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THE RELATIVISTIC SCOTT CORRECTION FOR ATOMS AND
MOLECULES

JAN PHILIP SOLOVEJ, THOMAS ØSTERGAARD SØRENSEN, AND WOLFGANG L. SPITZER

Abstract. We prove the first correction to the leading Thomas-Fermi energy for the
ground state energy of atoms and molecules in a model where the kinetic energy of the
electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25],
as well as the correction given here are of semi-classical nature. Our result on atoms and
molecules is proved from a general semi-classical estimate for relativistic operators with
potentials with Coulomb-like singularities. This semi-classical estimate is obtained using
the coherent state calculus introduced in [36]. The paper contains a unified treatment of
the relativistic as well as the non-relativistic case.
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1. Introduction and main results

Our goal in this paper is to study how relativistic effects influence the energies of atoms
and molecules. More specifically, we are aiming at proving a relativistic analog of the cele-
brated Scott correction [29, 16, 13, 15, 30, 31, 32, 36]. At present there is no mathematically
well-defined fully relativistically invariant theory of atoms and molecules. We will here con-
sider a simplified model, which shows the relevant qualitative features of relativistic effects.
In this model, these effects are introduced by treating the kinetic energy of electrons of mass
m by the operator

√−~2c2∆ + m2c4 −mc2 instead of the standard non-relativistic Laplace
operator −~2∆/2m. Here c refers to the speed of light and ~ is Planck’s constant. It is the
simplest of a class of models that attempts to include relativistic effects; see [12, 23]. Al-
though this model does not give accurate numerical agreement with observations it is from
a qualitative point of view quite realistic.
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One of the qualitative features that our model shares with all other relativistic models is
the instability of large atoms or molecules. The natural parameter to measure relativistic
corrections in atoms and molecules is the dimensionless fine-structure constant α = e2/~c,
where e is the electron charge. As we will explain below, if Zα is too large (Z is the atomic
number) then atoms are unstable. In our model the critical value of Zα is too small compared
with experimental results and with what is assumed to be the correct critical value, namely
Zα = 1.

Our main interest here is the behavior of the total ground state energy of large atoms and
molecules. Because of the relativistic instability problem mentioned above one cannot simply
consider the limit of large atomic number Z. One is forced to look at the simultaneous limit
of small fine-structure constant α in such a way that the product Zα remains bounded. Of
course, α has a fixed value which experimentally is approximately 1/137. Thus considering
the limit α tending to zero is strictly speaking not physically correct. Likewise, considering
the limit of Z tending to infinity is in contradiction with the fact that the experimentally
observed values of Z are bounded (by 92 for the stable atoms). Studying the limit Z →
∞ and α → 0 with Zα bounded allows us to make a precise mathematical statement
about the asymptotics. There is numerical evidence that the asymptotics is indeed a good
approximation to the total ground state energy for the physical values of Z and α.

The first to, at least heuristically, suggest to consider Zα as a separate parameter in the
limit Z →∞ was Schwinger [27]. In this original paper, Schwinger finds discrepancies of his
estimates of relativistic corrections with numerical evidence. Later [8], more corrections are
taken into account and excellent agreement is found. This accuracy however goes beyond a
rigorous mathematical treatment. We content ourselves with giving a rigorous treatment of
the simplified model with the correct qualitative behavior.

The first rigorous treatment of the limit Z → ∞ with Zα bounded was given by one of
us is the paper [25], where the leading asymptotics of the ground state energy was found. It
turns out it does not depend on Zα. The goal of the present paper is the first correction to
the leading asymptotics, i.e., the Scott correction and, in particular, to show that it depends
on Zα. The work in [25] was generalized to another relativistic model in [4].

We now introduce the molecular many-body Hamiltonian we consider in this paper. Let
e and m denote the electric charge and mass of an electron. Let Ze = (Z1e, . . . , ZMe),
where Z1, . . . , ZM > 0, be the charges of the M nuclei. We consider the Born-Oppenheimer
formulation where these nuclei are at fixed positions R = (R1, . . . , RM ) ∈ R3M . We have
N electrons. As explained above the relativistic kinetic energy of the j-th electron is equal
to
√−~2c2∆j + m2c4 − mc2, where ∆j is the Laplacian with respect to the j-th electron

coordinate yj ∈ R3, j = 1, . . . , N . The potential energy of the electrons is composed of the
attraction to the nuclei,

eV (Ze,R, y) =
M∑
k=1

Zke2

|y −Rk| , (1)

and the electron-electron repulsion, ∑
1≤i<j≤N

e2

|yi − yj | .

The total energy of the electrons is described by the Hamiltonian,

Hrel =
N∑
j=1

[√
−~2c2∆j + m2c4 −mc2 − eV (Ze,R, yj)

]
+

∑
1≤i<j≤N

e2

|yi − yj | .
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Let us now introduce the fundamental constants. Namely, let a = ~2/me2 be the Bohr radius,
and R∞ = 1

2me4/~2 Rydberg’s constant. Then by a change of coordinates yj → xj = yj/a,
we see that

(2R∞)−1Hrel =: H(Z,R;α) = H(Z1, . . . , ZM , R1, . . . , RM ;α)

=
Z∑
j=1

[√
−α−2∆j + α−4 − α−2 − V (Z,R, xj)

]
+

∑
1≤i<j≤N

1
|xi − xj | ,

where again α is the fine-structure constant. For α = 0 the kinetic energy of the j-th electron
is −1

2∆.
Here we have set N = Z =

∑M
k=1 Zk so that the molecule is neutral. In particular, this

means that Z must be an integer. From now on we study the operator H(Z,R;α). This
operator acts as an unbounded operator on the anti-symmetric tensor product,

∧Z L2(R3×
{−1, 1}), where ±1 refers to the spin variables. We are interested in the ground state energy

E(Z,R;α) = inf σ
(
H(Z,R;α)

)
,

and, in particular, in an asymptotic expansion of this when Z →∞.
The ground state energy E(Z,R;α) is finite if maxk{Zkα} ≤ 2/π, but E(Z,R;α) = −∞

if maxk{Zkα} > 2/π (see [12, 23])1. This is the relativistic instability discussed above.
Therefore we must require the atomic numbers to be smaller than or equal to 2/(πα) which
is approximately 87. This is of course in contradiction with the experimental fact that larger
stable atoms exist and is one reason why our model can only be qualitatively correct. (We
want to emphasise that the instability we are discussing here is not the nuclear instability
causing atoms larger than atomic number 92 to be unstable. The relativistic instability we
discuss here is only believed to manifest itself for atomic numbers greater than 137.)

The true energy of the molecule should include the nuclear-nuclear repulsion. Since the
nuclei are considered fixed here the nuclear-nuclear repulsion is simply a constant which we
have omitted.

As discussed above the leading asymptotics of E(Z,R;α) will be independent of the rel-
ativistic parameter α. It will be given by what is called Thomas-Fermi theory. The seminal
contribution by Lieb and Simon [21] was to put Thomas-Fermi theory on a solid mathemat-
ical foundation and to prove that in the non-relativistic case the Thomas-Fermi energy of a
molecule is indeed the correct leading asymptotic energy for the true ground state energy
as Z →∞. This is the result that was generalized to our relativistic model in [25].

The main result of this paper is the following asymptotic result on the ground state
energy.

Theorem 1 (Relativistic Scott correction). Let z = (z1, . . . , zM ) with z1, . . . , zM > 0,∑M
k=1 zk = 1, and r = (r1, . . . , rM ) ∈ R3M with mink 6=ℓ |rk − rℓ| > r0 for some r0 > 0

be given. Define Z = (Z1, . . . , ZM ) = Zz and R = Z−1/3r. Then there exist a constant
ETF(z, r) and a universal (independent of z, r and M) continuous, non-increasing function
S : [0, 2/π] → R with S(0) = 1/4 such that as Z =

∑M
k=1 Zk → ∞ and α → 0 with

maxk{Zkα} ≤ 2/π we have

E(Z,R;α) = Z7/3ETF(z, r) + 2
M∑
k=1

Z2
kS(Zkα) +O(Z2−1/30) . (2)

1Here, and in the sequel, operators are defined as the Friedrichs extension for the corresponding form
sum, originally defined on C∞0 -functions (here, for instance,

VZ C∞0 (R3 × {−1, 1})).
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Here the error term means that |O(Z2−1/30)| ≤ CZ2−1/30, where the constant C only depends
on r0 and M . As before,

√−α−2∆ + α−4 − α−2 = −1
2∆ when α = 0.

Remark 2. A less detailed version of our result was announced in [35].

Remark 3. Several features of our result and its proof should be stressed:

(i) The constant ETF(z, r) is determined in Thomas-Fermi theory.
(ii) The fact that R = Z−1/3r is the relevant scaling of the nuclear coordinates may, as

we shall see, be understood from Thomas-Fermi theory.
(iii) A characterization of the function S is given explicitly in Corollary 6 below (see also

Lemma 25). Its continuity is proved in Theorem 4.
(iv) The asymptotic result is uniform in the parameters Zkα ∈ [0, 2/π], k = 1, . . . ,M .
(v) The result contains, as a special case, the non-relativistic situation Zkα = 0 and, in

particular, the non-relativistic limit is controlled due to the continuity of the function
S and the uniformity in the parameters Zkα. In order to get the non-relativistic limit
it is important that all estimates have the correct non-relativistic behavior. This is
an important issue in this work. Note that in the non-relativistic case the value
S(0) = 1/4 is explicitly known, whereas this is not the case for any other value. This
is because the eigenvalues of Hydrogen are explicitly known in the non-relativistic
case, but not in this relativistic case. The technique to prove a Scott-correction
without knowing explicitly the eigenvalues for the one-body Hydrogen(like) operator
was invented by Sobolev [33].

(vi) The proof of Theorem 1 does not rely on knowing the non-relativistic case, but treats
both the relativistic and non-relativistic case simultaneously.

(vii) The situation near the critical value Zkα = 2/π is understood since the function S
is continuous up to the critical value 2/π. This is, however, a less important point
since we do not know whether the model we study gives a good description near the
critical value.

The Scott correction was predicted by Scott [29] to be the first correction to the
Thomas-Fermi energy. In the non-relativistic setting, this was mathematically established
by Hughes [13], Siedentop and Weikard [30, 31, 32] for atoms (and by Bach [2] for ions) and
later by Ivrĭı and Sigal [15] for molecules. Later a different proof was given by two of us for
molecules [36]. Based on methods in [15], Balodis Matesanz [3] gave a proof for the Scott
correction of matter. The Scott correction for operators with magnetic fields was studied by
Sobolev [33, 34] (in the non-interacting case).

In [9], Fefferman and Seco derived rigorously the second correction to Thomas-Fermi the-
ory for atoms, which is of the order Z5/3. This was predicted by Dirac [7] and Schwinger [28].
It is apparently still an open problem to prove this for molecules and to find the relativistic
correction to this order.

The main approach to proving the energy asymptotics for large atoms and molecules goes
back to Lieb and Simon [21] and is to use semi-classical estimates. The Z-scaling makes it
possible to relate the many-body problem to a one-body spectral problem, which may be
treated semi-classically, where the semi-classical parameter is h = Z−1/3. Here, several
techniques have been developed. Lieb and Simon used Dirichlet–Neumann bracketing. This
is however not refined enough to get beyond the leading term. The Weyl calculus [26] is
the most advanced and precise method as far as optimal semi-classical error estimates are
concerned, but it also will not directly give the Scott correction. Ivrĭı and Sigal [15] used
Fourier intergral operator techniques to establish the non-relativistic Scott correction for
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molecules. Hughes and Siedentop–Weikard used methods that were designed particularly
for spherically symmetric models, i.e., the atomic case.

A simple method, which is particularly well adapted to many-body problems is that of
coherent states. It was pioneered by Lieb [16] and Thirring [37] to give very short proofs
that Thomas-Fermi theory is correct to leading order. It is one of our major contributions
here to use an improved calculus of coherent states as developed by two of us in [36] to the
relativistic setting.

One feature of our work is that we give a general semi-classical estimate for relativistic
one-body operators for potentials with singularities such as the Thomas-Fermi potential
(see Theorem 4 below). This is derived by first proving a localised semi-classical estimate
for potentials with some smoothness (see Theorem 32). The proof here is not much different
from the one presented in [36] for non-relativistic Schrödinger operators. We do not claim
that our error estimates are sharp given the regularity we assume on the potential, but only
that they are sufficient to prove the Scott correction. In this connection we point out that
in order to prove the Scott correction it is enough that the error relative to the leading term
is smaller by more than one power of the semi-classical paramter h. In our case the relative
error in Theorem 32 is h6/5.

The relativistic kinetic energy is more cumbersome to work with than the Laplace operator
and large parts of the rest of our proof from [36] have to be done differently. A main issue
is to be able to localise into separate regions. Since the relativistic kinetic energy is a non-
local operator, localisation estimates are more involved than in the non-relativistic setting.
The philosophy is that localisation errors should behave as if we were working with non-
relativistic local error terms up to some exponentially small tails (see Theorem 14).

The proof of the main theorem presented in Section 3 is based on the general semi-classical
estimate Theorem 4 and the use of a correlation estimate (see Theorem 17) to reduce to the
one-body problem.

After we had announced our results in [35], Frank, Siedentop, and Warzel [11] found a
proof for the atomic case based on the method of Siedentop and Weikard [30, 31, 32], also
[10] for the model studied in [4]. This approach seems to be restricted to the spherical case.
This work does also not, contrary to the present work, make any special treatment of the
non-relativistic limit or the continuity of the function S.

1.1. Main semi-classical result. We consider the semi-classical approximation for the
relativistic operator

Tβ(−ih∇)− V (x̂) ,

where

Tβ(p) =

{ √
β−1p2 + β−2 − β−1 , β ∈ (0,∞)

1
2p

2 , β = 0
. (3)

We will consider potentials V : R3 → R with Coulomb singularities of the form zk|x−rk|−1,
k = 1, . . . ,M , at points r1, . . . , rM ∈ R3 and with charges 0 < z1, . . . , zM ≤ 2/π. Define

dr(x) = min
{|x− rk|

∣∣ k = 1, . . . ,M
}
, r = (r1, . . . , rM ) ∈ R3M . (4)

We assume that for some µ ≥ 0 the potential V satisfies∣∣∂η(V (x) + µ
)∣∣ ≤ { Cη,µdr(x)−1−|η| if µ 6= 0

Cη min{dr(x)−1, dr(x)−3} dr(x)−|η| if µ = 0
(5)
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for all x ∈ R3 with dr(x) 6= 0 and all multi-indices η with |η| ≤ 3, and∣∣V (x)− zk|x− rk|−1
∣∣ ≤ Cr−1

min + C (6)

for |x−rk| < rmin/2 where rmin = mink 6=ℓ |rk−rℓ|. Note, in particular, that the Thomas-Fermi
potential V TF(z, r, ·) discussed in (35) below satisfies these requirements, by Theorem 20.
So does the potential V (x) = 2

π|x| − 1 (with M = 1, r0 = 0, and dr(x) = |x|).
The main new result in this section is the relativistic Scott correction to the semi-classical

expansion for potentials of this form. It will be proved in Section 4 below. The power −3 in
(5) is not optimal.

Theorem 4 (Scott-corrected relativistic semi-classics). There exists a continuous,
non-increasing function S : [0, 2/π] → R with S(0) = 1/4, such that for all h > 0, 0 ≤ β ≤
h2, Tβ as in (3), and all potentials V : R3 → R satisfying (5) and (6) with rmin > r0 > 0
and max{z1, . . . , zM} ≤ 2/π, we have∣∣∣Tr

[
Tβ(−ih∇)− V (x̂)

]
− − (2πh)−3

∫ [
1
2p

2 − V (v)
]
− dvdp− h−2

M∑
k=1

z2
kS(β1/2h−1zk)

∣∣∣
≤ Ch−2+1/10 . (7)

Here, [x]− = min{x, 0}. The constant C > 0 depends only on M , r0, µ and the other
constants in (5) and (6).

Moreover, we can find a density matrix γ, whose density ργ satisfies (with ‖ · ‖6/5 the
L6/5-norm) ∣∣∣∣∫ ργ(x) dx− 21/2(3π2)−1h−3

∫
|V (x)−|3/2 dx

∣∣∣∣ ≤ Ch−2+1/5 (8)

and ∥∥ργ − 21/2(3π2)−1h−3|V−|3/2
∥∥

6/5
≤ Ch−2−1/10 , (9)

such that

Tr
[
(Tβ(−ih∇)− V (x̂))γ

] ≤ (2πh)−3

∫ [
1
2p

2 − V (v)
]
− dvdp+ h−2

M∑
k=1

z2
kS(β1/2h−1zk)

+ Ch−2+1/10 . (10)

Remark 5. The term proportional to h−2 is called the Scott correction. If β = h2 then it
only depends on the charges zk, k = 1, . . . ,M , of the Coulomb-singularities. Notice that the
function in the semi-classical integral is the non-relativistic energy. This is also the reason
why the leading Thomas-Fermi energy is independent of β.

Applying this theorem to the potential V (x) = 2
π|x| − 1 (which satisfies (5) and (6) with

M = 1, r0 = 0, and dr(x) = |x|), and using a simple scaling argument, gives the following
explicit characterization of the function S in Theorem 4 (see details in Lemma 27 in Section 4
below).

Corollary 6 (Characterization of the Scott-correction S). The function S satisfies,
uniformly for α ∈ [0, 2/π],

S(α) = lim
κ→0

(
Tr
[
HC + κ

]
− − (2π)−3

∫ [
1
2p

2 − |v|−1 + κ
]
− dpdv

)
, (11)
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where

HC(α) =

{√−α−2∆ + α−4 − α−2 − |x̂|−1 , α ∈ (0, 2/π]
− 1

2∆− |x̂|−1 , α = 0
. (12)

Remark 7. Another characterization of the function S is given in Lemma 25 in Section 4
below.

Remark 8. The result in Corollary 6 was proved in [24, Theorem 7.4], but only pointwise
and only for α ∈ (0, 2/π).

2. Preliminaries

2.1. Analytic tools. We recall here the main analytic tools which we use throughout this
paper. We do not prove all of them here but give the standard references. Various constants
are denoted by the same letter C although its value may change from one line to the next.

Let p ≥ 1, then a complex-valued function f (and only those will be considered here) is
said to be in Lp(Rn) if the norm ‖f‖p =

(∫ |f(x)|p dx)1/p is finite. We denote by 〈 , 〉 the
inner product on L2(Rn); it is linear in the second and anti-linear in the first entry. For
any 1 ≤ p ≤ t ≤ q ≤ ∞ we have the inclusion Lp ∩ Lq ⊂ Lt, since by Hölder’s inequality
‖f‖t ≤ ‖f‖λp‖f‖1−λ

q with λp−1 + (1 − λ)q−1 = t−1. We denote by f̂ the Fourier transform
of f ∈ L2(Rn), given by f̂(p) = (2π)−n/2

∫
e−ix·pf(x) dx for Schwartz functions on Rn, and

extended by continuity to L2(Rn).
We denote x− = min{x, 0}, and let χA be the characteristic function of the set A; we

write χ = χ(−∞,0] for the characteristic function of (−∞, 0]. We call γ a density matrix on
L2(Rn) if it is a trace class operator on L2(Rn) satisfying the operator inequality 0 ≤ γ ≤ 1.
The density of a density matrix γ is the L1-function ργ such that Tr(γθ) =

∫
ργ(x)θ(x)dx

for all θ ∈ C∞0 (Rn) considered as a multiplication operator.
We also need an extension to many-particle states. Let ψ ∈⊗N L2(R3 × {−1, 1}) be an

N -body wave-function. Its one-particle density ρψ is defined by

ρψ(x) =
N∑
j=1

∑
s1=±1

· · ·
∑

sN=±1

∫
|ψ(x1, s1, . . . , xN , sN )|2 δ(xj − x) dx1 · · · dxN .

The following two inequalities we recall are crucial in many of our estimates. They serve
as replacements for the Lieb-Thirring inequality [22] used in the non-relativistic case.

Theorem 9 (Daubechies inequality). One-body case: Let m > 0, f(u) =
√
u2 +m2−

m, and F (s) =
∫ s
0 [f−1(t)]n dt, where f−1 denotes the inverse function of f . Assume that

V ∈ L1
loc(Rn), and let −∆ be the Laplacian in Rn. Then

Tr
[√−∆ +m2 −m+ V (x̂)

]
− ≥ − C

∫
F
(|V (x)−|

)
dx , (13)

where x− = min{x, 0}, and C is some positive constant.
Many-body case: Let ψ ∈ ∧N L2(R3×{−1,+1}) and let ρψ = ρ be its one-particle density.
Then 〈

ψ,
N∑
j=1

[√−∆j +m2 −m
]
ψ
〉
≥
∫
G[ρ(x)] dx , (14)
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where (with C0 = 0.326)

G(ρ) = (3/8)m4C0g[(ρ/C0)1/3m−1]−mρ , (15)

with g(t) = t(1 + t2)1/2(1 + 2t2)− log[t+ (1 + t2)1/2].

The asymptotic behaviour of G for small, respectively large ρ is given by

G(ρ) ∼
ρ→0

(3/10m)C−2/3
0 ρ5/3 , G(ρ) ∼

ρ→∞ (3/4)C−1/3
0 ρ4/3 . (16)

By a simple scaling, and using the definition of T and (16), respectively, we see that

Tr
[√−α−2∆ +m2α−4 −mα−2 + V (x̂)

]
− (17)

≥ − Cmn/2

∫
|V (x)−|1+n/2 dx− Cαn

∫
|V (x)−|1+n dx ,

and〈
ψ,

N∑
j=1

[√−α−2∆j +m2α−4 −mα−2
]
ψ
〉
≥ C

∫
min{m−1ρ(x)5/3, α−1ρ(x)4/3} dx . (18)

Both (17) and (18) also holds for α = 0, where we let
√−α−2∆ +m2α−4−mα−2 = −∆/2m,

when α = 0. The original proofs of the inequalities (13) and (14) can be found in [6] (for
α = 0, in [22]).

Theorem 10 (Lieb-Yau inequality). Let n = 3. Let C > 0 and R > 0 and let

HC,R =
√−∆− 2

π|x̂| − C/R . (19)

Then, for any density matrix γ and any function θ with support in BR = {x | |x| ≤ R} we
have that

Tr
[
θ̄γθHC,R

] ≥ −4.4827C4R−1{3/(4πR3)
∫
|θ(x)|2 dx} . (20)

Note that when θ = 1 on BR then the term inside the brackets {} equals 1.
We will need the following new operator inequality. The proof can be found in Appendix A.

