
An Architectural Framework for Modeling Teleoperated

Service Robots

Bárbara Álvarez, Pedro Sánchez, Juan A. Pastor, Francisco Ortiz

División de Sistemas e Ingeniería Electrónica (DSIE)

Universidad Politécnica de Cartagena (Spain)

Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain

juanangel.pastor@upct.es

Abstract.1. Teleoperated robots are used to perform tasks that human operators

cannot carry out because of the nature of the tasks themselves or the hostile

nature of the working environment. Though many control architectures have been

defined for developing these kinds of systems reusing common components, none

has attained all its objectives because of the high variability of system behaviors.

This paper presents a new architectural approach that takes into account the latest

advances in robotic architectures while adopting a component-oriented approach.

This approach provides a common framework for developing robotized systems

with very different behaviors and for integrating intelligent components. The

architecture is currently being used, tested and improved in the development of a

family of teleoperated robots which perform cleaning of ship-hull surfaces.

1 This work was partially supported by the CICYT with ref. TIC2003-07804-C05-02 and the Regional Government of

Murcia (Séneca Programs with reference PB/5/FS/02)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Digital de la Universidad Politécnica de Cartagena

https://core.ac.uk/display/60414534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Keywords: Software Architectures. Distributed objects, components, containers.

Commercial robots and applications.

1. Introduction

The purpose of this paper is to present a reference system architecture for service robot

control applications. These applications are used to teleoperate mechanisms such as robots,

vehicles and tools (or a combination of these) that perform inspection and maintenance

activities in hostile environments. These activities are generally complex and it is not possible

to work with completely autonomous systems. Therefore, the operator is in charge of

monitoring and operating the mechanisms. The system receives orders from a human

operator and performs the requisite actions to execute them.

Teleoperation systems cover a broad range of mechanisms and missions, all with their own

specific features and requirements. At the same time, however, they all share many common

characteristics, making it possible to describe an application domain and its corresponding

reference architecture. In fact, in recent years the DSIE research group at the Technical

University of Cartagena has been using a reference architecture to enable a number of

developments for the nuclear industry [1]:

• Teleoperation software for the Westinghouse ROSA III robot, used for maintenance

operations inside steam generator channel heads in pressurized water nuclear plants.

• An IRV vehicle used to search for and retrieve fallen objects inside nuclear plant primary

circuit pipes.

• A TRON system design for inspection of lower PWR vessel internals.

Despite their differences, these systems share some key characteristics in terms of their

control, and they can therefore be relatively easily developed using the same architecture.

The shared characteristics are:

• Working areas are fixed and well known.

• Behavior is operator driven. Reactive behavior is limited to some simple safety actions.

• The applications control a single system.

None of above characteristics apply to the new developments considered in the EFTCoR

project [2] which the DSIE is currently working on. The EFTCoR system comprises a family

of teleoperated systems whose mission is to retrieve and confine paint, oxide and marine

adherences from ship hulls. In this case:

• Working environments are not fixed, given the great variety of ship types, the number of

different areas of a given ship and the differences among shipyards.

• Systems need to have a high degree of autonomy.

• Different systems may have to work cooperatively at the same time.

Because of these new characteristics, the original architecture cannot be used for the EFTCoR

robots. However, the use of a common architecture for all developments is extremely useful,

in that it allows rapid development of systems and the reuse of a wide variety of components,

thus saving time and money. For this reason, the DSIE research group is working on a new

architecture that takes these new characteristics into account and can be used for development

of the robots considered in the EFTCoR project. This paper summarizes the main

characteristics of this architecture and is structured as follows: section 2 gives a brief

description of the main parts of the EFTCoR system; section 3 presents and justifies the

methodological approach adopted; section 4 describes the limits of the system considered and

the main issues for definition of the architecture. Section 5 describes the architecture, and

section 6 summarizes the conclusions.

2. The EFTCoR system

The EFTCoR system is a highly ambitious teleoperated platform for non pollutant ship hull

maintenance operations in different working areas: from large dry docks free of obstacles to

areas full of obstacles such as synchrolift systems. Five subsystems have been identified

which cooperate to provide the required functionality. A brief description of these will give

us an idea of some of the general requirements to be reflected in the architectural design:

• The Teleoperation Console. The teleoperation platform, which is fed with CAD data

from the hull being worked on and the process parameters, is able to control and

coordinate up to ten robots to optimum quality standards in order to minimize resources

and operation time. The teleoperation terminal shows the status of the robots to an

operator, who can remotely carry out blasting operations. In fully-automated operational

mode, control subsystems use information from the Vision System to complete blasting

operations. They provide a set of commands and allow the teleoperation subsystem to

move the robot when the operating mode is selected.

