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REPARAMETRIZATIONS WITH GIVEN STOP DATA

MARTIN RAUSSEN

1. INTRODUCTION

In [1], we performed a systematic investigation of reparametrizations of continuous
paths in a Hausdorff space that relies crucially on a proper understanding of stop data
of a (weakly increasing) reparametrization of the unit interval. I am indebted to Marco
Grandis (Genova) for pointing out to me that the proof of Proposition 3.7 in [1] is wrong.
Fortunately, the statment of that Proposition and the results depending on it stay correct.
It is the purpose of this note to provide correct proofs.

2. REPARAMETRIZATIONS WITH GIVEN STOP MAPS

To make this note self-contained, we need to include some of the basic definitions
from [1]. The set of all (nondegenerate) closed subintervals of the unit interval I = [0, 1]
will be denoted by P[ ](I) = {[a, b] | 0 ≤ a < b ≤ 1}.
Definition 2.1. • A reparametrization of the unit interval I is a weakly increasing

continuous self-map ϕ : I → I preserving the end points.
• A non-trivial interval J ⊂ I is a ϕ-stop interval if there exists a value t ∈ I such
that ϕ−1(t) = J. The value t = ϕ(J) ∈ I is called a ϕ-stop value.

• The set of all ϕ-stop intervals will be denoted as ∆ϕ ⊆ P[ ](I). Remark that
the intervals in ∆ϕ are disjoint and that ∆ϕ carries a natural total order. We let
Dϕ :=

⋃
J∈∆ϕ

J ⊂ I denote the stop set of ϕ; and Cϕ ⊂ I the set of all stop values.

• The ϕ-stop map Fϕ : ∆ϕ → Cϕ corresponding to a reparametrization ϕ is given by
Fϕ(J) = ϕ(J).

It is shown in [1] that Fϕ is an order-preserving bijection between (at most) countable sets.
It is natural to ask (and important for some of the results in [1]) which order-preserving
bijections between such sets arise from some reparametrization:

To this end, let

• ∆ ⊆ P[ ](I) denote an (at most) countable subset of disjoint closed intervals –
equipped with the natural total order;

• C ⊆ I denote a subset with the same cardinality as ∆;
• F : ∆ → C denote an order-preserving bijection.

Proposition 2.2. There exists a reparametrization ϕ with Fϕ = F if and only if conditions (1)
- (8) below are satisfied for intervals contained in ∆ and for all 0 < z < 1:

(1) min J = supJ′<J max J′ ⇒ F(J) = supJ′<J F(J′);
1
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(2) max J = infJ<J′ min J′ ⇒ F(J) = infJ<J′ F(J′);
(3) supJ′<z max J′ = infz<J′′ min J′′ ⇒ supJ′<z F(J′) = infz<J′′ F(J′′);
(4) supJ′<z max J′ < infz<J′′ min J′′ ⇒ supJ′<z F(J′) < infz<J′′ F(J′′);
(5) inf0<J min J = 0⇒ inf0<J F(J) = 0;
(6) inf0<J min J > 0⇒ inf0<J F(J) > 0;
(7) supJ<1max J = 1 ⇒ supJ<1 F(J) = 1;

(8) supJ<1max J < 1⇒ supJ<1 F(J) < 1.

Proof. Conditions (1) – (3), (5) and (7) a are necessary for the stop data of a continuous
reparametrization ϕ; (4), (6) and (8) are necessary to avoid further stop intervals.

Given a stop map satisfying conditions (1) – (8), we construct a reparametrization ϕF

with F(ϕF) = F as follows: For t ∈ D =
⋃

J∈∆ J, one has to define: ϕ(t) = F(J) with
t ∈ J. This defines a weakly increasing function ϕF on D. Conditions (1) and (2) make
sure that this function is continuous (on D). Condition (3) makes it possible to extend ϕF

uniquely to a weakly increasing continuous function on the closure D̄: ϕF(z) is defined
as supJ′<z F(J′) for z = supJ′<z max J′ and/or as infz<J′′ F(J′′) for z = infz<J′′ min J. By

(5) and (7), ϕF(0) = 0 and ϕF(1) = 1 if 0, 1 ∈ D̄; if not, we have to take these as a
definition.

The complement O = I \ D̄ is an open (possibly empty) subspace of I, hence a union

of at most countably many open subintervals J = [aJ−, a
J
+] with boundary in ∂D∪{0, 1}.

Condition (4), (6) and (8) make sure, that ϕF(a
J
−) < ϕF(a

J
+). Hence, every collec-

tion of strictly increasing homeomorphisms between [aJ−, a
J
+] and [ϕF(a

J
−), ϕF(a

J
+)] –

preserving endpoints – extends ϕF to a continuous increasing map ϕF : I → I with
∆ϕF = ∆,CϕF = C and FϕF = F. �
It is natural to ask, whether

• every at most countable subset C ⊂ I occurs as set of stop values of some
reparametrization: This is answered affirmatively in [1], Lemma 2.10;

• every at most countable set {I} 6= ∆ ⊂ P[ ](I) of closed disjoint intervals arises
as set of stop intervals of a reparametrization:

Proposition 2.3. For every (at most) countable set {I} 6= ∆ of closed disjoint intervals in the
unit interval I, there exists a reparametrization ϕ with ∆ϕ = ∆.