Theorem 11 (Critical Hydrogen inequality). Let n = 3. For any s ∈ [0, 1/2) there
exists constants As, Bs > 0 such that

√−∆− 2
π|x̂| ≥ As(−∆)s −Bs . (21)

We also use the following standard notation for the Coulomb energy,

D(f) = D(f, f) = 1
2

∫
f(x) |x− y|−1f(y) dxdy .

Theorem 12 (Hardy-Littlewood-Sobolev inequality). There exists a constant C such
that

D(f) ≤ C ‖f‖2
6/5 . (22)

The sharp constant C has been found by Lieb [18]; see also [19]. It can be shown by
Fourier transformation that f 7→ √

D(f) is a norm. This fact will play a role in the proof
of the upper bound in our main Theorem 1.

In order to localise the relativistic kinetic energy we shall use the equivalent of the IMS-
formula for the operator −∆/2m. In the sequel, as before,

√−α−2∆ +m2α−4 − mα−2 =
−∆/2m, when α = 0.
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Theorem 13 (Relativistic IMS formula). Let (θu)u∈M be a family of positive bounded
C1-functions on R3 with bounded derivatives, and let dµ be a positive measure on M such
that

∫
M θu(x)2 dµ(u) = 1 for all x ∈ R3. Then for any f ∈ H1/2(R3),

(f,
(√−α−2∆ +m2α−4 −mα−2

)
f) (23)

=
∫
M

(θuf,
(√−α−2∆ +m2α−4 −mα−2

)
θuf) dµ(u)− (f, Lf) ,

where the operator L is of the form

L =
∫
M
Lθu dµ(u) , (24)

with Lθu the bounded operator with kernel

Lθu(x, y) = (2π)−2m2α−3|x− y|−2K2(mα−1|x− y|)[θu(x)− θu(y)
]2
. (25)

Here, K2 is a modified Bessel function of the second kind. For α = 0, Lθu is multiplication
by (∇θu)2/2m, where

√−α−2∆ +m2α−4 −mα−2 = −∆/2m, when α = 0.

A proof (and the definition ofK2, and some of its properties) can be found in Appendix A.
The following bound on the localisation error will be crucial.

Theorem 14 (Localisation error). Let Ω ⊂ R3 and ℓ > 0. Let θ be a Lipschitz continuous
function satisfying 0 ≤ θ ≤ 1, dist(Ωc, supp∇θ) ≥ ℓ, and θ is constant on Ωc.

Then for all m > 0, α ≥ 0 there exists a positive operator Qθ such that the following
operator inequality holds:

Lθ ≤ C m−1‖∇θ‖2
∞χΩ +Qθ, (26)

with
Tr[Qθ] ≤ Cmα−2ℓ−1e−mα

−1ℓ‖∇θ‖2
∞|Ω| , (27)

for a constant C > 0, independent of m,α, ℓ, θ, and Ω. Here, χΩ and |Ω| are the character-
istic function and the volume, respectively, of the set Ω. For α = 0, Qθ ≡ 0.

A proof can be found in Appendix A. Note that the first term, Cm−1‖∇θ‖2∞χΩ, on the
right side of (26) is similar to the error in the non-relativistic IMS formula for the operator
−∆/2m, except in this case one has ‖∇θ‖2∞χsupp∇θ/2m as the only error.

When localising, we shall make use of the following.

Theorem 15 (Partition of Rn). Consider ϕ ∈ C∞0 (Rn) with support in the unit ball
{|x| ≤ 1} and satisfying

∫
ϕ(x)2 dx = 1. Assume that ℓ : Rn → R is a C1-map satisfying

0 < ℓ(u) ≤ 1 and ‖∇ℓ‖∞ < 1. Let J(x, u) be the Jacobian of the map u 7→ x−u
ℓ(u) , i.e.,

J(x, u) = ℓ(u)−n
∣∣∣ det

[(xi − ui)∂jℓ(u)
ℓ(u)

+ δij

]
ij

∣∣∣ .
We set ϕu(x) = ϕ

(
x−u
ℓ(u)

)√
J(x, u) ℓ(u)n/2. Then, for all x ∈ Rn,∫

Rn

ϕu(x)2 ℓ(u)−n du = 1 , (28)

and for all multi-indices η ∈ Nn we have

‖∂ηϕu‖∞ ≤ ℓ(u)−|η|Cη max
|ν|≤|η|

‖∂νϕ‖∞ , (29)

where Cη depends only on η.
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This is Theorem 22 in [36].
We will consider potentials V : R3 → R with Coulomb singularities of the form zk|x −

Rk|−1, k = 1, . . . ,M , at points R1, . . . , RM ∈ R3 and with charges 0 < z1, . . . , zM ≤ 2/π.
Recall that (see (4); replace r by R)

dR(x) = min
{|x−Rk|

∣∣ k = 1, . . . ,M
}
, R = (R1, . . . , RM ) ∈ R3M . (30)

To treat such potentials we will need the following combination of Theorems 9 and 10. The
proof can be found in Appendix A.

Theorem 16 (Combined Daubechies-Lieb-Yau inequality). Let R1, . . . , RM ∈ R3,
and assume W ∈ L1

loc(R3) satisfies

W (x) ≥ − ν

dR(x)
− Cνmα−1 when dR(x) < αm−1, (31)

with αν ≤ 2/π and m > 0, α ≥ 0, and dR as in (30). Assume also that the minimal distance
between nuclei satisfies mink 6=ℓ |Rk −Rℓ| > 2αm−1. Then

Tr
[√−α−2∆ +m2α−4 −mα−2 +W (x̂)

]
−

≥ − Cν5/2α1/2m− Cm3/2

∫
dR(x)>αm−1

|W (x)−|5/2 dx− Cα3

∫
dR(x)>αm−1

|W (x)−|4 dx , (32)

where as before
√−α−2∆ +m2α−4 −mα−2 = −∆/2m, when α = 0.

Finally, we come to the two inequalities which bound the many-body ground state energy
in terms of a corresponding one-body energy.

Theorem 17 (Correlation inequality). Let ρ : R3 → R be non-negative with D(ρ) <∞
and let Φ : R3 → R be a spherically symmetric, non-negative function with support in the
unit ball such that

∫
Φ(x) dx < ∞. For s > 0, let Φs(x) = s−3Φ(x/s). Then, for some

constant C independent of N and s, we have2

∑
1≤i<j≤N

|xi − xj |−1 ≥
N∑
j=1

(ρ ∗ |x|−1 ∗ Φs)(xj)−D(ρ)− CNs−1 . (33)

The proof can be found in Appendix A.

Theorem 18 (Lieb’s Variational Principle). Let γ be a density matrix on L2(R3) sat-
isfying 2Trγ = 2

∫
ργ(x) dx ≤ Z (i.e., less than or equal to the total number of electrons)

with kernel ργ(x) = γ(x, x). Then

E(Z,R;α) ≤ 2Tr
[(√−α−2∆ + α−4 − α−2 − V (Z,R, x̂)

)
γ
]
+D(2ργ) . (34)

The factors 2 above are due to the spin degeneracy, see [17].

2We denote convolution by ∗, i.e., (f ∗g)(x) =
R
f(y)g(x−y) dy. We also abuse notation and write ρ∗|x|−1

instead of
`
ρ ∗ | · |−1

´
(x).



THE RELATIVISTIC SCOTT CORRECTION FOR ATOMS AND MOLECULES 11

2.2. Thomas-Fermi theory. Consider z = (z1, . . . , zM ) ∈ RM
+ and r = (r1, . . . , rM ) ∈

R3M . Let 0 ≤ ρ ∈ L5/3(R3)∩L1(R3) then the (non-relativistic) Thomas-Fermi (TF) energy
functional, ETF, is defined as

ETF(ρ) = 3
10(3π2)2/3

∫
ρ(x)5/3 dx−

∫
V (z, r, x)ρ(x) dx+D(ρ) ,

where V is as in (1).
By the Hardy-Littlewood-Sobolev inequality the Coulomb energy, D(ρ), is finite for func-

tions ρ ∈ L5/3(R3)∩L1(R3) ⊂ L6/5(R3). Therefore, the TF-energy functional is well-defined.
Here we only state without proof the properties about TF-theory which we use throughout
the paper. The original proofs can be found in [21] and [16].

Theorem 19 (Thomas-Fermi minimizer). For all z = (z1, . . . , zM ) ∈ RM
+ and

r = (r1, . . . , rM ) ∈ R3M there exists a unique non-negative ρTF(z, r, x) such that∫
ρTF(z, r, x) dx =

∑M
k=1 zk and

ETF(ρTF) = inf
{ETF(ρ)

∣∣ 0 ≤ ρ ∈ L5/3(R3) ∩ L1(R3)
}
.

We shall denote by ETF(z, r) = ETF(ρTF) the TF-energy. Moreover, let

V TF(z, r, x) = V (z, r, x)− ρTF(z, r, ·) ∗ |x|−1 (35)

be the TF-potential, then V TF > 0 and ρTF > 0, and ρTF is the unique solution in L5/3(R3)∩
L1(R3) to the TF-equation:

V TF(z, r, x) = 1
2(3π2)2/3ρTF(z, r, x)2/3 . (36)

Very crucial for a semi-classical approach is the scaling behavior of the TF-potential. It
says that for any positive parameter h,

V TF(z, r, x) = h4V TF(h−3z, hr, hx) , (37)

ρTF(z, r, x) = h6ρTF(h−3z, hr, hx) , (38)

ETF(z, r) = h7ETF(h−3z, hr) . (39)

By hr we mean that each coordinate is scaled by h, and likewise for h−3z and hx. By
the TF-equation (36), the equations (37) and (38) are obviously equivalent. Notice that
the Coulomb-potential (the potential V in (1)) has the claimed scaling behavior. The rest
follows from the uniqueness of the solution of the TF-energy functional.

We shall now establish the crucial estimates that we need about the TF-potential. For
each k = 1, . . . ,M we define the function

Wk(z, r, x) = V TF(z, r, x)− zk|x− rk|−1 . (40)

The function Wk can be continuously extended to x = rk.
The first estimate in the next theorem is very similar to a corresponding estimate in [15]

(recall that the function dr was defined in (4)).

Theorem 20 (Estimate on V TF). Let z = (z1, . . . , zM ) ∈ RM
+ and r = (r1, . . . , rM ) ∈

R3M . For all multi-indices η ∈ N3 and all x with dr(x) 6= 0 we have∣∣∂ηxV TF(z, r, x)
∣∣ ≤ Cη min{dr(x)−1, dr(x)−4} dr(x)−|η| , (41)

where Cη > 0 is a constant which depends on η, z1, . . . , zM , and M .
Moreover, for |x− rk| < rmin/2, where rmin = mink 6=ℓ |rk − rℓ|, we have

− C ≤Wk(z, r, x) ≤ Cr−1
min + C , (42)
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where the constants C > 0 here depend on z1, . . . , zM , and M .

Corollary 21 (Estimate on ρTF ∗ |x|−1 ∗ (δ0 − Φt)). Let Φ : R3 → R be a spherically
symmetric, positive function with support in the unit ball and integral 1, and for t > 0, let
Φt(x) = t−3Φ(x/t). If ρTF(x) = ρTF(z, r, x) then

0 ≤ ρTF ∗|x|−1−ρTF ∗|x|−1 ∗Φt ≤
{
C tmin{dr(x)−1/2, dr(x)−2} for dr(x) ≥ 2t

C t1/2 for dr(x) < 2t
(43)

with the function dr from (4), and some constant C > 0 depending on z1, . . . , zM , and M .

For the proof of (41) and (42) we refer to [36]. (Note that in [36] it is claimed that
Wk(z, r, x) ≥ 0. This is not correct, but the proof in [36] does give that Wk(z, r, x) ≥ −C.)
The proof of (43) can be found in Appendix A.

Remark 22. As is seen from the proofs in [36] and in Appendix A, the constants in
Theorem 20 and Corollary 21 only depend on z0 > 0 when z1, . . . , zM ∈ (0, z0].

The relation of Thomas-Fermi theory to semi-classical analysis is that the semi-classical
density of a gas of non-interacting (non-relativistic) electrons moving in the Thomas-Fermi
potential V TF is simply the Thomas-Fermi density. More precisely, the semi-classical approx-
imation to the density of the projection onto the eigenspace corresponding to the negative
eigenvalues of the Hamiltonian −1

2∆− V TF is

2
∫

1
2
p2−V TF(z,r,x)≤0

dp

(2π)3
= 23/2(3π2)−1(V TF)3/2(z, r, x) = ρTF(z, r, x) . (44)

Here the factor two on the very left is due to the spin degeneracy. Similarly, the semi-
classical approximation to the energy of the gas, i.e., to the sum of the negative eigenvalues
of −1

2∆− V TF, is

2
∫ [

1
2p

2 − V TF(z, r, x)
]
−
dxdp

(2π)3
= − 4

√
2

15π2

∫
V TF(z, r, x)5/2 dx

= ETF(z, r) +D
(
ρTF(z, r, ·)) . (45)

Since (by Theorem 20) the Thomas-Fermi potential V TF(z, r, ·) in (35) satisfies (5) and (6)
(uniformly for z1, . . . , zM ∈ (0, 2/π]; see Remark 22), Theorem 4 implies that the density
given in (44) and the energy given in (45) are the leading order terms also for the relativistic
gas, i.e., for the operator Tβ(−ih∇)−V TF, 0 ≤ β ≤ h2, with Tβ as in (3). That the Thomas-
Fermi energy is correct to leading order for Th2(−ih∇)−V TF was proved in [25]. Theorem 4
establishes the first correction—the Scott correction—to the leading order.

3. Proof of the relativistic Scott correction for the molecular ground
state energy

In this section we prove Theorem 1. Except for the correlation inequality we proceed
in exactly the same manner as in the non-relativistic case [36]. In [36] correlations were
controlled by the Lieb-Oxford inequality [20]. Applying this inequality, correlations can be
estimated by the integral

∫
ρ4/3 involving the electronic density ρ. Using the non-relativistic

Lieb-Thirring inequality such an integral can be seen to be of lower order than the total
energy. In the present relativistic case the Daubechies inequality (14) a priori only allows
us to conclude that the integral

∫
ρ4/3 is of the same order as the total energy. We therefore

follow a different strategy.
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Proof of Theorem 1 (Lower bound). Let ψ be a (normalised) ground state wave function
and let s > 0. We will use the correlation inequality (33) with ρ(x) = ρTF(Z,R, x). Let Φs

be a function as in Theorem 17. We shall choose s = Z−5/6.
As above (see (4)) we have dr(x) = min

{|x − rk|
∣∣ k = 1, . . . ,M

}
. Note that for the

physical positions of the nuclei we then have

dR(x) = min
{|x−Rk|

∣∣ k = 1, . . . ,M
}

= Z−1/3dr(Z1/3x) .

From the estimate in (43) with t = Z1/3s we obtain from the Thomas-Fermi scaling (38)
that ∣∣ρTF(Z,R, ·) ∗ |x|−1 − ρTF(Z,R, ·) ∗ |x|−1 ∗ Φs(x)

∣∣ ≤ CZ3/2s(g(x) + Z1/6) ,

where

g(x) =


(2s)−1/2 if dR(x) < 2s
dR(x)−1/2 if 2s ≤ dR(x) ≤ Z−1/3

0 if Z−1/3 < dR(x)
.

We find from the correlation estimate (Theorem 17) that〈
ψ,H(Z,R;α)ψ

〉
≥

Z∑
j=1

〈
ψ,
[√−α−2∆j + α−4 − α−2 − V (Z,R, x̂j)

]
ψ
〉

+
〈
ψ,

Z∑
j=1

(
ρTF(Z,R, ·) ∗ |x|−1 ∗ Φs)(x̂j)ψ

〉−D
(
ρTF(Z,R, ·))− Cs−1Z

≥ 2Tr
[√−α−2∆ + α−4 − α−2 − V TF(Z,R, x̂)− CZ3/2sg(x̂)

]
− −D

(
ρTF(Z,R, ·))

− CsZ8/3 − Cs−1Z . (46)

To control the error term with g above we shall use the combined Daubechies-Lieb-Yau
inequality (Theorem 16) to estimate

εTr
[√−α−2∆ + α−4 − α−2 − V TF(Z,R, x̂)− Cε−1Z3/2sg(x̂)

]
−

for some 0 < ε < 1 which we will choose to be ε = Z−1/2. We use Theorem 16 with m = 1
and ν = maxk Zk. Then by assumption να ≤ 2/π. We must also check that the assumption
(31) is satisfied, i.e., that for dR(x) < α we have

− V TF(Z,R, x)− Cε−1Z3/2sg(x) ≥ − ν

dR(x)
− Cνα−1 .

This follows from the definition of g and the estimate on the TF potential in (42) together
with the Thomas-Fermi scaling (37) if

1
2α < s < C(νZ−1)2(Zα)−2ε2Z, r−1

min + 1 < C(νZ−1)(Zα)−1Z2/3,

which, for Z large enough, is a consequence of the assumptions in the theorem and the
choices of ε and s. Note, in particular, that νZ−1 = maxk zk ≥ M−1 (since

∑
k zk = 1)

and by assumption Zα ≤ mink 2/(πzk) ≤ 2M/π. The constants C above depend only on
z1, . . . , zM , and M .

According to the Thomas-Fermi estimate (41), the Thomas-Fermi scaling (37), the defi-
nition of g, and the choices of s and ε we have

V TF(Z,R, x) + Cε−1Z3/2sg(x) ≤ Cmin{dR(x)−4, ZdR(x)−1} .
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Thus the combined Daubechies-Lieb-Yau inequality gives, since ν ≤ Z and Zα ≤ 2M/π,
that

εTr
[√−α−2∆ + α−4 − α−2 − V TF(Z,R, x̂)− Cε−1Z3/2sg(x̂)]−

≥ − CεZ2 − Cε

∫ (
min{dR(x)−4, ZdR(x)−1})5/2dx

− Cεα3

∫
dR(x)>α

(
min{dR(x)−4, ZdR(x)−1})4dx

≥ − Cε(Z2 + Z7/3) ≥ − CεZ7/3 .

We return to the main term in (46). Using the Thomas-Fermi scaling property (37) and
replacing x by Z−1/3x we arrive at

Tr
[√−α−2∆ + α−4 − α−2 − V TF(Z,R, x̂)

]
−

= Z4/3κ−1 Tr
[√−β−1h2∆ + β−2 − β−1 − κV TF(z, r, x̂)]− ,

where we have chosen

κ = min
k

2
πzk

≥ Zα , h = κ1/2Z−1/3 , β = Z4/3α2κ−1 . (47)

We shall use β and h as the semi-classical parameters when we apply Theorem 4. It is
therefore important that β ≤ h2. This follows since β−1h2 = (Zα)−2κ2 ≥ 1. Note also that
2/π ≤ κ ≤ 2M/π since zk ≤ 1, k = 1, . . . ,M , and

∑
k zk = 1.

Putting this together with the estimate above into (46) we obtain (using the inequality
Tr[X+Y ]− ≥ Tr[X]−+Tr[Y ]− for operators X and Y bounded from below (with a common
core), and the choices of ε and s) that〈

ψ,H(Z,R;α)ψ
〉

≥ 2(1− ε)Z4/3κ−1 Tr
[√−β−1h2∆ + β−2 − β−1 − κV TF(z, r, x̂)

]
−

− CεZ7/3 − CsZ8/3 − Cs−1Z −D
(
ρTF(Z,R, ·))

≥ 2Z4/3κ−1 Tr
[√−β−1h2∆ + β−2 − β−1 − κV TF(z, r, x̂)

]
−

−D
(
ρTF(Z,R, ·))− CZ2−1/6 .

Now we apply the semi-classical result for potentials with Coulomb-like singularities from
Theorem 4 to κV TF(z, r, ·) (recall that 2/π ≤ κ ≤ 2M/π which ensures that the constants
in (5) and (6) are uniform in κ), and the calculation in (45). Then

2Z4/3κ−1 Tr
[√−β−1h2∆ + β−2 − β−1 − κV TF(z, r, x̂)

]
−

= Z7/3
(
ETF(z, r) +D

(
ρTF(z, r, ·)))+ 2

M∑
k=1

Z2
kS(Zkα) +O(Z2−1/30)

= ETF(Z,R) +D
(
ρTF(Z,R, ·))+ 2

M∑
k=1

Z2
kS(Zkα) +O(Z2−1/30) .

Note here that κ cancels in the leading semi-classical term and in the Scott-term (the term
with S). Also, 2/π ≤ κ ≤ 2M/π ensures that the error is uniform in κ. Here we have again
used the TF scaling ETF(Z,R) = Z7/3ETF(z, r) and D

(
ρTF(Z,R, ·)) = Z7/3D

(
ρTF(z, r, ·)).

This finishes the proof of the lower bound. �
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Proof of Theorem 1 (Upper bound). The starting point now is Lieb’s variational princi-
ple, Theorem 18. By a simple rescaling the variational principle states that for any density
matrix γ on L2(R3) with 2Trγ ≤ Z we have

E(Z,R;α) ≤ 2Z4/3 Tr
[(√−α−2Z−2∆ + α−4Z−8/3 − α−2Z−4/3 − V (z, r, x̂)

)
γ
]

+ Z7/3D(2Z−1ργ) .

As for the lower bound we bring the TF-potential into play:

Z−4/3E(Z,R;α) ≤ 2Tr
[(√−α−2Z−2∆ + α−4Z−8/3 − α−2Z−4/3 − V TF(z, r, x̂)

)
γ
]

+ ZD
(
2Z−1ργ − ρTF(z, r, ·))− ZD

(
ρTF(z, r, ·))

= 2κ−1 Tr
[(√−β−1h2∆ + β−2 − β−1 − κV TF(z, r, x̂)

)
γ
]

+ ZD
(
2Z−1ργ − ρTF(z, r, ·))− ZD

(
ρTF(z, r, ·)) , (48)

where κ, h, and β are chosen as in (47) in the proof of the lower bound. Note that with this
choice of h and κ we have from (36) that

21/2(3π2h3)−1(κV TF(z, r, x))3/2 = ZρTF(z, r, x)/2 .

We now choose a density matrix γ̃ according to Theorem 4 with V (x) = κV TF(z, r, x).
Since

∫
ρTF(z, r, x) dx =

∑M
k=1 zk = 1 we see from (8) that 2Trγ̃ ≤ Z(1 + CZ−1/3−1/15)

(recall that κ−1 ≤ π/2). Thus if we define γ = (1 + CZ−1/3−1/15)−1γ̃ we see that the
condition 2Trγ ≤ Z is satisfied.