• The Vision System gives the operator a real-time video image of the surface on which the

cleaning head is positioned. Subsequent versions of the vision system will master the

blasting operation by calculating the robot trajectory; they will also test resulting blasting

quality. The Vision System will provide on-line automated path planning for spot

working and assessment in quality control of the blasted surface. It will then

communicate with the robot control subsystem and the monitoring system.

• The Monitoring System. This system is external to the teleoperating system. The

monitoring system considers the scheduling information for each cleaning task. The

system will communicate with the teleoperated system by means of wireless technology.

The operator will query and notify the maintenance task data produced.

• The Positioning System. Its purpose is to move the cleaning head up to or away from the

hull surface. The positioning system may comprise primary and secondary positioning

systems: the primary positioning system can be a large crane used to reach all the hull

areas, and the secondary positioning system may be a robot or a manipulator capable of

covering a certain area. The main reasons that led us to consider differentiated primary

and secondary positioning systems were: (1) the difficulty of finding a large positioning

system that meets reach, load, precision and controllability requirements at the same time;

(2) the need for different positioning systems depending on the size and shape of the hull

and the part of the hull to be cleaned; and (3) the existence of primary positioning systems

for surface blasting that can be reused for spotting if a controllable secondary positioning

system is attached to them. Depending on the nature of the tasks to be performed and on

the characteristics of the areas to be treated, there could in principle be configurations

where only one of these positioning systems is required. The secondary positioning

system should position the cleaning head over the area to be cleaned with reasonable

speed and precision. The secondary positioning system is the first candidate for

automation, so it is essential that it can be operated as a robot.

• The Cleaning System. This system is composed of three primary parts: the blasting head

(injection unit), the aspiration unit and the cleaning head. The cleaning head consists of a

pan&tilt head that guides the blasting hose and allows the incident angle, air pressure and

grit feeding to be adjusted to control the blasting operation. The assembly is enclosed by

specially designed shrouds around the blasting heads to "seal" the units to the surface

being cleaned, thus preventing dust emissions. Flexible contact between the seal and the

hull is achieved by the combined use of air springs and adjusting springs. The waste

handling and recycling system eliminates the residues produced by hull blasting, allowing

reuse of the grit material and adequately packaging and disposing of other wastes.

3. Methodological approach

Although many robotics architectures can be found in the literature [3], it is more difficult to

find examples of a development process for defining reference architectures in the field of

robotics. In our proposal to arrive at a reference architecture for service robot control

applications, we followed the Architecture Based Design Method (ABD) [4] and completed it

with the 4 views of Hofmeister [5], with their notation based on UML for components.

The development methods based on use-cases (mainly RUP [6] and others derived from

RUP) may be appropriate for defining the architecture of a given system, but they are not

suitable to define reference architectures. The use cases define concrete functionality;

however, in the design of reference architectures general rather than concrete functionality is

the issue, because the success or failure of such architectures depends on their ability to deal

with the variability among the systems of the considered domain. In this sense, use cases may

be very relevant to one system and not very relevant to others. Moreover, at the level of

abstraction required to deal with the variability of the systems, concrete use cases cannot be

properly defined. For this reason, we have adopted another methodological approach: ABD.

ABD is a methodology proposed by the SEI (Software Engineering Institute of The Carnegie

Mellon University) to design software architectures for a given application domain or product

family. ABD is based on:

 Functional decomposition of the problem based on the concepts of low coupling and high

cohesion and on knowledge of the application domain.

 Realization of the functional and quality requirements by means of a correct choice of

architectural styles and design patterns.

 The notion of software templates that define the elements and responsibilities common to

a group of components, such as their interactions with the infrastructure.

ABD decomposes the system into subsystems recursively. Thus, the same rules that apply to

decomposing the system into subsystems apply to decomposing the subsystems in other

simpler subsystems.

