

Aalborg Universitet

An anytime algorithm for evaluating unconstrained influence diagrams

Luque, Manuel; Nielsen, Thomas Dyhre; Jensen, Finn Verner

Published in:
Proceedings of the Fourth European Workshop on Probabilistic Graphical Models

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Luque, M., Nielsen, T. D., & Jensen, F. V. (2008). An anytime algorithm for evaluating unconstrained influence
diagrams. In M. Jaeger, & T. D. Nielsen (Eds.), Proceedings of the Fourth European Workshop on Probabilistic
Graphical Models (pp. 177-184)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60410964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/an-anytime-algorithm-for-evaluating-unconstrained-influence-diagrams(6fc7c150-893f-11dd-8b88-000ea68e967b).html

An Anytime Algorithm for Evaluating
Unconstrained Influence Diagrams

Manuel Luque
Departmento Inteligencia Artificial, UNED

28040 Madrid, Spain
mluque@dia.uned.es

Thomas D. Nielsen and Finn V. Jensen
Department of Computer Science

Aalborg University, Aalborg, Denmark
{tdn,fvj}@cs.aau.dk

Abstract

Unconstrained influence diagrams (UIDs) extend the language of influence diagrams
to cope with decision problems in which the order of the decisions is unspecified.
Thus, when solving a UID we not only look for an optimal policy for each decision,
but also for a so-called step-policy specifying the next decision given the observations
made so far. However, due to the complexity of the problem temporal constraints
can force the decision maker to act before the solution algorithm has finished, and,
in particular, before an optimal policy for the first decision has been computed. This
paper addresses this problem by proposing an anytime algorithm that computes a
strategy and at any time provides a qualified recommendation for the first decisions
of the problem. The algorithm performs a heuristic-based search in a decision tree
representation of the problem. Experiments indicate that the proposed algorithm
performs significantly better under time constraints than dynamic programming.

1 Introduction

An influence diagram (ID) is a framework
for representing and solving Bayesian de-
cision problems with a linear temporal or-
dering of decisions (Howard and Matheson,
1984). However, in many domains the pro-
cess of finding an ordering of the decisions
is an integral part of the decision problem,
and in these situations the use of IDs would
require all decision orderings to be explicitly
specified in the model, possibly using artifi-
cial nodes and states. Examples of such de-
cision problems include troubleshooting and
medical diagnosis.

Unconstrained influence diagrams (UIDs)
were introduced to represent and solve deci-
sion problems of this type (Jensen and Vom-
lelova, 2002); as a special case this also in-
cludes decision problems with a linear tem-
poral ordering of the decisions. An optimal
strategy in this framework consists not only
of an optimal policy for each decision, but

also of a step-strategy that prescribes the
next decision to consider given the observa-
tions and decisions made so far. Such strate-
gies are computable using dynamic program-
ming in a way similar to that for traditional
IDs (Shachter, 1986; Shenoy, 1992; Jensen et
al., 1994; Madsen and Jensen, 1999).

Unfortunately, many real world problems
have an inherent complexity that makes eval-
uation through exact methods intractable
when time is scarce. Moreover, even if you
had the time for solving the problem, storing
the solution as a simple lookup table may
be a problem: the number of possible past
scenarios to consider in a policy can be in-
tractably large. As an example, the evalua-
tion of the Ictneo system (Bielza et al., 1999)
requires a table with 1, 66 × 1014 entries and
produces a policy with 4, 24 × 107 configura-
tions for the first decision.

In this paper we present an anytime algo-
rithm for solving UIDs. The algorithm pro-
vides a solution whenever it is stopped, and

given sufficient time it will eventually provide
a correct solution.

In comparison, the standard evaluation al-
gorithm for UIDs (Jensen and Vomlelova,
2002) is a backward induction algorithm em-
ploying dynamic programming like most al-
gorithms for IDs. It starts computing an op-
timal policy for the last decision and moves
backwards in time until it reaches the first
decision. If the process is stopped prema-
turely, the algorithm may provide a policy,
however, the prescription for the first de-
cision is completely un-informed. Further-
more, as described above, all effort so far
may be spent on calculating a policy for a
distant decision with an enormous space for
the past; a task which will decrease consider-
ably in size when you actually approach the
point of the decision. If you consider a situa-
tion with a decision maker (DM) impatiently
awaiting advice on what to do, he most prob-
ably wants to get an informed advice on the
first decision rather than receiving detailed
prescriptions for the last decisions.