Using the Hardy-Littlewood-Sobolev and (9) inequalities we find that

ZD
(
2Z−1ρeγ − ρTF(z, r, ·)) ≤ CZ−1

∥∥ρeγ − ZρTF(z, r, ·)/2∥∥2

6/5
≤ CZ2/3−4/15 ,

and thus

ZD
(
2Z−1ργ − ρTF(z, r, ·)) ≤ C(1 + CZ−1/3−1/15)−2ZD

(
2Z−1ρeγ − ρTF(z, r, ·))

+ CZ1/3−2/15D
(
ρTF(z, r, ·)) ≤ CZ2/3−4/15 , (49)

where we have used the triangle inequality for
√
D, and that D

(
ρTF(z, r, ·)) ≤ C.

Finally, if we use (10) and (45) we get as for the lower bound that

2Z4/3κ−1 Tr
[(√−β−1h2∆ + β−2 − β−1 − κV TF(z, r, x̂)

)
γ̃
]

≤ ETF(Z,R) +D
(
ρTF(Z,R, ·))+ 2

M∑
j=1

Z2
kS(Zkα) +O(Z2−1/30) .

Since ETF(Z,R) ≥ − CZ7/3 and D
(
ρTF(Z,R, ·)) ≥ 0 we see that the same estimate holds

for γ̃ replaced by γ. This together with D
(
ρTF(Z,R, ·)) = Z7/3D

(
ρTF(z, r, ·)), (48), and

(49) finishes the proof of the upper bound. �
The function S is continuous and non-increasing, and S(0) = 1/4, according to Theorem 4.
This finishes the proof of Theorem 1.

4. Relativistic semi-classics for potentials with Coulomb-like singularities

In this section we prove Theorem 4. The theorem will follow from using Theorem 23 below
(a rescaled version of the local semi-classical results for regular potentials in Theorem 32 in
Section 5 below). We localise (Theorem 13) the operator using multi-scale analysis (The-
orem 15), and control the localisation errors (Theorem 16). Near the singularities of the
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potential, we compare with the Coulomb potential. To be able to do this, we first prove a
Scott-corrected semi-classical result for a localised relativistic Hydrogen operator (Lemma 25
below). The ingredients of the proof of the latter are the same (rescaled semi-classics, local-
isation and multi-scale analysis, and estimating localisation errors).

Theorem 23 (Rescaled semi-classics). Let n ≥ 3 and let φ ∈ Cn+4
0 (Rn) be supported in a

ball Bℓ of radius ℓ > 0. Let V ∈ C3(Bℓ) be a real potential, and let Tβ(p) =
√
β−1p2 + β−2−

β−1 be the kinetic energy. Let Hβ = Tβ(−ih∇) + V (x̂), h > 0, and σβ(v, q) = Tβ(q) + V (v).
Then for all h, β, f > 0 with βf2 ≤ 1, we have∣∣∣∣Tr[φHβφ]− − (2πh)−n

∫
φ(v)2σβ(v, q)− dvdq

∣∣∣∣ ≤ Ch−n+6/5fn+4/5ℓn−6/5 , (50)

where the constant C is independent of β and depends only on

sup
|η|≤n+4

‖ℓ|η|∂ηφ‖∞ and sup
|η|≤3

‖f−2ℓ|η|∂ηV ‖∞ . (51)

Moreover, there exists a density matrix γ such that

Tr[γφHβφ] ≤ (2πh)−n
∫
φ(v)2σβ(v, q)− dvdq + Ch−n+6/5fn+4/5ℓn−6/5 . (52)

The density ργ satisfies∣∣∣ργ(x)− (2πh)−nωn|V−|n/2(2 + β|V−|)n/2(x)
∣∣∣ ≤ Ch−n+9/10fn−9/10ℓ−9/10 (53)

for (almost) all x ∈ Bℓ, and∣∣∣∣∫ φ(x)2ργ(x) dx− (2πh)−nωn
∫
φ(x)2|V−|n/2(2 + β|V−|)n/2(x) dx

∣∣∣∣
≤ Ch−n+6/5fn−6/5ℓn−6/5 , (54)

where ωn is the volume of the unit ball B1 in Rn. The constants C > 0 in the above estimates
again depend on the parameters as in (51).

Proof. We introduce the unitary scaling operator (Uψ)(x) = ℓ−n/2ψ(ℓ−1x). Then

U∗φ
[
Tβ(−ih∇) + V (x̂)

]
φU = f2φℓ

[
Tβf2(−ihf−1ℓ−1∇) + Vf,ℓ(x̂)

]
φℓ ,

where φℓ(x) = φ(ℓx), and Vf,ℓ(x) = f−2V (ℓx). Thus,

Tr[φHβφ]− = f2 Tr
[
φℓ
[
Tβf2(−ihf−1ℓ−1∇) + Vf,ℓ(x̂)

]
φℓ

]
−
.

Note that φℓ and Vf,ℓ are supported in a ball of radius 1 and that for all multi-indices η,

‖∂ηφℓ‖∞ = ‖ℓ|η|∂ηφ‖∞ and ‖∂ηVf,ℓ‖∞ = f−2‖ℓ|η|∂ηV ‖∞ .

Let σf,ℓ,β(u, q) = Tβf2(q) + Vf,ℓ(u). By Theorem 32 in Section 5 below there is a constant
C depending on the parameters as in (51) so that, as long as βf2 ≤ 1,∣∣∣∣Tr[φHβφ]− − (2πhf−1ℓ−1)−nf2

∫
φℓ(u)2σf,ℓ,β(u, q)− dudq

∣∣∣∣ ≤ Cf2(hf−1ℓ−1)−n+6/5 . (55)

A simple change of variables gives

(2πhf−1ℓ−1)−nf2

∫
φℓ(u)2σf,ℓ,β(u, q)− dudq = (2πh)−n

∫
φ(v)2σβ(v, q)− dvdq ,

and we have proved (50).
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Now, let γf,ℓ,β be the density matrix for φℓ
[
Tβf2(−ihf−1ℓ−1∇) + Vf,ℓ(x̂)

]
φℓ, which ac-

cording to Lemma 34 satisfies

f2 Tr
[
φℓ
[
Tβf2(−ihf−1ℓ−1∇) + Vf,ℓ(x̂)

]
φℓγf,ℓ,β

]
≤ (2πhf−1ℓ−1)−nf2

∫
φℓ(u)2σf,ℓ,β(u, q)− dudq + C(hf−1ℓ−1)−n+6/5 ,∣∣∣ργf,ℓ,β

(x)− (2πhf−1ℓ−1)−nωn|Vf,ℓ(x)−|n/2(2 + βf2|Vf,ℓ(x)−|)n/2(x)
∣∣∣

≤ C(hf−1ℓ−1)−n+9/10 ,∣∣∣∣∫ φℓ(x)2ργf,ℓ,β
(x) dx− (2πhf−1ℓ−1)−nωn

∫
φℓ(x)2|Vf,ℓ(x)−|n/2(2 + βf2|Vf,ℓ(x)−|)n/2 dx

∣∣∣∣
≤ C(hf−1ℓ−1)−n+6/5 .

The density matrix γ = Uγf,ℓ,βU
∗, whose density is ργ(x) = ℓ−nργf,ℓ,β

(x/ℓ), then satisfies
the properties in (52)–(54). �
Multi-scale Analysis. The rescaled semi-classics of Theorem 23 will be used in balls of
varying radius. This idea goes back to Ivrĭı [15, 14]. We introduce a variable scale ℓ and a
corresponding family of localisation functions {ϕu}u∈R3 , which will also be used in the proof
of Theorem 4.

Definition 24 (Scale for multi-scale analysis). Let 0 < ℓ0 < 1 be a parameter that we
shall choose explicitly below, and let r1, . . . , rM ∈ R3. Define

ℓ(x) = 1
2

(
1 +

M∑
k=1

(|x− rk|2 + ℓ20)
−1/2

)−1
. (56)

Note that ℓ is a smooth function (due to ℓ0) with

0 < ℓ(x) < 1/2 and ‖∇ℓ‖∞ < 1/2 . (57)

Note also that in terms of the function d ≡ dr from (4) we have
1
2(1 +M)−1ℓ0 ≤ 1

2(1 +M(d(x)2 + ℓ20)
−1/2)−1 ≤ ℓ(x) ≤ 1

2(d(x)2 + ℓ20)
1/2 . (58)

In particular, we have
ℓ(x) ≥ 1

2(1 +M)−1 min{d(x), 1} . (59)
We fix a localisation function ϕ ∈ C∞0 (R3) with support in {|x| < 1} and such that∫
ϕ(x)2 dx = 1. According to Theorem 15 we can find a corresponding family of func-

tions ϕu ∈ C∞0 (R3), u ∈ R3, where ϕu is supported in the ball {|x − u| < ℓ(u)}, with the
properties that ∫

R3

ϕu(x)2ℓ(u)−3 du = 1 and ‖∂ηϕu‖∞ ≤ Cℓ(u)−|η| , (60)

for all multi-indices η, where C > 0 depends only on η and ϕ. For d(u) > 2ℓ0 we have ℓ(u) ≤√
5d(u)/4 and hence for all x with |x− u| < ℓ(u) we have (note that d(u) ≤ d(x) + |x− u|

and
√

5/4 < 1) that
ℓ(u) < d(u) and d(u) ≤ Cd(x) . (61)

As a first step towards the Scott correction for Coulomb-type potentials we deal with
the Scott correction for a single relativistic Hydrogen atom. This method for proving the
existence of a Scott correction in the semi-classical expansion of the sum of eigenvalues
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of an operator with a (homogeneous) singular potential without explicitly knowing the
eigenvalues was first used by Sobolev [33] when studying (non-relativistic) operators with
magnetic fields.

Lemma 25 (Scott-corrected localised Hydrogen). There exists a non-increasing func-
tion S : [0, 2/π] → R, with S(0) = 1/4, such that, if φr(x) = φ(x/r), r ∈ (0,∞), with
φ ∈ C7(R3), 0 ≤ φ ≤ 1, satisfying

√
1− φ ∈ C1(R) and

φ(x) =
{

1 for |x| ≤ 1
0 for |x| ≥ 2 ,

then there exists C > 0 depending only on φ such that for all α ∈ [0, 2/π] and r ∈ (0,∞),∣∣∣∣Tr[φrHC(α)φr]− − (2π)−3

∫
φr(v)2

[
1
2q

2 − |v|−1
]
− dvdq − S(α)

∣∣∣∣ < Cr−1/10 , (62)

where

HC(α) =

{√−α−2∆ + α−4 − α−2 − |x̂|−1 , α ∈ (0, 2/π]
− 1

2∆− |x̂|−1 , α = 0
. (63)

As emphasised in Remark 5, the function in the semi-classical integral in (62) is the non-
relativistic energy. See also Lemma 27 below for an alternative description of the function
S.

Remark 26. A result similar to the one in Lemma 25 was proved in [24, Theorem 7.1], but
without uniform control in α and only for α ∈ (0, 2/π).

Proof of Lemma 25. We fix α ∈ [0, 2/π] and write HC = HC(α). We define for r > 0

Sr = Tr
[
φrHC(α)φr

]
− − (2π)−3

∫
φr(v)2

[
1
2q

2 − |v|−1
]
− dvdq . (64)

We will show that Sr has a limit as r →∞.
Let R > 2r. We estimate the difference between Tr[φRHCφR]− and Tr[φrHCφr]− semi-

classically. The leading semi-classical term involves the relativistic energy which is then
compared to the non-relativistic energy. Below all constants will depend only on φ and in
particular not on α ∈ [0, 2/π].

Denote ψr =
√

1− φ2
r . By the relativistic IMS formula (23),

HC = φrHCφr + ψrHCψr − Lφr − Lψr ,

where Lφr and Lψr are given by (24) and (25) (M = {1, 2}). We multiply with φR and get
that

φRHCφR = φrHCφr + φRψrHCψrφR − φR(Lφr + Lψr)φR .

We have used that φRφr = φr since R > 2r. Now, let γR = χ(φRHCφR) be the projection
onto the negative part of φRHCφR. Then, by the variational principle and Theorem 14 (with
m = 1, ℓ = r, Ω = B(0, 3r), and θ = φr and ψr, respectively),

Tr[φRHCφR]−
= Tr[γRφrHCφr] + Tr[γRφRψrHCψrφR] − Tr[γRφR(Lφr + Lψr)φR]

≥ Tr[γRφr(HC − Cr−2)φr] + Tr[γRφRψr(HC − Cr−2φ3r)ψrφR] (65)
− Cr−2 .
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Here, C is independent of α. We treat the part of the localisation error coming from the
first term in (65). We split HC = (1− ε)HC + εHC for some 0 < ε < 1 to be chosen and use
the second term to control the error term.

By Theorem 16 (with M = 1, R0 = 0, d(x) = |x|, m = 1 and ν = 1),

Tr[γRφr(εHC − Cr−2)φr]

= εTr
[
(φrγRφr)

{√−α−2∆ + α−4 − α−2 − (|x̂|−1 + Cr−2ε−1)
}]

≥ − Cε
(
α1/2 +

∫
α<|x|<2r

(|x|−1 + Cε−1r−2)5/2 dx+ α3

∫
α<|x|<2r

(|x|−1 + Cε−1r−2)4 dx
)

≥ − Cε
(
1 + r1/2 + ε−5/2r−2 + ε−4r−5) ,

assuming ε−1r−2 ≤ Cα−1 and using that α ≤ 2/π. We may choose ε = r−1 if we assume
that r > 1 (note that then indeed ε−1r−2 = r−1 < 1 ≤ 2α−1/π). We then obtain

Tr[γRφr(εHC − Cr−2)φr] ≥ − Cr−1/2.

As a result, we have shown that

Tr[φRHCφR]−
≥ (1− ε) Tr[γR φrHCφr] + Tr[γRφRψr(HC − Cr−2φ3r)ψrφR]− Cr−1/2

≥ Tr[φrHCφr]− + Tr[φRψr(HC − Cr−2φ3r)ψrφR]− − Cr−1/2 .

We will treat the term Tr[φRψr(HC − Cr−2φ3r)ψrφR]− by our semi-classical estimates
in Section 5 below. We first rescale. Define the unitary scaling operator (Uϕ)(x) =
R−3/2ϕ(R−1x). Then

H̃C : = U∗(HC − Cr−2φ3r)U

= R−1
(√−α−2∆ +R2α−4 −Rα−2 − |x̂|−1 − CRr−2φ3r/R(x̂)

)
= R−1

(
Tβ(−ih∇)− |x̂|−1 − CRr−2φ3r/R(x̂)

)
(66)

with β = α2R−1 (< R−1) and h = R−1/2. Let φR,r = φRψr = φR
√

1− φ2
r and ψ(x) =

φR,r(Rx) (see (3) for Tβ). In this way, φRψr(HC − Cr−2φ3r)ψrφR and ψH̃Cψ are unitarily
equivalent.

Now, let ℓ and ϕu be the functions in (56) and (60), respectively, when M = 1, r1 = 0,
and ℓ0 = h2 = R−1. By another relativistic IMS localisation we get that

ψH̃Cψ = R−1

∫
r/3R<|u|<5/2

ψϕu
(
Tβ(−ih∇)− |x̂|−1 − CRr−2φ3r/R(x̂)

)
ϕuψ ℓ(u)−3 du

−R−1

∫
r/3R<|u|<5/2

ψLϕuψ ℓ(u)
−3 du .

We have used that ψϕu = 0 for |u| 6∈ [r/3R, 5/2], since ℓ(u) ≤ 1
2(|u|2 + ℓ20)

1/2 (see (58)) and
suppψ ⊂ {r/R ≤ |x| ≤ 2}, suppϕu ⊂ {|x− u| ≤ ℓ(u)}.

Concerning Lϕu , Theorem 14 with ℓ = ℓ(u)/2, m = R, and Ω = Ωu = {|x−u| ≤ 3ℓ(u)/2}
gives

Lϕu ≤ CR−1ℓ(u)−2χΩu +Qϕu ,
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with

Tr[Qϕu ] ≤ CRα−1ℓ(u)−1e−α
−1Rℓ(u)/2 . (67)

Here we have used (60).
Notice that if the supports of ϕu and ϕu′ overlap then |u− u′| ≤ ℓ(u) + ℓ(u′) and thus

ℓ(u′) ≤ ℓ(u) + ‖∇ℓ‖∞(ℓ(u) + ℓ(u′)) . (68)

Therefore, since ‖∇ℓ‖∞ < 1/2, we have that ℓ(u′) ≤ Cℓ(u) and thus ℓ(u)−1 ≤ Cℓ(u′)−1.
Similarly, ℓ(u) ≤ Cℓ(u′), and so χΩu ≤ χ{|x−u|≤Cℓ(u′)} if the supports of ϕu and ϕu′ overlap.

Using this and (60) we get for all x ∈ R3

∫ (
ℓ(u)−2χΩu(x)

)
ℓ(u)−3 du =

∫ (
ℓ(u)−2χΩu(x)

) ( ∫
ϕ2
u′(x) ℓ(u

′)−3 du′
)
ℓ(u)−3 du

≤ C

∫
ϕu′(x)ℓ(u′)−2ϕu′(x) ℓ(u′)−3 du′. (69)

Rewriting the last integral with u as integration variable we get

ψH̃Cψ ≥ R−1

∫
ψϕu

(
Tβ(−ih∇)− |x̂|−1 − Ch2ℓ(u)−2

)
ϕuψ ℓ(u)−3 du

−R−1

∫
ψQϕuψ ℓ(u)

−3 du.

Here we have also used that Rr−2φ3r/R(x) ≤ Ch2ℓ(u)−2 for x in the support of ϕu. This
is a consequence of ℓ(u) ≤ 1

2 |u| + 1
2ℓ0 ≤ 1

2 |x|+ 1
2ℓ(u) + ℓ0 for x in the support of ϕu which

implies that ℓ(u) ≤ |x|+ ℓ0 ≤ Cr/R for x in the support of ϕu and φ3r/R.
We will now use Theorem 23 (with φ = ψϕu, ℓ = ℓ(u), Bℓ = {|x−u| ≤ ℓ(u)}, f = f(u) =

|u|−1/2) on

ψϕu
(
Tβ(−ih∇)− |x̂|−1 − Ch2ℓ(u)−2

)
ϕuψ ,

for u fixed with |u| ∈ [r/3R, 5/2]. We claim that

‖∂ηx(ψϕu)‖∞ ≤ Cηℓ(u)−|η| for all η ∈ N3 . (70)

This follows from (60), (61), and the estimate |∂ηψ(x)| ≤ Cη|x|−|η|. It suffices to check
the latter for 1 ≤ |x| ≤ 2 and r/R ≤ |x| ≤ 2r/R, due to the support properties of ψ.
Furthermore, for r > 3, |x|−1 + Ch2ℓ(u)−2 is smooth (as a function of x) on Bℓ (use (58),
ℓ0 = R−1, and |u| ≥ r/3R), and satisfies

sup
|x−u|<ℓ(u)

∣∣∂ηx(|x|−1 + Ch2ℓ(u)−2)
∣∣ ≤ Cηf(u)2ℓ(u)−|η| for all η ∈ N3 , (71)

with f(u) = |u|−1/2. For the Coulomb potential, this is trivial. For the other term, only the
statement for η = 0 is non-trivial; it follows from (59), h = R−1/2, and |u| ≥ r/3R. Finally,
the condition f(u)2β ≤ 1 is also satisfied (when r ≥ 3), since |u| ≥ r/3R and β < R−1.



THE RELATIVISTIC SCOTT CORRECTION FOR ATOMS AND MOLECULES 21

From Theorem 23 we conclude that

Tr[φRψr(HC − Cr−2φ3r)ψrφR]− = Tr[ψH̃Cψ]−

≥ R−1(2πh)−3

∫
r/3R<|u|<5/2

ψ(v)2ϕu(v)2
[
Tβ(q)− |v|−1 − Ch2ℓ(u)−2]− ℓ(u)−3 dudvdq

− CR−1h−2+1/5

∫
r/3R<|u|<5/2

f(u)4−1/5ℓ(u)−1−1/5 du

− R−1

∫
r/3R<|u|<5/2

Tr
[
ψQϕuψ

]
ℓ(u)−3 du .

Integrating the semi-classical error using f(u) = |u|−1/2, (59), and R > r gives the lower
bound −CR−1h−2+1/5(R/r)1/10 = − Cr−1/10.

From (67) it follows, using (59), α ≤ 2/π, and R > r, that

R−1

∫
r/3R<|u|<5/2

Tr
[
ψQϕuψ

]
ℓ(u)−3 du ≤ C

∫
r/3R<|u|<5/2

α−2e−α
−1Rℓ(u)/2ℓ(u)−3 du

≤ Cr−1e−r/8 .

Since suppϕu ⊂ {v | |u − v| ≤ ℓ(u)} and |u| ≤ 5/2 we have |v| ≤ |u| + ℓ(u) ≤ Cℓ(u) on
suppϕu. Using this, integrating in u (using (60)), we get

R−1(2πh)−3

∫
r/3R<|u|<5/2

ψ(v)2ϕu(v)2
[
Tβ(q)− |v|−1 − Ch2ℓ(u)−2]− ℓ(u)−3 dudvdq

≥ R−1 1
(2πh)3

∫
ψ(v)2

[√
β−1q2 + β−2 − β−1 − |v|−1 − Ch2|v|−2 ]− dvdq .