ABD offers as a final model a conceptual view of the architecture that identifies the main

subsystems and their relationships, which are described in terms of architectural styles and

design patterns. Hofmeister et al [5] propose another architecture-oriented development

method, which can be superimposed on ABD in the initial stages. The approach of these

authors is interesting because it includes the notions of ports and connectors among

components, using a ROOM inspired notation [7]. In this case, the UML notation has been

extended with stereotyped classes and special symbols to express such components, ports and

connectors. Hofmeister’s approach also makes it easier to establish the connection between

the conceptual components and their implementations.

4 Domain characterization. Teleoperated service robots.

Service robots are mechatronic systems, usually designed for a concrete application that may

be extended to a new functionality in the course of time. They can differ widely from a

physical point of view, but they normally use similar software and share many common

components, both logical and physical. The first step in defining the functional and quality

requirements that will inform the design of the architecture is to characterize the application

domain. In our experience, the main features to be considered should be the following:

• A high degree of specialization and hence high variability of functionality and physical

characteristics.

• Different combinations of vehicles, manipulators and tools.

• A large variety of execution infrastructures, including different kinds of processors,

communication links and man-machine interfaces.

• A large variety of sensors and actuators.

• Different kinds of control algorithms, from very simple reactive actions to extremely

complex algorithms and navigation strategies, depending on the applications.

• Varying degrees of autonomy, from fully operator-driven systems to semi-autonomous

robots.

• Presence of hard real time requirements.

• Hardware- versus software-intensive implementations with all imaginable intermediate

cases.

• And last but not least, safety is nearly always a main concern.

Considering the differences among systems as noted above, a central objective of the

architecture must clearly be to deal with such variability. A more precise analysis of the

differences among systems [8] reveals that most of them relate not to the components of the

system but to the interactions among the components. Therefore, when designing the

architecture the following points should be borne in mind:

• Very different instances of the architecture should be able to share the same “virtual”

components.

• The designer should adopt policies that allow a clear separation between the components

as such and their patterns of interaction.

• The implementation of such virtual components may be software or hardware; it is highly

advisable that such components can be COST.

• It should be possible to derive concrete architectures for both deliberative (operator-

driven) and reactive (autonomous intelligent) systems.

Following the ABD terminology, these four points constitute the architectural drivers of the

architecture.

5. Architecture overview.

It should be possible for very different systems to use the same components, and so the first

issue is to define the rules and common infrastructure that allow components to be assembled

or connected. To achieve this, the key concepts are: component, container, port and

connector, as well as the Composite pattern [9]. The port concept provides a regular means of

data and control interchange and therefore of connecting and assembling components

irrespective of their functionality and granularity. The connector concept makes it possible to

separate the components’ functionality from their interaction patterns (choreographies [10]),

because they are included in the connectors. The Composite pattern provides a means of

dealing with complex and simple components in the same way, masking the inner complexity

of the large components created by the assembly of many other components.

Once it has been defined how the components must or may be assembled, the second step is

to define what components there are to be. The third architectural driver identified in the

previous section states that the components may be implemented by software or hardware,

and it is highly advisable that such components can be COST. To achieve this, it is necessary

to define the typical components of systems of this kind, which can be identified at different

levels of granularity. At the lowest level are the actuators and sensors. A level up are the

controllers for simple actuators (for example a motor controller). A further level up are the

controllers for groups of actuators (for example a motion card capable of controlling the

joints of a mechanism), and so on. Many of these components can be acquired on the market

either as hardware devices and control cards or software packages for a given platform. To

facilitate the use of COST components, the most usual COST should have its virtual

counterpart. The linkage between the virtual component and its implementation can be

achieved using the Bridge pattern [9].

To define virtual components the architecture identifies four levels of granularity and adopts

the hardware abstract layer notion described in the OROCOS framework [11]. The hardware

abstract layers model the features of the physical components of the system, defining virtual

sensors, actuators, motion controllers, etc. The hardware abstract layers make it possible to

define libraries of components and interchange both hardware and software implementations

(perhaps commercial) of the devices with minimum impact.

The last architectural driver identified was the possibility of deriving concrete architectures

for both deliberative and reactive systems. For this purpose, the autonomous or programmed

behavior has to be separated from the operator driven behavior, as shown in figure 1. This

scheme also appears in the CLARAty (Coupled Layered Architecture for Robotic Autonomy)

architecture [12] used for the development of the Mars rovers. CLARAty distinguishes a

Functional Layer, where the components of the system are defined, and a Decision Layer that

encapsulates the subsystems responsible for planning and executing the missions. However,

our approach separates these concerns in a different way. As in the CLARAty architecture,

the highest levels of intelligence can directly access the lowest level components: the

intelligence is a client of the functionality. However, unlike CLARAty, where some

autonomous behaviors can be added to the functional layer, in our approach the intelligence

of the system is completely separate from the functionality.

