanisms such as robots, 

vehicles and tools (or a combination of these) that perform inspection and maintenance 

activities in hostile environments. These activities are generally complex and it is not possible 

to work with completely autonomous systems. Therefore, the operator is in charge of 

monitoring and operating the mechanisms. The system receives orders from a human 

operator and performs the requisite actions to execute them.  

 

Teleoperation systems cover a broad range of mechanisms and missions, all with their own 

specific features and requirements. At the same time, however, they all share many common 

characteristics, making it possible to describe an application domain and its corresponding 

reference architecture. In fact, in recent years the DSIE research group at the Technical 

University of Cartagena has been using a reference architecture to enable a number of 

developments for the nuclear industry [1]: 

• Teleoperation software for the Westinghouse ROSA III robot, used for maintenance 

operations inside steam generator channel heads in pressurized water nuclear plants.  

• An IRV vehicle used to search for and retrieve fallen objects inside nuclear plant primary 

circuit pipes.  

• A TRON system design for inspection of lower PWR vessel internals. 

 



Despite their differences, these systems share some key characteristics in terms of their 

control, and they can therefore be relatively easily developed using the same architecture. 

The shared characteristics are: 

• Working areas are fixed and well known. 

• Behavior is operator driven. Reactive behavior is limited to some simple safety actions.  

• The applications control a single system. 

 

None of above characteristics apply to the new developments considered in the EFTCoR 

project [2] which the DSIE is currently working on. The EFTCoR system comprises a family 

of teleoperated systems whose mission is to retrieve and confine paint, oxide and marine 

adherences from ship hulls. In this case: 

• Working environments are not fixed, given the great variety of ship types, the number of 

different areas of a given ship and the differences among shipyards. 

• Systems need to have a high degree of autonomy.  

• Different systems may have to work cooperatively at the same time. 

 

Because of these new characteristics, the original architecture cannot be used for the EFTCoR 

robots. However, the use of a common architecture for all developments is extremely useful, 

in that it allows rapid development of systems and the reuse of a wide variety of components, 

thus saving time and money. For this reason, the DSIE research group is working on a new 

architecture that takes these new characteristics into account and can be used for development 

of the robots considered in the EFTCoR project. This paper summarizes the main 

characteristics of this architecture and is structured as follows: section 2 gives a brief 

description of the main parts of the EFTCoR system; section 3 presents and justifies the 

methodological approach adopted; section 4 describes the limits of the system considered and 



the main issues for definition of the architecture. Section 5 describes the architecture, and 

section 6 summarizes the conclusions. 

2. The EFTCoR system 

The EFTCoR system is a highly ambitious teleoperated platform for non pollutant ship hull 

maintenance operations in different working areas: from large dry docks free of obstacles to 

areas full of obstacles such as synchrolift systems. Five subsystems have been identified 

which cooperate to provide the required functionality. A brief description of these will give 

us an idea of some of the general requirements to be reflected in the architectural design: 

• The Teleoperation Console. The teleoperation platform, which is fed with CAD data 

from the hull being worked on and the process parameters, is able to control and 

coordinate up to ten robots to optimum quality standards in order to minimize resources 

and operation time. The teleoperation terminal shows the status of the robots to an 

operator, who can remotely carry out blasting operations. In fully-automated operational 

mode, control subsystems use information from the Vision System to complete blasting 

operations. They provide a set of commands and allow the teleoperation subsystem to 

move the robot when the operating mode is selected.   

• The Vision System gives the operator a real-time video image of the surface on which the 

cleaning head is positioned. Subsequent versions of the vision system will master the 

blasting operation by calculating the robot trajectory; they will also test resulting blasting 

quality. The Vision System will provide on-line automated path planning for spot 

working and assessment in quality control of the blasted surface. It will then 

communicate with the robot control subsystem and the monitoring system. 

• The Monitoring System. This system is external to the teleoperating system. The 

monitoring system considers the scheduling information for each cleaning task. The 



system will communicate with the teleoperated system by means of wireless technology. 

The operator will query and notify the maintenance task data produced. 