In order to compare this latter relativistic semi-classical expression with the non-
relativistic semi-classical one we use the inequality |x−−y−| ≤ |x−y| and a Taylor expansion
of
√
t2 + 1− 1 to arrive at∫ ∣∣∣[1

2q
2 − a

]
− − [

√
β−1q2 + β−2 − β−1 − a− b]−

∣∣∣ dq
≤ Cβ(β(a+ b)2 + 2(a+ b))7/2 + Cb(β(a+ b)2 + 2(a+ b))3/2 (72)

for all a, b > 0. This gives, using h2 = R−1 and β < R−1, that∣∣∣∣∫ ψ(v)2
([

1
2q

2 − |v|−1
]
− −

[√
β−1q2 + β−2 − β−1 − |v|−1 − Ch2|v|−2

]
−
)
dvdq

∣∣∣∣
≤ CR−1

∫
r/R<|v|<2

|v|−7/2 dv ≤ C(Rr)−1/2 , (73)

since R > r ≥ 1.
Thus undoing the scaling we arrive at

R−1(2πh)−3

∫
r/3R<|u|<5/2

ψ(v)2ϕu(v)2
[
Tβ(q)− |v|−1 − Ch2ℓ(u)−2]− ℓ(u)−3 dudvdq

≥ (2π)−3

∫
φR,r(v)2

[
1
2q

2 − |v|−1]− dvdq − Cr−1/10 .
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Summarizing, we have proved that there exists a constant C = C(φ), independent of α ∈
[0, 2/π], such that for r large enough, and R > 2r,

Tr[φRHCφR]−

≥ Tr[φrHCφr]− + (2π)−3

∫
φR,r(v)2

[
1
2q

2 − |v|−1]− dvdq − Cr−1/10 . (74)

Next, we want to bound Tr[φRHCφR]− from above by Tr[φrHCφr]− by constructing a
density matrix. To this end, we first set γr = χ(φrHCφr). Then we let γ̃u be the den-
sity matrix we get when we use Theorem 23 for the rescaled operator ψϕuH̃Cϕuψ (now
with H̃C = U∗HCU with U as in (66)), for fixed u with |u| ∈ [r/3R, 5/2], and set
γu = Uϕuγ̃uϕuU

∗. Finally, we define

γ = φrγrφr +
∫

r/3R<|u|<5/2

ψr γu ψr ℓ(u)−3 du . (75)

Since 0 ≤ γ̃ ≤ 1 and
∫
ϕ2
u(x)ℓ(u)

−3 du = 1,

0 ≤
∫
γu ℓ(u)−3 du ≤ 1 ,

and so we see, by multiplication with ψr on both sides, that 0 ≤ γ ≤ 1. Also, γ is trivially
trace class. By the variational principle we obtain that

Tr[φRHCφR]− ≤ Tr[φRHCφRγ]
= Tr

[
φRφrHCφrφR χ(φrHCφr)

]
+

∫
r/3R<|u|<5/2

Tr[ψrφRHCφRψrγu] ℓ(u)−3 du

≤ Tr[φrHCφr]− +
∫

r/3R<|u|<5/2

Tr[ψϕuH̃Cϕuψγ̃u] ℓ(u)−3 du .

Here we have used that φRφrHCφrφR = φrHCφr, since R > 2r, and again scaled the
operators inside the trace in the integrand. Using Theorem 23 we can bound the integral
from above by

R−1(2πh)−3

∫
ψ(v)2ϕu(v)2

[
Tβ(q)− |v|−1

]
−ℓ(u)

−3 dudvdq

+ CR−1h−2+1/5

∫
r/3R<|u|<5/2

f(u)4−1/5ℓ(u)−1−1/5 du .

As in the case of the lower bound, the error term is bounded by Cr−1/10.
Integrating with respect to u in the semi-classical expression above, changing back coor-

dinates, and using (73), we conclude that

Tr[φRHCφR]− ≤ Tr[φrHCφr]− + (2π)−3

∫
φR,r(v)2

[
1
2q

2 − |v|−1
]
− dvdq + Cr−1/10 . (76)
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Combining (74) and (76) we have shown that for R > 2r,∣∣SR − Sr
∣∣

≤
∣∣∣Tr[φRHCφR]− − Tr[φrHCφr]− + (2π)−3

∫ (
φr(v)2 − φR(v)2

) [
1
2q

2 − |v|−1
]
− dvdq

∣∣∣
≤ Cr−1/10 .

Hence, {Sn}n∈N is a Cauchy-sequence and with S = S(α) the limiting value we have∣∣Sr − S∣∣ ≤ Cr−1/10 .

This proves (62). That S is non-increasing follows from the fact that Tα2(p) (see (3)) is
decreasing in α. Finally, that S(0) = 1/4 is a well-known fact [36]. �
Proof of Theorem 4. Using the combined Daubechies-Lieb-Yau inequality (see Theorem 16)
with α = β1/2h−1(≤ 1) and m = h−2 we may assume that h is bounded by some constant,
which we may choose small depending on M and r0, using that zk ≤ 2/π, k = 1, . . . ,M ,
and that S is a bounded function (since it is non-increasing; see Lemma 25).

In order to control the region close to and far away from all the nuclei we introduce
localisation functions θ± ∈ C1(R) with the properties that 0 ≤ θ± ≤ 1 and

(1) θ2− + θ2
+ = 1,

(2) θ−(t) = 1 if t < 1 and θ−(t) = 0 for t > 2.
Let 0 < r < r0/4 and 0 < r0 < R and define Φ±(x) = θ±(d(x)/R) and φ±(x) = θ±(d(x)/r)
(with d = dr as in (4)). We choose (assuming h is small enough)

r = δ−1h2 and R =
{
Ch−1, if µ = 0
Rµ, if µ 6= 0 , (77)

where δ = h < 1/2 and Rµ = Cµ−1 is chosen such that − V (x) ≥ 0 for d(x) ≥ Rµ (see
(5)). We will keep writing δ and R in the calculations below to show why these choices are
optimal. Clearly, Φ2− + Φ2

+ = 1, φ2− + φ2
+ = 1, and φ2− + Φ2−φ2

+ + Φ2
+ = 1. Note also that

φ−(x) =
M∑
k=1

θr,k(x) with θr,k(x) = θ−(|x− rk|/r) .

Step 1: Lower bound on the quantum energy.
By the relativistic IMS formula (23) and Theorem 14 with m = h−2, α = β1/2h−1(≤ 1),

and either ℓ = R, Ω = {d(x) ≤ 3R}, and θ = Φ± respectively, or ℓ = r, Ω = {d(x) ≤ 3r},
and θ = θr,k, k = 1, . . . ,M , or θ = φ+ respectively, we find that

Tβ(−ih∇)− V (x̂)

= Φ+

(
Tβ(−ih∇)− V (x̂)

)
Φ+ + Φ−

(
Tβ(−ih∇)− V (x̂)

)
Φ− − LΦ− − LΦ+

=
M∑
k=1

θr,k
(
Tβ(−ih∇)− V (x̂)

)
θr,k + Φ−φ+

(
Tβ(−ih∇)− V (x̂)

)
φ+Φ−

+ Φ+

(
Tβ(−ih∇)− V (x̂)

)
Φ+ − Φ−(

M∑
k=1

Lθr,k
+ Lφ+)Φ− − LΦ− − LΦ+ , (78)

with

LΦ± ≤ Ch2‖∇Φ±‖2
∞ χ{d(x)≤3R} +QΦ± , (79)

Tr[QΦ±] ≤ Cβ−1R−1e−(β1/2h)−1R ‖∇Φ±‖2
∞
∣∣{d(x) ≤ 3R}∣∣ , (80)
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and (with, by abuse of notation, Lφ− =
∑M

k=1 Lθr,k
)

Lφ± ≤ Ch2‖∇φ±‖2
∞ χ{d(x)≤3r} +Qφ± , (81)

Tr[Qφ± ] ≤ Cβ−1r−1e−(β1/2h)−1r ‖∇φ±‖2
∞
∣∣{d(x) ≤ 3r}∣∣ . (82)

Using
∣∣{d(x) ≤ 3R}∣∣ ≤ 36πMR3, ‖∇Φ±‖∞ ≤ CR−1 (and the corresponding estimates for r

and φ±), β ≤ h2, and h small, it follows that

Tr[QΦ± ] ≤ Ch2R−2e−h
−2R/2 ≤ CNh

N , Tr[Qφ± ] ≤ Ch2r−2e−h
−2r/2 ≤ CNh

N ,

for any N > 0 by the choices (77).
Hence we have that

Tr
[
Tβ(−ih∇)− V (x̂)

]
−

≥
M∑
k=1

Tr
[
θr,k
(
Tβ(−ih∇)− V (x̂)− Ch2r−2

)
θr,k
]
−

+ Tr
[
Φ−φ+

(
Tβ(−ih∇)− V (x̂)− Ch2r−2χ{d(x)≤3r} − Ch2R−2

)
φ+Φ−

]
−

+ Tr
[
Φ+

(
Tβ(−ih∇)− V (x̂)− Ch2R−2χ{d(x)≤3R}

)
Φ+

]
− − Ch−2+1/10 . (83)

Each of the first three terms above will be compared to the corresponding semi-classical
expression. We shall treat the three terms by different methods. The first term will be
calculated using the Scott correction for Hydrogen in Lemma 25. The second term will be
computed using the local rescaled semi-classics in Theorem 23. The last term is an error
term which we will treat first.
Control of the third term in (83).

We use the Daubechies inequality (17) with m = h−2 and α = β1/2h−1(≤ 1). In the case
µ = 0 we obtain, using the choice (77) of R,

Tr
[
Φ+(Tβ(−ih∇)− V (x̂)− Ch2R−2χ{d(x)≤3R})Φ+

]
−

≥ − Ch−3M

∫
|x|>R

|x|−15/2 dx− CM

∫
|x|>R

|x|−12 dx− Ch2R−2 − Ch8R−5

≥ − C
(
h−3R−9/2 +R−9 + h2R−2 − h8R−5

) ≥ − Ch3/2 . (84)

The case µ 6= 0 gives a smaller error since − V ≥ 0 on the support of Φ+ in this case.
Control of the first term in (83).

Using (6) and (77) we have
M∑
k=1

Tr
[
θr,k
(
Tβ(−ih∇)− V (x̂)− Ch2r−2

)
θr,k
]
−

≥
M∑
k=1

Tr
[
θr
(
Tβ(−ih∇)− zk|x̂|−1 − Cδ2h−2

)
θr
]
− ,

where we have written θr(x) = θ−(|x|/r). We have used here that

Cr−1
min + C ≤ Cr−1

0 + C ≤ Cδ2h−2 . (85)

It is this relation which sets a lower bound on δ. We will control the error using the combined
Daubechies-Lieb-Yau inequality in Theorem 16 with m = h−2 and α = β1/2h−1(≤ 1). Note
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that mα−1 = β−1/2h−1 ≥ h−2. Thus using Theorem 16 we find, for all density matrices γ
and all ε ≥ δ2, that

εTr
[
γ
(
θr(Tβ(−ih∇)− zk|x̂|−1 − Cε−1δ2h−2)θr

)] ≥ − C(εδ−1/2 + ε−3/2δ2 + ε−3δ5)h−2.

Thus for all density matrices γ and all ε ≥ δ2 we have

Cδ2h−2 Tr[γθ2
r ] ≤ εTr

[
γθr(Tβ(−ih∇)− zk|x̂|−1)θr

]
+C(εδ−1/2+ε−3/2δ2+ε−3δ5)h−2 . (86)

Hence
M∑
k=1

Tr
[
θr,k
(
Tβ(−ih∇)− V (x̂)− Ch2r−2

)
θr,k
]
− (87)

≥ (1− ε)
M∑
k=1

Tr
[
θr(Tβ(−ih∇)− zk|x̂|−1)θr

]
− − C(εδ−1/2 + ε−3/2δ2 + ε−3δ5)h−2 .

For the corresponding semi-classical expression we have from (6) and (85) (using δ < 1/2
and |x− − y−| ≤ |x− y|) that∣∣∣∣∣(2πh)−3

∫
φ−(v)2

[
1
2p

2 − V (v)
]
− dvdp−

M∑
k=1

(2πh)−3

∫
θr(v)2

[
1
2p

2 − zk|v|−1
]
− dvdp

∣∣∣∣∣
≤ Cδ1/2h−2. (88)

A simple rescaling applied to the local Hydrogen result in Lemma 25 gives that∣∣∣∣Tr
[
θr(Tβ(−ih∇)− zk|x̂|−1)θr

]
− − (2πh)−3

∫
θr(v)2

[
1
2p

2 − zk|v|−1
]
− dvdp

−z2
kh
−2S(β1/2h−1zk)

∣∣∣∣ ≤ Ch−2(h−2r)−1/10 = Ch−2δ1/10. (89)

Combining (87), (88), and (89), using that S is a bounded function (since it is non-increasing;
see Lemma 25), that δ < 1/2, and that

(2πh)−3

∫
θr(v)2

[
1
2p

2 − zk|v|−1
]
− dvdp ≤ Ch−3r1/2 = Ch−2δ−1/2 ,

and choosing ε = δ, we conclude that

Tr
[
φ−
(
Tβ(−ih∇)− V (x̂)− Ch2r−2

)
φ−
]
− ≥ (2πh)−3

∫
φ−(v)2

[
1
2q

2 − V (v)
]
− dvdq

+ h−2
M∑
k=1

z2
kS(β1/2h−1zk)− Cδ1/10h−2. (90)

Control of the second term in (83).
Here we use the local rescaled semi-classics in Theorem 23. Before we apply our semi-

classical estimates on the support of Φ−φ+ we localise using the functions ϕu from (60) for
general M and with ℓ(u) as in (56), with ℓ0 = r/4. From (77) and the choice of δ it follows
that ℓ0 < 1 for h small enough. If x is in the support of Φ−φ+ and in the support of ϕu
then d(u) > r/2 = 2ℓ0 since (using (58))

r ≤ d(x) ≤ d(u) + ℓ(u) < d(u) + max{d(u), ℓ0} ,
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and also d(u) ≤ 2R + 1 since ℓ(u) < 1/2. Using again the relativistic IMS localisation (23)
we thus have

Φ−φ+

(
Tβ(−ih∇)− V (x̂)− Ch2r−2χ{d(x)≤3r} − Ch2R−2

)
φ+Φ−

=
∫

r/2<d(u)<2R+1

Φ−φ+ϕu
(
Tβ(−ih∇)− V (x̂)− Ch2r−2χ{d(x)≤3r} − Ch2R−2

)
ϕuφ+Φ− ℓ(u)−3 du

−
∫

r/2<d(u)<2R+1

Φ−φ+Lϕuφ+Φ−ℓ(u)−3 du . (91)

Concerning Lϕu , Theorem 14 with ℓ = ℓ(u)/2 and Ω = Ωu = {|x − u| ≤ 3ℓ(u)/2} (and
m = h−2 and α = β1/2h−1(≤ 1)) gives, using (29), that

Lϕu ≤ Ch2ℓ(u)−2χΩu +Qϕu , (92)

with

Tr[Qϕu ] ≤ Cβ−1e−(β1/2h)−1ℓ(u) ≤ CNh
N (93)

for all N > 0 as a consequence of ℓ(u) ≥ (1 +M)−1r/8 and β ≤ h2. Thus

Tr
[ ∫

r/2<d(u)<2R+1

Φ−φ+Qϕuφ+Φ−ℓ(u)−3 du
]

≤ CNh
N for all N > 0 .

By the same arguments as in the proof of Lemma 25 above (see (68) and (69)) we join
the new localisation error term (from (91), (92)) with the previous localisation errors from
(79) and (81). Since ℓ(u) ≤ max{d(u), r/4} we have R−2 ≤ Cℓ(u)−2 for d(u) ≤ 2R+ 1 (and
h small enough when µ = 0; for µ 6= 0, use ℓ(u) < 1/2) and, by (61) (valid on the support
of ϕu when d(u) > r/2 = 2ℓ0),

r−2χ{d(x)≤3r}(x)ϕu(x)2 ≤ Cℓ(u)−2ϕu(x)2 .

This way, we have proved that

Tr
[
Φ−φ+

(
Tβ(−ih∇)− V (x̂)− Ch2r−2χ{d(x)≤3r} − Ch2R−2

)
φ+Φ−

]
− (94)

≥
∫

r/2<d(u)<2R+1

Tr
[
φ+ϕu

(
Tβ(−ih∇)− V (x̂)− Ch2ℓ(u)−2

)
ϕuφ+

]
− ℓ(u)

−3 du − Ch−2+1/10 .

Note that there is no need to write Φ− on the right side, since in general Tr(ΦAΦ)− ≥ TrA−
for any self-adjoint operator A and any function 0 ≤ Φ ≤ 1.

For u such that d(u) > r/2 = 2ℓ0 and d(u) < 2R+ 1 we have from (5) and (77) that

sup
|x−u|≤ℓ(u)

|∂η(V (x)− Ch2ℓ(u)−2)| ≤ Cf(u)2ℓ(u)−|η| for |η| ≤ 3 ,

‖∂η(φ+φu)‖∞ ≤ Cηℓ(u)−|η| for |η| ≤ 7 ,

with

f(u) =
{
d(u)−1/2 if µ 6= 0
min{d(u)−1/2, d(u)−3/2} if µ = 0

. (95)

We have also used that d(u) ≥ δ−1h2/2 ≥ h2 and min{1, d(u)} ≤ Cℓ(u).
We are therefore in a position to use the rescaled semi-classics in Theorem 23 on the ball

{|x− u| ≤ ℓ} with ℓ = ℓ(u), f = f(u), and φ = φ+φu for each u with r/2 ≤ d(u) ≤ 2R+ 1.
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Note in particular that βf2(u) ≤ βd(u)−1 ≤ 2β/r = 2βδh−2 ≤ 2δ ≤ 1 . We conclude that
for all u with r/2 ≤ d(u) ≤ 2R+ 1,∣∣∣Tr

[
φ+ϕu

(
Tβ(−ih∇)− V (x̂)− Ch2ℓ(u)−2

)
ϕuφ+

]
−

− (2πh)−3

∫
φ+(v)2ϕu(v)2

[√
β−1q2 + β−2 − β−1 − V (v)− Ch2ℓ(u)−2

]
− dvdq

∣∣∣
≤ Ch−2+1/5f(u)4−1/5ℓ(u)2−1/5 . (96)

The semi-classical integral may be estimated using (72)∣∣∣∣∫ [√β−1q2 + β−2 − β−1 − V (v)− Ch2ℓ(u)−2
]
− dq −

∫ [
1
2q

2 − V (v)
]
− dq

∣∣∣∣
≤ Ch2

(|V (v)|+ h2ℓ(v)−2
)7/2 + Ch2ℓ(v)−2

(|V (v)|+ h2ℓ(v)−2
)3/2

≤ C
(
h2|V (v)|7/2 + h2ℓ(v)−2|V (v)|3/2 + (hℓ(v)−1)5

)
, (97)

for v in the support of ϕu, since then we have ℓ(v) ≤ 3ℓ(u)/2 (see (57)) and |V (v)| ≤
Cd(v)−1 ≤ Cd(u)−1 ≤ Ch−2 (see (5), (61) and (58)). We have also used that β ≤ h2 and
that, by (58) and (77) (ℓ0 = r/4), h2ℓ(v)−2 ≤ Ch2r−2 = Cδ2h−2 ≤ Ch−2.

Combining (94), (96), and (97) (remembering that d(u) ≤ Cd(v) if v is in the support of
ϕu and d(u) > r/2 = 2ℓ0) we find, using (60), (5), and (95), that

Tr
[
Φ−φ+

(
Tβ(−ih∇)− V (x̂)− Ch2r−2χ{d(x)≤3r} − Ch2R−2

)
φ+Φ−

]
−

≥ (2πh)−3

∫
φ+(v)2

[
1
2q

2 − V (v)
]
− dq dv − C

∫
r/2<d(u)<2R+1

h−2+1/5f(u)19/5ℓ(u)−6/5 du

− C

∫
C−1r<d(v)<2R+2

h−3(h2d(v)−7/2 + h2ℓ(v)−2f(v)3 + (hℓ(v)−1)5) dv − Ch−2+1/10 . (98)

If µ 6= 0 the error term in (98) is controlled as follows:∫
C−1r<d(v)<2R+2

(
h−2+1/5f(v)19/5ℓ(v)−6/5 + h−1d(v)−7/2 + h−1ℓ(v)−2f(v)3 + h2ℓ(v)−5

)
dv

≤ C

∫
C−1r<|v|<2R+2

(
h−2+1/5|v|−19/10 min{1, |v|}−6/5 + h−1|v|−7/2

+ h−1 min{1, |v|}−2|v|−3/2 + h2 min{1, |v|}−5
)
dv

≤ C
(
h−2+1/5(R11/10 + r−1/10) + h−1r−1/2 + h−1R3/2 + h2R3 + h2r−2

)
≤ Ch−2+1/10 , (99)

with the choices (77) where R = Rµ is a constant.
If µ = 0 we get instead∫
C−1r<d(v)<2R+2

(
h−2+1/5f(v)19/5ℓ(v)−6/5 + h−1d(v)−7/2 + h−1ℓ(v)−2f(v)3 + h2ℓ(v)−5

)
dv

≤ C
(
h−2+1/5r−1/10 + h−1r−1/2 + h2R3 + h2r−2

) ≤ Ch−2+1/10. (100)
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If we insert the last two estimates (100) and (99) into (98) and then together with (84)
and (90) into (83) we arrive at a lower bound on the quantum energy corresponding to one
direction in (7).
Step 2: Upper bound on the quantum energy.

We obtain an upper bound on the quantum energy by choosing the density matrix

γ =
M∑
k=1

θr,kγkθr,k +
∫

d(u)<2R+1

φ+ϕuγuϕuφ+ ℓ(u)−3 du , (101)

where γk, k = 1, . . . ,M , are the density matrices

γk = χ
(
θr,k
(
Tβ(−ih∇)− zk|x̂− rk|−1

)
θr,k
)

and γu, u ∈ R3, are the density matrices given in Theorem 23 for the potential V with Bℓ
being the ball centered at u, ℓ = ℓ(u), f = f(u) (see (95)), and φ = φ+ϕu. Since

M∑
k=1

θ2
r,k + φ2

+ = φ2
− + φ2

+ = 1 , (102)

we immediately see from (60) that γ is a density matrix.
Using this density matrix as a trial state we obtain from Theorem 23 that

Tr
[
Tβ(−ih∇)− V (x̂)

]
−

≤
M∑
k=1

Tr
[
θr,k
(
Tβ(−ih∇)− V (x̂)

)
θr,k
]
−

+ (2πh)−3

∫
d(u)<2R+1

φ+(v)2ϕu(v)2
[√

β−1q2 + β−2 − β−1 − V (v)
]
−ℓ(u)

−3 dvdqdu

+ Ch−2+1/5

∫
r/2<d(u)<2R+1

f(u)19/5ℓ(u)−6/5 du , (103)

where we have used the fact that φ+ and ϕu have overlapping supports only if d(u) > r/2.
The last error term is estimated by Ch−2+1/10 as in the lower bound.

Using that
√
β−1q2 + β−2 − β−1 ≤ 1

2q
2 and the normalization of ϕu (60) we find that

(2πh)−3

∫
d(u)<2R+1

φ+(v)2ϕu(v)2
[√

β−1q2 + β−2 − β−1 − V (v)
]
−ℓ(u)

−3 dvdqdu

≤ (2πh)−3

∫
φ+(v)2

[
1
2q

2 − V (v)
]
− dvdq

− (2πh)−3

∫
d(u)>2R+1

φ+(v)2ϕu(v)2
[

1
2q

2 − V (v)
]
−ℓ(u)

−3 dvdqdu

≤ (2πh)−3

∫
φ+(v)2

[
1
2q

2 − V (v)
]
− dvdq + Ch−3

∫
d(v)>2R

|V (v)−|5/2 dv .
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If µ 6= 0 the last term vanishes by the choice of R = Rµ. If µ = 0 it may be estimated using
(5) and (77) as

Ch−3

∫
d(v)>2R

|V (v)−|5/2dv ≤ C .