5.1 An overview of the architecture layers and components.

The architecture proposed in this paper identifies four layers of granularity at which the

components can be defined:

• Layer 1: Abstract characteristics of atomic components, such as sensors and actuators.

• Layer 2: Simple Unit Controllers (SUCs).

• Layer 3: Mechanism controllers (MUCs).

• Layer 4: Robot controllers (RUCs).

These layers are called hardware abstract layers because the components defined within

them may be (and frequently are) implemented in commercial hardware. The simplest

components modeled by the architecture are the sensors and actuators, which are defined at

the lowest architectural layer. The sensors are components that provide the information

required for controlling a given active element, for example the encoder and limit switches

associated with a given joint. The actuators model the simplest active elements, for example a

motor.

SUCs (Simple Unit Controllers) are the components defined at the second architecture layer.

The SUC components model control over the actuators and collection of data from the

sensors. For example, there will be SUCs defined for controlling the joints of a given

mechanism. The SUC generates the commands for the actuator according to the order that it

receives from another component (through the controllerControl port), the information

received from the sensors that describe the state of the actuator, and its own control policy.

This policy is an interchangeable part of the SUC. For example, the ControlStrategy of a

given joint may be a traditional control (PID) or may be exchanged for a fuzzy logic strategy.

SUCs usually need to satisfy hard real time requirements and are therefore generally

implemented in hardware. When they are implemented in software they tend to impose

severe real time requirements on operating systems and platforms.

At the third level of granularity is the Mechanism Unit Controller (MUC). The MUC

component models control over a whole mechanism (vehicle, manipulator or end effector).

As figure 3 shows, the MUC is a logical entity composed of an aggregation of SUCs plus a

Coordinator responsible for coordinating their actions in accordance with the commands and

information that it receives and their own coordination strategy. This strategy is an

interchangeable part of the SUC; for example, the coordination strategy of a given

manipulator may be a particular solution for its inverse kinematics, the coordination strategy

for a given vehicle may be a particular navigation strategy, and so on.

Although the architecture defines the MUCs as relational aggregates, they can be inclusive

components (hard or soft) when the architecture is instantiated to develop a concrete system.

Whether or not the interfaces of the inner SUCs are directly accessible is a decision of the

architecture instantiation. In fact, although MUCs may be implemented by hardware or

software, they are frequently commercial motion control cards that constrain the range of

possible commands to their internal components. COSTs limit the flexibility of the approach,

in that COSTs do not always provide direct access to either their inner sub-components or

their inner state.

Finally, the architecture defines the RUC (Robot Unit Controller) component at the fourth

layer. The RUC component models control over a whole robot, for example a robot

composed of a vehicle with an arm and several interchangeable tools. As figure 4 shows, an

RUC is an aggregation of MUCs with a global coordinator that generates the commands for

the MUCs and coordinates their actions in accordance with the orders and the information

that it receives and with its own coordination strategy. Such a strategy is an interchangeable

part of the RUC. For example, the CoordinationStrategy of a robot comprising a vehicle

with a manipulator may be a generalized kinematic solution that takes into account the

possibility of moving the vehicle to reach a given target. Like MUCs, RUCs are logical

components that can take the form of physical components depending on concrete

instantiations. In general, the RUC is quite a complex component that comprises hardware

and software components and can have a large variety of interfaces depending on the

complexity of the controlled system.

Having defined SUCs, MUCs and RUCs, it would seem logical to define a Group Unit

Controller (GUP) capable of managing and coordinating a group of cooperative robots.

However, the architecture does not go beyond RUCs. There is a good reason for this. The

“usual intelligence” required to control a joint or mechanism which is an assembly of joints

or to teleoperate a robot which is a combination of various mechanisms is limited, is well-

known and can be encapsulated in reusable components. The intelligence required to work

cooperatively usually demands a more flexible approach. This also goes for some missions

involving SUCs, MUCs and RUCs, and likewise algorithms for collision avoidance or

navigation systems for vehicles. It is very difficult to define a component that will

encapsulate “intelligence”. If a system or component is capable of being intelligent and

taking non-trivial decisions, it will normally be complex enough to have a defined

architecture of its own (for example, an artificial vision system able to determine obstacle-

free paths). In that case, the approach should be different: Do not impose a structure on the

intelligent components but find a way to integrate them into the system.