To address this problem the proposed any-
time algorithm starts with the first decision
and works its way forward in time. Due to
the nature of the problem, you cannot be sure
of the policy for the first decision before the
entire problem has been solved. However, the
algorithm will over time gradually improve
the probability of choosing the best decision.

2 Unconstrained Influence

Diagrams

UIDs were proposed in (Jensen and Vom-
lelova, 2002) to represent decision problems
in which the order of the decisions is not lin-
ear, and for which the DM is interested in the
best ordering as well as an optimal choice for
each decision.

2.1 The Representation Language

We start considering a very simple example:
the diabetes diagnosis problem, introduced
in (Demirer and Shenoy, 2001). A physician

is trying to decide on a policy for treating pa-
tients. After an initial examination of their
symptoms (S), the physician has to diagnose
whether the patient is suffering from diabetes
(D). Diabetes has two symptoms, glucose in
urine and glucose in blood. Before deciding
on whether or not to treat the patient for di-
abetes (Tr), the physician can decide to per-
form a urine test (UT) and/or a blood test
(BT), which will produce the test results U
and B, respectively. After the physician has
observed the tests results (if any) she has to
decide whether to treat the patient for dia-
betes. Observe that the order in which the
tests are performed is not specified and that
the result of a test is only available if the
physician decides to perform the correspond-
ing test.

To represent this problem by an influence
diagram we have to represent the unspecified
ordering of the tests as a linear ordering of
decisions. This can be done by introducing
two decision variables to model the first test
and the second test, respectively. Unfortu-
nately, the structure of the decision problem
is not apparent from the model and for large
decision problems this technique will be pro-
hibitive as all possible scenarios should be
explicitly encoded in the model.

In the UID framework, the combinatorial
problem of representing non-sequential deci-
sion problems is postponed to the solution
phase. A UID for the diabetes diagnoses
problem is shown in Figure 1 (explained be-
low).

More formally, an unconstrained influence

diagram (UID) is a DAG over three sets
of nodes: a set of decision nodes (rect-
angles) VD, chance nodes VC , and utility
nodes (diamonds) VU . Chance nodes can be
of two types, observable (circles) and non-

observable (double-circles), and we require
that utility nodes have no children. We
will use the terms ’node’ and ’variable’ in-
terchangeably if this does not cause any con-
fusion.

The quantitative information associated

UT U

Tr

BT B

S

D
V

Figure 1: UID for the diabetes diagnosis
problem.

with a UID consists of probability distribu-
tions and utility functions. For each chance
node C we have a probability distribution
P (C | pa(C)) for C given its parents pa(C),
and for each utility node U we have a utility
function ψU ; ψU maps each configuration of
the parents of U to a real number. We as-
sume that the utility functions combine ad-
ditively into a joint utility function ψ.

The semantics of the links are similar to
the semantics from IDs, and the traditional
no-forgetting assumption is also assumed.
However, as opposed to IDs a total ordering
of the decision nodes is not required. While
non-observable variables are variables that
will never be observed, an observable vari-
able will be observed when all its antecedent
decision variables have been decided. For ex-
ample, in Figure 1 B is observed after decid-
ing on BT , and S is observed before the first
decision, since it has no antecedent decision
variables.

The structural specification of a UID yields
a partial temporal order. If a partial order is
extended to a lineal order we get an influence
diagram. Such an extended order is called an
admissible order.

2.2 Solving a UID

Solving a UID means establishing a set of
step-policies and a set of decision-policies.
Together, the step-policies and the decision-
policies form an optimal strategy. To orga-
nize the computations, we work with a sec-

ondary computational structure, called an S-
DAG, which is a DAG representing the ad-
missible orderings of the nodes in the UID
(see Figure 2). A GS-DAG is a minimal S-
DAG containing all admissible orderings rel-
evant for computing an optimal strategy.

BT UT B U

Tr

UT BT U B

S

Figure 2: An S-DAG for the UID model of
Figure 1.

A step-policy for a node N in an S-DAG
is a rule that based on the current history
hst(N) ∪ {N} specifies which of its children
ch(N) to go to. As the policy needs not
be deterministic, we formally define a step-
policy for nodeN as a conditional probability
distribution P (ch(N) | hst(N)). A decision-

policy for a decision node D in an S-DAG
is probability distribution P (D | hst(D)). A
strategy for an S-DAG consists of a step-
policy for each node and a decision policy
for each decision.

To define the expected utility (EU) of a
strategy S, we unfold it to a strategy tree:
following the policies of S we construct a tree
in which all root-leaf paths represent admis-
sible orderings. The expected utility for a
strategy tree is defined as for decision trees,
and it is by definition the expected utility of
the strategy.

