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THE RELATIVISTIC SCOTT CORRECTION FOR ATOMS AND
MOLECULES

JAN PHILIP SOLOVEJ, THOMAS OSTERGAARD SORENSEN, AND WOLFGANG L. SPITZER

ABSTRACT. We prove the first correction to the leading Thomas-Fermi energy for the
ground state energy of atoms and molecules in a model where the kinetic energy of the
electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25],
as well as the correction given here are of semi-classical nature. Our result on atoms and
molecules is proved from a general semi-classical estimate for relativistic operators with
potentials with Coulomb-like singularities. This semi-classical estimate is obtained using
the coherent state calculus introduced in [36]. The paper contains a unified treatment of
the relativistic as well as the non-relativistic case.
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1. INTRODUCTION AND MAIN RESULTS

Our goal in this paper is to study how relativistic effects influence the energies of atoms
and molecules. More specifically, we are aiming at proving a relativistic analog of the cele-
brated Scott correction [29, 16, 13, 15, 30, 31, 32, 36]. At present there is no mathematically
well-defined fully relativistically invariant theory of atoms and molecules. We will here con-
sider a simplified model, which shows the relevant qualitative features of relativistic effects.
In this model, these effects are introduced by treating the kinetic energy of electrons of mass
m by the operator v/ —h2c2A + m2ct — mc? instead of the standard non-relativistic Laplace
operator —h?A/2m. Here c refers to the speed of light and A is Planck’s constant. It is the
simplest of a class of models that attempts to include relativistic effects; see [12, 23]. Al-
though this model does not give accurate numerical agreement with observations it is from
a qualitative point of view quite realistic.

Date: August 18, 2008.
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One of the qualitative features that our model shares with all other relativistic models is
the instability of large atoms or molecules. The natural parameter to measure relativistic
corrections in atoms and molecules is the dimensionless fine-structure constant o = e?/hc,
where e is the electron charge. As we will explain below, if Za is too large (Z is the atomic
number) then atoms are unstable. In our model the critical value of Z« is too small compared
with experimental results and with what is assumed to be the correct critical value, namely
Za =1.

Our main interest here is the behavior of the total ground state energy of large atoms and
molecules. Because of the relativistic instability problem mentioned above one cannot simply
consider the limit of large atomic number Z. One is forced to look at the simultaneous limit
of small fine-structure constant « in such a way that the product Za remains bounded. Of
course, « has a fixed value which experimentally is approximately 1/137. Thus considering
the limit « tending to zero is strictly speaking not physically correct. Likewise, considering
the limit of Z tending to infinity is in contradiction with the fact that the experimentally
observed values of Z are bounded (by 92 for the stable atoms). Studying the limit Z —
oo and o — 0 with Za bounded allows us to make a precise mathematical statement
about the asymptotics. There is numerical evidence that the asymptotics is indeed a good
approximation to the total ground state energy for the physical values of Z and «.

The first to, at least heuristically, suggest to consider Z« as a separate parameter in the
limit Z — oo was Schwinger [27]. In this original paper, Schwinger finds discrepancies of his
estimates of relativistic corrections with numerical evidence. Later [8], more corrections are
taken into account and excellent agreement is found. This accuracy however goes beyond a
rigorous mathematical treatment. We content ourselves with giving a rigorous treatment of
the simplified model with the correct qualitative behavior.

The first rigorous treatment of the limit Z — oo with Za bounded was given by one of
us is the paper [25], where the leading asymptotics of the ground state energy was found. It
turns out it does not depend on Z«. The goal of the present paper is the first correction to
the leading asymptotics, i.e., the Scott correction and, in particular, to show that it depends
on Zo. The work in [25] was generalized to another relativistic model in [4].

We now introduce the molecular many-body Hamiltonian we consider in this paper. Let
e and m denote the electric charge and mass of an electron. Let Ze = (Zie,..., Zye),
where Z1, ..., Zy > 0, be the charges of the M nuclei. We consider the Born-Oppenheimer
formulation where these nuclei are at fixed positions R = (Ry,...,Ry) € R3M  'We have
N electrons. As explained above the relativistic kinetic energy of the j-th electron is equal
to \/—h2c2A; + m2c? — mc?, where A; is the Laplacian with respect to the j-th electron
coordinate y; € R3, j =1,...,N. The potential energy of the electrons is composed of the
attraction to the nuclei,

eV (Ze,R,y) = ij: Zkieg (1)
— |y — Ryl

and the electron-electron repulsion,
>
The total energy of the electrons is described by the Hamiltonian,

e2

lyi — yjl

N
Hoy = Z {\/_hzczAj 4+ m2ct — me? — eV (Ze, R,yj)} + Z

j=1 1<i<j<N
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Let us now introduce the fundamental constants. Namely, let a = h? /me? be the Bohr radius,
and Ry, = %me4 /h? Rydberg’s constant. Then by a change of coordinates y; — x; = y;/a,
we see that

(2Roo) 'Hyq =: H(Z,R;0) = H(Zy,...,Zyn, Ry, ..., Ry )

Z
_ _ — 1
= ;[\/—a 2Aj+05 1 _ ¢ 2—V(Z,R,Jjj)]+ Z m,

1<i<j<N "

where again « is the fine-structure constant. For o = 0 the kinetic energy of the j-th electron
is —%A.

Here we have set N = Z = 224:1 Zy, so that the molecule is neutral. In particular, this
means that Z must be an integer. From now on we study the operator H(Z,R;«). This
operator acts as an unbounded operator on the anti-symmetric tensor product, /\Z L?(R3 x
{—1,1}), where £1 refers to the spin variables. We are interested in the ground state energy

E(Z,R;a) = ian(H(Z, R; a)) ,

and, in particular, in an asymptotic expansion of this when Z — oo.

The ground state energy E(Z,R;«) is finite if maxy{Zya} < 2/, but E(Z,R;a) = —c0
if max{Za} > 2/7 (see [12, 23])%. This is the relativistic instability discussed above.
Therefore we must require the atomic numbers to be smaller than or equal to 2/(w«) which
is approximately 87. This is of course in contradiction with the experimental fact that larger
stable atoms exist and is one reason why our model can only be qualitatively correct. (We
want to emphasise that the instability we are discussing here is not the nuclear instability
causing atoms larger than atomic number 92 to be unstable. The relativistic instability we
discuss here is only believed to manifest itself for atomic numbers greater than 137.)

The true energy of the molecule should include the nuclear-nuclear repulsion. Since the
nuclei are considered fixed here the nuclear-nuclear repulsion is simply a constant which we
have omitted.

As discussed above the leading asymptotics of E(Z, R;«) will be independent of the rel-
ativistic parameter «. It will be given by what is called Thomas-Fermi theory. The seminal
contribution by Lieb and Simon [21] was to put Thomas-Fermi theory on a solid mathemat-
ical foundation and to prove that in the non-relativistic case the Thomas-Fermi energy of a
molecule is indeed the correct leading asymptotic energy for the true ground state energy
as Z — oo. This is the result that was generalized to our relativistic model in [25].

The main result of this paper is the following asymptotic result on the ground state
energy.

Theorem 1 (Relativistic Scott correction). Let z = (z1,...,zp) with z1,...,2p > 0,
Z]kvil 2z =1, and v = (r1,...,ry) € R3M with ming |ry — re| > ro for some rg > 0
be given. Define Z = (Zy,...,Zy) = Zz and R = Z~Y3r. Then there exist a constant
E™(z,r) and a universal (independent of z, v and M ) continuous, non-increasing function
S :[0,2/7] — R with S(0) = 1/4 such that as Z = 224:1 Zp — oo and o — 0 with
maxg{Za} < 2/m we have
M
E(Z,R;a) = Z7PE™ (2,1) + 2 ZES(Zpa) + O(2271/%0) (2)
k=1

1Here, and in the sequel, operators are defined as the Friedrichs extension for the corresponding form
sum, originally defined on C§°-functions (here, for instance, /\Z C§°(R? x {—1,1})).
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Here the error term means that |O(Z%~1/30)| < € Z%~1/30, where the constant C only depends
onro and M. As before, V—a=2A+ a1 —a~? = —1A when a = 0.

Remark 2. A less detailed version of our result was announced in [35].

Remark 3. Several features of our result and its proof should be stressed:

(i) The constant E™¥(z,r) is determined in Thomas-Fermi theory.
(ii) The fact that R = Z~'/3r is the relevant scaling of the nuclear coordinates may, as
we shall see, be understood from Thomas-Fermi theory.

(iii) A characterization of the function S is given explicitly in Corollary 6 below (see also
Lemma 25). Its continuity is proved in Theorem 4.

(iv) The asymptotic result is uniform in the parameters Zya € [0,2/7], k=1,..., M.

(v) The result contains, as a special case, the non-relativistic situation Zya = 0 and, in
particular, the non-relativistic limit is controlled due to the continuity of the function
S and the uniformity in the parameters Z;a. In order to get the non-relativistic limit
it is important that all estimates have the correct non-relativistic behavior. This is
an important issue in this work. Note that in the non-relativistic case the value
S(0) = 1/4 is explicitly known, whereas this is not the case for any other value. This
is because the eigenvalues of Hydrogen are explicitly known in the non-relativistic
case, but not in this relativistic case. The technique to prove a Scott-correction
without knowing explicitly the eigenvalues for the one-body Hydrogen(like) operator
was invented by Sobolev [33].

(vi) The proof of Theorem 1 does not rely on knowing the non-relativistic case, but treats
both the relativistic and non-relativistic case simultaneously.

(vii) The situation near the critical value Zyo = 2/7 is understood since the function S
is continuous up to the critical value 2/7. This is, however, a less important point
since we do not know whether the model we study gives a good description near the
critical value.

The Scott correction was predicted by Scott [29] to be the first correction to the
Thomas-Fermi energy. In the non-relativistic setting, this was mathematically established
by Hughes [13], Siedentop and Weikard [30, 31, 32] for atoms (and by Bach [2] for ions) and
later by Ivrii and Sigal [15] for molecules. Later a different proof was given by two of us for
molecules [36]. Based on methods in [15], Balodis Matesanz [3] gave a proof for the Scott
correction of matter. The Scott correction for operators with magnetic fields was studied by
Sobolev [33, 34] (in the non-interacting case).

In [9], Fefferman and Seco derived rigorously the second correction to Thomas-Fermi the-
ory for atoms, which is of the order Z%/3. This was predicted by Dirac [7] and Schwinger [28].
It is apparently still an open problem to prove this for molecules and to find the relativistic
correction to this order.

The main approach to proving the energy asymptotics for large atoms and molecules goes
back to Lieb and Simon [21] and is to use semi-classical estimates. The Z-scaling makes it
possible to relate the many-body problem to a one-body spectral problem, which may be
treated semi-classically, where the semi-classical parameter is h = Z~1/3. Here, several
techniques have been developed. Lieb and Simon used Dirichlet—Neumann bracketing. This
is however not refined enough to get beyond the leading term. The Weyl calculus [26] is
the most advanced and precise method as far as optimal semi-classical error estimates are
concerned, but it also will not directly give the Scott correction. Ivrii and Sigal [15] used
Fourier intergral operator techniques to establish the non-relativistic Scott correction for
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molecules. Hughes and Siedentop—Weikard used methods that were designed particularly
for spherically symmetric models, i.e., the atomic case.