5.2 Adding autonomous behavior.

The SUC/MUC composition produces a hierarchical architecture where the decisions flow

from the top down and the information flows from the bottom up. This architecture sits well

with operator-driven systems, where autonomous behavior does not exist or is confined to

some hardware safety actions. It also sits well with systems where the reactive or autonomous

behavior responds to simple rules that can be added to controllers and coordinators so that the

latter, following these rules, can take decisions and notify them to the upper level controller

or coordinator. However, there are systems where the autonomous behavior is anything but

simple. In such cases, the intelligent component needs to integrate more information and

access more functionalities than those embedded in a given component. The approach in that

case (see figure 5) is to superimpose the “intelligent” autonomous behavior and the operator-

driven behavior while providing the means for integrating both and resolving the potential

conflicts. This approach does not entail any change in the components defined so far, but

simply new command sources for them. These sources are constituted by new components

that have access to the global information system and are capable of deciding what to do on

the basis of programmed rules, algorithms or heuristics.

Every component of a given layer can access the information and control ports of

components of lower layers. In this sense, every component of a given layer is an intelligent

component for the layer below it, for example from the point of view of a MUC, no matter

whether the commands come from the coordinator of the RUC that controls it (see figure 5),

from the operator or from some of the intelligent components defined on a level above the

RUCs. Since a component can receive commands from more than one source, it is necessary

to decide what command to perform. The logic for this decision is external to the component.

Figure 5 shows a new type of component: the arbitrator. Arbitrators encapsulate the rules

that determine which command should be delivered to a given component. The arbitrator is

separately defined because the rules that it encapsulates (or even the arbitrator itself) can

vary from system to system, during the life of a given system or even at different stages in the

functioning of a system. The concept of an arbitrator derives from the notion of a composition

filter [13] and is strongly connected to the need to separate functionality from the patterns of

interaction among components.

This approach is highly flexible and makes it possible to integrate intelligence that is directly

concerned not with the missions of robotic devices but with management of the application as

regards fault tolerance policies or a meta-layer for reconfiguring the application.

6. Summary and future work

The architecture described in this paper takes the most promising architectural advances in

the domain of teleoperation and puts them together with a component-oriented approach.

This approach focuses on the definition of a common component framework that allows the

definition of components that can be reused in different systems and integrated in intelligent

systems capable of driving robot behavior. Our main sources of inspiration have been

OROCOS [11], CLARAty [12] (robotic architectures) and the PRISMA approach [10]

(component and aspect oriented approaches).

The architecture is currently being used in the development of a family of robots whose

mission is to retrieve and confine paint, oxide and marine adherences from ship hulls (see

figure [6]). Presenting as it does a wide variety of behaviors and degrees of complexity, this

family of robots is an excellent test bench for the architecture.

Our experience using the architecture has been satisfactory; however, we would note two

major challenges in this respect:

• There is not enough support to express the component abstractions and model their

interactions.

• Also, there are no well known techniques to cope with the variability of components from

one instantiations to another.

These challenges can be met by the PRISMA approach. We are currently working on this

with the Technical University of Valencia (Spain) within the framework of a nationally

funded (CICYT) research project, DYNAMICA, ref. TIC2003-07804-C05. A possible first

step is to use the PRISMA language to define the components and the layered architecture. A

possible second step is to consider changes in the interactions among these components.

7. References

1. A Iborra., J.A. Pastor, B. Álvarez, C. Fernández and J.M. Fdez-Meroño. “Operational

Experiences using Robotics during Maintenance Services in PWR Nuclear Power Plants”.

IEEE Robotics&Automation Magazine, Vol. 10(4), (Dec, 2003). pp. 12-22.

2. "Environmentally Friendly and Cost-Effective Technology for Coating Removal

(EFTCOR)". Fifth Framework Programme, European Community, Subprogram Growth

ref. GRD2-2001-50004, (Oct 2002).

3. E. Coste-Manière and R. Simmons, “Architecture, the Backbone of Robotic System”,

Proc. of the IEEE international conference on Robotics & Automation, San Francisco,

(Apr 2000), pp. 67-72.