• The Positioning System. Its purpose is to move the cleaning head up to or away from the 

hull surface. The positioning system may comprise primary and secondary positioning 

systems: the primary positioning system can be a large crane used to reach all the hull 

areas, and the secondary positioning system may be a robot or a manipulator capable of 

covering a certain area. The main reasons that led us to consider differentiated primary 

and secondary positioning systems were: (1) the difficulty of finding a large positioning 

system that meets reach, load, precision and controllability requirements at the same time; 

(2) the need for different positioning systems depending on the size and shape of the hull 

and the part of the hull to be cleaned; and (3) the existence of primary positioning systems 

for surface blasting that can be reused for spotting if a controllable secondary positioning 

system is attached to them. Depending on the nature of the tasks to be performed and on 

the characteristics of the areas to be treated, there could in principle be configurations 

where only one of these positioning systems is required. The secondary positioning 

system should position the cleaning head over the area to be cleaned with reasonable 

speed and precision. The secondary positioning system is the first candidate for 

automation, so it is essential that it can be operated as a robot. 

• The Cleaning System. This system is composed of three primary parts: the blasting head 

(injection unit), the aspiration unit and the cleaning head. The cleaning head consists of a 

pan&tilt head that guides the blasting hose and allows the incident angle, air pressure and 

grit feeding to be adjusted to control the blasting operation. The assembly is enclosed by 

specially designed shrouds around the blasting heads to "seal" the units to the surface 

being cleaned, thus preventing dust emissions. Flexible contact between the seal and the 

hull is achieved by the combined use of air springs and adjusting springs. The waste 



handling and recycling system eliminates the residues produced by hull blasting, allowing 

reuse of the grit material and adequately packaging and disposing of other wastes. 

3. Methodological approach 

Although many robotics architectures can be found in the literature [3], it is more difficult to 

find examples of a development process for defining reference architectures in the field of 

robotics. In our proposal to arrive at a reference architecture for service robot control 

applications, we followed the Architecture Based Design Method (ABD) [4] and completed it 

with the 4 views of Hofmeister [5], with their notation based on UML for components.  

 

The development methods based on use-cases (mainly RUP [6] and others derived from 

RUP) may be appropriate for defining the architecture of a given system, but they are not 

suitable to define reference architectures. The use cases define concrete functionality; 

however, in the design of reference architectures general rather than concrete functionality is 

the issue, because the success or failure of such architectures depends on their ability to deal 

with the variability among the systems of the considered domain. In this sense, use cases may 

be very relevant to one system and not very relevant to others. Moreover, at the level of 

abstraction required to deal with the variability of the systems, concrete use cases cannot be 

properly defined. For this reason, we have adopted another methodological approach: ABD. 

 

ABD is a methodology proposed by the SEI (Software Engineering Institute of The Carnegie 

Mellon University) to design software architectures for a given application domain or product 

family. ABD is based on: 

 Functional decomposition of the problem based on the concepts of low coupling and high 

cohesion and on knowledge of the application domain.  



 Realization of the functional and quality requirements by means of a correct choice of 

architectural styles and design patterns.  

 The notion of software templates that define the elements and responsibilities common to 

a group of components, such as their interactions with the infrastructure.  

 

ABD decomposes the system into subsystems recursively. Thus, the same rules that apply to 

decomposing the system into subsystems apply to decomposing the subsystems in other 

simpler subsystems.  

 

ABD offers as a final model a conceptual view of the architecture that identifies the main 

subsystems and their relationships, which are described in terms of architectural styles and 

design patterns. Hofmeister et al [5] propose another architecture-oriented development 

method, which can be superimposed on ABD in the initial stages. The approach of these 

authors is interesting because it includes the notions of ports and connectors among 

components, using a ROOM inspired notation [7]. In this case, the UML notation has been 

extended with stereotyped classes and special symbols to express such components, ports and 

connectors. Hofmeister’s approach also makes it easier to establish the connection between 

the conceptual components and their implementations.  

4 Domain characterization. Teleoperated service robots. 

Service robots are mechatronic systems, usually designed for a concrete application that may 

be extended to a new functionality in the course of time. They can differ widely from a 

physical point of view, but they normally use similar software and share many common 

components, both logical and physical. The first step in defining the functional and quality 



requirements that will inform the design of the architecture is to characterize the application 

domain. In our experience, the main features to be considered should be the following: 

• A high degree of specialization and hence high variability of functionality and physical 

characteristics. 