A simple method, which is particularly well adapted to many-body problems is that of
coherent states. It was pioneered by Lieb [16] and Thirring [37] to give very short proofs
that Thomas-Fermi theory is correct to leading order. It is one of our major contributions
here to use an improved calculus of coherent states as developed by two of us in [36] to the
relativistic setting.

One feature of our work is that we give a general semi-classical estimate for relativistic
one-body operators for potentials with singularities such as the Thomas-Fermi potential
(see Theorem 4 below). This is derived by first proving a localised semi-classical estimate
for potentials with some smoothness (see Theorem 32). The proof here is not much different
from the one presented in [36] for non-relativistic Schrédinger operators. We do not claim
that our error estimates are sharp given the regularity we assume on the potential, but only
that they are sufficient to prove the Scott correction. In this connection we point out that
in order to prove the Scott correction it is enough that the error relative to the leading term
is smaller by more than one power of the semi-classical paramter h. In our case the relative
error in Theorem 32 is h/°,

The relativistic kinetic energy is more cumbersome to work with than the Laplace operator
and large parts of the rest of our proof from [36] have to be done differently. A main issue
is to be able to localise into separate regions. Since the relativistic kinetic energy is a non-
local operator, localisation estimates are more involved than in the non-relativistic setting.
The philosophy is that localisation errors should behave as if we were working with non-
relativistic local error terms up to some exponentially small tails (see Theorem 14).

The proof of the main theorem presented in Section 3 is based on the general semi-classical
estimate Theorem 4 and the use of a correlation estimate (see Theorem 17) to reduce to the
one-body problem.

After we had announced our results in [35], Frank, Siedentop, and Warzel [11] found a
proof for the atomic case based on the method of Siedentop and Weikard [30, 31, 32], also
[10] for the model studied in [4]. This approach seems to be restricted to the spherical case.
This work does also not, contrary to the present work, make any special treatment of the
non-relativistic limit or the continuity of the function S.

1.1. Main semi-classical result. We consider the semi-classical approximation for the
relativistic operator

Tp(—1hV) = V(2),
where

VIR EI -1, Be(0o0) g

507, B=0

Ts(p) = {
We will consider potentials V : R® — R with Coulomb singularities of the form z |z —rg| ™1,
k=1,...,M, at points 71, ...,7ry € R? and with charges 0 < 21, ..., 2y < 2/7. Define
de(@) =min{|lz—rp| |k=1,...,M} , tv=(r1,...,7m) e R3M (4)
We assume that for some p > 0 the potential V' satisfies

)11l i
0"(V(2) + )| < { g:“mdi;({d)r(x)il’dr(x)—fﬂ}dr(m)—77| éz i 8 (5)
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for all 2 € R3 with di.(x) # 0 and all multi-indices 1 with || < 3, and
}V(x)—zk|x—rk|_1‘ <Crt+cC (6)

min
for [x—74| < rmin/2 where rmin = mingz, |ry—r¢|. Note, in particular, that the Thomas-Fermi
potential V¥ (z,r, ) discussed in (35) below satisfies these requirements, by Theorem 20.
So does the potential V(z) = % —1 (with M =1, rg = 0, and dy(x) = |x]).
The main new result in this section is the relativistic Scott correction to the semi-classical
expansion for potentials of this form. It will be proved in Section 4 below. The power —3 in
(5) is not optimal.

Theorem 4 (Scott-corrected relativistic semi-classics). There exists a continuous,
non-increasing function S : [0,2/m] — R with S(0) = 1/4, such that for allh >0, 0 < g <
h%, T as in (3), and all potentials V : R® — R satisfying (5) and (6) with rmin > 1o > 0
and max{z1,...,zpm} < 2/m, we have

M
Tr[Ts(—ihV) — V(2)] _ — (27rh)3/ [30° = V(v)]_dvdp — h™2 " 22S(8"*h " z)

k=1
< Ch_2+1/10. (7)
Here, [x]- = min{x,0}. The constant C > 0 depends only on M, ro, p and the other
constants in (5) and (6).
Moreover, we can find a density matriz v, whose density p, satisfies (with || - ||¢/5 the
L%/5_norm)
' / p(z) dz — 2V/2(3x%)~1h 3 / \V(z)_>? da| < Ch=2H1/5 (8)
and
lo = 2/2(37%) T RTEVPR|  < ORI, 9)
such that

M
Tr[(T(—ihV) — V(2))] < (2mh) ™ / [30° = V(v)] _dvdp+h™>) " 228(8"2h " %)
k=1

+ Ch™2H10 (10)

Remark 5. The term proportional to h=2 is called the Scott correction. If 3 = h? then it
only depends on the charges z;, k = 1,..., M, of the Coulomb-singularities. Notice that the
function in the semi-classical integral is the non-relativistic energy. This is also the reason
why the leading Thomas-Fermi energy is independent of 3.

Applying this theorem to the potential V(z) = % — 1 (which satisfies (5) and (6) with
M =1, rg =0, and dy(z) = |z|), and using a simple scaling argument, gives the following

explicit characterization of the function § in Theorem 4 (see details in Lemma 27 in Section 4
below).

Corollary 6 (Characterization of the Scott-correction S). The function S satisfies,

uniformly for o € [0,2/7],

k—0

S(a) = lim (Tr[HC + m]_ — (277)_3/ [%pQ — |U\_1 + /@]_ dpdv) , (11)
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where

\ —a?A+ a4~ a? - ’jlil , € (072/7T]

HC(O‘):{_%A_|£|—1’ a=0 (12)

Remark 7. Another characterization of the function S is given in Lemma 25 in Section 4
below.

Remark 8. The result in Corollary 6 was proved in [24, Theorem 7.4], but only pointwise
and only for a € (0,2/7).

2. PRELIMINARIES

2.1. Analytic tools. We recall here the main analytic tools which we use throughout this
paper. We do not prove all of them here but give the standard references. Various constants
are denoted by the same letter C although its value may change from one line to the next.

Let p > 1, then a complex-valued function f (and only those will be considered here) is
said to be in LP(R™) if the norm || f|, = ([ |f(z)|P dx) P is finite. We denote by (, ) the
inner product on L?(R™); it is linear in the second and anti-linear in the first entry. For
any 1 < p <t < q < oo we have the inclusion LP N LY C L', since by Holder’s inequality
Iflle < NFIDIFIE with Ap~' + (1 — A)g~' = t71. We denote by f the Fourier transform
of f € L2(R"), given by f(p) = (2r)~"/2 [e7 P f(z) dz for Schwartz functions on R", and
extended by continuity to L?(R™).

We denote z_ = min{z,0}, and let x4 be the characteristic function of the set A; we
write X = X(—o0,0] for the characteristic function of (—oc,0]. We call v a density matrix on
L?(R™) if it is a trace class operator on L?(R") satisfying the operator inequality 0 < fy < 1
The density of a density matrix v is the L!-function p, such that Tr(v0) = [ p,(z
for all 8 € C§°(R™) considered as a multiplication operator.

We also need an extension to many-particle states. Let ¢ € @ L2(R? x {—1,1}) be an
N-body wave-function. Its one-particle density p,, is defined by

Z Z Z /’¢x17817” LN, 5N) |2 0(x; — x) dxy - - - day

j=1s1=%1 sy==x1

The following two inequalities we recall are crucial in many of our estimates. They serve
as replacements for the Lieb-Thirring inequality [22] used in the non-relativistic case.

Theorem 9 (Daubechies inequality). One-body case: Let m > 0, f(u) = Vu? + m?
m, and F(s fo " dt, where f~1 denotes the inverse function of f. Assume that
Ve LlOC(R”), and let — A be the Laplacian in R™. Then

GVA TR —m V@] > —C [ F(v)-l)a (13)

where x_ = min{z, 0}, and C is some positive constant.
Many-body case: Let i) € AV L2(R3x{—1,+1}) and let py = p beits one-particle density.

Then
<w,§_vj =2+ mt = mlv) > [ Glpwds. (14)
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where (with Cy = 0.326)
G(p) = (3/8)m"*Cogl(p/Co)"*m™"] —mp, (15)
with g(t) = t(1 4+ t2)Y2(1 + 2t2) —log[t + (1 + t2)1/2].
The asymptotic behaviour of G for small, respectively large p is given by
Glp) ~, (B10m)Cy ™ 5" Glp) ~ (3/4)Cy " p'. (16)
By a simple scaling, and using the definition of T and (16), respectively, we see that

Tr[vV=a2A ¥ m2a4 —ma™2 + V(2)] (17)

> = [ V()4 ds = Can [ V()| da,
and
N
<w, Z [\/—a_QAj + m2a—4 — ma_2]¢> > C/min{m_lp(x)5/3, o Lp(@) 3y dx . (18)
j=1

Both (17) and (18) also holds for a = 0, where we let vV —a—2A + m2a~%—ma=2 = —A/2m,
when a = 0. The original proofs of the inequalities (13) and (14) can be found in [6] (for
a =0, in [22]).

Theorem 10 (Lieb-Yau inequality). Let n =3. Let C > 0 and R > 0 and let
2
Hor=v-A-

7| |
Then, for any density matriz v and any function 6 with support in Br = {z||zx| < R} we
have that

~ CJR. (19)

Te[Gy0He ] > —4.4827 C*R(3/(4n R?) / 10(2)[2 da?} (20)

Note that when §# = 1 on Bg then the term inside the brackets {} equals 1.
We will need the following new operator inequality. The proof can be found in Appendix A.

Theorem 11 (Critical Hydrogen inequality). Let n = 3. For any s € [0,1/2) there
exists constants Ag, Bs > 0 such that

V—_A —
We also use the following standard notation for the Coulomb energy,
D) = D(.£) =} [ @l ol 7o) dady.

Theorem 12 (Hardy-Littlewood-Sobolev inequality). There exists a constant C' such
that

2~ A(~A) - B,. (21)

|z

D(f) < CIIfI1Z5 - (22)

The sharp constant C' has been found by Lieb [18]; see also [19]. It can be shown by
Fourier transformation that f — /D(f) is a norm. This fact will play a role in the proof
of the upper bound in our main Theorem 1.

In order to localise the relativistic kinetic energy we shall use the equivalent of the IMS-
formula for the operator —A/2m. In the sequel, as before, v —a=2A + m2a=% — ma=2 =

—A/2m, when a = 0.
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Theorem 13 (Relativistic IMS formula). Let (0,)ucr be a family of positive bounded
C'-functions on R> with bounded derivatives, and let du be a positive measure on M such
that [\, 0u(z)? du(u) =1 for all € R®. Then for any f € HY2(R?),

(f, (\/foz_QA +mia4t — moz_Q)f) (23)
= /M(Huf, (\/—a_QA +m2a~t —ma~?)0,f) du(u) — (f, Lf),

where the operator L is of the form

L= [ Lodutu), (24)
M
with Lg, the bounded operator with kernel
Ly, (@,y) = (2m) *m*a e — y| 2 Ka(ma™ & — y|)[fu(@) — 6u(y)]" . (25)

Here, Ko is a modified Bessel function of the second kind. For o = 0, Lg, is multiplication
by (V0,)?%/2m, where vV/—a—2A + m2a=* — ma~2 = —A/2m, when a = 0.