Together with (88), (89), (102), and (103) this gives the proof of (10), and therefore finishes
the proof of (7).
Step 3: Properties of the density.

We will now show that the density matrix γ in (101) satisfies the two requirements (8)
and (9).

The density of γ is

ργ(x) =
M∑
k=1

θr,k(x)2ρk(x) +
∫
d(u)<2R+1

ϕ2
u(x)φ

2
+(x)ρu(x)ℓ(u)−3 du , (104)

where ρk for k = 1, . . . ,M is the density of the density matrix γk and ρu for u ∈ R3 is the
density for γu. We first control the 6/5-norm and the 1-norm of θ2

r,kρk. If β1/2h−1 < 1/2 we
use the combined Daubechies-Lieb-Yau inequality (Theorem 16) with α = β1/2h−1 ≤ 1/2,
ν = 2zk, and m = h−2 to obtain that

0 ≥ Tr
[
θr,kγkθr,k(Tβ(−ih∇)− zk|x̂− rk|−1)

] ≥ 1
2 Tr

[
θr,kγkθr,kTβ(−ih∇)

]
− Cz

5/2
k h−2 − Ch−3z

5/2
k r1/2 − Cz4

kh
2

≥ 1
2 Tr

[
θr,kγkθr,kTβ(−ih∇)

]− Ch−2δ−1/2 ,

where the constant C depends on zk. Hence we have that

Tr
[
Tβ(−ih∇)θr,kγkθr,k

] ≤ Ch−2δ−1/2 = Ch−5/2 . (105)

Using (14) with α = β1/2h−1 ≤ 1 and m = h−2, (105) implies that∫
(θ2
r,kρk)

6/5 ≤ Ch−36/25

(∫
h2(θ2r,kρk)1/3≤β−1/2h

h2(θ2
r,kρk)

5/3

)18/25

r21/25

+ C

(∫
h2(θ2r,kρk)1/3>β−1/2h

β−1/2h(θ2
r,kρk)

4/3

)18/20

r3/10

≤ Ch−36/25h−9/5h21/25 + Ch−9/4h3/10 ≤ Ch−12/5 , (106)

where we have used that r = h and that h is bounded above by a constant. Likewise we find∫
θ2
r,kρk ≤ Ch−3/2 .

The case when 1/2 ≤ β1/2h−1 ≤ 1 is more complicated. We have to treat the region
within the radius r− = h2 from the nucleus zk differently. Let θ̃±(x) = θ±(|x − rk|/h2).
Using the relativistic IMS formula (Theorem 13) and Theorem 14 with ℓ = h2/2, m = h−2,
α = β1/2h−1, and Ω = {|x− rk| < 3h2} we find that

0 ≥ Tr
[
θr,kγkθr,k(Tβ(−ih∇)− zk|x̂− rk|−1)

]
≥ Tr

[
θ̃−γkθ̃−(Tβ(−ih∇)− zk|x̂− rk|−1 − Ch−2)

]
+ Tr

[
θr,kθ̃+γkθr,kθ̃+(Tβ(−ih∇)− zk|x̂− rk|−1 − h−2χΩ)

]− Ch−2 .
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To treat the first term we use the inequality (see (21))

√−∆− 2
π|x̂| ≥ As(−∆)s −Bs ,

which holds for all 0 ≤ s < 1/2 and As, Bs > 0 being constants depending only on s. Hence,
using that h is bounded above by a constant and that 1 ≤ β−1/2h ≤ 2 we get

0 ≥ Tr
[
θ̃−γkθ̃−(Tβ(−ih∇)− zk|x̂− rk|−1 − Ch−2)

] ≥ Tr
[
θ̃−γkθ̃−(As(−∆)s − Csh

−2)
]
.

We appeal to the standard (Daubechies)-Lieb-Thirring inequality

Tr
[
(−∆)sθ̃−γkθ̃−

] ≥ c

∫
(θ̃2
−ρk)

(3+2s)/3 ,

which holds for all s ∈ (0, 3). We obtain that (with all constants depending on 0 < s < 1/2)

Tr
[
θ̃−γkθ̃−(Tβ(−ih∇)− zk|x̂− rk|−1 − Ch−2)

] ≥ c

∫
(θ̃2
−ρk)

(3+2s)/3 − Ch−2

∫
(θ̃2
−ρk)

≥ (c/2)
∫

(θ̃2
−ρk)

(3+2s)/3 − Ch(4s−3)/s .

Using the Daubechies inequality (Theorem 9) we find as above that

Tr
[
θr,kθ̃+γkθr,kθ̃+(Tβ(−ih∇)− zk|x̂− rk|−1 − h−2χΩ)

]
≥ cTr

[
θr,kθ̃+γkθr,kθ̃+Tβ(−ih∇)

]− Ch−5/2 .

By choosing s sufficiently close to 1/2 and using that h is bounded by a constant we conclude
that

0 ≥ c

∫
(θ̃2
−ρk)

(3+2s)/3 + cTr
[
θr,kθ̃+γkθr,kθ̃+Tβ(−ih∇)

]− Ch−5/2 .

As above it follows from this, choosing s sufficiently close to 1/2, that we still have∫
(θ2
r,kρk)

6/5 ≤ Ch−12/5,

∫
θ2
r,kρk ≤ Ch−3/2 . (107)

Using that r = h and that from (5) |V (x)| ≤ Cd(x)−1 we also have∫
(h−3θ2

r,k|V−|3/2)6/5 ≤ Ch−12/5 ,

∫
h−3θ2

r,k|V−|3/2 ≤ Ch−3/2 . (108)

We move to the second term in (104). By the rescaled semi-classics (Theorem 23) we have
on the support of ϕuφ+ that (for f(u), see (95))∣∣∣ρu(x)− 21/2(3π2)−1h−3|V (x)−|3/2

∣∣∣ ≤ Ch−2−1/10f(u)21/10ℓ(u)−9/10 + Ch−2|V (x)−|3/2 ,

where we have used that on the support of ϕuφ+ we have |V (x)| ≤ Cd(u)−1 ≤ Cr−1 ≤
Ch−1 ≤ Chβ−1, since d(u) ≥ r/2 if ϕuφ+ is non-vanishing. We moreover have on the
support of ϕuφ+ that |V (x)−|3/2 ≤ Cf(u)3 ≤ Cf(u)21/10ℓ(u)−9/10. For r/2 < d(u) ≤ 1 this
is because ℓ(u)−1 ≥ d(u)−1 = f(u)2 ≥ f(u) (see (61)) and for d(u) > 1 we simply use that
ℓ(u) ≤ 1 and f(u) ≤ 1. Hence∥∥ϕ2

uφ
2
+

(
ργ − 21/2(3π2)−1h−3|V−|3/2

)∥∥
6/5

≤ Ch−2−1/10f(u)21/10ℓ(u)8/5 , (109)
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Using (101) and (102), we have that∥∥ργ − 21/2(3π2)−1h−3|V−|3/2
∥∥

6/5
(110)

≤
M∑
k=1

(‖θ2
r,kρk‖6/5 + Ch−3‖θ2

r,k|V−|3/2‖6/5

)
+
∫
d(u)<2R+1

∥∥ϕ2
uφ

2
+

(
ρu − 21/2(3π2)−1h−3|V−|3/2

)∥∥
6/5
ℓ(u)−3du

+
∫
d(u)>2R+1

Ch−3
∥∥ϕ2

uφ
2
+|V−|3/2

∥∥
6/5
ℓ(u)−3du .

The last term is non-zero only in the case µ = 0 in which case it is easily seen by (6) and
(77) to be bounded by Ch−3/2. Thus, combining (106)–(109), (110) implies that∥∥ργ − 21/2(3π2)−1h−3|V−|3/2

∥∥
6/5

≤ Ch−2 + Ch−2−1/10

∫
C−1r<d(u)<2R+1

f(u)21/10ℓ(u)−7/5du .

The last integral is easily seen to be bounded and we arrive at (9).
To control the integral of the density we estimate∣∣∣∣∫ ργ(x) dx− 21/2(3π2)−1h−3

∫
|V (x)−|3/2 dx

∣∣∣∣
≤

M∑
k=1

(‖θ2
r,kρk‖1 + Ch−3‖θ2

r,k|V−|3/2‖1

)
+
∫
d(u)<2R+1

∣∣∣∣∫ ϕ2
uφ

2
+

(
ρu(x)− 21/2(3π2)−1h−3|V (x)−|3/2

)
dx

∣∣∣∣ ℓ(u)−3 du

+
∫
d(u)>2R+1

Ch−3
∥∥ϕ2

uφ
2
+|V−|3/2

∥∥
1
ℓ(u)−3 du .

As before the last term is bounded by Ch−3/2. For the middle term we again see from the
rescaled semi-classics (Theorem 23) that∣∣∣∣∫ ϕ2

uφ
2
+

(
ρu(x)− 21/2(3π2)−1h−3|V (x)−|3/2

)
dx

∣∣∣∣
≤ Ch−2+1/5f(u)9/5ℓ(u)9/5 + Ch−1

∫
ϕ2
u(x)φ

2
+(x)|V (x)−|5/2dx

≤ Ch−2+1/5f(u)9/5ℓ(u)9/5 + Ch−1f(u)5ℓ(u)3 ,

where we have used that β ≤ h2. The estimate (8) follows since both integrals∫
f(u)9/5ℓ(u)9/5ℓ(u)−3du and

∫
f(u)5du

are bounded (recall that f(u) is given in (95)). This finishes the proof of Theorem 4, except
for the continuity of the function S from Lemma 25. We will need a lemma to prove this.
This lemma also gives an alternative characterization of the function S.

Lemma 27 (Scott-corrected pushed-up Hydrogen). Let S : [0, 2/π] → R be the
function from Lemma 25. Then there exists a constant C > 0 such that, for all α ∈ [0, 2/π]
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and κ ∈ (0, 1],∣∣∣Tr
[√−α−2∆ + α−4 − α−2 − |x̂|−1 + κ

]
−

− (2π)−3

∫ [
1
2p

2 − |v|−1 + κ
]
− dpdv − S(α)

∣∣∣ ≤ Cκ1/20 . (111)

Here, as before,
√−α−2∆ + α−4 − α−2 = −∆/2, when α = 0.

Proof of Lemma 27. A simple rescaling, changing x→ κ−1πx/2, gives

Tr
[√−α−2∆ + α−4 − α−2 − |x̂|−1 + κ

]
− = κTr

[√−β−1h2∆ + β−2 − β−1 − 2
π|x̂| + 1

]
− ,

where β = κα2 and h = 2κ1/2/π. We have β ≤ h2.
The semi-classical integral may be rewritten in the same fashion,

(2π)−3

∫ [
1
2p

2 − |v|−1 + κ
]
−dpdv = κ (2πh)−3

∫ [
1
2p

2 − 2
π|v| + 1

]
− dpdv .

Since the potential V (x) = 2
π|x| −1 satisfies the assumptions of Theorem 4 we see that there

exists a constant C > 0 such that∣∣∣Tr
[√−β−1h2∆ + β−2 − β−1 − 2

π|x̂| + 1
]
−

− (2πh)−3

∫ [
1
2p

2 − 2
π|v| + 1

]
− dpdv − h−2 4

π2
S(α)

∣∣∣ ≤ C h−2+1/10 .

Using that h = 2κ1/2/π gives (111). �

We can now, using the alternative characterization of the function S in Lemma 27, finish
the proof of Theorem 4.
Step 4: Continuity of the function S.

We recall that

Tβ(p) =

{ √
β−1p2 + β−2 − β−1 , β > 0

1
2p

2 , β = 0
. (112)

It suffices to prove continuity of

Tr
[
Tα2(−i∇)− |x̂|−1 + κ

]
− = Tr

[√−α−2∆ + α−4 − α−2 − |x̂|−1 + κ
]
−

at all α0 ∈ [0, 2/π], for any κ ∈ (0, 1] fixed. Then continuity of S follows from (111) by
uniform convergence as κ→ 0.

We first prove the continuity at α0 = 0.
Let χ> = χ|p|≥λ, χ< = χ|p|≤λ for some λ > 0 to be chosen below. Note that (Γ1 −

Γ2)(Γ1 − Γ2)∗ ≥ 0 implies Γ1Γ∗2 + Γ2Γ∗1 ≤ Γ1Γ∗1 + Γ2Γ∗2. Using this with Γ1 = ε1/2χ<|x̂|−1/2,
Γ2 = ε−1/2χ>|x̂|−1/2 for some ε > 0 which we choose later, we get the operator inequality

Tα2(p̂)− |x̂|−1 + κ (113)
≥ χ>

(
Tα2(p̂)− (1 + ε−1)|x̂|−1 + κ

)
χ> + χ<

(
Tα2(p̂)− (1 + ε)|x̂|−1 + κ

)
χ< .

Here and in the sequel we write Tα2(p̂) for the operator Tα2(−i∇) (and similarly for other
operators). Since Tα2

1
≥ Tα2

2
for α1 ≤ α2, and Tα2(p) ≥ α−1|p| − α−2, (113) implies that, if
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α ∈ (0, A] for some A > 0, then for all ε > 0

Tα2(p̂)− |x̂|−1 + κ ≥ χ>
(
A−1|p̂| −A−2 − (1 + ε−1)|x̂|−1 + κ

)
χ>

+ χ<
(
Tα2(p̂)− (1 + ε)|x̂|−1 + κ

)
χ< . (114)

Since |p̂| − 2/(π|x̂|) ≥ 0, we have that

1
2
A−1|p̂| − (1 + ε−1)|x̂|−1 ≥ 0 ,

if A ≤ ε/(2π), and now assuming ε ≤ 1. Furthermore, for λ ≥ 2A−1 we have that

χ>
(1
2
A−1|p̂| −A−2

)
χ> ≥ 0 .

This implies that, if ε ≤ 1, λ ≥ 2A−1, α ∈ (0, A] and A ≤ ε/(2π), then by (114)

Tα2(p̂)− |x̂|−1 + κ ≥ χ<
(
Tα2(p̂)− (1 + ε)|x̂|−1 + κ

)
χ< . (115)

Since, by a Taylor-expansion, Tα2(p) ≥ T0(p)− (αp2)2/8, and since χ< = χ|p|≤λ, we have
that, still for α ∈ (0, A],

Tα2(p̂)− |x̂|−1 + κ ≥ χ<
(
T0(p̂)− α2λ4/8− (1 + ε)|x̂|−1 + κ

)
χ< . (116)

Let

γα,κ = χ(−∞,0]

(
Tα2(p̂)− |x̂|−1 + κ

)
.

Then (116) and the fact that T0 ≥ Tα2 imply that, for α ∈ (0, A],

Tr
[
T0(p̂)− |x̂|−1 + κ

]
− ≥ Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
− = Tr

[
γα,κ

(
Tα2(p̂)− |x̂|−1 + κ

)]
≥ Tr

[
γα,κχ<

(
T0(p̂)− α2λ4/8− (1 + ε)|x̂|−1 + κ

)
χ<
]
. (117)

If κ ∈ (0, 1], α ∈ (0, A], λ ≥ 2A−1, and A ≤ 1/(2π) we will show the a priori estimate

Tr
[
γα,κχ<

] ≤ Cκ−3/2 and Tr
[
γα,κχ< |x̂|−1χ<

] ≤ Cκ−1/2 . (118)

The combined Daubechies-Lieb-Yau inequality (32) gives that for positive constants C1, C2

such that α ≤ 2/(C1π), we have

Tr
[
Tα2(p̂)− C1|x̂|−1 + C2κ

]
− ≥ − Cα1/2 − C

∫
|x|<Cκ−1

(|x|−1 + κ
)5/2

dx

− Cα3

∫
α<|x|<Cκ−1

(|x|−1 + κ
)4
dx ≥ − Cκ−1/2 .

If α ∈ (0, A] and A ≤ 1/(2π) then α ≤ 4/(5π) and hence we obtain from (115) with ε = 1
that

0 ≥ Tr
[
Tα2(p̂)− |x̂|−1 + κ

]
− = Tr

[
γα,κ

(
Tα2(p̂)− |x̂|−1 + κ

)]
≥ Tr

[
γα,κχ<

(
Tα2(p̂)− 2|x̂|−1 + κ

)
χ<
]

= Tr
[
χ<γα,κχ<

(
Tα2(p̂)− 5/2

|x̂| +
1
2
κ
)]

+
1
2
Tr
[
γα,κχ<|x̂|−1χ<

]
+
κ

2
Tr
[
γα,κχ<

]
≥ − Cκ−1/2 +

1
2
Tr
[
γα,κχ<|x̂|−1χ<

]
+
κ

2
Tr
[
γα,κχ<

]
.

This gives (118).
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Choose λ = 2A−1, A = ǫ/(2π). We combine (117) and (118) and use the variational
principle to conclude that for α ∈ (0, ǫ/(2π)], ǫ < 1, and κ ∈ (0, 1],

Tr
[
T0(p̂)− |x̂|−1 + κ

]
− ≥ Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
−

≥ Tr
[(
χ<γα,κχ<

)(
T0(p̂)− |x̂|−1 + κ

)]− Cκ−3/2(α2ε−4 + ε)

≥ Tr
[
T0(p̂)− |x̂|−1 + κ

]
− − Cκ−3/2(α2ε−4 + ε) .

Finally choose ǫ = α2/5; then α ≤ (2π)−5/3 implies that α ∈ (0, ǫ/(2π)] and ǫ < 1.
Therefore we have proved that for any α ≤ (2π)−5/3 and κ ∈ (0, 1],

Tr
[
T0(p̂)− |x̂|−1 + κ

]
− ≥ Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
−

≥ Tr
[
T0(p̂)− |x̂|−1 + κ

]
− − Cκ−3/2α2/5 ,

which proves continuity from the right of Tr
[
Tα2(p̂)−|x̂|−1+κ

]
− at α0 = 0 for any κ ∈ (0, 1]

fixed. (Notice that the above has not been optimized in κ.)
We now prove the continuity at any α0 ∈ (0, 2/π). Note first that, for 0 < α1 ≤ α2,

Tα2
1
(p) ≥ Tα2

2
(p) ≥ (α−1

2 α1)2 Tα2
1
(p) . (119)

Assume first that α > α0, and let γα,κ be defined as above. Then, using (119) and the
variational principle,

Tr[Tα2(p̂)− |x̂|−1 + κ
]
− ≤ Tr

[
Tα2

0
(p̂)− |x̂|−1 + κ

]
− ≤ Tr

[
γα,κ

(
Tα2

0
(p̂)− |x̂|−1 + κ

)]
≤ Tr

[
γα,κ

(
Tα2(p̂)− |x̂|−1 + κ

)]
+ [(αα−1

0 )2 − 1] Tr
[
γα,κTα2(p̂)

]
= Tr[Tα2(p̂)− |x̂|−1 + κ

]
− + [(αα−1

0 )2 − 1] Tr
[
γα,κTα2(p̂)

]
.

It remains to show that [(αα−1
0 )2 − 1] Tr

[
γα,κTα2(p̂)

]→ 0 as α→ α0. For this, it obviously
suffices to show that Tr

[
γα,κTα2(p̂)

]
is uniformly bounded for, say, α ∈ (α0, A] for some

A ∈ (α0, 2/π). But this follows as in the proof of (118). This proves continuity from the
right of Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
− at α0 ∈ (0, 2/π). To prove continuity from the left, assume

α < α0, and let γα0,κ be defined as above. Then, by (119) and the variational principle,

Tr
[
Tα2(p̂)− |x̂|−1 + κ

]
− ≥ Tr

[
Tα2

0
(p̂)− |x̂|−1 + κ

]
− = Tr

[
γα0,κ

(
Tα2

0
(p̂)− |x̂|−1 + κ

)]
= Tr

[
γα0,κ

(
Tα2(p̂)− |x̂|−1 + κ

)]
+ Tr

[
γα0,κ(Tα2

0
(p̂)− Tα2(p̂))

]
≥ Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
− + [1− (α0α

−1)2] Tr
[
γα0,κTα2

0
(p̂)
]
.

As before, the last trace is finite by arguments as in the proof of (118) (since α0 < 2/π).
This proves continuity from the left, and therefore, continuity, of Tr

[
Tα2(p̂) − |x̂|−1 + κ

]
−

at α0 ∈ (0, 2/π).
Finally we prove the continuity at α0 = 2/π. Here, arguments as in the proof of (118)

are no longer at our disposal. Therefore, let ǫ > 0, and let γα0,κ be defined as above, and
choose φ1, . . . , φN ∈ C∞0 (R3), (φi, φj) = δi,j , such that

Tr
[
γN
(
Tα2

0
(p̂)− |x̂|−1 + κ

)]
(120)

≤ Tr
[
γα0,κ

(
Tα2

0
(p̂)− |x̂|−1 + κ

)]
+ ǫ/2 = Tr

[
Tα2

0
(p̂)− |x̂|−1 + κ

]
− + ǫ/2 ,

for γN (x, y) =
∑N

j=1 φj(x)φj(y). This is possible since the operator is defined as the
Friedrichs extension from C∞0 (R3). (Here, both N and the φj ’s depend, of course, on ǫ).
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Recall that γN is finite dimensional and φj ∈ C∞0 (R3). Using this, (119), and the variational
principle gives that (for any α ∈ (α0/2, α0)),

Tr
[
γN
(
Tα2

0
(p̂)− |x̂|−1 + κ

)]
= Tr

[
γNTα2

0
(p̂)
]
+ Tr

[
γN
(− |x̂|−1 + κ

)]
≥ Tr

[
γN
(
Tα2(p̂)− |x̂|−1 + κ

)]
+ [(α−1

0 α)2 − 1] Tr
[
γNTα2(p̂)

]
≥ Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
− + [(α−1

0 α)2 − 1] Tr
[
γNTα2

0/2
(p̂)
]
. (121)

Choose now δ > 0 such that

α ∈ (α0 − δ, α0) ∩ (α0/2, α0) ⇒ [(α−1
0 α)2 − 1] Tr

[
γNTα2

0/2
(p̂)
]
> − ǫ/2 . (122)

Then, combining (120), (121), and (122) (and using (119) again) we have proved that, for
all ǫ > 0 there exists 0 < δ < α0/2 such that

α ∈ (α0 − δ, α0)
⇒ Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
− ≥ Tr

[
Tα2

0
(p̂)− |x̂|−1 + κ

]
− ≥ Tr

[
Tα2(p̂)− |x̂|−1 + κ

]
− − ǫ .