Proof. Starting from an enumeration j of the totally ordered set ∆ (defined either on N
or on a finite integer interval [1, n]), we are going to construct a reparametrization ϕ

with stop value set Cϕ included in the set I[12 ] = {0 ≤ l
2k
≤ 1} of rational numbers with

denominators a power of 2. To this end, we will associate to every number z ∈ I[12 ]
either an interval in ∆ or a degenerate one point interval; we end up with an ordered

bijection beween I[12 ] and a superset of ∆; all excess intervals will be degenerate one-
point sets.

To get started, let I0 denote either the interval in ∆ containing 0 or, if no such interval

exists, the degenerate interval [0, 0] = {0}; likewise define I1. Every number z ∈ I[12 ]
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apart from 0 and 1 has a unique representation z = l
2k

with l odd, 0 < l < 2k. The

construction proceeds by induction on k using the enumeration j.

Assume for a given k ≥ 1, Iz and thus the map I : z 7→ Iz defined for all z = l
2k−1 , 0 ≤

l ≤ 2k−1 as an ordered map. For 0 < z = l
2k

< 1 and l odd, both z± = z± 1
2k

have a

representation as fractionwith denominator 2k−1 and thus Iz− < Iz+ are already defined.
Let Iz = j(m) with m minimal (and thus k ≤ m) such that Iz− < j(m) < Iz+ if such an m
exists; if not, then Iz is defined as the degenerate interval containing the single element
1
2(max Iz− + min Iz+). The map I : z 7→ Iz thus constructed on I[12 ] is order-preserving
and has therefore an order-preserving inverse map I−1 : Iz 7→ z.

For k ≥ 0, let ϕk denote the piecewise linear reparametrization that has constant

value z on Iz for z = l
2k
, 0 ≤ l ≤ 2k and that is linear inbetween these intervals. Remark

that ϕk+1 = ϕk on all Iz with z = l
2k

including all occuring degenerate intervals. As a

consequence, ‖ ϕk − ϕk+1 ‖< 1
2k
, and hence for all l > k, ‖ ϕk − ϕl ‖< 1

2k−1 . Hence, the

sequence (ϕk)k∈N converges uniformly to a continuous reparametrization ϕ.
By construction, the resulting reparametrization ϕ is constant on all intervals in ∆; on

every open interval between these stop intervals, it is linear and strictly increasing. In
particular, ∆ϕ = ∆. �
Remark 2.4. I was first tempted to prove Proposition 2.3 by taking some integral of the
characteristic function of the complement of D and to normalize the resulting function.
But in general, this does not work out since, as already remarked in [1], it may well be
that D̄ = I!

3. CONCLUDING REMARKS

Remark 3.1. (1) Instead of constructing the reparametrization ϕ in Proposition 2.3, it
is also possible to apply the criteria in Proposition 2.2 to the restriction I|∆ of the
map I from the proof above.

(2) Proposition 2.2 replaces Proposition 2.13 in [1]. To get sufficiency, requirements
(1) and (2) had to be added to those mentioned in [1] in order to make sure that
the map ϕF is continuous on D. Moreover, (6) and (8) had to be added to avoid
stop intervals containing 0, resp. 1 in case ∆ does not contain such intervals.

In particular, the midpoint map m that associates to every interval in ∆ its
midpoint satisfies the criteria given in [1], Proposition 2.13, but if fails in general
to satisfy conditions (1) and (2) in Proposition 2.2 in this note; in particular, the
map ϕm will in general not be continuous, as remarked by M. Grandis. The
midpoint map m was used in the flawed proof of [1], Proposition 3.7 – stated as
Proposition 3.2 below.

The main focus in [1] is on reparametrizations of continuous paths p : I → X into
a Hausdorff space X. A continuous path q is called regular if it is constant or if the
restriction q|J to every non-degenerate subinterval J ⊆ I is non-constant.
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Proposition 3.2. (Proposition 3.7 in [1])
For every path p : I → X, there exists a regular path q and a reparametrization such that
p = q ◦ ϕ.

Proof. A non-constant path p gives rise to the set of all (closed disjoint) stop intervals
∆p ⊂ P[ ](I), consisting of the maximal subintervals J ⊂ I on which p is constant.
Proposition 2.3 yields a reparametrization ϕ with ∆ϕ = ∆p and thus a set-theoretic
factorization

I
p

//

φ
��

X

I

q

??�
�

�
�

through a map q : I → X that is not constant on any non-degenerate subinterval J ⊆ I.
The continuity of q follows as in the remaining lines of the proof in [1]. �
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