A proof (and the definition of K9, and some of its properties) can be found in Appendix A.
The following bound on the localisation error will be crucial.

Theorem 14 (Localisation error). Let Q C R? and ¢ > 0. Let 0 be a Lipschitz continuous
function satisfying 0 < 6 < 1, dist(Q°, supp V@) > ¢, and 0 is constant on Q°.

Then for all m > 0, a > 0 there exists a positive operator Qy such that the following
operator inequality holds:

Ly < Cm™ Y| VO3 xa + Qo (26)
with
Tr[Qg) < Cma~20~te ™™ ||vg|%, |, (27)
for a constant C' > 0, independent of m,«,£,0, and Q. Here, xq and || are the character-
istic function and the volume, respectively, of the set Q). For a =0, Qy = 0.

A proof can be found in Appendix A. Note that the first term, C m~!||V8||% xq, on the
right side of (26) is similar to the error in the non-relativistic IMS formula for the operator
—A/2m, except in this case one has ||VO||% Xsuppve/2m as the only error.

When localising, we shall make use of the following.

Theorem 15 (Partition of R"™). Consider ¢ € C°(R™) with support in the unit ball
{lz| < 1} and satisfying [ o(x)*dz = 1. Assume that £ : R® — R is a Cl-map satisfying
0<f(u) <1 and |Vl < 1. Let J(x,u) be the Jacobian of the map u — Ty e

(o= 0100 ]
0(u) Y1
We set oy (z) = cp(ﬁ) VI (z,u) (w)"?. Then, for all z € R™,

/ ou(z)?0(u) " du=1, (28)
and for all multi-indices n € N we have

18" Pulloo < £(w)~IMC, max [97¢os (29)

J(x,u) =L(u)™"

det [

where C,, depends only on 1.
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This is Theorem 22 in [36].

We will consider potentials V : R3 — R with Coulomb singularities of the form zj|z —
Ri|™', k=1,...,M, at points Ry,..., Ry € R3 and with charges 0 < 21,..., 2y < 2/7.
Recall that (see (4); replace r by R)

dr(z)=min{|lz — Ry| | k=1,...,M} , R=(Ry,...,Ry) e R*. (30)

To treat such potentials we will need the following combination of Theorems 9 and 10. The
proof can be found in Appendix A.

Theorem 16 (Combined Daubechies-Lieb-Yau inequality). Let Ry,..., Ry € R3,
and assume W € LL (R3) satisfies
v
—Cvma~' when d <am™!, 31
@) vmao when dr(z) < am (31)

with av < 2/m and m > 0, o > 0, and dr as in (30). Assume also that the minimal distance
between nuclei satisfies mingzo | Ry — Re| > 2am™'. Then

W(x) > —

Tr[\/—a—QA +m2a~t —ma~? 4+ W(2)] _

> — v ?m — om?/? / (W (z)_[>/?dz — Ca® / W (z)_|*dz, (32)

dr(z)>am=1 dr(z)>am~1

where as before vV —a2A + m2a~* —ma~% = —A/2m, when o = 0.

Finally, we come to the two inequalities which bound the many-body ground state energy
in terms of a corresponding one-body energy.

Theorem 17 (Correlation inequality). Let p: R3 — R be non-negative with D(p) < oo
and let ® : R? — R be a spherically symmetric, non-negative function with support in the
unit ball such that [ ®(z)dr < oo. For s > 0, let ®5(x) = s 3®(x/s). Then, for some

constant C independent of N and s, we have?
N
Z |z — |7t > Z(p s |z| 71 % @) (x;) — D(p) — ONs L. (33)
1<i<j<N j=1
The proof can be found in Appendix A.

Theorem 18 (Lieb’s Variational Principle). Let v be a density matriz on L*(R3) sat-
isfying 2Try = 2 [ py(x)dz < Z (i.e., less than or equal to the total number of electrons)
with kernel py(x) = v(x,z). Then

E(Z,Rjo) <2Tr[(V—a2A+a*—a?-V(Z,R,2))y] + D(2p,). (34)

The factors 2 above are due to the spin degeneracy, see [17].

2We denote convolution by *, i.e., (fxg)(x f f(y)g(z—y) dy. We also abuse notation and write px|x|~ !
instead of (px || ") ().
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2.2. Thomas-Fermi theory. Consider z = (z1,...,2m) € RY and r = (r1,...,ry) €
R3M et 0 < p € L5/3(R%) N L' (R?) then the (non-relativistic) Thomas-Fermi (TF) energy
functional, £TF, is defined as

£ (p) = 7Y [ @) o~ [ Viar.)pta) do + Do),

where V' is as in (1).

By the Hardy-Littlewood-Sobolev inequality the Coulomb energy, D(p), is finite for func-
tions p € LO/3(R3)NLY(R?) ¢ L%(R?). Therefore, the TF-energy functional is well-defined.
Here we only state without proof the properties about TF-theory which we use throughout
the paper. The original proofs can be found in [21] and [16].

Theorem 19 (Thomas-Fermi minimizer). For all z = (21,...,2m) € RY and
r = (ri,...,rm) € R3M there ewists a unique non-negative p ¥ (z,r,z) such that
[ o™ (z,r,2)dx = Zi\il 2 and

ETF(p™) =inf {£™(p) | 0 < p e L3 (RPN LY (R?)}.
We shall denote by E™F(z,r) = ETF(p™) the TF-energy. Moreover, let
VI(z,r,2) = V(z,r,2) = p'" (2,1, ) % 2| ! (35)

be the TF-potential, then VY > 0 and p™ > 0, and pF is the unique solution in L5/3(R3)ﬂ
L' (R3) to the TF-equation:

VT (z,r,2) = 3(37°)*/p " (z,x,2)*/. (36)

Very crucial for a semi-classical approach is the scaling behavior of the TF-potential. It
says that for any positive parameter h,

VI (z,r,2) = RV (W 3z, hr, ha), (37)
pE(z,r,z) = RhSpTY(h =3z, hr hz), (38)
E™(z,r) = h"E™(h 3z, hr). (39)

By hr we mean that each coordinate is scaled by h, and likewise for A3z and hz. By
the TF-equation (36), the equations (37) and (38) are obviously equivalent. Notice that
the Coulomb-potential (the potential V' in (1)) has the claimed scaling behavior. The rest
follows from the uniqueness of the solution of the TF-energy functional.

We shall now establish the crucial estimates that we need about the TF-potential. For
each k =1,..., M we define the function

Wiz, r,z) = V¥ (z,r,2) — 2|z — | L. (40)

The function W), can be continuously extended to xz = ry.
The first estimate in the next theorem is very similar to a corresponding estimate in [15]
(recall that the function d, was defined in (4)).

Theorem 20 (Estimate on V'), Let z = (21,...,2m) € RY andr = (r1,...,7m) €
R3M | For all multi-indices n € N® and all x with dp(x) # 0 we have
02V (z,r, 2)| < Cy min{dy(x) 7", dp(2) ™} dy(z) (41)
where Cy) > 0 is a constant which depends on n, z1,...,2m, and M.
Moreover, for |x — 1| < Tmin/2, where ryin = mingg [ry — 7¢|, we have
—C < Wi(z,r,z) < Crr;iln +C, (42)
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where the constants C' > 0 here depend on z1,...,2np, and M.

Corollary 21 (Estimate on p' x |z|7! % (69 — ®¢)). Let ® : R? — R be a spherically
symmetric, positive function with support in the unit ball and integral 1, and fort > 0, let
Oy(x) = t30(x/t). If pT¥(z) = p ¥ (z,r, ) then

_ _ Ctmin{dy(2) V2 dp(2) "2}  for dp(z) > 2t
< TF 1 TF 1 < r y r r =
T R | @) o2 @
with the function dy from (4), and some constant C > 0 depending on z1,...,zp, and M.

For the proof of (41) and (42) we refer to [36]. (Note that in [36] it is claimed that
Wi (z,r,x) > 0. This is not correct, but the proof in [36] does give that Wy(z,r,z) > —C.)
The proof of (43) can be found in Appendix A.

Remark 22. As is seen from the proofs in [36] and in Appendix A, the constants in
Theorem 20 and Corollary 21 only depend on zy > 0 when z1,..., 2y € (0, 2o].

The relation of Thomas-Fermi theory to semi-classical analysis is that the semi-classical
density of a gas of non-interacting (non-relativistic) electrons moving in the Thomas-Fermi
potential VT is simply the Thomas-Fermi density. More precisely, the semi-classical approx-
imation to the density of the projection onto the eigenspace corresponding to the negative
eigenvalues of the Hamiltonian —%A — VT ig

d
2 [ G = 26 (VT ) = ) (). (44)
T
%p27VTF(Z,I‘,IL‘)SO
Here the factor two on the very left is due to the spin degeneracy. Similarly, the semi-
classical approximation to the energy of the gas, i.e., to the sum of the negative eigenvalues
of —%A —VTF g

dxd
2/ [%pz—VTF(z,r,x)]_ (277)1; = — fgg VTF(z,r,ac)S/2 dx
= E™(z,r)+D(p'"(z,r,")). (45)

Since (by Theorem 20) the Thomas-Fermi potential VI (z,r,-) in (35) satisfies (5) and (6)
(uniformly for zi,...,2z) € (0,2/7]; see Remark 22), Theorem 4 implies that the density
given in (44) and the energy given in (45) are the leading order terms also for the relativistic
gas, i.e., for the operator T5(—ihV)—VTF 0 < 3 < h?, with Tj as in (3). That the Thomas-
Fermi energy is correct to leading order for T2 (—ihV) — VTF was proved in [25]. Theorem 4
establishes the first correction—the Scott correction—to the leading order.

3. PROOF OF THE RELATIVISTIC SCOTT CORRECTION FOR THE MOLECULAR GROUND
STATE ENERGY

In this section we prove Theorem 1. Except for the correlation inequality we proceed
in exactly the same manner as in the non-relativistic case [36]. In [36] correlations were
controlled by the Lieb-Oxford inequality [20]. Applying this inequality, correlations can be
estimated by the integral [ p*/3 involving the electronic density p. Using the non-relativistic
Lieb-Thirring inequality such an integral can be seen to be of lower order than the total
energy. In the present relativistic case the Daubechies inequality (14) a priori only allows
us to conclude that the integral [ p*/3 is of the same order as the total energy. We therefore
follow a different strategy.
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Proof of Theorem 1 (Lower bound). Let ¢ be a (normalised) ground state wave function
and let s > 0. We will use the correlation inequality (33) with p(z) = p™¥(Z, R, z). Let ®;

be a function as in Theorem 17. We shall choose s = Z~5/6.
As above (see (4)) we have dp(z) = min {|z — ry| ’ k =1,...,M}. Note that for the
physical positions of the nuclei we then have

dr(z) =min{|z — Ry| | k=1,...,M} = Z Y34 (2 3%) .