This proves the continuity from the left of Tr
[
Tα2(p̂)−|x̂|−1+κ

]
− at α0 = 2/π, and therefore

finishes the proof that S : [0, 2/π] → R is continuous.
This completes the proof of Theorem 4. �

5. Local relativistic semi-classical estimates using new coherent states

In this section we study the sum and the density of the negative eigenvalues of the localised
Hamiltonian φHβφ, with φ compactly supported and Hβ = Tβ(−ih∇) + V (x̂). Here, Tβ is
given by (3), and V is a (sufficiently) regular potential (see below for details). For the most
part we suppress the index β but all estimates, in particular the constants C, will be uniform
in β ∈ [0, 1].

We first recall the definition and the main properties of the coherent states (operators)
introduced in [36], where all proofs can be found. These coherent states are denoted by Gu,q.
Let 1/a > h > 0. The kernel of Gu,q is given by

Gu,q(x, y) = (πh)−n/2e−a(
x+y

2
−u)2

+iq(x−y)/h− 1
4h2a

(x−y)2 . (123)

A first important property of these operators is their completeness.

Lemma 28 (Completeness of new coherent states). The coherent operators Gu,q satisfy∫
G2
u,q

dq

(2πh)n
= Gb(x̂− u) ,

∫
G2
u,q

du

(2πh)n
= Gb(−ih∇− q) , (124)

where x̂ denotes the operator multiplication by the position variable x. Here Gb(v) =
(b/π)n/2e−bv2 with b = 2a/(1 + h2a2). Note that Gb has integral 1 and hence∫

G2
u,q

dudq

(2πh)n
= 1 . (125)

We shall consider operators of the form∫
Gu,q f(Âu,q)Gu,q dudq , (126)

where f : R → R is any polynomially bounded real function. As we shall see in the next
theorem the integrand above is a trace class operator for each (u, q). The integral above is
to be understood in the weak sense, i.e., as a quadratic form. We shall consider situations
where the integral defines bounded or unbounded operators.
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Theorem 29 (Trace identity). Let f : R → R and V : Rn → R be polynomially bounded,
real-valued measurable functions and let

Â = B0 +B1x̂− ihB2∇
be a first order self-adjoint differential operator3 with B0 ∈ R, B1,2 ∈ Rn. Then
Gu,q f(Â)Gu,q V (x̂) is a trace class operator (when extended from C∞0 (Rn)) and

Tr
[Gu,q f(Â)Gu,q V (x̂)

]
=

∫
f(B0 +B1v +B2p)Gb(u− v)Gb(q − p)G(h2b)−1(z)

×V (v + h2ab(u− v) + z) dvdpdz .

In particular, Tr
[G2
u,q

]
= 1.

We shall also need the following extension of this theorem, where we however only give
an estimate on the trace.

Theorem 30 (Trace estimates). Let f, Â be as in the previous theorem. Let moreover
φ ∈ Cn+4(Rn) be a bounded, real function with all derivatives up to order n + 4 bounded,
and let V, F ∈ C2(Rn) be real functions with bounded second derivatives. Then, for h < 1,
1 < a < 1/h and b = 2a/(1 + h2a2) we have, with σ(u, q) = F (q) + V (u), that4

Tr
[Gu,q f(Â)Gu,q φ(x̂)

(
F (−ih∇) + V (x̂)

)
φ(x̂)

]
=

∫
f(B0 +B1v +B2p)Gb(u− v)Gb(q − p)

×
[(
φ(v + h2ab(u− v))2 + E1(u, v)

)
σ(v + h2ab(u− v), p+ h2ab(q − p))

+ E2(u, v; q, p)
]
dvdp ,

with ‖E1‖∞, ‖E2‖∞ ≤ Ch2b, where C depends only on

sup
|ν|≤n+4

‖∂νφ‖∞ , sup
|ν|=2

‖∂νV ‖∞ , and sup
|ν|=2

‖∂νF‖∞ .

(Note that the assumption 1 < a < 1/h implies 1 < b < 1/h.)

We will use the above theorem to prove an upper bound on the sum of eigenvalues of the
operator F (−ih∇) + V (x̂), in the case when F (q) = Tβ(q) from (3) with β ∈ [0, 1] (equal
to
√
β−1q2 + β−2 − β−1 for β ∈ (0, 1], and to 1

2q
2 when β = 0). This is done in Lemma 34

below by constructing a trial density matrix on the form (126).
To prove a lower bound on the sum of the negative eigenvalues one approximates the

Hamiltonian F (−ih∇) + V (x̂) by an operator also represented on the form (126).

Theorem 31 (Coherent states representation). Consider functions F, V ∈ C3(Rn),
for which all second and third derivatives are bounded. Let σ(u, q) = F (q) + V (u), then for
a < 1/h and b = 2a/(1+h2a2) we have the representation (as quadratic forms on C∞0 (Rn)),

F (−ih∇) + V (x̂) =
∫
Gu,qĤu,qGu,q dudq

(2πh)n
+ E ,

with the operator-valued symbol

Ĥu,q = σ(u, q) + 1
4b∆σ(u, q) + ∂uσ(u, q)(x̂− u) + ∂qσ(u, q)(−ih∇− q) . (127)

3The operator Â is essentially self-adjoint on Schwartz functions on Rn.
4The operator Gu,q f(Â)Gu,q φ(x̂) (F (−ih∇) + V (x̂))φ(x̂) is originally defined on, say, C∞0 (Rn), but it is

part of the claim of the theorem that it extends to a trace class operator on all of L2(Rn).
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The error term, E, is a bounded operator with

‖E‖ ≤ Cb−3/2
∑
|ν|=3

‖∂νσ‖∞ + Ch2b
∑
|ν|=2

‖∂νσ‖∞ .

Let us recall our convention that x− = min{x, 0} and that χ = χ(−∞,0] denotes the
characteristic function of (−∞, 0].

The next theorem is the main result of this section.

Theorem 32 (Local relativistic semi-classics). For n ≥ 3, let φ ∈ Cn+4
0 (Rn) be

supported in a ball B1 ⊂ Rn of radius 1 and let V ∈ C3(B1) be a real function. Let
0 ≤ β ≤ 1, h > 0, and let σβ(u, q) = Tβ(q) + V (u) and Hβ = Tβ(−ih∇) + V (x̂) with
Tβ(q) =

√
β−1q2 + β−2 − β−1 for β ∈ (0, 1] and T0(q) = 1

2q
2.

Then ∣∣∣Tr
[
φHβφ

]
− − (2πh)−n

∫
φ(u)2σβ(u, q)− dudq

∣∣∣ ≤ Ch−n+6/5 .

The constant C > 0 here depends only on ‖φ‖Cn+4, ‖V ‖C3 ,5 and the dimension n, but not
on β ∈ [0, 1].

The important property for our method to work is that the second and third order
derivatives of the kinetic energy function Tβ(q) are bounded uniformly in q and β. Thus
the error term above is independent of β ∈ [0, 1], and in particular the same as for the
non-relativistic case, − h2∆/2 + V , which corresponds to the limit β → 0. We prove upper
and lower bounds and start with the lower bound.

Lemma 33 (Lower bound on Tr[φHβφ]−). Under the same conditions as in Theorem
32,

Tr[φHβφ]− ≥ (2πh)−n
∫

φ(u)2σβ(u, q)− dudq − Ch−n+6/5 .

The constant C > 0 here depends only on ‖φ‖Cn+4 , ‖V ‖C3, and the dimension n, but not
on β ∈ [0, 1].

Proof. Since φ has support in the ball B1 we may assume without loss of generality that
V ∈ C3

0 (Rn) with the support in a ball B2 of radius 2 and that the norm ‖V ‖C3 refers to
the supremum over all of Rn. We shall not explicitly follow how the error terms depend
on ‖φ‖Cn+4 and ‖V ‖C3 . All constants denoted by C depend on ‖φ‖Cn+4 , ‖V ‖C3 , and the
dimension n but, in particular, not on β.

We use the Daubechies inequality (Theorem 9) to control various error estimates. Since
Tβ(q) ≥ T1(q) for β ∈ [0, 1] we may use it with β = 1. Then, uniformly in β ∈ [0, 1],

Tr[φHβφ]− ≥ C‖φ‖2
∞

∫
u∈B1

σ1(u, q)−
dudq

(2πh)n
≥ − Ch−n .

Consider some fixed 0 < τ < 1 (independent of h and β). If h ≥ τ then we get that

Tr[φHβφ]− ≥
∫

φ(u)2σβ(u, q)−
dudq

(2πh)n
− Cτ−6/5h−n+6/5 .

We are therefore left with considering h < τ .

5We use the convention that ‖ψ‖Cp = sup|ν|≤p ‖∂νψ‖∞.
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If we now use the inequality [x+ y]− ≥ [x]− + [y]−, which we will do frequently without
further mentioning, and Theorem 31, we have that

Tr[φHβφ]− ≥ Tr
[∫

φGu,qĤ(ε)
u,qGu,qφ

dudq

(2πh)n

]
−

+ Tr
[
φ
(
ε
√
−β−1h2∆ + β−2 − εβ−1 − C(b−3/2 + h2b)

)
φ
]
− . (128)

Here, 0 < ε < 1/2 and

Ĥ(ε)
u,q = σ̃(u, q) + 1

4b∆σ̃(u, q) + ∂uσ̃(u, q)(x̂− u) + ∂qσ̃(u, q)(−ih∇− q)

with σ̃(u, q) = (1 − ε)Tβ(q) + V (u). The second trace can be estimated from below using
the Daubechies inequality (Theorem 9) with α = β1/2h−1, m = h−2. Then

Tr
[
φ
(
ε
√
−β−1h2∆ + β−2 − εβ−1 − C(b−3/2 + h2b)

)
φ
]
−

= εTr
[
φ
(√−β−1h2∆ + β−2 − β−1 − Cε−1(b−3/2 + h2b)

)
φ
]
−

≥ − Cεh−n
∫
B1

(
ε−1(b−3/2 + h2b)

)1+n/2
dx

− Cεβn/2h−n
∫
B1

(
ε−1(b−3/2 + h2b)

)n
dx . (129)

We shall eventually choose ε = 1
4(b−3/2 + h2b). Note that then ε < 1/2, and that the bound

in (129) is − Ch−n(b−3/2 + h2b), uniformly for β ∈ [0, 1].
By bringing the negative part inside in (128) we obtain the lower bound,

Tr[φHβφ]− ≥
∫

Tr
[
φGu,q

[
Ĥ(ε)
u,q

]
−Gu,qφ

] dudq

(2πh)n
− Ch−n(b−3/2 + h2b) .

We first consider the integral over u outside the ball B2 of radius 2, where V = 0. Using
Theorem 29 (with f(t) = [t]−, and V replaced by φ2) and

∫
φ2 ≤ C, we get that this part

of the integral is

(1− ε)
∫

u 6∈B2

[
Tβ(q) + (n+ (n− 1)βq2)/[4b(1 + βq2)3/2] + q · (p− q)/

√
1 + βq2

]
−

×Gb(q − p)Gb(u− v)G(h2b)−1(z)φ(v + h2ab(u− v) + z)2 dvdpdz
dudq

(2πh)n

≥ (1− ε)
∫

z∈B1

φ(z)2
∫

u 6∈B2

Gb(u− v)G(h2b)−1(v + h2ab(u− v)− z) dudvdz

×
∫ [

Tβ(q) + q · (p− q)/
√

1 + βq2
]
−Gb(q − p)

dqdp

(2πh)n

= (1− ε)
∫

z∈B1

φ(z)2
∫

(1−h2ab)u 6∈B2−v

Gb(u)G(h2b)−1(v − z) dudvdz

×
∫ [

Tβ(q) + q · p/
√

1 + βq2
]
−Gb(p)

dqdp

(2πh)n
.

The integration over u, v is obviously bounded by 1. In fact, the u-integration can be shown
to be exponentially small, i.e., less than C e−Cb, but this will not be necessary.
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The domain of integration for the variables q, p is contained in the set {(q, p) | |q| ≤ 2|p|}.
Then,∫ [

Tβ(q) + q · p/
√

1 + βq2
]
−Gb(p) dqdp

≥ − C

∫
|q|<2|p|

|q||p|√
1 + βq2

Gb(p) dqdp ≥ − C

∫
|p|n+2Gb(p) dp = − C b−(n+2)/2 .

It follows that the integral over u 6∈ B2 is bounded from below by −Ch−nb−3/2, since b > 1.
For the integral over u ∈ B2 we use Theorem 29 as before. This time, expanding φ2 to

second order in z at the point z = 0 and using the crucial fact (which we shall use without
mentioning later) that, for any λ > 0,∫

xj Gλ(x) dx = 0 ,
∫
|x|mGλ(x) dx = C λ−m/2 , (130)

implies that

Tr[φHβφ]− ≥
∫

u∈B2

[
φ(v + h2ab(u− v))2 + Ch2b

]
Gb(u− v)Gb(q − p)

×
[
H(ε)
u,q(v, p)

]
−

dudq

(2πh)n
dvdp− Ch−n(b−3/2 + h2b) , (131)

where

H(ε)
u,q(v, p) = σ̃(u, q) + 1

4b∆σ̃(u, q) + ∂uσ̃(u, q)(v − u) + ∂qσ̃(u, q)(p− q) .

The rest of the proof is simply an estimate of the integral in (131). This analysis is an
elementary but tedious exercise in calculus. For the convenience of the reader it is given in
detail in Appendix B below. �

Lemma 34 (Construction of a trial density matrix). Under the same conditions as
in Theorem 32 there exists a density matrix γ on L2(Rn) such that

Tr
[
φ(Tβ(−ih∇) + V (x̂))φγ

] ≤ ∫ φ(u)2σβ(u, q)−
dudq

(2πh)n
+ Ch−n+6/5 . (132)

Moreover, the density ργ of γ satisfies∣∣∣ργ(x)− (2πh)−nωn |V−|n/2(2 + β|V−|)n/2(x)
∣∣∣ ≤ Ch−n+9/10 , (133)

for (almost) all x ∈ B1 and∣∣∣∣∫ φ(x)2ργ(x) dx− (2πh)−nωn
∫
φ(x)2 |V−|n/2(2 + β|V−|)n/2(x) dx

∣∣∣∣ ≤ Ch−n+6/5 , (134)

where ωn is the volume of the unit ball B1 in Rn. The constants C > 0 in the above estimates
depend only on n, ‖φ‖Cn+4, and ‖V ‖C3, but not on β ∈ [0, 1].

It is convenient to introduce the function

η(t) = n

∫ ∞

0
χ[Tβ(p) + t] |p|n−1 d|p| = |t−|n/2(2 + β|t−|)n/2 . (135)

(Recall that χ is the characteristic function of R−.)
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Proof. We will occasionally drop the index β in Hβ and σβ. It is important to realize,
however, that all estimates are uniform in β. We first note that since T1(p) ≤ Tβ(p) ≤
T0(p) = p2/2 we have that

|p| − C ≤ σ(v, p) ≤ 1
2
p2 + C. (136)

Let us start by choosing some fixed 0 < τ < 1. For h ≥ τ and for some C > 0 we have by
(136) that ∫

φ(u)2σ(u, q)−
dudq

(2πh)n
+ Cτ−6/5h−n+6/5 ≥ 0 ,

and that for any s > 0,
(2πh)−nη(V (x)) ≤ Cτ−sh−n+s .

If h ≥ τ we may therefore use γ = 0, and s = 9/10 and s = 6/5 for (133) and (134),
respectively. From now on we assume that h < τ and, if necessary, that τ is small enough
depending only on φ and V . Also, as for the lower bound, we may assume that V ∈ C3

0(Rn)
with support in the ball B3/2 concentric with B1 and of radius 3/2.

In analogy to the previous proof for the lower bound we define now for each (u, q) an
operator ĥu,q by

ĥu,q =
{
σ(u, q) + 1

4b∆σ(u, q) +∇σ(u, q) · (x̂− u,−ih∇− q) if u ∈ B2

0 if u 6∈ B2
.

The corresponding function is

hu,q(v, p) =
{
σ(u, q) + 1

4b∆σ(u, q) +∇σ(u, q) · (v − u, p− q) if u ∈ B2

0 if u 6∈ B2
.

As for the lower bound we shall choose a = h−4/5; then a < h−1. In fact, we will assume
that (1− h2ab) ≥ 1/2. Recall here that b = 2a/(1 + h2a2) (i.e., in particular a ≤ b ≤ 2a).

Similar to (172) (for ε = 0) we have for u ∈ B2 that∣∣hu,q(v, p)− σ(v, p)− ξv,p(u− v, q − p)
∣∣

≤ C|u− v|(b−1 + |u− v|2) + C|q − p|(b−1 + |q − p|2) , (137)

where
ξv,p(u, q) = 1

4b∆σ(v, p)− 1
2

∑
i,j

∂i∂jTβ(p)qiqj − 1
2

∑
i,j

∂i∂jV (v)uiuj .

Recalling that χ is the characteristic function of R− we define

γ =
∫
Gu,q χ

[
ĥu,q

]Gu,q dudq

(2πh)n
. (138)

Since 0 ≤ χ
[
ĥu,q

] ≤ 1 it follows from (125) that 0 ≤ γ ≤ 1.
We now calculate Tr[γφHβφ] = Tr

[
γφ(Tβ(−ih∇) + V (x̂))φ

]
. From Theorem 30 we have

that

Tr
[
γφ(Tβ(−ih∇) + V (x̂))φ

]
=
∫

χ[hu,q(v, p)]Gb(u− v)Gb(q − p)
[
E2(u, v; q, p) + (139)(

φ(v + h2ab(u− v))2 + E1(u, v)
)
σ(v + h2ab(u− v), p+ h2ab(q − p))

] dudq

(2πh)n
dvdp ,
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where E1, E2 are functions such that ‖E1‖∞ + ‖E2‖∞ ≤ Ch2b. The rest of the proof of
(132) is a tedious, but elementary analysis of this integral. A detailed analysis is presented
in Appendix B below.

It remains to estimate the density ργ together with
∫
φ(x)2ργ(x) dx. By Theorem 29 and

(138), γ is easily seen to be a trace class operator with density

ργ(x) =
∫
χ
[
hu+v,q+p(v, p)

]
Gb(u)Gb(q)G(h2b)−1(x− v − h2abu) dvdp

dudq

(2πh)n
. (140)

The proof of (133) and (134) again relies on a detailed analysis of this integral. As for
the estimate on the energy above this analysis is an exercise in calculus. Although it is
still elementary this analysis is more complicated than in the case of the energy. For the
convenience of the reader the analysis is given in detail in Appendix B below. �

Appendix A. Various Proofs

In this appendix we collect proofs of various results mentioned in Section 2.

Proof of Theorem 11 (Operator inequality critical Hydrogen). Let f ∈ S(R3) and t >
0 (to be chosen below). By Schwarz’ inequality,

2
π

∫
R3

|f(x)|2
|x| dx =

1
π3

∫
R3

∫
R3

f̂(p)f̂(q)
|p− q|2

( |p|2 + |p|t
|q|2 + |q|t

)1/2( |q|2 + |q|t
|p|2 + |p|t

)1/2
dpdq

≤ 1
π3

∫
R3

∫
R3

|f̂(p)|2
|p− q|2

|p|2 + |p|t
|q|2 + |q|t dpdq . (141)

We first compute the integral in q. Since (|q|2 + |q|t)−1 ≤ |q|−2 − |q|t−4 + |q|2t−6 we get∫
R3

1
|p− q|2

1
|q|2 + |q|t dq ≤

∫
R3

1
|p− q|2 (|q|−2 − |q|t−4 + |q|)2t−6 dq .

Note [19, 5.10 (3)] that, for 0 < τ, σ < n, with 0 < τ + σ < n,∫
Rn

|y − z|τ−n|z|σ−n dz =
cn−τ−σcτcσ
cτ+σcn−τcn−σ

|y|τ+σ−n , (142)

where cτ = π−τ/2Γ(τ/2). In particular, if n = 3, then∫
R3

|y − z|−2|z|−r dz = kr |y|1−r for r ∈ (1, 3) , (143)

with

kr = π2 Γ
(
r−1
2

)
Γ
(

3−r
2

)
Γ
(

4−r
2

)
Γ
(
r
2

) . (144)

It follows that, for 3 < 2t < 5,∫
R3

1
|p− q|2

|p|2 + |p|t
|q|2 + |q|t dq ≤ k2 |p|+ (k2 − k4−t) |p|t−1 (145)

+ (k6−2t − k4−t
) |p|2t−3 + k6−2t |p|3t−5 .

We see from (144) that k is symmetric with respect to r = 2. Using Γ(1 + z) = zΓ(z) in
the denominator in (144) with z = 1− r/2 and the relation Γ(z)Γ(1− z) = π/ sin(πz) (for
0 < z < 1) in the denominator and numerator we obtain

kr = −π2 tan(πr/2)
1− r/2

,
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which shows that k is decreasing on (1, 2) and increasing on (2, 3).
Hence from (145), choosing further t > 5/3, we find, for positive constants A(t−1)/2,

B(t−1)/2, that∫
R3

1
|p− q|2

|p|2 + |p|t
|q|2 + |q|t dq ≤ k2 |p| − π3A(t−1)/2|p|t−1 + π3B(t−1)/2 . (146)

Since k2 = π3, this and (141) implies that

2
π

∫
R3

|f(x)|2
|x| dx ≤

∫
R3

|f̂(p)|(|p| −A(t−1)/2|p|t−1 +B(t−1)/2

)
dp , (147)

which implies the operator inequality, for all t ∈ (5/3, 2),
√−∆− 2

π|x̂| ≥ A(t−1)/2(−∆)(t−1)/2 −B(t−1)/2 . (148)

Choosing t = 2s + 1 proves (21) for s ∈ (1/3, 1/2). For s ∈ [0, 1/3], (21) follows from the
existence of positive constants A(τ−1)/2, B(τ−1)/2, given τ ∈ [1, 5/3], t ∈ (5/3, 2) and positive
constants A(t−1)/2, B(t−1)/2, such that

A(t−1)/2|p|t−1 −B(t−1)/2 ≥ A(τ−1)/2|p|τ−1 −A(τ−1)/2 .

�

Integral representation for the relativistic kinetic energy. We shall here give a
self-contained presentation of the integral formulas for the relativistic kinetic energy. The
relativistc kinetic energy will be given in terms of the modified Bessel functions of the second
kind, Kν . To identify the modified Bessel functions we use that [1, 9.6.23]

K0(t) =
∫ ∞

1

e−wt√
w2 − 1

dw , t > 0 , (149)

and the recursion relation [1, 9.6.28]

Kν+1(t) = −tν d
dt

(t−νKν(t)) , t > 0 . (150)

We emphasise that we use these properties only as definitions of the Bessel functions, and
derive all other properties of these functions that we need. Note that Kν : R+ → R are
smooth functions.