Jensen and Vomlelova (Jensen and Vom-
lelova, 2002) describe an algorithm for find-
ing a strategy of maximum expected utility
(MEU). The algorithm utilizes the S-DAG
for the UID, and basically solves the UID/S-
DAG through dynamic programming simi-
larly to solving influence diagrams (i.e., elim-
inating the variables in reverse temporal or-
der).

3 An Anytime Algorithm

In general, the basic idea with an anytime
algorithm is that time constraints may cause
the user to be unable to wait for the stan-
dard solution algorithm to finish. Thus, it
should be possible to stop the algorithm at
any time, and the algorithm should then pro-
vide an approximate solution. With this re-
quirement we may settle for an algorithm
that may take longer than the standard algo-
rithm, but which in the mean time can pro-
vide a better approximate solution than the
standard algorithm.

With respect to UIDs, the standard al-
gorithm provides a strategy by solving the
problem in reverse temporal order. If the al-
gorithm is stopped prematurely, it can pro-
vide a strategy, which consists of choosing
completely randomly for the decisions which
have not yet been dealt with, and to follow
the calculated optimal policies for the last
decisions. In this way, it can be said that
you have an anytime algorithm; it provides a
strategy whenever it is stopped, the expected
utility of the strategy never decreases over
time, and eventually, the algorithm provides
an optimal strategy.

However, this is not satisfactory. If the
user stops the algorithm prematurely, it is
because she needs to take the first decision,
but the algorithm does not give her any clue
on what to do first. Therefore, the aim of
an anytime algorithm for solving UIDs (or
decision graphs in general) is to provide more
and more informed advice on what to do first.

We propose an algorithm performing a for-
ward search in a decision tree (Raiffa and
Schlaifer, 1961) representation of the UID.
The tree is built from the root toward the
leaves, and it keeps a list of triggered nodes
(the current leaves in the tree constructed
so far) as candidates for expansion.1 A trig-
gered node X is expanded by adding its chil-

1The terminology is borrowed from AO* search
algorithms (Nilsson, 1980), from which the proposed
algorithm has been inspired.

dren to the tree and calculating the expected
utility of the path from the root to X using
a heuristic function for estimating the max-
imum expected utility (MEU) obtainable at
the children of X.

3.1 A Search Based Solution

Algorithm

An S-DAG (and a GS-DAG) can be con-
verted into a decision tree (possibly using a
dummy source node), which in turn can be
used as a computational structure for solv-
ing the corresponding decision problem (dis-
regarding complexity issues). A decision tree
is a rooted tree in which the leaves are utility
nodes and the nonleaf nodes are either de-
cision nodes or chance nodes. The decisions
on the possible orderings are made explicit in
the model by partitioning the decision nodes
into either ordinary decisions or branching
point decisions.

The past of a node X (denoted by
past(X)) is the configuration specified by the
labels associated with the arcs on the path
from the root to X; if X is a value node then
past(X) is called a scenario.

The quantitative part of the decision tree
consists of probabilities and utilities. Each
arc from a chance node A is associated with a
probability P (A = a | past(A)), where A = a

is the label of the arc. These probabilities
can be found by converting the UID into a
Bayesian network: value nodes are removed,
and decision nodes are replaced by chance
nodes having no parents and with an arbi-
trary probability distribution.2 Finally, with
each value node V in the decision tree, we as-
sociate the utility ψ(past(V)) of the scenario
past(V). These utilities can be read directly
from the UID model.

The decision tree represents each scenario
in the decision problem explicitly; hence the
size of the tree can grow exponentially in the

2The time for computing the probabilities is small
compared to the time required for evaluating the
UID, and we shall therefore not consider this issue
further.

number of variables. The size can, however,
be reduced by collapsing identical subtrees,
a procedure also know as coalescence (Olm-
sted, 1983). The opportunities for exploiting
coalescence can be automatically detected in
the S-DAG of the UID.

Instead of building the decision tree in full
and solving it using the “average-out and
fold-back” algorithm (Raiffa and Schlaifer,
1961), we propose to build the tree from the
root toward the leaves. A heuristic function
h provides an estimate of the MEU obtain-
able at every node in the decision tree. Thus,
at any point in time we have a partial deci-

sion tree in which the heuristic can be used to
estimate the MEU at the leaf nodes. These
estimates can in turn be propagated upward
in the tree, which gives an estimate of the
MEU of the nodes in the explored part of
the tree, and, in particular, an estimate of
the optimal policy for the decision nodes in
this part.