From the estimate in (43) with t = Z'/3s we obtain from the Thomas-Fermi scaling (38)
that

PP (Z R x [T PTR(ZLR, ) ¢ o] ()| < OZ2s(g(x) + 2119,

where
(25)71/2  if dr(z) < 2s
g(x) =4 dr(z)~V/? if2s <dgr(z) < Z7/3 .
0 if Z71/3 < dg(x)

We find from the correlation estimate (Theorem 17) that
(¢, H(Z,R; a)))

Z
> Y (4. [y/~a2A+ ot — a2~ V(Z,R, ;)] )
j=1
Z
+ (0, (0™(ZR, ) x[a| T ,)(&5)v) - D(p™T(Z,R,-) - CsT'Z
j=1
> 2Tr[V—a2A+a 4 —a 2 - V™(Z R, &) - 0Z7%*s¢(2)]_ — D(p"™"(Z,R,"))
—Csz83 —cs' 7. (46)

To control the error term with g above we shall use the combined Daubechies-Lieb-Yau
inequality (Theorem 16) to estimate

eTr[V-a2A+at—a?-V(ZR,2) - Cs_lZS/ng(:%)] B

for some 0 < & < 1 which we will choose to be ¢ = Z~/2. We use Theorem 16 with m = 1
and v = maxy, Z. Then by assumption va < 2/7. We must also check that the assumption
(31) is satisfied, i.e., that for dg(z) < a we have

~V™(Z,R,z) — Cc ' 2% %sg(z) > v

~ dr(2)
This follows from the definition of g and the estimate on the TF potential in (42) together
with the Thomas-Fermi scaling (37) if

la<s<CWwz N (Za) 222,  rpl +1<CWwZ ) Za) 12?3,

min

— Cva™t.

which, for Z large enough, is a consequence of the assumptions in the theorem and the
choices of ¢ and s. Note, in particular, that vZ~! = maxy z;, > M~ (since dopck = 1)
and by assumption Za < ming 2/(7z;) < 2M/m. The constants C' above depend only on
Z1, ..., 20, and M.

According to the Thomas-Fermi estimate (41), the Thomas-Fermi scaling (37), the defi-
nition of g, and the choices of s and ¢ we have

VI(Z, R, z) + Ce71 2% %sg(x) < C min{dg (z) ™, Zdg(z)"'}.
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Thus the combined Daubechies-Lieb-Yau inequality gives, since v < Z and Za < 2M/,
that

eTr [\/W—i-oé_4 — 04_2 - VTF(Z7 R7 ‘%) - C€—1Z3/289(§;)]_
> —CeZ%— Ce/ (min{dR(ﬂf)_47ZdR(fU)_l})B/de

~ Cea /d ., (win{dr (@) Zdg(x)"'}) " d
RrR(Z)>a

> —Ce(Z2+ 773> —CeZ™3.

We return to the main term in (46). Using the Thomas-Fermi scaling property (37) and
replacing z by Z~1/3

Te[vV—a2A +a*—a 2 - V™ (Z,R,2)]_
= 23T [/ T2A + 32— g — kV (7,1, 2)]

where we have chosen

T we arrive at

2
kK =min — > Za, h=k"2Z7713, B=2z43a2%k"1. (47)
k TZL

We shall use § and h as the semi-classical parameters when we apply Theorem 4. It is
therefore important that 3 < h2. This follows since ~'h? = (Za)~2x2 > 1. Note also that
2/m <Kk <2M/7msince 2z, <1, k=1,...,M,and >, 2z, = 1.

Putting this together with the estimate above into (46) we obtain (using the inequality
Tr[ X +Y]- > Tr[X]_+Tr[Y]- for operators X and Y bounded from below (with a common
core), and the choices of € and s) that

(¢, H(Z,R; a)t))
> 2(1—e)Z*3k71 Tr[\/—ﬂfthA +82- 8 —kVT(z,r, )]
~CeZ"? — 05283~ Cs7'Z - D(p™(Z,R,, "))
> 274351 Tr[\/—ﬂ_lth + 32— —kV(z,r, z)]_

~D(p™(Z,R, ")) - CZ*1/5,

Now we apply the semi-classical result for potentials with Coulomb-like singularities from
Theorem 4 to KV (z,r,-) (recall that 2/7 < k < 2M /7 which ensures that the constants
in (5) and (6) are uniform in k), and the calculation in (45). Then

2735 T [/ 1R2A + 372 — B — VT (2,1, 2)]

M
773 (B (1) + D(p™ (2,x,)) ) +2 3 28 (Zea) + O3/
k=1
M
= E™(ZR)+D(p"™(Z,R,)) +2>_ ZiS(Zra) + O(2°7H).
k=1
Note here that s cancels in the leading semi-classical term and in the Scott-term (the term
with §). Also, 2/7m < k < 2M /7 ensures that the error is uniform in x. Here we have again
used the TF scaling ETY(Z,R) = Z7/3E™ (z,r) and D(p™¥(Z,R, ")) = Z73D(p" (2,1, -)).
This finishes the proof of the lower bound. O
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Proof of Theorem 1 (Upper bound). The starting point now is Lieb’s variational princi-
ple, Theorem 18. By a simple rescaling the variational principle states that for any density
matrix v on L?(R?) with 2 Try < Z we have

E(Z,R;a) < 2Z'3Tr[(V—a=2Z72A + a=1Z-8/3 — a7227Y% —V(z,r, )]
+Z73D(2271p,).
As for the lower bound we bring the TF-potential into play:
Z7YPE(Z,R;a) < 2Tx[(V—a 2Z-2A+a 4283 —a=22743 — V¥ (5,1, 3))9]
+2ZD(2Z ' py — p*F(z,r,)) — ZD(p"F (2,1, "))
= 25 ' Tr[(vV/-Bh2A + 32— 37— kVT (2,1, 2))7]

+ ZD(2ZflpW — p(z,r, D) — ZD(pTF(z7 r,)), (48)
where k, h, and (3 are chosen as in (47) in the proof of the lower bound. Note that with this
choice of h and x we have from (36) that

22302 W3 N (kV T (2,1, 2))%? = Zp T (z,v,2)/2.
We now choose a density matrix 5 according to Theorem 4 with V(z) = sV (z,r, z).
Since [ p¥(z,r,z)dx = Ekle 2, = 1 we see from (8) that 2Try < Z(1 + CZ~1/3-1/15)
(recall that x~' < 7/2). Thus if we define v = (1 + CZ~'/31/15)=15 we see that the

condition 2 Trvy < Z is satisfied.
Using the Hardy-Littlewood-Sobolev and (9) inequalities we find that

ZD(2Z " ps — p ¥ (z,r, ) < CZ_alﬁ — Zp " (z,r, -)/2“2/5 < CZ3415
and thus
ZD(2Z 'py — p"F(z,r,)) < CA+CZVEVI2Z2D(227 s — p™ (2,1, )
i 021/3—2/15D(pTF(Z,I_’ 9) < C 723415 (49)
where we have used the triangle inequality for v/D, and that D(pTF(z, r, )) <C.
Finally, if we use (10) and (45) we get as for the lower bound that
27431 Tr[(\/—ﬁ—1h2A + 32— 71— kV T (g, r,i))7]
M

< E™(Z,R)+ D(p"(Z,R,") + 2 ZiS(Zpa) + O(Z*71/%).
j=1
Since E™F(Z,R) > — CZ"/? and D(p""(Z,R,-)) > 0 we see that the same estimate holds

for 4 replaced by ~. This together with D(p™"(Z,R,")) = Z7/3D(pTF(z,r, ), (48), and
(49) finishes the proof of the upper bound. U

The function § is continuous and non-increasing, and S(0) = 1/4, according to Theorem 4.
This finishes the proof of Theorem 1.

4. RELATIVISTIC SEMI-CLASSICS FOR POTENTIALS WITH COULOMB-LIKE SINGULARITIES

In this section we prove Theorem 4. The theorem will follow from using Theorem 23 below
(a rescaled version of the local semi-classical results for regular potentials in Theorem 32 in
Section 5 below). We localise (Theorem 13) the operator using multi-scale analysis (The-
orem 15), and control the localisation errors (Theorem 16). Near the singularities of the
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potential, we compare with the Coulomb potential. To be able to do this, we first prove a
Scott-corrected semi-classical result for a localised relativistic Hydrogen operator (Lemma 25
below). The ingredients of the proof of the latter are the same (rescaled semi-classics, local-
isation and multi-scale analysis, and estimating localisation errors).

Theorem 23 (Rescaled semi-classics). Letn > 3 and let ¢ € CiT4(R™) be supported in a

ball By of radius ¢ > 0. Let V € C3(By) be a real potential, and let Tz(p) = /B~ 1p? + =2 —
B~1 be the kinetic energy. Let Hg = Tz(—ihV) + V(2), h > 0, and o5(v,q) = Ts(q) + V (v).
Then for all b, B, f > 0 with Bf% < 1, we have

Tr[pHpgl- — (2wh) ™" / $(v)°03(v, q)— dvdg| < Ch™"HO/ prEalsn=6/5 = (50)

where the constant C' s independent of 3 and depends only on

sup |07l and  sup ||f 2OV | 5 - (51)
[n|<n+4 [n|<3

Moreover, there exists a density matrix v such that
TuoHo) < (2rh) " [ 6(0P0(v.q)- dudg + CHo OB rsss - (52)
The density p satisfies
[0 (@) = @rh) Vo722 + BV (@)| < R0 o900 (53)
for (almost) all x € By, and
[ @ pr @) do — 2ty " [ SRV 22+ BV ) da
< QRS pn6/5m—6/5 (54)

where wy, is the volume of the unit ball By in R™. The constants C' > 0 in the above estimates
again depend on the parameters as in (51).

Proof. We introduce the unitary scaling operator (Uv)(z) = £~™/?¢(¢~'z). Then
U*g[Ts(=ihV) + V(2)]o U = f2¢[Tapa(=ihf~7IV) + Vi o(2)] e,
where ¢y(z) = ¢(lz), and Vye(z) = f~2V (¢x). Thus,
Te[pHp] - = [2 T |90 [Topo (—ihf ~H¢7IV) + Vie(@)] 6|
Note that ¢, and Vy, are supported in a ball of radius 1 and that for all multi-indices 7,
107 ¢elloe = 110" ]loc  and  [[0"Vi oo = f2 €MV oo

Let oy05(u,q) = Tgp2(q) + Vie(u). By Theorem 32 in Section 5 below there is a constant
C depending on the parameters as in (51) so that, as long as gf? <1,

Tr[pHg¢l- — (2xhf~ e~ f? / de(u)*oy05(u, q)— dudg
A simple change of variables gives
g [ onwPo st a)- dudg = )™ [ G(Pas(o.0)- dudg,

and we have proved (50).