Consider the function Gmn ∈ L1(Rn) (the Yukawa potential) whose Fourier transform is

Ĝmn (ξ) = (2π)−n/2(|ξ|2 +m2)−1 .

Using that v−1 =
∫∞
0 e−uv du we get from the Fourier transform of Gaussian functions the

following integral representation for G,

Gmn (z) =
∫ ∞

0
(4πu)−n/2e−m

2u−|z|2/(4u) du . (151)

It follows from this that G is non-negative, smooth for z 6= 0, and indeed in L1(Rn).
For odd n the above integral can be explicitly calculated. For even n it is as we shall now

see expressible as a modified Bessel function Kν of integer order ν. By a simple change of
variables (2w = v + v−1 with v = 2mu/|z|) in the integral (149) we see from (151) that
Gm2 (z) = (2π)−1K0(m|z|) . From the recursion formula (150) we then find inductively that
for even n

Gmn (z) = m(n−2)/2(2π)−n/2|z|−(n−2)/2K(n−2)/2(m|z|) . (152)
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In fact, the same formula holds for all n, but we do not wish to discuss the modified Bessel
functions of fractional order (one could simply take this formula as their definition).

Lemma 35. The heat kernel for the operator
√−∆ +m2 on L2(Rn) is given by

exp(−t
√
−∆ +m2)(x, y)

= −2∂tGmn+1(x− y, t)

= 2
(m

2π

)(n+1)/2 t

(|x− y|2 + t2)(n+1)/4
K(n+1)/2(m(|x− y|2 + t2)1/2)

for t > 0.

Proof. It suffices to show that the two tempered distributions on Rn+1,

t

|t| exp(−|t|
√
−∆ +m2)(x, 0) and − 2∂tGmn+1(x, t) ,

have the same Fourier transform. The Fourier transform as a function of ξ = (p, s) with
p ∈ Rn and s ∈ R of the first distribution is

(2π)−(n+1)/2
(− ∫ 0

−∞
e−its+t

√
p2+m2

dt+
∫ ∞

0
e−its−t

√
p2+m2

dt
)

=
−2is(2π)−(n+1)/2

|p|2 + s2 +m2
.

The Fourier transform of the second distribution above is

−2is Ĝmn+1(p, s) =
−2is(2π)−(n+1)/2

|p|2 + s2 +m2
.

The last identity in the lemma follows from (150) and (152). �

If we set x = y in the above lemma we find the following integral formula for the modified
Bessel function

K(n+1)/2(t) =
1
2

(
t

2π

)(n−1)/2 ∫
Rn

e−t
√
p2+1 dp , t > 0 .

For n = 3 this simplifies to

K2(t) = t

∫ ∞

0
e−t

√
s2+1s2 ds (153)

from which we immediately get the estimate

K2(t) ≤ Ct−2e−t/2 . (154)

Proof of Theorem 13 (Relativistic IMS formula). By scaling, it suffices to prove the
statement for α = 1. We start from the identity(

f, (
√
−∆ +m2 −m)f

)
=
∫
|f(x)− f(y)|2F (x− y) dxdy

with

F (x− y) =
m2

4π2

K2(m|x− y|)
|x− y|2 , (155)
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where K2 is the modified Bessel function of second order defined above (see (149)–(150)).
The identity follows from Lemma 35 (for a proof, see [19, 7.12]). Then,(

f, (
√
−∆ +m2 −m)f

)
=

∫
|f(x)− f(y)|2F (x− y) dxdy

=
∫ ∫

M

[
θu(x)2|f(x)|2 + θu(y)2|f(y)|2]F (x− y) dµ(u)dxdy

+
∫ ∫

M

[− 1
2(θu(x)2 + θu(y)2) + θu(x)θu(y)− θu(x)θu(y)

]
× [

f(x)f(y) + f(x)f(y)
]
F (x− y) dµ(u)dxdy

=
∫ ∫

M
|θu(x)f(x)− θu(y)f(y)|2F (x− y) dµ(x)dxdy

+
∫ ∫

M

[− 1
2(θu(x)2 + θu(y)2) + θu(x)θu(y)

]
× [

f(x)f(y) + f(x)f(y)
]
F (x− y) dµ(u)dxdy

=
∫
M

(
θuf, (

√
−∆ +m2 −m)θuf

)
dµ(u)

−
∫ ∫

M

(
θu(x)− θu(y)

)2
f(x)f(y)F (x− y) dµ(u)dxdy .

This proves (23) with L given by (24)–(25). We now show that ‖Lθu‖ ≤ Cm−1‖∇θu‖2∞ for
fixed u. By (25), Young’s inequality, and (154),

∣∣(f, Lθuf)
∣∣ ≤ m2

4π2
‖∇θu‖2

∞

∫
|f(x)| |f(y)|K2(m|x− y|) dxdy

≤ Cm2‖∇θu‖2
∞‖f‖2

2

∫ ∞

0
t2K2(mt) dt

= Cm−1‖∇θu‖2
∞‖f‖2

2 . (156)

This proves that Lθu is a bounded operator. �

Proof of Theorem 14 (Localisation error). Again, by scaling, it suffices to prove the state-
ment for α = 1. With χΩ the characteristic function of Ω (and L ≡ Lθ) we have from the
representation (25) of L, since θ is constant on Ωc, that

L = χΩLχΩ + (1− χΩ)LχΩ + χΩL(1− χΩ). (157)

If Γ1, Γ2 are bounded operators, then (Γ1 − Γ2)(Γ1 − Γ2)∗ ≥ 0 implies that Γ1Γ∗2 + Γ2Γ∗1 ≤
Γ1Γ∗1 + Γ2Γ∗2. Using this with Γ1 = ε1/2χΩ,Γ2 = ε−1/2(1 − χΩ)L for some ε > 0 which we
choose later, we get

L ≤ χΩLχΩ + εχΩ + ε−1(1− χΩ)L2(1− χΩ) . (158)

To bound the first term on the right side recall that ‖L‖ ≤ Cm−1‖∇θ‖2∞ (see (156)).
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Let us now look at the third term in (158). Since θ is constant on Ωc and
dist(Ωc, supp∇θ) ≥ ℓ, using (25) gives

Tr
[
(1− χΩ)L2(1− χΩ)

]
=

∫
x∈Ωc,y∈Ω,|x−y|>ℓ

L(x, y)2 dxdy

≤ Cm4‖∇θ‖4
∞

∫
x∈Ωc,y∈Ω,|x−y|>ℓ

K2(m|x− y|)2 dxdy .

Using (154),∫
x∈Ωc,y∈Ω,|x−y|>ℓ

K2(m|x− y|)2 dxdy

≤ Ce−mℓ
∫
x∈Ωc,y∈Ω,|x−y|>ℓ

(m|x− y|)−4 dxdy

= Ce−mℓ|Ω|
∫ ∞

ℓ
(mt)−4t2 dt = Cm−3(mℓ)−1e−mℓ|Ω| .

This gives the bound

Tr
[
(1− χΩ)L2(1− χΩ)

] ≤ Cℓ−1‖∇θ‖4
∞e−mℓ|Ω| .

Finally, we choose ε = m−1‖∇θ‖2∞. Then by the above the two first terms in (158) are
bounded by Cm−1‖∇θ‖2∞χΩ, and the trace of the third term (which we denote Qθ) is
bounded by Cmℓ−1e−mℓ‖∇θ‖2∞|Ω|. �

For the proof of the combined Daubechies-Lieb-Yau inequality (Theorem 16) we need the
following inequality [5].

Lemma 36. For f ∈ S(R3),∫
R3

e−m2π−1|x|2

|x| |f(x)|2 dx ≤ π

2
1√

2− 1

(
f, (
√
−∆ +m2 −m)f

)
. (159)

Proof. Let µ = m2π−1. Then

I =
∫

R3

e−µ|x|2

|x| |f(x)|2 dx =
1

2π2

∫
R3

∫
R3

f̂(p1)
1

|p1 − p2|2 ĝ(p2) dp1dp2 ,

with g(x) = f(x)e−µ|x|2. Writing ĝ(p2) explicitly as the convolution with the Fourier trans-
form of e−µ|x|2 and then applying the Schwarz inequality we get that

I ≤ 1
16π2(πµ)3/2

∫
R3

∫
R3

∫
R3

|f̂(p1)|2e−|q|2/(4µ)

|p2 − p1 − q|2
|p1|2
|p2|2 dp1dp2dq .

Since [19, 5.10 (3)] ∫
R3

1
|p2 − p1 − q|2

1
|p2|2 dp2 =

π3

|p1 − q| ,

we have

I ≤ 1
16π1/2µ3/2

∫
R3

∫
R3

|f̂(p1)|2e−|q|2/(4µ)

|p1 − q| |p1|2 dp1dq .
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By Newton’s theorem [19, 9.7 (5)],∫
R3

e−|q|2/(4µ)

|p1 − q| dq =
1
|p1|

∫
|q|<|p1|

e−|q|
2/(4µ) dq +

∫
|q|>|p1|

e−|q|2/(4µ)

|q| dq

=
8πµ
|p1|

∫ |p1|

0
e−r

2/(4µ) dr ≤ 8πµmin
{
1,

(πµ)1/2

|p1|
}
.

Substituting µ = m2π−1 we find that

I ≤ π

2m

∫
R3

|f̂(p1)|2 min{|p1|2,m|p1|} dp1 ,

from which the claim follows since
√
t2 + 1− 1 ≥ (

√
2− 1) min{t2, t} for t ≥ 0. �

Proof of Theorem 16 (Combined Daubechies-Lieb-Yau). We may assume that W (x) ≤
0 otherwise we simply replace W by W−.

Assume first that να ≤ 3/(16πM). By the Daubechies inequality (17),

Tr
[√−α−2∆ +m2α−4 −mα−2 +W (x̂)

]
−

≥ 1
2 Tr

[√−α−2∆ +m2α−4 −mα−2 + 2Wχ{dR(x)<αm−1}
]
− (160)

− Cm3/2

∫
dR(x)>αm−1

|W (x)|5/2 dx− Cα3

∫
dR(x)>αm−1

|W (x)|4 dx .

The assumption on the positions of the nuclei implies that χ{dR(x)<αm−1} =∑M
j=1 χ{|x−Rj |<αm−1}, and so, using the assumption on W , we obtain

Tr
[√−α−2∆ +m2α−4 −mα−2 + 2Wχ{dR(x)<αm−1}

]
−

≥ 1
M

M∑
j=1

Tr
[√−α−2∆ +m2α−4 −mα−2 − ( 2νM

|x̂−Rj | + CνMmα−1
)
χ{|x−Rj |<αm−1}

]
−

= Tr
[√−α−2∆ +m2α−4 −mα−2 − ( 2νM |x̂|−1 + CνMmα−1

)
χ{|x|<αm−1}

]
− . (161)

The last equality follows from the translation invariance of −∆. By scaling,

Tr
[√−α−2∆ +m2α−4 −mα−2 − (2νM |x̂|−1 + CνMmα−1

)
χ{|x|<αm−1}

]
−

= α−2 Tr
[√−∆ +m2 −m− (γ|x̂|−1 + Cγm

)
χ{|x|<m−1}

]
− , (162)

with γ = 2Mνα ≤ 3/(8π). Using Lemma 36 and the Daubechies inequality, we get that

Tr
[√−∆ +m2 −m− (γ|x̂|−1 + Cγm

)
χ{|x|<m−1}

]
−

≥ (
1− 4π

3 γ
)
Tr
[√−∆ +m2 −m− γ(1− 4π

3 γ
)−1( 1− e−m2π−1|x̂|2

|x̂| + Cm
)
χ{|x|<m−1}

]
−

≥ − Cγ5/2m3/2

∫
|x|<m−1

(|x|−1 +m
)5/2

dx− Cγ4

∫
|x|<m−1

( 1− e−m2π−1|x|2

|x| +m
)4
dx ,

where we have used that
√

2− 1 ≥ 3/8 and γ ≤ 3/(8π).
Note that∫
|x|<m−1

(|x|−1 +m
)5/2

dx ≤ Cm−1/2 ,

∫
|x|<m−1

( 1− e−m2π−1|x|2

|x| +m
)4
dx ≤ Cm ,
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and so

Tr
[√−∆ +m2 −m− (γ|x̂|−1 + Cγm

)
χ{|x|<m−1}

]
− ≥ − C(γ5/2 + γ4)m. (163)

Combining (162) and (163), and using γ = 2Mνα, να ≤ 2/π, we get that

Tr
[√−α−2∆ +m2α−4 −mα−2 − (2νM |x̂|−1 + CνMmα−1

)
χ{|x|<αm−1}

]
−

≥ − Cα−2(γ5/2 + γ4)m ≥ − Cν5/2α1/2m. (164)

Combining (160), (161), and (164), yields (32) for να ≤ 3/(16πM).
Assume now that να ∈ [3/(16πM), 2/π].
Let θ ∈ C∞0 (R3) satisfy 0 ≤ θ(x) ≤ 1, θ(x) = 1 for |x| ≤ αm−1/4, θ(x) = 0 for

|x| ≥ αm−1/2, (1− θ2)1/2 ∈ C1(R), and

‖∇θ‖∞ ≤ Cα−1m, ‖∇(1− θ2)1/2‖∞ ≤ Cα−1m.

Let θj(x) = θ(x − Rj), j = 1, . . . ,M , and θM+1(x) = (1 −∑M
j=1 θ

2
j )

1/2 (the latter is well-
defined due to the assumption mink 6=ℓ |Rk − Rℓ| > 2αm−1). The relativistic IMS formula
and the localisation estimate (26) used for Ωj , j = 1, . . . ,M , being the balls centered at
Rj with radii 3αm−1/4 and ℓ = αm−1/4, and ΩM+1 being the (disjoint) union of the same
balls and ℓ = αm−1/8, gives the operator inequality√

−α−2∆ +m2α−4 −mα−2 +W (x̂)

≥ θM+1

(√−α−2∆ +m2α−4 −mα−2 − Cmα−2
M∑
j=1

χΩj +W (x̂)
)
θM+1 (165)

+
M∑
j=1

θj
(√−α−2∆ +m2α−4 −mα−2 − Cmα−2 +W (x̂)

)
θj −

M+1∑
j=1

Qj ,

with

Tr
[
Qj
] ≤ C mα−2 .

Here we have used that θiχΩjθi = δij θi
2, i, j ∈ {1, . . . ,M}, θM+1χΩM+1

θM+1 = 0, and
θiχΩM+1

θi ≤ θ2
i , i 6= M + 1.

Using the Daubechies inequality on the first term in (165) and the assumption onW in the
second (noticing that θj(x)/dR(x) = θj(x)/|x−Rj | due to the assumption mink 6=ℓ |Rk−Rℓ| >
2αm−1), we get from this that

Tr[
√
−α−2∆ +m2α−4 −mα−2 +W (x̂)]−

≥ − Cm3/2

∫
dR(x)>αm−1/4

|W (x)|5/2 dx− Cα3

∫
dR(x)>αm−1/4

|W (x)|4 dx− C mα−2

− C
M∑
j=1

(
m3/2(mα−2)5/2 + α3(mα−2)4

)∣∣{x | 1
4αm

−1 < |x−Rj | < 3
4αm

−1}∣∣ (166)

+
M∑
j=1

Tr
[
θj
(√−α−2∆ +m2α−4 −mα−2 − Cmα−2 − ν

|x̂−Rj | − Cνmα−1
)
θj
]
− .

By the translation invariance of −∆, the last term equals

M Tr
[
θ
(√−α−2∆ +m2α−4 − Cmα−2 − Cνmα−1 − ν|x̂|−1

)
θ
]
− ,
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and using the Lieb-Yau inequality (and the properties of θ and that να ≤ 2/π),

Tr
[
θ
(√−α−2∆ +m2α−4 − Cmα−2 − Cνmα−1 − ν|x̂|−1

)
θ
]
−

≥ α−1 Tr
[
θ
(√−∆− 2

π
|x̂|−1 − Cmα−1

)
θ
]
− ≥ − Cmα−2 . (167)

Further, by the assumption on W , and the assumption mink 6=ℓ |Rk −Rℓ| > 2αm−1,

m3/2

∫
αm−1/4<dR(x)<αm−1

|W (x)|5/2 dx

≤
M∑
j=1

Cν5/2m3/2

∫
αm−1/4<|x−Rj |<αm−1

(|x−Rj |−1 + α−1m
)5/2

dx ≤ Cν5/2α1/2m,

and, since να ≤ 2/π,

α3

∫
αm−1/4<dR(x)<αm−1

|W (x)|4 dx

≤
M∑
j=1

Cν4α3

∫
αm−1/4<|x−Rj |<αm−1

(|x−Rj |−1 + α−1m
)4
dx ≤ Cν4α2m ≤ Cν5/2α1/2m.

It follows from this, (167), and (166) that

Tr[
√
−α−2∆ +m2α−4 −mα−2 +W (x̂)]−

≥ − Cmα−2 − Cν5/2α1/2m− Cm3/2

∫
dR(x)>αm−1

|W (x)|5/2 dx− Cα3

∫
dR(x)>αm−1

|W (x)|4 dx .

Since mα−2 ≤ Cν5/2α1/2m when να ∈ [3/(16πM), 2/π] this proves (32) in this case. This
finishes the proof of Theorem 16. �

Proof of Theorem 17 (Correlation inequality). The proof essentially uses superhar-
monicity and positive definiteness of |x|−1 (see [19]). By superharmonicity and the spherical
properties of Φs,

|x− y|−1 ≥
∫

Φs(z − x) |z − z′|−1 Φs(z′ − y) dzdz′ .



THE RELATIVISTIC SCOTT CORRECTION FOR ATOMS AND MOLECULES 49

Also note that for the Coulomb energy, D(Φs,Φs) = s−1D(Φ,Φ) = Cs−1. Therefore, we
immediately get that∑

1≤i<j≤N
|xi − xj |−1

≥
∑

1≤i<j≤N

∫
Φs(z − xi) |z − z′|−1 Φs(z′ − xj) dzdz′

= 1
2

∫ ( ∑
1≤j≤N

Φs(z − xj)
)
|z − z′|−1

( ∑
1≤j≤N

Φs(z′ − xj)
)
dzdz′

− N
2

∫
Φs(z)|z − z′|−1 Φs(z′) dzdz′

= 1
2

∫ ( ∑
1≤j≤N

Φs(z − xj)− ρ(z)
)
|z − z′|−1

( ∑
1≤j≤N

Φs(z′ − xj)− ρ(z′)
)
dzdz′

+
∫
ρ(z) |z − z′|−1

∑
1≤j≤N

Φs(z′ − xj) dzdz′

− 1
2

∫
ρ(z) |z − z′|−1 ρ(z′) dzdz′ −ND(Φs,Φs)

≥
∑

1≤j≤N

(
ρ ∗ |x|−1 ∗ Φs

)
(xj)−D(ρ)− CNs−1 .

In the last inequality we have used the positive definiteness of |x|−1 and dropped the first
term. This proves inequality (33). �
Proof of Corollary 21 (Estimate on ρTF ∗ |x|−1 ∗ (δ0 − Φt)). Let, with dr as in (4),

gr(x) = min{dr(x)−1/2, dr(x)−2} . (168)

We claim that for some constant C > 0,∣∣∇ρTF ∗ |x|−1
∣∣ ≤ Cgr(x) . (169)

To prove this we distinguish two regions.
First, let dr(x) ≥ 1. Then gr(x) = dr(x)−2. Using that |∇V TF|(x) ≤ Cgr(x)2dr(x)−1 =

dr(x)−5 we obtain∣∣∇ρTF ∗ |x|−1
∣∣ =

∣∣∣∇( M∑
j=1

zj|x− rj |−1 − V TF(x)
)∣∣∣

≤
M∑
j=1

zj|x− rj |−2 + dr(x)−5 ≤M max
j
{zj}

(
min
j
|x− rj |

)−2 + dr(x)−5

= Cdr(x)−2 + dr(x)−5 ≤ Cgr(x) .

If on the other hand dr(x) < 1, then, by using (36) and (41),∣∣∇ρTF ∗ |x|−1
∣∣ ≤

∫ ∣∣∇ρTF(y)
∣∣ |x− y|−1 dy ≤ C

∫
gr(y)3dr(y)−1 |x− y|−1 dy

= C
M∑
j=1

∫
dr(y)=|y−rj |

gr(y)3dr(y)−1 |x− y|−1 dy .
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Since gr(y) ≤ dr(y)−1/2 = |y − rj |−1/2 when dr(y) = |y − rj | this implies that

∣∣∇ρTF ∗ |x|−1
∣∣ ≤ C

M∑
j=1

∫
|y − rj |−5/2 |x− y|−1 dy

= C
M∑
j=1

|x− rj |−1/2 ≤ CMdr(x)−1/2 = Cgr(x) .

This finishes the proof of (169).
Let us now proceed to prove inequality (43). That the difference is positive is again just

superharmonicity of |x|−1. It is easy to see that

|dr(x)− dr(y)| ≤ |x− y| . (170)

In the case when dr(x) ≥ 2t we can conclude that

ρTF ∗ |x|−1 − ρTF ∗ |x|−1 ∗ Φt ≤ sup
|z−x|≤t

{ ∣∣∇ρTF ∗ |z|−1
∣∣ } ∫ |x− y|Φt(x− y) dy

≤ Ct sup
|z−x|≤t

gr(z) ≤ Ctgr(x) .

In the last step we have used that if dr(x) ≥ 2t and |z − x| ≤ t (this condition stems from
the support of Φt), then inequality (170) guarantees that 1

2dr(x) ≤ dr(z) ≤ 3
2dr(x). This in

turn implies (3
2)−2gr(x) ≤ gr(z) ≤ (1

2)−1/2gr(x).
If, on the other hand, dr(x) ≤ 2t, then we claim that∣∣ρTF ∗ |x|−1 − ρTF ∗ |y|−1

∣∣ ≤ C|x− y|1/2 . (171)

This can be seen as follows.∣∣ρTF ∗ |x|−1 − ρTF ∗ |y|−1
∣∣ =

∣∣∣∣∫ 1

0

d

dθ

(
ρTF ∗ |θx+ (1− θ)y|−1

)
dθ

∣∣∣∣
=

∣∣∣∣∫ 1

0
∇
(
ρTF ∗ |θx+ (1− θ)y|−1

)
· (x− y) dθ

∣∣∣∣
≤ C

∫ 1

0
gr(θx+ (1− θ)y) |x− y| dθ

≤ C|x− y|
M∑
j=1

∫ 1

0
|θx+ (1− θ)y − rj |−1/2 dθ

= C|x− y|1/2
M∑
j=1

∫ 1

0

∣∣∣∣θ(x− y)
|x− y| +

y − rj
|x− y|

∣∣∣∣−1/2

dθ .