• Different combinations of vehicles, manipulators and tools. 

• A large variety of execution infrastructures, including different kinds of processors, 

communication links and man-machine interfaces. 

• A large variety of sensors and actuators. 

• Different kinds of control algorithms, from very simple reactive actions to extremely 

complex algorithms and navigation strategies, depending on the applications. 

• Varying degrees of autonomy, from fully operator-driven systems to semi-autonomous 

robots. 

• Presence of hard real time requirements. 

• Hardware- versus software-intensive implementations with all imaginable intermediate 

cases.  

• And last but not least, safety is nearly always a main concern. 

 

Considering the differences among systems as noted above, a central objective of the 

architecture must clearly be to deal with such variability. A more precise analysis of the 

differences among systems [8] reveals that most of them relate not to the components of the 

system but to the interactions among the components. Therefore, when designing the 

architecture the following points should be borne in mind: 

• Very different instances of the architecture should be able to share the same “virtual” 

components. 



• The designer should adopt policies that allow a clear separation between the components 

as such and their patterns of interaction. 

• The implementation of such virtual components may be software or hardware; it is highly 

advisable that such components can be COST. 

• It should be possible to derive concrete architectures for both deliberative (operator-

driven) and reactive (autonomous intelligent) systems. 

 

Following the ABD terminology, these four points constitute the architectural drivers of the 

architecture.  

 

5.  Architecture overview.  

 

It should be possible for very different systems to use the same components, and so the first 

issue is to define the rules and common infrastructure that allow components to be assembled 

or connected. To achieve this, the key concepts are: component, container, port and 

connector, as well as the Composite pattern [9]. The port concept provides a regular means of 

data and control interchange and therefore of connecting and assembling components 

irrespective of their functionality and granularity. The connector concept makes it possible to 

separate the components’ functionality from their interaction patterns (choreographies [10]), 

because they are included in the connectors. The Composite pattern provides a means of 

dealing with complex and simple components in the same way, masking the inner complexity 

of the large components created by the assembly of many other components. 

 

Once it has been defined how the components must or may be assembled, the second step is 

to define what components there are to be. The third architectural driver identified in the 



previous section states that the components may be implemented by software or hardware, 

and it is highly advisable that such components can be COST. To achieve this, it is necessary 

to define the typical components of systems of this kind, which can be identified at different 

levels of granularity. At the lowest level are the actuators and sensors. A level up are the 

controllers for simple actuators (for example a motor controller). A further level up are the 

controllers for groups of actuators (for example a motion card capable of controlling the 

joints of a mechanism), and so on. Many of these components can be acquired on the market 

either as hardware devices and control cards or software packages for a given platform. To 

facilitate the use of COST components, the most usual COST should have its virtual 

counterpart. The linkage between the virtual component and its implementation can be 

achieved using the Bridge pattern [9]. 

 

To define virtual components the architecture identifies four levels of granularity and adopts 

the hardware abstract layer notion described in the OROCOS framework [11]. The hardware 

abstract layers model the features of the physical components of the system, defining virtual 

sensors, actuators, motion controllers, etc. The hardware abstract layers make it possible to 

define libraries of components and interchange both hardware and software implementations 

(perhaps commercial) of the devices with minimum impact. 

 

The last architectural driver identified was the possibility of deriving concrete architectures 

for both deliberative and reactive systems. For this purpose, the autonomous or programmed 

behavior has to be separated from the operator driven behavior, as shown in figure 1. This 

scheme also appears in the CLARAty (Coupled Layered Architecture for Robotic Autonomy) 

architecture [12] used for the development of the Mars rovers. CLARAty distinguishes a 

Functional Layer, where the components of the system are defined, and a Decision Layer that 



encapsulates the subsystems responsible for planning and executing the missions. However, 

our approach separates these concerns in a different way. As in the CLARAty architecture, 

the highest levels of intelligence can directly access the lowest level components: the 

intelligence is a client of the functionality. However, unlike CLARAty, where some 

autonomous behaviors can be added to the functional layer, in our approach the intelligence 

of the system is completely separate from the functionality.  