< Cf2(hf—1€—1)—n+6/5 ) (55)
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Now, let v7,3 be the density matrix for ¢, [T@fz(—ihf_1€_1V) + Vf’g(i‘)]qf)g, which ac-
cording to Lemma 34 satisfies

2T [W (T2 (—ihf V) + Vio(@)] ¢£’Yf,€,/3]
< @rhfTlehT / de(u)*os,65(u,q)— dudg + C(hf =) 7O,
91100 (@) = @R V(@) -2 4 B2V o)1) (@)
< C(hfhemty=nton0,

‘/m(%)zﬂw,g,ﬁ(@ dx — (27Thf151)”wn/¢e(fv)2!Vf,e(fv)—!”/2(2 + B Vie(w)-|)"/? da

< C(hf ety —mtos,

The density matrix v = U~y sU*, whose density is py(z) = £7"py,, 4(x/£), then satisfies
the properties in (52)—(54). O

Multi-scale Analysis. The rescaled semi-classics of Theorem 23 will be used in balls of
varying radius. This idea goes back to Ivrii [15, 14]. We introduce a variable scale ¢ and a
corresponding family of localisation functions {¢y },crs, which will also be used in the proof
of Theorem 4.

Definition 24 (Scale for multi-scale analysis). Let 0 < ¢y < 1 be a parameter that we
shall choose explicitly below, and let r1,...,ry € R3. Define

M
-1
Ua) =3 (14D (o=l + )72) (56)
k=1
Note that ¢ is a smooth function (due to £y) with
0<fl(z)<1/2 and |V/|e <1/2. (57)
Note also that in terms of the function d = d, from (4) we have
LA+ M) < L+ M(d(2)? + )TV T < l(x) < L(d(x)?+ )V (58)
In particular, we have
((z) > (1 + M) min{d(z),1}. (59)
We fix a localisation function ¢ € C§°(R3) with support in {|z| < 1} and such that
[ o(z)?dz = 1. According to Theorem 15 we can find a corresponding family of func-

tions ¢, € C$°(R?), u € R?, where ¢,, is supported in the ball {|z — u| < ¢(u)}, with the
properties that

/ gou(ar)Qﬁ(u)*S du =1 and [|0"pylle < Cﬁ(u)*"”, (60)
R3

for all multi-indices 1, where C' > 0 depends only on 1 and ¢. For d(u) > 2¢y we have £(u) <

V/5d(u)/4 and hence for all z with |z — u| < £(u) we have (note that d(u) < d(x) + |z — u]
and v/5/4 < 1) that

l(u) <d(u) and d(u) <Cd(x). (61)

As a first step towards the Scott correction for Coulomb-type potentials we deal with

the Scott correction for a single relativistic Hydrogen atom. This method for proving the

existence of a Scott correction in the semi-classical expansion of the sum of eigenvalues
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of an operator with a (homogeneous) singular potential without explicitly knowing the
eigenvalues was first used by Sobolev [33] when studying (non-relativistic) operators with
magnetic fields.

Lemma 25 (Scott-corrected localised Hydrogen). There ezists a non-increasing func-
tion S : [0,2/7] — R, with S(0) = 1/4, such that, if ¢r(z) = ¢(z/r), r € (0,00), with
¢ € C(R?), 0 < ¢ <1, satisfying VT — & € CL(R) and

1 for |z| <1

gb(x):{ 0 for |z|>2 "
then there exists C > 0 depending only on ¢ such that for all o € [0,2/7] and r € (0, 00),

Telg, Hola)dr - — (2m) / b (0)2[20% — o Y] dvdq — S(a)| < Cr 0 (62)

where

V—a2A+at—-a 2|27, a€(0,2/7]
H, = ’ ’ . 63
C(a) {—%A—|i|_1, a=0 ( )

As emphasised in Remark 5, the function in the semi-classical integral in (62) is the non-
relativistic energy. See also Lemma 27 below for an alternative description of the function

S.

Remark 26. A result similar to the one in Lemma 25 was proved in [24, Theorem 7.1], but
without uniform control in o and only for « € (0,2/7).

Proof of Lemma 25. We fix a € [0,2/7] and write Hc = Hc(a). We define for » > 0

S, = Te[6, Ho(aor]— (2n)° [ on(0) 5~ o] 1] _ dudg. (64)

We will show that S, has a limit as r — oo.

Let R > 2r. We estimate the difference between Tr{¢pprHcor]— and Tr(¢p, Hoor|— semi-
classically. The leading semi-classical term involves the relativistic energy which is then
compared to the non-relativistic energy. Below all constants will depend only on ¢ and in
particular not on « € [0,2/7].

Denote ¢, = /1 — ¢2. By the relativistic IMS formula (23),

He = ¢pHedr + YrHethyr — quT - Lqu ,
where Ly, and Ly, are given by (24) and (25) (M = {1,2}). We multiply with ¢r and get
that
orHcor = ¢rHodr + drvrHordr — dr(Lg, + Ly, )OR -

We have used that ¢r¢, = ¢, since R > 2r. Now, let yg = x(¢rHc¢r) be the projection
onto the negative part of ¢p Hcor. Then, by the variational principle and Theorem 14 (with
m=1,¢=r, Q= DB(0,3r), and § = ¢, and 9, respectively),

Tr{prHcor)-
= Tr[PYR(ﬁTHC¢r] + Tr[7R¢R¢THC¢T¢R] - Tr[7R¢R(L¢r + Lillr)(Z)R]
> Tr[yrer(Ho — Cr™?)¢,] + Tr[yroribr(He — Cr ¢ )thr¢R] (65)

—Cr2.
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Here, C is independent of . We treat the part of the localisation error coming from the
first term in (65). We split Hc = (1 —¢)Hc + eHc for some 0 < £ < 1 to be chosen and use

the second term to control the error term.
By Theorem 16 (with M =1, Ry =0, d(z) = |z|, m =1 and v = 1),

Tr[yrer(cHe — Cr=2) ]

= eTr[(oryror){V—a2A+a % - a2 —(jz7t + C’r_25_1)}]

—C’s(al/2+ /(|x|_1+06_1r_2)5/2dx+a3/ (|x|_1+05_17“_2)4dx>

a<l|z|<2r a<|z|<2r

v

> - Cs(l + P12 4 g2 2 Ty

assuming e 12 < Ca~! and using that a < 2/7. We may choose ¢ = r~! if we assume
that 7 > 1 (note that then indeed e 'r=2 = r~1 < 1 < 2a7!/7). We then obtain

Tr[7R¢r(5HC - CT_2)¢T] > - CT‘_I/Q-
As a result, we have shown that

Tr(¢rHcdr] -
> (1 — 5) Tr[’YR ¢THC¢7‘] + TI'[’YRgbRwT(HC _ CT_2¢3r)wr¢R] _ C’r'_l/2
> {6, Hod, ] + Tlont (Ho — Cr>6s,)ndr] - — Or /2.

We will treat the term Tr[¢rv.(Hc — Cr—2¢s3,)1r-¢r]— by our semi-classical estimates
in Section 5 below. We first rescale. Define the unitary scaling operator (Uyp)(x) =
R™3/2¢p(R™'x). Then

He : = U*(Hc — Cr—%¢3,)U

= R7Y(V-a2A + R2a~4 — Ra™? — |#]™! — CRr%¢3,/5(2))

= R™(Tp(=ihV) — |&~! = CRr ¢y, /5(2)) (66)
with 3 = a?R™! (< R7') and h = R™Y2. Let ¢r, = ¢rt)r = dr\/1 — ¢2 and ¢(x) =
drr(Rz) (see (3) for Tp). In this way, ¢prtb,(Hc — Cr—2¢3,)thr¢r and ¢ Hetp are unitarily
equivalent.

Now, let ¢ and ¢,, be the functions in (56) and (60), respectively, when M =1, r; =0,
and o = h? = R~'. By another relativistic IMS localisation we get that

YpHoy = R / You (Tg(—ihV) — &7 — CRr2¢s, /r(2)) put £(u) > du

r/3R<|u|<5/2

~-Rr! / WYL, 0(u) "3 du.

r/3R<|ul<5/2

We have used that 1@, = 0 for u| & [r/3R,5/2], since £(u) < 1(|ul? + €3)1/2 (see (58)) and
supp ) C {r/R < |z| < 2}, supppy C {|lz — u| < {(u)}.
Concerning L, , Theorem 14 with £ = ¢(u)/2, m = R, and Q = Q, = {|z —u| < 30(u)/2}
gives
Ly, < CR_le(U)_QXQu + Qp, »
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with
—1
Tr[Q,,] < CRa~M(u)~ e /2, o

Here we have used (60).
Notice that if the supports of ¢, and ¢, overlap then |u — u'| < ¢(u) + ¢(u’) and thus

() < 6(u) + || VEloo ((u) + £(u)) . (68)

Therefore, since |V/|sx < 1/2, we have that ¢(u’) < Cl(u) and thus ¢(u)~t < Cl(u')~L.
Similarly, £(u) < Cl(u'), and 50 xq, < X{je—u|<ce(w)} if the supports of ¢, and ¢,/ overlap.
Using this and (60) we get for all z € R?

/ (E(u)ﬂxgu(x)) E(u)f?’ du = /(E(U)QXQu(x)) (/goi/(:c)ﬁ(u')?’ du’) E(u)fi)’ du
< C / o (1) 0 )2 e () €Y 3 . (69)

Rewriting the last integral with u as integration variable we get

wHep > R / Piou (Ta(—ihV) — |27 = Ch20(u) ") put £(u) > du

~R [ 6Quut) P du

Here we have also used that Rr*2¢3r/R(m) < Ch2{(u)~2 for x in the support of ¢,. This
is a consequence of £(u) < 1|u| + 34y < &|z| + 3€(u) + ¢y for z in the support of ¢, which
implies that ((u) < |x| + €y < Cr/R for z in the support of y, and ¢3, /g.

We will now use Theorem 23 (with ¢ = ¥y, £ = l(u), By = {|z —u| < {l(u)}, f = f(u) =
|ul~1/2) on

w@u (Tﬁ(_ihv) - "7}‘71 - Chzg(u)i2)§0uwa

for u fixed with |u| € [r/3R,5/2]. We claim that
107 (o)l oo < Crl(w)~" for all n € N3, (70)

This follows from (60), (61), and the estimate |8"(z)| < Cplz|~. Tt suffices to check
the latter for 1 < |z| < 2 and r/R < |z| < 2r/R, due to the support properties of .
Furthermore, for 7 > 3, |z|™1 + Ch?/(u)~2 is smooth (as a function of z) on By (use (58),
lo= R, and |u| > r/3R), and satisfies

sup  [90(|z| 7t + Ch*(u)")| < Cpf (w)?e(u) ™" for all n € N3, (71)

|z —u|<l(u)

with f(u) = |u|~*/2. For the Coulomb potential, this is trivial. For the other term, only the
statement for 7 = 0 is non-trivial; it follows from (59), h = R~Y/2, and |u| > r/3R. Finally,
the condition f(u)%8 < 1 is also satisfied (when r > 3), since |u| > /3R and 3 < R~
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From Theorem 23 we conclude that

Tr(¢rt: (He — Or™>da:)brér] - = Tr[b Hey)-
> Bt [ w0 [Tola) — bl — CRe()?1- 8) dudvdg
r/3R<|u|<5/2
o CR—lh—2+1/5 / f(u)4_1/5€(u)_1_1/5 du
r/3R<|u|<5/2
— R7! / Tr[¢Qy, ] £(u) > du.
r/3R<|u|<5/2
Integrating the semi-classical error using f(u) = |u|~'/2, (59), and R > r gives the lower
bound —CR~'h=2+/5(R/r)1/10 = — Or—1/10,
From (67) it follows, using (59), o < 2/m, and R > r, that
R7! / Tr [ Qq, v] ((u)3du < C / a_2e_a_lm(“)/2€(u)_3 du
r/3R<|u|<5/2 r/3R<|u|<5/2
< Crle/8.
Since supp ¢, C {v||u —v| < £(u)} and |u] < 5/2 we have |v| < |u| + £(u) < Cl(u) on
supp ¢, Using this, integrating in u (using (60)), we get
R [ 000 [Tola) = ol = O] o)™ dudody

r/3R<|u|<5/2

s s[RI EE - 50— i OOl ).