4. F. Bachmann, L. Bass, G. Chastek, P. Donohoe and F. Peruzzi, “The Architecture Based

Design Method”, Technical Report CMU/SEI-200-TR-001, Carnegie Mellon University,

USA, (Jan 2000).

5. C. Hofmeister, R. Nord and D. Soni, “Applied Software Architecture”, Addison-Wesley.

USA, (Jan 2000).

6. I. Jacobson, G. Booch and J. Rumbaugh, “The Unified Software development Process”.

Addison-Wesley, (1999).

7. B. Selic, G. Gullekson and P.T. Ward, “Real-Time Object-Oriented Modeling”. John

Wiley and Sons, New York, (1994).

8. J. Pastor, “Incremental evaluation and development of software architectures for tele-

operation system using formal methods". Evaluación y desarrollo incremental de una

arquitectura software de referencia para sistemas de teleoperación utilizando métodos

formales”, PhD Thesis, Universidad Politécnica de Cartagena, Spain, (2002).

9. E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable

Object Oriented Software”, Addison Wesley, Reading Mass. (1995).

10. J. Pérez, I. Ramos, J. Jaen, P. Letelier and E. Navarro. "PRISMA: Towards Quality,

Aspect Oriented and Dynamic Software Architectures". 3rd IEEE International

Conference on Quality Software (QSIC 2003), Dallas, USA, (Nov. 2003), pp. 59-66.

11. The OROCOS project: Open Realtime Control versus Open Robot Control. EURON,

available at www.orocos.org (last access in May 2005) .

12. I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, "CLARAty: An

Architecture for Reusable Robotic Software," SPIE Aerosense Conference, Orlando,

Florida, http://www.jpl.nasa.gov, (Apr 2003).

13. L. Bergmans, Composing Concurrent Objects, PhD Thesis, University of Twente, The

Netherlands, (1994).

Figure 1: An abstract overview of the proposed architecture.

Figure 2: SUC: Simple Unit Controller.

Figure 3: MUC: Mechanism Unit Controller.

Figure 4: RUC: Robot Unit Controller.

Figure 5: Superimposition of operator-driven and autonomous behavior.

Figure 6: Three prototypes (cherry-picker model, elevation platform and mobile vehicle,

respectively) of the family of robots and a ship awaiting repair.

Programmed
Intelligence Lv n

Programmed
Intelligence Lv 1

Reactive
Intelligence

Control & Coordination of physical devices.

Virtual Devices

Operator

Physical Devices

Devices and environment abstraction

Mission_Exec Dev_Control

Control &
Coordination

Policies

Coordination

Control

+ / strConfig~

+ / sensorDataIn~

+ / SUC_Control~

 Strategy Controller

+ / requestStrategy

+ / SUC_DataOut

 SUC

+ / actuatorControl

+ / devDataIn~

+ / sensorDataOut + / actuatorControl~

+ / devControl

<<
da

ta
>>

<<
co

nt
ro

l>
>

 Actuator Sensor

1

n 1

+ / strConfig~

+ / sensorDataIn~

+ / MUC_Control~

 Strategy Coordinator

+ / requestStrategy

+ / MUC_DataOut

 MUC

+ / actuatorControl

+ / SUC_Control~+ / SUC_DataOut

 SUC

+ / sensorDataOut

+ / devDataIn~

 Sensor
n

+ / actuatorControl~

+ / devControl

 Actuator
1

<<
co

nt
ro

l>
>

<<
da

ta
>>

n

<<
da

ta
>>

<<
da

ta
>>

<<
co

nt
ro

l>

+ / sensorDataIn~
 + / actuatorControl

+ / sensorDataOut + / actuatorControl~

+ / devControl

<<control>>

 Actuator
n

<<data>>

+ / MUC_Control~

 Coordinator + / requestStrategy

+ / M UC_DataOut

 R UC

+ / M UC_Control~

+ / M UC_DataOut

+ / SUC_DataOut

 MUC
n

 SUC
n

+ / SUC_Control~

+ / strConfig~

 Strategy

<<data>>

<<data>>

<<data>>

<<
control >>

<<

control
>>

<<control>>

<<data>>

 S ensor
n

+ / devDataIn~

Actuators and sensors

MUCs

RUCs

Operator

Navigation
System

Collision
Avoidance

Fault Tolerant
Policies ... Intelligent components

Control and information

Arbitrator

N

1

Arbitrator

N

1

SUCs

Arbitrator

N

1

Arbitrator

N

1