 

5.1 An overview of the architecture layers and components. 

 

The architecture proposed in this paper identifies four layers of granularity at which the 

components can be defined: 

• Layer 1: Abstract characteristics of atomic components, such as sensors and actuators. 

• Layer 2: Simple Unit Controllers (SUCs). 

• Layer 3: Mechanism controllers (MUCs). 

• Layer 4: Robot controllers (RUCs). 

 

These layers are called hardware abstract layers because the components defined within 

them may be (and frequently are) implemented in commercial hardware. The simplest 

components modeled by the architecture are the sensors and actuators, which are defined at 

the lowest architectural layer. The sensors are components that provide the information 

required for controlling a given active element, for example the encoder and limit switches 

associated with a given joint. The actuators model the simplest active elements, for example a 

motor. 

 



SUCs (Simple Unit Controllers) are the components defined at the second architecture layer. 

The SUC components model control over the actuators and collection of data from the 

sensors. For example, there will be SUCs defined for controlling the joints of a given 

mechanism. The SUC generates the commands for the actuator according to the order that it 

receives from another component (through the controllerControl port), the information 

received from the sensors that describe the state of the actuator, and its own control policy. 

This policy is an interchangeable part of the SUC. For example, the ControlStrategy of a 

given joint may be a traditional control (PID) or may be exchanged for a fuzzy logic strategy. 

SUCs usually need to satisfy hard real time requirements and are therefore generally 

implemented in hardware. When they are implemented in software they tend to impose 

severe real time requirements on operating systems and platforms. 

 

At the third level of granularity is the Mechanism Unit Controller (MUC). The MUC 

component models control over a whole mechanism (vehicle, manipulator or end effector). 

As figure 3 shows, the MUC is a logical entity composed of an aggregation of SUCs plus a 

Coordinator responsible for coordinating their actions in accordance with the commands and 

information that it receives and their own coordination strategy. This strategy is an 

interchangeable part of the SUC; for example, the coordination strategy of a given 

manipulator may be a particular solution for its inverse kinematics, the coordination strategy 

for a given vehicle may be a particular navigation strategy, and so on. 

 

Although the architecture defines the MUCs as relational aggregates, they can be inclusive 

components (hard or soft) when the architecture is instantiated to develop a concrete system. 

Whether or not the interfaces of the inner SUCs are directly accessible is a decision of the 

architecture instantiation. In fact, although MUCs may be implemented by hardware or 



software, they are frequently commercial motion control cards that constrain the range of 

possible commands to their internal components. COSTs limit the flexibility of the approach, 

in that COSTs do not always provide direct access to either their inner sub-components or 

their inner state. 

Finally, the architecture defines the RUC (Robot Unit Controller) component at the fourth 

layer. The RUC component models control over a whole robot, for example a robot 

composed of a vehicle with an arm and several interchangeable tools. As figure 4 shows, an 

RUC is an aggregation of MUCs with a global coordinator that generates the commands for 

the MUCs and coordinates their actions in accordance with the orders and the information 

that it receives and with its own coordination strategy. Such a strategy is an interchangeable 

part of the RUC. For example, the CoordinationStrategy of a robot comprising a vehicle 

with a manipulator may be a generalized kinematic solution that takes into account the 

possibility of moving the vehicle to reach a given target. Like MUCs, RUCs are logical 

components that can take the form of physical components depending on concrete 

instantiations. In general, the RUC is quite a complex component that comprises hardware 

and software components and can have a large variety of interfaces depending on the 

complexity of the controlled system.  

 

Having defined SUCs, MUCs and RUCs, it would seem logical to define a Group Unit 

Controller (GUP) capable of managing and coordinating a group of cooperative robots. 

However, the architecture does not go beyond RUCs. There is a good reason for this. The 

“usual intelligence” required to control a joint or mechanism which is an assembly of joints 

or to teleoperate a robot which is a combination of various mechanisms is limited, is well-

known and can be encapsulated in reusable components. The intelligence required to work 

cooperatively usually demands a more flexible approach. This also goes for some missions 



involving SUCs, MUCs and RUCs, and likewise algorithms for collision avoidance or 

navigation systems for vehicles. It is very difficult to define a component that will 

encapsulate “intelligence”. If a system or component is capable of being intelligent and 

taking non-trivial decisions, it will normally be complex enough to have a defined 

architecture of its own (for example, an artificial vision system able to determine obstacle-

free paths). In that case, the approach should be different: Do not impose a structure on the 

intelligent components but find a way to integrate them into the system.  