(2mwh)3
In order to compare this latter relativistic semi-classical expression with the non-
relativistic semi-classical one we use the inequality |z_ —y_| < |z—y| and a Taylor expansion

of Vt2 4+ 1 —1 to arrive at
/ ’[%QQ —al —[VB@P+pB 22— —a- b]f)dq

< OB(Bla+b)* +2(a+ b))%+ Cb(B(a+b)? + 2(a + b))/? (72)
for all a,b > 0. This gives, using h*> = R~! and § < R™!, that

/w(v)2 ([3¢* = o] _ = [VB @+ 82— 7" = o™ = Ch?e| 2] ) dvdq'

< CR! / W2 dy < C(Rr)-V2,  (73)

r/R<|v|<2

since R > r > 1.
Thus undoing the scaling we arrive at

R @)™ [ 6Peu(w)? [Tala) — o™ = CHe() 1 ) dudvdg
r/3R<|u|<5/2

> (2m)7° / drr(v)? [34° — |7 dvdg — Cr=1/10
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Summarizing, we have proved that there exists a constant C' = C(¢), independent of o €
[0,2/7], such that for r large enough, and R > 2r,

TrlprHcor]-
> Tr[¢.Hooy|- + (2m)~ /¢RT [1® — |v| Y= dvdg — Cr= /10, (74)
Next, we want to bound Tr[prHc¢r|- from above by Tr[¢, Hcor]— by constructing a
density matrix. To this end, we first set v, = x(é¢»Hcor). Then we let 7, be the den-
sity matrix we get when we use Theorem 23 for the rescaled operator ¥, Howyt) (now

with Ho = U*HcU with U as in (66)), for fixed u with |u| € [r/3R,5/2], and set
Yo = UV, U*. Finally, we define

Y= Oy Qr + / Uy Yu Yr €(u)_3 du. (75)
r/3R<|u|<5/2

Since 0 <5 <1 and [ ¢2(z)l(u) 3 du =1,

0< /'yuﬁ(u):gdug 1,

and so we see, by multiplication with 1, on both sides, that 0 <~ < 1. Also, -y is trivially
trace class. By the variational principle we obtain that

TrlprHcor]- < Tr[prHcor?]
= Tr[¢rorHcdrdr x(orHoor))

+ / el S Hod rthy vl £u) ™ du
r/3R<|u|<5/2

Tr(6, Hodr]- / Trpu Hepata] )~ du.
r/3R<|u|<5/2

IN

Here we have used that ¢r¢.Hcopr¢or = ¢-Hcdr, since R > 2r, and again scaled the
operators inside the trace in the integrand. Using Theorem 23 we can bound the integral
from above by

“2eh) [0 P [Tsle) ~ ol 1] dudedg

+ CR71h72+1/5 / f(u)471/5€(u)7171/5 du .
r/3R<|u|<5/2
As in the case of the lower bound, the error term is bounded by Cr—1/10,
Integrating with respect to u in the semi-classical expression above, changing back coor-
dinates, and using (73), we conclude that

TrlprHoor]- < Tr[¢rHoor]- + (27) /¢Rr )2 [3¢% — v dvdg + Cr=10. (76)
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Combining (74) and (76) we have shown that for R > 2r,
50— 51
Trl¢prHoor] - — TrlgrHod,] - + (27)7° / (6r(v)* = 6r(v)?) [34* — [v "] _ dvdg

< o1

<

Hence, {Sp}nen is a Cauchy-sequence and with S = S(«) the limiting value we have
S, — S| < Crmt/10.

This proves (62). That S is non-increasing follows from the fact that T,2(p) (see (3)) is
decreasing in «. Finally, that S(0) = 1/4 is a well-known fact [36]. O

Proof of Theorem /. Using the combined Daubechies-Lieb-Yau inequality (see Theorem 16)
with o = /2h1(< 1) and m = h~2 we may assume that h is bounded by some constant,
which we may choose small depending on M and ry, using that z < 2/7, k =1,..., M,
and that S is a bounded function (since it is non-increasing; see Lemma 25).
In order to control the region close to and far away from all the nuclei we introduce

localisation functions #+ € C'(R) with the properties that 0 < 6+ < 1 and

(1) 62 +62 =1,

(2) 0_(t)=1ift <1 and 6_(t) =0 for t > 2.
Let 0 <7 <rg/4 and 0 < rop < R and define &4 (z) = 0+ (d(z)/R) and ¢+ () = 0+(d(x)/7)
(with d = d; as in (4)). We choose (assuming h is small enough)
Ch~t ifpu=0
R, ifpu#0"
where § = h < 1/2 and R, = Cp~! is chosen such that — V(z) > 0 for d(z) > R, (see
(5)). We will keep writing 6 and R in the calculations below to show why these choices are
optimal. Clearly, ®2 + <I>3_ =1, ¢> + gb%_ =1, and ¢% + <I>2_<;5?F + <I>3_ = 1. Note also that

M

¢ (x) = Orplx) with Opp(x) =0_(lx—ril/r).
k=1

r=06'h? and R= { (77)

Step 1: Lower bound on the quantum energy.

By the relativistic IMS formula (23) and Theorem 14 with m = h™2, o = g/2h~1(< 1),
and either £ = R, Q = {d(z) < 3R}, and 0 = &4 respectively, or £ = r, Q = {d(z) < 3r},
and 0 = 0,,, k=1,...,M, or 0 = ¢ respectively, we find that

T3(—ihV) = V()
= &4 (Tp(—ihV) = V(2)) P4 + ®_ (T3(—ihV) = V(&))®— — Lo_ — Lo,

M
= Y 0k (Ts(—1hV) = V(2))0pk + B¢y (Tp(—1hV) — V(2))$1. D
k=1
M
+ & (Tp(—ihV) = V(£)) By — () Lo, + L, )® — Lo_ — Lo, , (78)
k=1
with
Lo, < CR|VOL|Z, X{dw)<sry + Qae (79)

T[Qe,] < CB 'R e F*N7R|ga, |2

A

{d(z) < 3R}, (80)
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and (with, by abuse of notation, Ly = Zi‘il Ly, )

Ly, < CR|IVoil2 Xia@)<sr + Qos » (81)
T[Qy,] < CB e W7 1Tgy |2 [{d(x) < 3r}]. (82)

Using [{d(z) < 3R}| < 367 MR?, |[V®.+ oo < CR™! (and the corresponding estimates for r
and ¢+ ), B < h%, and h small, it follows that

Tr[Qo.] < Ch2R 27" B2 < CNRN,  Tr[Qy.] < Ch2r—2e7""1/2 < OnhN
for any N > 0 by the choices (77).
Hence we have that
Tr[T3(—ihV) — V()] _
M
> Y Te (b (Ts(—1hV) = V(&) — Ch?r™2)6, 4]
k=1
+ Tr[®_¢y (T3(—1hV) — V(&) — Ch*r X (gw)<ary — CRPR™?) ¢ ®_]

+ Tr[@ (T3(—ihV) — V(&) — Ch* R *X(a()<sry) 4] — Ch™2H1/10 0 (83)

Each of the first three terms above will be compared to the corresponding semi-classical
expression. We shall treat the three terms by different methods. The first term will be
calculated using the Scott correction for Hydrogen in Lemma 25. The second term will be
computed using the local rescaled semi-classics in Theorem 23. The last term is an error
term which we will treat first.

Control of the third term in (83).

We use the Daubechies inequality (17) with m = h=2 and a = 8Y/2h~1(< 1). In the case
1 = 0 we obtain, using the choice (77) of R,

Tr[® (Tp(—ihV) — V(&) — Ch*R>X{a@@)<3r))®+] _

> —Ch™3M / x| 712 de — CM / lz| 2 dx — Ch?R™2 — Ch®R™
|z|>R |z|>R
> —C(hBROZ 4L RO+ W2R? -1PR7%) > — CRP2. (84)

The case p # 0 gives a smaller error since — V > 0 on the support of ¢ in this case.
Control of the first term in (83).
Using (6) and (77) we have

M
> Tr[0pk (T(—ihV) = V(&) — Ch*r =)0,k
k=1

M
> ) T [6p(Ts(—ihV) — || = Ch72)6,]
k=1

where we have written 6,(x) = 0_(|x|/r). We have used here that
Orl +C<Cryt+C<Coh2. (85)

It is this relation which sets a lower bound on §. We will control the error using the combined
Daubechies-Lieb-Yau inequality in Theorem 16 with m = h=2 and a = 3'/2h~1(< 1). Note
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that ma~—! = 3~Y2h=! > h=2. Thus using Theorem 16 we find, for all density matrices ~
and all € > (52, that

e Tr [v(0-(Ts(—ihV) — 2|2 7L — Ce716%h72)0,)] > — O (6712 4 73252 4 c736%)h =2
Thus for all density matrices v and all € > 6% we have
C6*h~2 Tr[v0?] < e Tr [0, (T5(—1hV) — 2|28, ] +C (672473262 1735°)h 2. (86)

Hence
M
> Tr[0pk (T(—ihV) = V(&) — Ch*r™)0p] (87)
k=1

S

> (1-2)) Tr[0(Ts(—ihV) — zld|1)0:]  — C(e67/% +273/262 + e736%)h 2.
k=1
For the corresponding semi-classical expression we have from (6) and (85) (using 6 < 1/2
and |[x_ —y_| < |z —y|) that

M
<2wh>?/ b (v)?[1p* — V(v)] _ dvdp — Z(%h)?/ 0, (0)2 [5p* — 20| ~Y]_ dvdp
k=1
< C8'V?h72 (88)
A simple rescaling applied to the local Hydrogen result in Lemma 25 gives that

‘Tr[HT(Tg(—ihV) - zk\§c|_1)0r]_ - (27rh)_?/ GT(U)Q[%pQ - zk|v\_1] _dvdp

—2th 2 S(BYPh T )| < ChT2(h72r) 710 = R0, (89)

Combining (87), (88), and (89), using that S is a bounded function (since it is non-increasing;
see Lemma 25), that § < 1/2, and that

(27rh)_3/9r(v)2 [1p* — 2|v| ™) _ dvdp < Ch=3rl/2 = cn=2571/2,
and choosing ¢ = d, we conclude that

Tr[¢p— (Ts(—ihV) — V(2) — Ch*r?)¢_]_ > (27rh)3/ ¢—(v)?[2¢* — V(v)]_ dvdg
M

+ B2 RSBV ) — C6VIORTE (90)
k=1

Control of the second term in (83).