A collection of optimal policies for a subset
of the decision nodes is called a partial strat-

egy ∆′, and a partial strategy based on the
heuristic function is called a partial heuristic

strategy ∆̂′. Clearly, the closer the heuris-
tic function is at estimating the MEU of the
triggered nodes in the partial decision tree,
the closer the EU of ∆̂′ will be at the EU of
∆′.

A partial strategy can always be extended
to a full (not necessarily optimal) strategy
by assigning random policies to the decision
nodes in the unexplored part of the tree.
When we have a set of policies S, we define
the uniform extension of S as a strategy ∆
such that every policy in S is in ∆ and the
rest of the policies in ∆ are uniform distribu-
tions.

3.2 Selecting a Heuristic Function

The choice of heuristic function not only de-
termines the policies being computed, but it
may in fact also be used to prune irrelevant
parts of the tree thereby reducing complex-
ity. A special class of heuristic functions are

the so-called admissible heuristic functions.

Definition 1. A heuristic function h is said
to be admissible if h(N) ≥ MEU(N) for any
node N in the decision tree.

An admissible heuristic can be exploited
during the search: Consider a decision node
whose children X and Y are the roots in two
subtrees. If the subtree defined by Y has
been explored and h(X) ≤ MEU(Y), then
we need not explore the subtree rooted at
X.

Obviously, we would like the heuristic
function h to define a tight upper bound on
the expected utility, and relative to the com-
putational complexity of solving the decision
tree we would also like for h to be easy to
compute.

3.2.1 An Admissible Heuristic

A possible choice of heuristic function
could be (Vomlelova, 2003)

hU (X) = max
l∈L

ψ(path(X, l)), (1)

where L is the set of leaf nodes in the subtree
rooted at X and ψ(path(X, l)) is the sum of
the utilities associated with l and the path
from X to l.

It is trivial to see that hU is admissi-
ble. Moreover, hU has the advantage of be-
ing computationally efficient, since it can be
evaluated by max-marginalizing out the vari-
ables appearing in the domains of the util-
ity potentials. The number of required max-
marginalizations is at most |VC ∪VD|. In
contrast to the dynamic programming ap-
proach, the complexity of computing this
heuristic does not depend on the number
of possible paths in the GS-DAG as max-
operations commute.

Unfortunately, preliminary experiments
have shown that hU yields a very loose bound
on the expected utility. For certain UIDs the
estimated optimal policy for the first deci-
sion failed to stabilize over time, and in fact
a random policy would on average provide

a similar solution in terms of expected util-
ity. Since we have not been able to define an
alternative computationally efficient admis-
sible heuristic, we have instead been looking
for a nonadmissible heuristic.

3.2.2 A Nonadmissible Heuristic

The estimation given by the admissible
heuristic hU can be extremely far from the
MEU. However, since it provides an upper
bound on the expected utility, we can use it
in combination with a lower bound to derive
a good approximation to the expected utility.

As a lower bound hL, we use the ex-
pected utility of the uniform extension of
the current partial heuristic strategy; deci-
sion nodes in the unexplored part of the de-
cision tree are treated as chance nodes with
a uniform distribution. Relative to the com-
putational complexity of solving the UID,
this heuristic can be calculated efficiently
by sum-marginalizing out the variables in
the utility and probability potentials. The
number of required marginalizations is at
most |VC ∪ VD| and does not depend on the
number of paths in the GS-DAG as sum-
marginalizations commute (this means that
we are not required to follow an admissible
elimination order consistent with the UID).

If all the variables in the future of node X
are chance variables, i.e., if future(X) ⊆ VC ,
then hL(X) = MEU(X). Furthermore, as
the number of decision nodes in future(X)
increases the larger the difference MEU(X)−
hL(X) will be. The opposite holds for the
heuristic hU (X).

In order to derive a heuristic close to the
actual expected utility, we define the non-
admissible heuristic h as a weighted linear
combination of hL and hU :

h(X) = wL(X)hL(X) + wU (X)hU (X),

where wL(X) = α · kX · c(X) and wU (X) =
α·d(X) ; here c(X) and d(X) are the number
of chance and decision nodes in future(X),
respectively, and α is a normalizing factor en-
suring that wL(X)+wU (X) = 1. By varying

the parameter kX between 0 and +∞, we can
achieve any desired mixture of conservatism
and optimism as defined by the two heuris-
tics; note that kX may be the same for all
nodes.