Let n = (x−y)/|x−y|, b = (y−rj)/|x−y|, and c = n·b. Then |θn+b|2 ≥ |θ+n·b|2 = (θ+c)2.
Therefore ∣∣ρTF ∗ |x|−1 − ρTF ∗ |y|−1

∣∣ ≤ C|x− y|1/2
M∑
j=1

∫ 1

0
|θ + c|−1/2 dθ .

The integral
∫ 1
0 |θ + c|−1/2 dθ is bounded uniformly for c ∈ R. This proves (171).
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This allows us finally to show that for dr(x) ≤ 2t,

ρTF ∗ |x|−1 − ρTF ∗ |x|−1 ∗ Φt =
∫ (

ρTF ∗ |x|−1 − ρTF ∗ |y|−1
)
Φt(x− y) dy

≤ C

∫
|x− y|1/2 Φt(x− y) dy = Ct1/2 .

This finishes the proof of the corollary. �

Appendix B. Estimates of semi-classical integrals

In this appendix we give the remaining arguments on the analysis of the integrals in the
semi-classical proofs of Lemma 33 and Lemma 34.

Proof of Lemma 33 (Lower bound on Tr[φHβφ]−): Estimate of integral (131). It re-
mains to estimate the integral in (131). Note that by Taylor’s formula for σ̃ we have

H(ε)
u,q(v, p) ≥ σ̃(v, p) + ξ̃v,p(u− v, q − p)− C|u− v|(b−1 + |u− v|2) (172)

− C|q − p|(b−1 + |q − p|2) ,
where

ξ̃v,p(u, q) = 1
4b∆σ̃(v, p)− (1− ε)1

2

∑
i,j

∂i∂jTβ(p)qiqj − 1
2

∑
i,j

∂i∂jV (v)uiuj .

We have used that |∆σ̃(v, p)−∆σ̃(u, q)| ≤ C|u−v|+C|q−p|, and similarly, when replacing
∂i∂jF (q) by ∂i∂jF (p), and ∂i∂jV (u) by ∂i∂jV (v). We get that:

H(ε)
u,q(v, p) ≤ 0 ⇒ |p| ≤ C

(
1 + |u− v|3 + |q − p|3) . (173)

(Note that this holds also for ε = 0, and uniformly in β ∈ [0, 1]; to see the latter, use that
Tβ(p) ≥ T1(p).) This implies that∫

H
(ε)
u,q(v,p)≤0

(|u− v|m + |q − p|m)Gb(u− v)Gb(q − p) dpdudq ≤ Cb−m/2 , (174)

and ∫
H

(ε)
u,q(v,p)≤0

(|u− v|m + |q − p|m)Gb(u− v)Gb(q − p) dpdvdq ≤ Cb−m/2 . (175)

From this we obtain that∫
Gb(u− v)Gb(q − p)

[
H(ε)
u,q(v, p)

]
−
dpdqdv ≥ − C , (176)

and hence from (131) that

Tr[φHβφ]−

≥
∫

u∈B2

φ(v + h2ab(u− v))2Gb(u− v)Gb(q − p) [Hu,q(v, p)]−
dudq

(2πh)n
dvdp

− Ch−n(b−3/2 + h2b) .
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Here we have used the fact that the u-integration is over a bounded region. From now on
we may however ignore the restriction on the u-integration. We note that, by using (173)
and (174), that φ has support in B1, and that b > 1, we get that∫
H

(ε)
u,q(v,p)≤0

φ(v + h2ab(u− v))2
(|u− v|(b−1 + |u− v|2) + |q − p|(b−1 + |q − p|2)

× Gb(u− v)Gb(q − p) dudqdvdp ≤ Cb−3/2 .

Using this and (172) we find after the simple change of variables u→ u+ v and q → q + p
that

Tr[φHβφ]−

≥
∫
φ(v + h2abu)2Gb(u)Gb(q)

× [σ̃(v, p) + ξ̃v,p(u, q)− C|u|(b−1 + |u|2)− C|q|(b−1 + |q|2)]− dudq

(2πh)n
dvdp

− Ch−n(b−3/2 + h2b)

≥
∫
φ(v + h2abu)2Gb(u)Gb(q)

[
σ̃(v, p) + ξ̃v,p(u, q)

]
−

dudq

(2πh)n
dvdp

− Ch−n(b−3/2 + h2b) . (177)

At this point we divide the (v, p)-integration into three regions given in terms of a parameter
Λ > 0 by

Ω− = {(v, p) | σ̃(v, p) ≤ −Λ} , Ω+ = {(v, p) | σ̃(v, p) ≥ Λ} , Ω0 = {(v, p) | |σ̃(v, p)| < Λ} .
The parameter Λ will be chosen such that 1 ≥ Λ ≥ Cb−1 for some sufficiently large

constant C. This is possible if τ is small enough and hence b large enough. Then, since all
the second derivatives of σ̃ are bounded we may assume that 1

4b |∆σ̃(v, p)| < Λ/2 for all
(v, p), uniformly in β.

We first consider Ω+. We see from (177) that we only need to integrate over the set
{(u, q) |C(|u|2 + |q|2) ≥ Λ}. Also notice that σ̃(v, p) ≥ 1

2 |p| −C (since Tβ(p) ≥ T1(p)) shows
that we only need to integrate over the set {p | |p| ≤ C(1 + |q|2 + |u|2)}. Therefore,∫

(v,p)∈Ω+

φ(v + h2abu)2Gb(u)Gb(q)
[
σ̃(v, p) + ξ̃v,p(u, q)

]
− dudqdvdp ≥ − Ce−CbΛ .

A similar argument shows that on Ω− we can ignore the negative part [ ]− paying the
same price −Ch−ne−CbΛ.

For (v, p) ∈ Ω− we estimate the integral∫
φ(v + h2abu)2Gb(u)Gb(q)

[
σ̃(v, p) + ξ̃v,p(u, q)

]
dudq ≥ (φ(v)2 + Ch2b)σ̃(v, p)− Ch2b .

Here we have expanded φ2 to second order at the point v and used the crucial fact that∫
ξ̃v,p(u, q)Gb(u)Gb(q) dudq = 0 . (178)
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For (v, p) ∈ Ω− we have, of course, σ̃(v, p) = σ̃(v, p)−. Since the volume of Ω− is bounded
by a constant we get for the integration over Ω− ∪ Ω+,∫

(v,p)∈Ω−∪Ω+

φ(v + h2abu)2Gb(u)Gb(q)
[
σ̃(v, p) + ξ̃v,p(u, q)

]
− dudqdvdp

≥
∫

(v,p)∈Ω−∪Ω+

φ(v)2σ̃(v, p)− dvdp− C(h2b+ e−CbΛ) . (179)

Finally, let (v, p) ∈ Ω0. Observe that, with ϑ(t) = (2t+ βt2)n/2,∫
(v,p)∈Ω0

dp = cn
(
ϑ(−[Λ− V (v)]−)− ϑ(−[Λ + V (v)]−)

) ≤ CΛ , (180)

by the mean value theorem (uniformly in v). Now,

φ(v + h2abu)2Gb(u)Gb(q)
[
σ̃(v, p) + ξ̃v,p(u, q)

]
−

≥ φ(v + h2abu)2Gb(u)Gb(q)
[
σ̃(v, p)

]
−

− Cφ(v + h2abu)2Gb(u)Gb(q)(b−1 + |u|2 + |q|2) ,

and, using the observation above and making the change of variables v → v − h2abu in the
v-integral,∫

(v,p)∈Ω0

φ(v + h2abu)2Gb(u)Gb(q)(b−1 + |u|2 + |q|2) dvdpdudq ≤ CΛb−1 .

Expanding φ2 to first order at v we have that∫
(v,p)∈Ω0

φ(v + h2abu)2Gb(u)Gb(q)σ̃(v, p)− dvdpdudq

≥
∫

(v,p)∈Ω0

φ(v)2σ̃(v, p)− dvdp + Ch2ab

∫
(v,p)∈Ω0,v∈suppV

|u|Gb(u)Gb(q)σ̃(v, p)− dudqdvdp

≥
∫

(v,p)∈Ω0

φ(v)2σ̃(v, p)− dvdp− Chb1/2Λ2 .

As a consequence,∫
(v,p)∈Ω0

φ(v + h2abu)2Gb(u)Gb(q)
[
σ̃(v, p) + ξ̃v,p(u, q)

]
− dudqdvdp

≥
∫

(v,p)∈Ω0

φ(v)2σ̃(v, p)− dvdp− CΛ(Λhb1/2 + b−1) . (181)
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Since ∫
φ(v)2σ̃(v, p)− dvdp

= (1− ε)−n
∫
φ(v)2

[√
β−1p2 + (1− ε)2β−2 − (1− ε)β−1 + V (v)

]
− dvdp

≥ (1− ε)−n
∫
φ(v)2σβ(v, p)− dvdp

≥
∫
φ(v)2σβ(v, p)− dvdp− Cε ,

the lemma follows from (177), (179), and (181) if we choose b = h−4/5. �

Proof of Lemma 34 (Construction of a trial density): Estimates of integrals. We
give here the remaining arguments on the analysis of the integrals in the semi-classical
proofs of Lemma 34.

The energy: proof of (132). It remains to estimate the integral in (139).
Using (173), that Tβ(p) ≤ 1

2p
2, and that hu,q(v, p) = 0 unless u ∈ B2, we get that∫

χ[hu,q(v, p)]Gb(u− v)Gb(q − p)
(
1 + Tβ(p+ h2ab(q − p))

)
dudqdvdp ≤ C .

This implies that

Tr[γφHβφ]

≤
∫

χ[hu,q(v, p)]Gb(u− v)Gb(q − p)φ
(
v + h2ab(u− v)

)2
×σ(v + h2ab(u− v), p+ h2ab(q − p)

) dudq

(2πh)n
dvdp+ Ch2bh−n .

From (137) we may now conclude that

Tr[γφHβφ]

≤
∫

u∈B2−v
χ
[
σ(v, p) + ξv,p(u, q)− C|u|(b−1 + |u|2)− C|q|(b−1 + |q|2)]Gb(u)Gb(q)

×φ(v + h2abu)2σ(v + h2abu, p+ h2abq)
dudq

(2πh)n
dvdp + Ch2bh−n . (182)

At this point we introduce the same partition of the (v, p)-integration into sets Ω±,Ω0 as in
the proof of the lower bound above (with ε = 0) with the same Λ = b−1/2 = h2/5.

Then for the integration over Ω+ we have as above that C(|u|2 + |q|2) > Λ and hence∫
(v,p)∈Ω+,

u∈B2−v

χ
[
σ(v, p) + ξv,p(u, q)− C|u|(b−1 + |u|2)− C|q|(b−1 + |q|2)]

×φ(v + h2abu)2σ(v + h2abu, p+ h2abq)Gb(u)Gb(q) dudqdvdp ≤ C e−cbΛ ≤ Ch2b ,

where we have used (136) and that φ is supported in the ball B1.
Similarily, if (v, p) ∈ Ω− then for the (u, q)-integration we can safely assume that the

argument of χ is negative to the effect of paying the same e−CbΛ price. Likewise we may
ignore the restriction u ∈ B2 − v, since u 6∈ B2 − v and v + h2abu ∈ B1 implies |u| >



THE RELATIVISTIC SCOTT CORRECTION FOR ATOMS AND MOLECULES 55

(1 − h2ab)−1 > 1. Expanding φ2 and σ to second order at (v, p) ∈ Ω− and using the fact
that all their second order derivatives are bounded together with (130) we get that∫

χ
[
σ(v, p) + ξv,p(u, q)− C|u|(b−1 + |u|2)− C|q|(b−1 + |q|2)]

×φ(v + h2abu)2σ(v + h2abu, p+ h2abq)Gb(u)Gb(q) dudq

≤
∫ [(

φ(v)2 + h2ab u · ∇(φ2)(v)
) (
σ(v, p) + h2ab (u, q) · ∇σ(v, p)

)]
Gb(u)Gb(q) dudq

+Ch2b+ C e−CbΛ

≤ φ(v)2σ(v, p)− + Ch2b .

It is important here that σ and ∇σ are bounded uniformly in β ≤ 1 on Ω−. This follows
from (136) and |∇σβ(v, p)| ≤ C(1 + |p|). Indeed, (136), in particular, implies that Ω− is a
bounded set (uniformly in β). The fact that the volume of Ω− is bounded also gives that
the contribution from Ω− to the integral on the right side of (182) is bounded above by

(2πh)−n
∫

Ω−
φ(v)2σ(v, p)−dvdp+ Ch2bh−n.

Finally, we consider (v, p) ∈ Ω0. If we expand φ2 to first order at v and σ to second order
at (v, p) and use that all second order derivatives of σ are bounded and that ∇σ(v, p) is
bounded for (v, p) ∈ Ω0 we obtain that

φ(v+h2abu)2σ(v+h2abu, p+h2abq) ≤ φ(v)2σ(v, p)+Ch2ab(|u|+ |q|)+Ch4a2b2(|u|2 + |q|2).
This together with the estimate |χ(x+ y)x− χ(x)x| ≤ |y| implies that∫

u∈B2−v
χ
[
σ(v, p) + ξv,p(u, q)− C|u|(b−1 + |u|2)− C|q|(b−1 + |q|2)]

×φ(v + h2abu)2σ(v + h2abu, p+ h2abq)Gb(u)Gb(q) dudq

≤
∫
χ[σ(v, p) + ξv,p(u, q)− C|u|(b−1 + |u|2)− C|q|(b−1 + |q|2)]Gb(u)Gb(q) dudq

×φ(v)2σ(v, p) + Ch2b3/2

≤ φ(v)2σ(v, p)− + C(b−1 + h2b3/2) .

We have here again used that the effect of removing the restriction u ∈ B2 − v causes a
smaller error than the last term above. Note that u ∈ B2 − v and v + h2abu ∈ B1 imply
|u| ≤ 3(1 − h2ab)−1 ≤ 6 and hence we only need to consider |v| ≤ |v + u| + |u| < 8. If we
use that (180) implies

Vol(Ω0 ∩ {v | |v| < 8} × Rn) ≤ CΛ
we see that the contribution from Ω0 to the integral on the right side of (182) is bounded
above by

(2πh)−n
∫

Ω0

φ(v)2σ(v, p)− dvdp+ Ch−n(b−1 + h2b3/2)Λ .

This finishes the proof of the upper bound on the energy in (132) .

The density: proof of (133) and (134). Here it remains to estimate the integral in
(140). The strategy is to freeze the variable |p| in ξv,p so that the remaining dependence
on |p| is explicitly integrable. This is accomplished in the estimate (183) below. After the
|p|-integration the proof is almost the same as in the non-relativistic case [36].
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We write p = |p|ω and define

p0 = (β|V (v)−|2 + 2|V (v)−|)1/2ω = η(V (v))1/nω .

We will then prove that if u ∈ B2 − v then

χ[σ(v, p)+ξv,p0(u, q)+R(u, q)] ≤ χ[hu+v,q+p(v, p)] ≤ χ[σ(v, p)+ξv,p0(u, q)−R(u, q)] , (183)

where

R(u, q) = C(|u|(b−1 + |u|2) + (|q|+ Λ)(b−1 + |q|2) + (b−1 + |u|2 + |q|2)(|u|2 + |q|2)Λ−1) .

We first prove (183) for (v, p) ∈ Ω0. In this case we have

η(V (v) + Λ)2/n ≤ p2 ≤ η(V (v)− Λ)2/n ,

from which it follows that |p2 − p2
0| ≤ CΛ with a constant independent of β ∈ [0, 1].

Let G(t) =
√
β−1t+ β−2 − β−1, so that Tβ(p) = G(p2) (we suppress that G depends on

β). Note that then ∂i∂jTβ(p) = 4pipjG′′(p2) + 2δijG′(p2), and so, in particular, ∆Tβ(p) =
4G′′(p2)p2 + 2nG′(p2). Therefore, using that pi = |p|ωi, p0,i = |p0|ωi,

|ξv,p(u, q)− ξv,p0(u, q)|
≤ 1

4b |∆σ(v, p)−∆σ(v, p0)|+ 1
2

∑
i,j

∣∣∂i∂j [Tβ(p)− Tβ(p0)]
∣∣ |qiqj |

≤ C(b−1 + |q|2)(|G′′(p2)p2 −G′′(p2
0)p

2
0|+ |G′(p2)−G′(p2

0)|
)

≤ C(b−1 + |q|2) |p2 − p2
0| ≤ CΛ(b−1 + |q|2) . (184)

Here we have used the choice of p0 and that G′(t) and tG′′(t) have bounded derivatives
uniformly in β ∈ [0, 1]. If we combine (137) with (184) we obtain that

|hu+v,q+p(v, p)− σ(v, p)− ξv,p0(u, q)| ≤ C|u|(b−1 + |u|2) + |q|(b−1 + |q|2) + CΛ(b−1 + |q|2) ,

which is, in fact, stronger than (183).
If (v, p) ∈ Ω+ we see that the left inequality in (183) is only violated if ξv,p0(u, q) ≤ −Λ

and the right inequality is only violated if hu+v,q+p(v, p) ≤ 0. Since (v, p) ∈ Ω+ we must in
both cases have C(|u|2 + |q|2) > Λ. We hence get (again using (137)) that∣∣hu+v,q+p(v, p)− σ(v, p)− ξv,p0(u, q)

∣∣
≤ ∣∣hu+v,q+p(v, p)− σ(v, p)− ξv,p(u, q)

∣∣+ ∣∣ξv,p(u, q)∣∣+ ∣∣ξv,p0(u, q)∣∣
≤ C|u|(b−1 + |u|2) + C|q|(b−1 + |q|2) + C(b−1 + |u|2 + |q|2)
≤ C|u|(b−1 + |u|2) + C|q|(b−1 + |q|2) + C(b−1 + |u|2 + |q|2)(|u|2 + |q|2)Λ−1 ,

which gives (183) in this case.
Finally, if (v, p) ∈ Ω− then the left inequality in (183) is only violated if hu+v,q+p(v, p) ≥ 0

and the right inequality is only violated if ξv,p0(u, q) ≥ Λ. In both cases this implies that
C(|u|2 + |q|2) > Λ and hence the same argument as for Ω+ proves (183).

Using (183) we can estimate the density in (140) from above and below. We will discuss
the lower bound on the density. The upper bound is similar. Performing the |p|-integral in
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(140) we obtain

ργ(x) ≥
∫

u∈B2−v
Ξ(u, q, v, ω)Gb(u)Gb(q)G(h2b)−1(x− v − h2abu) dvdω

dudq

(2πh)n
(185)

=
∫

(1−h2ab)u∈B2−v

Ξ(u, q, v − h2abu, ω)Gb(u)Gb(q)G(h2b)−1(x− v) dvdω
dudq

(2πh)n
,

where
Ξ(u, q, v, ω) = n−1η (V (v) + ξv,p0(u, q) +R(u, q)) .

We have that

V (v − h2abu) + ξv−h2abu,p0(u, q) +R(u, q)

≤ V (v)− h2abu∇V (v) + ξv,p0(u, q) +R(u, q) + Ch4a2b2|u|2 + Ch2ab|u|(b−1 + |u|2)
≤ V (v)− h2abu∇V (v) + ξv,p0(u, q) +R(u, q) + Ch4a2b2|u|2 . (186)

(In the last line we have used that h2ab ≤ 1 and the definition of R(u, q).) We now use that∣∣η(s)− η(t)− η′(t)(s− t)
∣∣ ≤ { C|s− t|3/2 + C(|s|+ |t|)|s− t|2 , n = 3

C(|s|n2−2 + |t|n2−2 + |s|n−2 + |t|n−2)|s− t|2 , n ≥ 4
.

(187)
We continue with the case n = 3 and leave n ≥ 4 to the reader.

If we use the fact that η′(V (v)) is bounded independently of β ∈ [0, 1] we obtain from
(186) and (187)

nΞ(u, q, v − h2abu, ω) ≥ η(V (v)) + η′(V (v))(ξv,p0(u, q)− h2abu∇V (v))

− C
(
b−1 + |q|2 + |u|2 + h2ab|u|+R(u, q)

)3/2
− C

(
b−1 + |q|2 + |u|2 + h2ab|u|+R(u, q)

)2
− CR(u, q)− Ch4a2b2|u|2 − Ch2ab|u| . (188)

It is now crucial that (see (130) and (178))∫
(ξv,p0(u, q)− h2abu∇V (v))Gb(u)Gb(q) dudq = 0 .

Since v ∈ supp(V ) ⊂ B3/2 and (1− h2ab)u 6∈ B2 − v implies |u| > 1/2 we find∣∣∣∣∣
∫

(1−h2ab)u∈B2−v

(ξv,p0(u, q)− h2abu∇V (v))Gb(u)Gb(q) dudq

∣∣∣∣∣ ≤ C e−b/5 ≤ Ch6/5 . (189)

Combining this with (188) and inserting it into (185) we arrive at (recall that Λ = b−1/2)

ργ(x) ≥ (2πh)−3ω3

∫
η
[
V (v)

]
G(h2b)−1(x− v) dv

−Ch−3
(
h6/5 + b−3/2 + (h2ab)3/2b−3/4

)
. (190)

Here we have removed the constraint (1− h2ab)u ∈ B2− v by the same argument as above.
We shift the v-coordinate by x, and then expand η

[
V (x + v)

]
in the integral at x by

expanding V to second order at x and using (187). Then

η
[
V (x+ v)

] ≥ η
[
V (x)

]
+ η′

[
V (x)]∇V (x) · v − C(|v|3/2 + |v|3) .
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Then we obtain from (190) (using (130)) that

ργ(x)− (2πh)−3ω3 η
[
V (x)

] ≥ −Ch−3
(
h6/5 + (h2b)3/4

) ≥ − Ch−3+9/10 .

This finishes the proof of (133).
Lastly, we prove (134). By integrating (190) we see that∫

φ(x)2ργ(x) dx

≥ (2πh)−3ω3

∫
φ(x)2G(h2b)−1(x− v) η

[
V (v)

]
dxdv − Ch−3+6/5

≥ (2πh)−3ω3

∫
φ(v)2 η

[
V (v)

]
dv − Ch−3+6/5 .

In the last step we have expanded φ2 to second order at v to obtain that (see also (130))∫
φ(x)2G(h2b)−1(x− v) dx ≤ φ(v)2 + Ch6/5 .

This finishes the proof of (134) and therefore of Lemma 34. �
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