Here we use the local rescaled semi-classics in Theorem 23. Before we apply our semi-
classical estimates on the support of ®_¢, we localise using the functions ¢,, from (60) for
general M and with ¢(u) as in (56), with ¢y = r/4. From (77) and the choice of § it follows
that ¢g < 1 for h small enough. If z is in the support of ®_¢; and in the support of ¢,
then d(u) > r/2 = 24y since (using (58))

r < d(z) < d(u) + £(u) < d(u) + max{d(u), o},
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and also d(u) < 2R + 1 since ¢(u) < 1/2. Using again the relativistic IMS localisation (23)
we thus have

©_¢ (T5(—ihV) = V(&) — Ch*r*X{a(m)<sry — Ch*R™?) ¢, @

— / O_¢ ooy (Tp(—ihV) — V(&) — Ch*r X (a)<sry — CR*R™?)pudp1®_ £(u) > du
r/2<d(u)<2R+1

— /¢¢+qu¢+q>z(u)—3du. (91)
r/2<d(u)<2R+1
Concerning L, , Theorem 14 with ¢ = ¢(u)/2 and Q@ = Q, = {|z — u| < 30(u)/2} (and
m=h"2and a = 8/2h"1(< 1)) gives, using (29), that
Lo, < CR4()xa, + Qg (92)
with
Tr[Q,,] < CB e B/PMT W) < oypN (93)
for all N > 0 as a consequence of £(u) > (1 + M)~ 'r/8 and 3 < h?. Thus

Tr[/ D¢ Qud+® L(u)3dul < CyRY forall N> 0.
r/2<d(u)<2R+1

By the same arguments as in the proof of Lemma 25 above (see (68) and (69)) we join
the new localisation error term (from (91), (92)) with the previous localisation errors from
(79) and (81). Since £(u) < max{d(u),r/4} we have R=2 < C/¢(u)~2 for d(u) < 2R+ 1 (and
h small enough when p = 0; for p # 0, use ¢(u) < 1/2) and, by (61) (valid on the support
of ¢, when d(u) > r/2 = 24ly),

P2 X d(w)<ar (@) pu(2)? < Cl(u) Ppu(x)?.

This way, we have proved that

Te[D_¢+ (T5(=ihV) = V(&) — Ch*r*xqa(e)<ary — CR*R™?) 91 @] (94)
> / Tr[¢4pu (T3(—ihV) — V(&) — CR*0(u)"?) puds]_L(u) > du — CO-2+1/10
r/2<d(u)<2R+1

Note that there is no need to write ®_ on the right side, since in general Tr(®AP)_ > TrA_
for any self-adjoint operator A and any function 0 < & < 1.
For u such that d(u) > r/2 = 2{y and d(u) < 2R + 1 we have from (5) and (77) that

LS )W’(V@) — Ch*0(u)?)| < Cf(u)*6(w) ™" for |n| <3,
a—u|<l(u
10" (64 bu)lloc < Cplw) ™" for || <7,
with
Fu) = { d(u)~1/? it p#0
min{d(u)~Y2 d(u)=3?} ifu=0 "
We have also used that d(u) > 6~ th?/2 > h% and min{1,d(u)} < Cl(u).

We are therefore in a position to use the rescaled semi-classics in Theorem 23 on the ball
{|]z —u| <0} with £ = l(u), f = f(u), and ¢ = ¢4 ¢, for each u with r/2 < d(u) < 2R + 1.

(95)
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Note in particular that Gf2(u) < Bd(u)~! < 28/r = 285h~2 < 25 < 1 . We conclude that
for all u with r/2 < d(u) < 2R+ 1,

}1}[¢+¢u(zb<—dhvv——vw@>—-cvﬂe@o-2)¢u¢+]_

(2mh)” /¢+ 2ou(v)?[VB g + B2 - )—Chgf(U)_Z]_dvdq)
< Ch™ 2+1/5f(u)4 1/55(’[1,)2 1/5. (96)

The semi-classical integral may be estimated using (72)

'/ (VB 12+ 2= —V(v) — Ch*l(u)"?] _dg - / [3* =V (v)]_ dq‘

< CR(|V ()] + h2(0)2) "% + Ch20(0) 2 (|V (v)] + h2¢(v)~2)*?

< CRPIV )+ 12 0) 2V ()P + (he() 1)) (97)

for v in the support of ¢, since then we have £(v) < 30(u)/2 (see (57)) and |V (v)| <
Cd(v)™t < Cd(u)~! < Ch™2 (see (5), (61) and (58)). We have also used that 8 < h? and
that, by (58) and (77) (bo = r/4), h?4(v)~2 < Ch?r=2 = C6?h=2 < Ch~2.

Combining (94), (96), and (97) (remembering that d(u) < Cd(v) if v is in the support of
oy and d(u) > r/2 = 24y) we find, using (60), (5), and (95), that

Tr[®_¢y (T3(—ihV) — V(&) — Ch*r X {q)<ary — CR*R™ %) ®_]
><%m*/¢m¥Ef—WMmew47/ W2 f ()50 () 0 du
r/2<d(u)<2R+1
_C / B3 (R2d(0) T2 + B20(0) 2 (0)3 + (he(v)"V)P) dv — CH-2H/10 . (98)
C—lr<d(v)<2R+2

If i # 0 the error term in (98) is controlled as follows:

/ (R=2F3 £ (0) 1950 (0) =85 + 7 1d(0) T2 + R e(0) 2 f(v)? + B2 (v)P) dv
C—lr<d(v)<2R+2
< C / (h_2+1/5|v\_19/10min{1,]v|}_6/5—|—h_1]v|_7/2
C—lr<|v|<2R+2
+h 7 min{1, o]} 20|32 + h* min{1, [v]}7®) dv
C(h_2+1/5(R11/10+7“_1/10)+h_17"_1/2+h_1R3/2+h2R3+h27“_2)
< C«}L72+1/107 (99)

IN

with the choices (77) where R = R, is a constant.
If = 0 we get instead

/ (h72+1/5f(v)19/5£(v)76/5 +h71d(v)77/2 _i_hflg(,v)fo(v)S +h2£(1})75) dv
C—1lr<d(v)<2R+2
S C(h_2+1/57“_1/10+h_17“_1/2—|—h2R3—|—h2r_2) S Ch_2+1/10. (100)
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If we insert the last two estimates (100) and (99) into (98) and then together with (84)
and (90) into (83) we arrive at a lower bound on the quantum energy corresponding to one
direction in (7).
Step 2: Upper bound on the quantum energy.

We obtain an upper bound on the quantum energy by choosing the density matrix

Y= Orp s + / G+ PuTupudt £(u) > du, (101)
k=1 d(w)<2R+1
where v, Kk =1,..., M, are the density matrices

e = X (01 (Ts(—1hV) = 2|2 — 74) ") 0,)

and v,, u € R3, are the density matrices given in Theorem 23 for the potential V with By
being the ball centered at u, £ = ¢(u), f = f(u) (see (95)), and ¢ = ¢4, Since

29 ROt =02 +¢% = (102)

we immediately see from (60) that v is a density matrix.
Using this density matrix as a trial state we obtain from Theorem 23 that

Tr[Ts(—ihV) — V(2)]
M
< D Te[0rn(Ts(—1hY) = V(@))0ra]

k=1
2nh) [ 6Pl VTR T B - 57 = V()] ) dodgdu
d(u)

<2R+1

b CR2Hs / Fu)/50(u) 55 g, (103)

r/2<d(u)<2R+1

where we have used the fact that ¢4 and ¢, have overlapping supports only if d(u) > r/2.
The last error term is estimated by Ch~2+1/10 45 in the lower bound.

Using that /3~ 1¢> + 32 — 87! < 3¢ and the normalization of ¢, (60) we find that

(2mh) ™3 / b4 (V)2 0u(v)?[VB g2 + B2 — B = V(v)]_£(u)"? dvdgdu

d(u)<2R+1

< (2mh)” /¢+ % —V(v)]_ dvdg
@) [ 6P [ - V()] ) dudgdu
d(u)>2R+1
< (2nh)7° / 6+ (v)*[5¢° = V(v)] _ dvdg + Ch™® / IV (0)- 52 dv.

d(v)>2R
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If o # 0 the last term vanishes by the choice of R = R,,. If u = 0 it may be estimated using
(5) and (77) as
Ch™3 / V(v)_|"%dv < C.
d(v)>2R

Together with (88), (89), (102), and (103) this gives the proof of (10), and therefore finishes
the proof of (7).
Step 3: Properties of the density.

We will now show that the density matrix v in (101) satisfies the two requirements (8)
and (9).

The density of v is

M
= z)%pp(x 2(2)% (z z)l(u) "3 du
p~(2) —;2197«,14 )7 pi( )+/d(u)<2R+1 Pu(@) 97 (@) pu()l(u) " du, (104)

where py, for k = 1,..., M is the density of the density matrix v, and p, for u € R3 is the
density for 7,,. We first control the 6/5-norm and the 1-norm of 62, py. If B12h=1 < 1/2 we

use the combined Daubechies-Lieb-Yau inequality (Theorem 16) with o = Y/2h~1 < 1/2,
v = 2z, and m = h™2 to obtain that

0 > Tr [0, kb (Tg(—1hV) — 2|2 — | 1] > 3 Tr[0r k0,1 T5(—1RV)]
— Cz2/2h_2 — C’h_?’,zl,i/z?"l/2 — C’z,‘éh2
LT[0, k0,5 Tp(—ihV)] — Ch™2571/2,
where the constant C' depends on z;. Hence we have that

T [T5(—ihV)0, sk i] < Ch™267 Y2 = Ch=5/2, (105)
Using (14) with a = 8/2h~' <1 and m = h~2, (105) implies that

18/25
02 6/5 « (1,—36/25 / h2(62 5/3 21/25
[ < S

18/20
+C / ﬂ71/2h(03kpk)4/3 7,3/10
B2 (62 pp) /35121 ’

< Ch736/25h79/5h21/25 + Ch79/4h3/10 < thfl2/57 (106)

v

where we have used that r = h and that A is bounded above by a constant. Likewise we find
/ 02 ox < Ch™3/2.