One potential difficulty with this heuristic
is how to choose a good value for kX . To alle-
viate this problem, we propose to update kX

automatically as the tree is expanded. The
intuition underlying the updating method is
that we would in general expect the heuris-
tic to be more precise the closer we get to
the leaves: After a node X has been ex-
panded we first estimate the expected util-
ity of its children (using h and the current
value for kX). These estimates are then
propagated upward in the tree: If X is a
chance node, then the value propagated to
X is ÊU(X) =

∑
Y ∈ch(X) P (Y |past(X))h(Y)

and if X is a decision node then the value
is ÊU(X) = maxY ∈ch(X) h(Y). By treating

ÊU(X) as an accurate estimate of the ex-
pected utility for X, we calculate a new value
for kX by setting ÊU(X) = h(X):

kX :=
ÊU(X) − αhU (X)d(X)

αc(X)hL(X)
.

Note that kX will always be non-negative,
and that the update is not guaranteed to
get us closer to the true expected utility (we
might e.g. have started off with the “correct”
value for kX).

3.2.3 Performing the Search

The search/construction of the coalesced
decision tree starts with the tree consisting
of a single root node together with its chil-
dren (such a tree stump is always uniquely
identifiable). From this tree structure the
method iteratively expands a node consistent
with the UID specification.

When a node is expanded, its outgoing
links are added to the decision tree as well as
any successor node not already in the tree;
the node to be expanded is always selected
among the triggered nodes/leaves. When a

node is added to the decision tree, a heuristic
estimate of the MEU for that node is calcu-
lated. The values are then propagated up-
wards, possibly updating the current partial
heuristic strategy.

The choice of which node to expand is
non-deterministic. We have experimented
with three selection schemes: (i) expand the
node X with highest probability P (past(X))
of occurring (decision nodes are given an
even probability distribution), (ii) expand
the node X with highest weight w(X) =
P (past(X)) · h(X), where h is the heuris-
tic function estimating the expected utility
of node X, and (iii) expand the node of low-
est depth, i.e., perform a breadth first search.
Preliminary experiments suggest that the
latter provides the best results, and this is
therefore the selection scheme used in the
tests documented in Section 4.

4 Experiments

We have performed a series of experiments
for assessing the performance of the proposed
algorithm. For comparison we used dynamic
programming (Jensen and Vomlelova, 2002),
and to test the algorithms we generated a
collection of random UIDs.

4.1 Generation of UIDs

It is easy to come up with artificial UID
structures that, from a specification point of
view, cannot be considered proper models of
real-world decision problems. As an exam-
ple, consider a UID with a decision node hav-
ing only barren nodes (Shachter, 1986) in its
future. Thus, rather than generating com-
pletely random UIDs (Vomlelova, 2003) we
have instead tried to guide the UID genera-
tion by making perturbations of pre-specified
UID templates.

Specifically, we manually constructed four
UID templates from which we sampled 13
UID structures with varying number of de-
cision nodes, chance nodes, and observable
chance nodes. For each structure we ran-
domly generated 50 realizations (probability

and utility tables), producing a total of 650
models. Space restrictions prevent us from
including additional details, but all models
(including the templates) and a description
of the sampling algorithm can be found at
www.ia.uned.es/~mluque/UID.

4.2 Evaluation Metrics

The proposed anytime algorithm is intended
for situations, where a DM is required to
take one or more initial decisions but does
not have time to wait for dynamic program-
ming to finish. On the other hand, after the
specified decisions have been taken we as-
sume that there is sufficient time for dynamic
programming to return an optimal strategy
for the remaining decisions. Here we also as-
sume that simply solving the UID offline and
storing the policies as look-up tables is pro-
hibitive due to space requirements.

The performance of the algorithm is eval-
uated according to the following two charac-
teristics. i) The frequency with which the
anytime algorithm returns the correct deci-
sion options (relative to the optimal strategy)
for all decision nodes down to the ith level in
the decision tree. ii) The expected utility
of following the strategy prescribed by the
anytime algorithm for the first i levels of de-
cisions, followed by the optimal strategy for
the remaining decisions. Both of these two
measures depend on the amount of compu-
tation time used by the anytime algorithm,
and to compare the results for different mod-
els, time is thus specified relative to the time
required for dynamic programming to finish.

4.3 Experimental Results

The algorithms were implemented in Java 6.0
with the Elvira software package.3 The ex-
periments were performed on an Intel Core 2
computer (2.4 GHz) with 2 GB of memory.