 

5.2 Adding autonomous behavior. 

 

The SUC/MUC composition produces a hierarchical architecture where the decisions flow 

from the top down and the information flows from the bottom up. This architecture sits well 

with operator-driven systems, where autonomous behavior does not exist or is confined to 

some hardware safety actions. It also sits well with systems where the reactive or autonomous 

behavior responds to simple rules that can be added to controllers and coordinators so that the 

latter, following these rules, can take decisions and notify them to the upper level controller 

or coordinator. However, there are systems where the autonomous behavior is anything but 

simple. In such cases, the intelligent component needs to integrate more information and 

access more functionalities than those embedded in a given component. The approach in that 

case (see figure 5) is to superimpose the “intelligent” autonomous behavior and the operator-

driven behavior while providing the means for integrating both and resolving the potential 

conflicts. This approach does not entail any change in the components defined so far, but 

simply new command sources for them. These sources are constituted by new components 

that have access to the global information system and are capable of deciding what to do on 

the basis of programmed rules, algorithms or heuristics.  



Every component of a given layer can access the information and control ports of 

components of lower layers. In this sense, every component of a given layer is an intelligent 

component for the layer below it, for example from the point of view of a MUC, no matter 

whether the commands come from the coordinator of the RUC that controls it (see figure 5), 

from the operator or from some of the intelligent components defined on a level above the 

RUCs. Since a component can receive commands from more than one source, it is necessary 

to decide what command to perform. The logic for this decision is external to the component. 

Figure 5 shows a new type of component: the arbitrator. Arbitrators encapsulate the rules 

that determine which command should be delivered to a given component. The arbitrator is 

separately defined because the rules that it encapsulates (or even the arbitrator itself) can 

vary from system to system, during the life of a given system or even at different stages in the 

functioning of a system. The concept of an arbitrator derives from the notion of a composition 

filter [13] and is strongly connected to the need to separate functionality from the patterns of 

interaction among components. 

This approach is highly flexible and makes it possible to integrate intelligence that is directly 

concerned not with the missions of robotic devices but with management of the application as 

regards fault tolerance policies or a meta-layer for reconfiguring the application. 

6. Summary and future work 

The architecture described in this paper takes the most promising architectural advances in 

the domain of teleoperation and puts them together with a component-oriented approach. 

This approach focuses on the definition of a common component framework that allows the 

definition of components that can be reused in different systems and integrated in intelligent 

systems capable of driving robot behavior. Our main sources of inspiration have been 

OROCOS [11], CLARAty [12] (robotic architectures) and the PRISMA approach [10] 

(component and aspect oriented approaches).  



 

 

The architecture is currently being used in the development of a family of robots whose 

mission is to retrieve and confine paint, oxide and marine adherences from ship hulls (see 

figure [6]). Presenting as it does a wide variety of behaviors and degrees of complexity, this 

family of robots is an excellent test bench for the architecture.  

Our experience using the architecture has been satisfactory; however, we would note two 

major challenges in this respect:  

• There is not enough support to express the component abstractions and model their 

interactions.  

• Also, there are no well known techniques to cope with the variability of components from 

one instantiations to another.  

 

These challenges can be met by the PRISMA approach. We are currently working on this 

with the Technical University of Valencia (Spain) within the framework of a nationally 

funded (CICYT) research project, DYNAMICA, ref. TIC2003-07804-C05. A possible first 

step is to use the PRISMA language to define the components and the layered architecture. A 

possible second step is to consider changes in the interactions among these components. 
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Figure 1: An abstract overview of the proposed architecture. 

Figure 2: SUC: Simple Unit Controller. 

Figure 3: MUC: Mechanism Unit Controller. 

Figure 4: RUC: Robot Unit Controller. 

Figure 5: Superimposition of operator-driven and autonomous behavior. 

Figure 6: Three prototypes (cherry-picker model, elevation platform and mobile vehicle, 

respectively) of the family of robots and a ship awaiting repair. 
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