First of all, it is important to emphasize

3The Elvira program was developed as a collabo-
rative project of several Spanish universities (Elvira
Consortium, 2002). The program and its source code
can be downloaded from www.ia.uned.es/~elvira.

that all reported values are normalized with
the uniform strategy as baseline value, i.e.,
the uniform strategy and the optimal strat-
egy attains the values 0 and 1, respectively.

The results obtained by letting the any-
time algorithm run for e.g. 50% of the time
required by dynamic programming are listed
in the second column in Table 1; EU i(t) and
AccFreqDeci(t) correspond to the two mea-
sures described in Section 4.2. In particu-
lar, AccFreqDec1(t) denotes the frequency
of selecting the best initial decision (i.e., a
branching point decision). For example, if
we assume that the initial choice is between
two decisions, then the anytime algorithm re-
turns the optimal decision with a frequency
of 0.742 (0.5+0.484 ·0.5). Similarly, suppose
that the expected utility of following a ran-
dom policy for the first decision is 90 and the
MEU is 100, then a value of 0.514 for EU 1(t)
corresponds to an expected utility of 95.14.

From the results we clearly see that
the algorithm improves over time
w.r.t. all the recorded characteristics.
Additional results can be found at
www.ia.uned.es/~mluque/UID.

25 % 50 % 75 %

EU1(t) 0,442 0,514 0,538

EU2(t) 0,609 0,769 0,865

EU3(t) 0,546 0,703 0,794

AccFreqDec1(t) 0,383 0,484 0,505

AccFreqDec2(t) 0,396 0,503 0,563

AccFreqDec3(t) 0,291 0,381 0,428

Table 1: Results for the anytime algorithm.

Acknowledgements

The first author was supported by the De-
partment of Education of Madrid, the Euro-
pean Social Fund and the Spanish Ministry
of Education and Science (grant TIN-2006-
11152). We would like to thank Marta Vom-
lelova for giving us access to her UID imple-
mentation.

References

[Bielza et al.1999] C. Bielza, S. Rı́os, and
M. Gómez. 1999. Influence diagrams for

neonatal jaundice management. In AIMDM
’99, pages 138–142, London, UK. Springer-
Verlag.

[Demirer and Shenoy2001] R. Demirer and P. P.
Shenoy. 2001. Sequential valuation asymmet-
ric decision problems. Lecture Notes in Com-
puter Science, pages 252–265.

[Elvira Consortium2002] The Elvira Consortium.
2002. Elvira: An environment for creating
and using probabilistic graphical models. In
PGM’02, pages 1–11, Cuenca, Spain.

[Howard and Matheson1984] R. A. Howard and
J. E. Matheson. 1984. Influence diagrams.
In R. A. Howard and J. E. Matheson, editors,
Readings on the Principles and Applications of
Decision Analysis, pages 719–762.

[Jensen and Vomlelova2002] F. V. Jensen and
M. Vomlelova. 2002. Unconstrained influ-
ence diagrams. In UAI’02, pages 234–241, San
Francisco, CA. Morgan Kaufmann.

[Jensen et al.1994] F. Jensen, F. V. Jensen, and
S. L. Dittmer. 1994. From influence diagrams
to junction trees. In UAI’94, pages 367–373,
San Francisco, CA. Morgan Kaufmann.

[Madsen and Jensen1999] A. Madsen and F. V.
Jensen. 1999. Lazy evaluation of symmetric
Bayesian decision problems. In UAI’99, pages
382–390, San Francisco, CA. Morgan Kauf-
mann.

[Nilsson1980] N. J. Nilsson. 1980. Principles of
Artificial Intelligence. Tioga, Palo Alto, CA.

[Olmsted1983] S. M. Olmsted. 1983. On Repre-
senting and Solving Decision Problems. Ph.D.
thesis, Dept. Engineering-Economic Systems,
Stanford University, CA.

[Raiffa and Schlaifer1961] H. Raiffa and
R. Schlaifer. 1961. Applied Statistical
Decision Theory. MIT press, Cambridge.

[Shachter1986] R. D. Shachter. 1986. Evaluat-
ing influence diagrams. Operations Research,
34:871–882.

[Shenoy1992] P. P. Shenoy. 1992. Valuation based
systems for Bayesian decision analysis. Oper-
ations Research, 40:463–484.

[Vomlelova2003] M. Vomlelova. 2003. Uncon-
strained influence diagrams - experiments and
heuristics. In WUPES’2003, Hejnice, Czech
Republic.