The case when 1/2 < BY2p=1 < 1 is more complicated. We have to treat the region

within the radius r_ = h? from the nucleus z; differently. Let 64 (z) = 6. (|z — 71| /h?).
Using the relativistic IMS formula (Theorem 13) and Theorem 14 with ¢ = h%/2, m = h™=2,
a=("2h~" and Q = {|z — r| < 3h?} we find that

0 Z Tr [Qr’k’}/kGT’k(Tg(—ihV) - Zk‘i' - Tk‘fl)]
> Tr[0_yf_(Ts(—ihV) — zg|& — |~ — Ch72)]
+ TI'[9T7k§+’yk9T7k5+(Tﬂ(—ihV) — Zk’.ifj - Tk’_l - h_QXQ)] — Ch_2 .
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To treat the first term we use the inequality (see (21))

vV *L>As(*A)S*BSa

&
which holds for all 0 < s < 1/2 and A, Bs > 0 being constants depending only on s. Hence,
using that A is bounded above by a constant and that 1 < 8~Y2h < 2 we get

0> Tr[0-ypf—(T(—ihV) — 2|2 — 1| = CR72)] > Tr[f_mb-(As(—A)° — Csh™2)] .
We appeal to the standard (Daubechies)-Lieb-Thirring inequality
(-8 Tnd] = ¢ [ @)1,

which holds for all s € (0,3). We obtain that (with all constants depending on 0 < s < 1/2)

Tr [0 (Tg(—ihV) — 2@ — | P = CR72)] > ¢ / (62 pj,) 323 — o2 / (62 pr)

Y

(c/2) /(§2pk)(3+25)/3 — Cp4s=3)/s

Using the Daubechies inequality (Theorem 9) we find as above that
Tr [Hrgkgyy;genkt% (Tﬂ(—ihV) - Zk‘i’ — ’I”krl — h72XQ)]
> ¢Tr[0, 100405 T3(—ihV)] — Ch™5/2.

By choosing s sufficiently close to 1/2 and using that h is bounded by a constant we conclude
that

0> c/(52pk)(3+25)/3 +cTr [QT’k@r’ykGr’k@rTg(—ihV)] — Ch™°/2,

As above it follows from this, choosing s sufficiently close to 1/2, that we still have
[ @ <cn s [ o <onon, (107)
Using that 7 = h and that from (5) |V (z)| < Cd(x)~! we also have
/ (W36 |V_[2/2)0/5 < cn—12/5 / B2, V32 < O (108)

We move to the second term in (104). By the rescaled semi-classics (Theorem 23) we have
on the support of ¢, ¢ that (for f(u), see (95))

‘pu(ﬁ) _ 21/2(37r2)’1h’3|V(:U)_\3/2‘ < Ch=271/10 () 2L/10p(4)=9/10 | O =2V (z)_[3/2,

where we have used that on the support of ¢,¢, we have |V(z)| < Cd(u)~! < Cr~! <
Ch=! < ChB~Y, since d(u) > r/2 if p,¢, is non-vanishing. We moreover have on the
support of p,¢y that |V (z)_|3/2 < Cf(u)® < Cf(u)>/10(u)=%/19, For r/2 < d(u) < 1 this
is because £(u)~t > d(u)~! = f(u)? > f(u) (see (61)) and for d(u) > 1 we simply use that
l(u) <1 and f(u) < 1. Hence

H@Zﬁﬁr (p’y _ 21/2(37_[_2)71}173“/_’3/2) < Ch7271/10f(u)Ql/IOE(u)S/S 7 (109)

le/s
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Using (101) and (102), we have that

lpy = 2'/2@3x*) R VPR (110)
M
< Z (”93,1@%”6/5 + Ch_3||93,k|vf|3/2\|6/5)
+ 9763 (pu — 2'23x*) RV PR g ) P du
+

+/ Ch—3\\¢§¢i|v,|3/2|]6/5£(u)—3du.
d(u)>2R+1

The last term is non-zero only in the case p = 0 in which case it is easily seen by (6) and
(77) to be bounded by Ch~3/2. Thus, combining (106)-(109), (110) implies that

pr _ 21/2(?’”2)7%73“/—’3/2H6/5 < Ch~2+ Ch21/10/ f(u)21/10€(u)77/5du.
C—1lr<d(u)<2R+1

The last integral is easily seen to be bounded and we arrive at (9).
To control the integral of the density we estimate

/pv(l’) dx—21/2(37r2)1h3/\V(:c)_]3/2 dz

M
< D (162 kpklls + CR72N62 LI V-2 1)
k=1

_l’_

0(u) =3 du

/ 6262 (pu() — 2/2(3%) 03|V (2) [¥/2) da

d(u)<2R+1

+/ Ch3|| 2% V||| £(w) > du.
d(u)>2R+1

As before the last term is bounded by Ch~3/2. For the middle term we again see from the
rescaled semi-classics (Theorem 23) that

' [ #i pule) = 2232V () 2)

IN

O3 f (u)2/5 ()5 4 O / 2 (@) 62 ()| V () |7/ da
< CRPPVSF(u)Pe(w)® + Ch™t f(u)l(u)?,

where we have used that 3 < h?. The estimate (8) follows since both integrals

/f(u)9/5€(u)9/5£(u)_3du and /f(u)5du

are bounded (recall that f(u) is given in (95)). This finishes the proof of Theorem 4, except
for the continuity of the function S from Lemma 25. We will need a lemma to prove this.
This lemma also gives an alternative characterization of the function S.

Lemma 27 (Scott-corrected pushed-up Hydrogen). Let S : [0,2/71] — R be the
function from Lemma 25. Then there exists a constant C' > 0 such that, for all o € [0,2/7]
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and k € (0,1],
‘ TI’[\/m —a 227t + K]
- (2%)_3/ [%p2 — o7t + k] dpdv — S(a)| < CrM/2. (111)
Here, as before, V—a2A +a=4 —a 2= —A/2, when a = 0.
Proof of Lemma 27. A simple rescaling, changing x — x~17x/2, gives
Tlr[\/ﬁ—i-a*4 —a -3 K] = fiTr[\/—ﬂfthA +p2-p7"1 -

where 3 = ka? and h = 21@1/2/77. We have 3 < h2.
The semi-classical integral may be rewritten in the same fashion,

2
(277)3/ [%pQ — ’U‘il + /@]_dpdv =K (27Th)3/ [%pZ — ﬁ + 1]_ dpdv .
7|

Since the potential V(x) = % — 1 satisfies the assumptions of Theorem 4 we see that there

2
I

exists a constant C' > 0 such that

Tr[/—B WA+ 32— 8" -

2

m|Z|

+1]_
— (2zh)73 / [1p* — 2 1]_ dpdv — h’Q%S(a) < CpmFI0,
|| ™
Using that h = 2k/? /7 gives (111). O
We can now, using the alternative characterization of the function § in Lemma 27, finish

the proof of Theorem 4.
Step 4: Continuity of the function S.

We recall that
VBIPE+72=57, B>0
Ts(p) = - T (112)
ip ) B =0
It suffices to prove continuity of

T[T, (—iV) — 2] + 5] = Tr[vV—a2A+ a4 —a 2 — 2] +x]_

at all ag € [0,2/7], for any x € (0,1] fixed. Then continuity of S follows from (111) by
uniform convergence as k — 0.

We first prove the continuity at ag = 0.

Let x> = Xpp|>x» X< = Xjp|<r for some A > 0 to be chosen below. Note that (I'y —

['y)(T'y —Tg)* > 0 implies T1T% + Tol' < T4 T + [ol'. Using this with Ty = /2y |#|~1/2,
Iy = e~ Y2+ |2|~'/2 for some € > 0 which we choose later, we get the operator inequality
To2(p) — |2 + & (113)
> x> (Toz () = (L+ e HIE™ 4+ K)xs + x< (To2 (D) — (1 +)|2[ 7" + #) x< -

Here and in the sequel we write T2 (p) for the operator T,2(—iV) (and similarly for other
operators). Since T2 > Ti,2 for a1 < ag, and Ti,2(p) = a~p| — 72, (113) implies that, if
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a € (0, A] for some A > 0, then for all e > 0
To(P) =2+ 5 > xs (AR = A7 = (L+e D27 +5)x>
+x<(To2(p) — (L +e)|| ™" + k) x< - (114)
Since |p| — 2/(w|Z|) > 0, we have that

1
SATA (14l 20,
if A <e/(27), and now assuming ¢ < 1. Furthermore, for A > 247! we have that

1 . _
X>(—A71’p‘ —A 2)X> > 0.

2
This implies that, if e <1, A > 2471, a € (0, A] and A < ¢/(27), then by (114)
T2 (p) = 27+ k= x<(Ta2(p) = (L+ )]~ + 5)x<- (115)

Since, by a Taylor-expansion, T,2(p) > To(p) — (ap?)?/8, and since y« = X|p|<r» We have
that, still for a € (0, 4],

Toa(p) — 871 + > xe (To() — a2XY/8 — (1 + o)l ™ + 1) x< (116)
Let
Yo = X(—o00] (Ta2 (B) — |2] 7" + 1) .
Then (116) and the fact that Ty > T,,2 imply that, for a € (0, 4],
Te[To(p) — |27 +w]_ = Tr[Toe(d) — 2] + k] _ = Tr[yaun(Toz(®) — 217!+ 5)]
> Tr[yanx<(To(P) — a®AY/8 — (L + )|z + r)x<].  (117)
If K € (0,1], @ € (0, 4], A > 247! and A < 1/(27) we will show the a priori estimate
Tr [Ya,rx<] < Ck™3?  and Tr Yo,k X< |§c]_1x<] < Cr 2, (118)

The combined Daubechies-Lieb-Yau inequality (32) gives that for positive constants C1, Co
such that o <2/(Cym), we have

Bl 2 [ (e
|z|<Cr—1

—COZS/ (|x]71—|—/<c)4dx2 —Cr™V2.
a<|z]<Cr=1
If « € (0,A4] and A < 1/(27) then o < 4/(57) and hence we obtain from (115) with e = 1
that

0 2 T[To2(p) = 27"+ A = Tr[raw (T2 (@) — |2 + )]

> Tr[yawX< (Toz(0) — 2027 + K)x<]
5/2 1 1 . K
= Tr [X<'ya7,§x< (Ta2 (p) — 7] + §l€)] + §Tr [’Ya,nX<|95| X<] + §TT [’7a,nX<]

1
> - C’I‘i_l/2 + §TI'['704,NX<|:Z'|_1X<] + gTr[%x,nX<] .

This gives (118).
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Choose A = 2471, A = ¢/(27r). We combine (117) and (118) and use the variational
principle to conclude that for a € (0,¢/(27)], e < 1, and € (0, 1],

Te[To(p) — 217 + k] > Te[Tee(p) — 127" + 4]
> Tr[(x<Yawx<) (To(d) = |27 +&)] = Ok (a?e ™ 1 ¢)
> Te[To(p) — 2|7 +x]_ — Ch™32 (e +¢).
Finally choose € = a?/%; then o < (27)~%/3 implies that a € (0,¢/(27)] and € < 1.
Therefore we have proved that for any o < (27)7°/3 and & € (0, 1],
Te[To(p) — 217 + k] > Te[Toe(p) — |21 + 4]
Te[To(p) — |27 + K] — Cr™32a2/%

V

which proves continuity from the right of Tr[T,2(p) — 2| ' + k] _ at ap = 0 for any « € (0, 1]
fixed. (Notice that the above has not been optimized in «.)
We now prove the continuity at any ag € (0,2/7). Note first that, for 0 < a3 < g,

T2 (p) = Toz(p) > (g 'a1)* To2(p) . (119)

Assume first that o > ap, and let v, be defined as above. Then, using (119) and the
variational principle,

Te[Toe(p) — 217" + 6] < Tr[T2(p) — |27 + k] _ < Tr[yan(Taz(B) — 1217 + )]

< Tefran(Twr () — 13171 +5)] + [(0051)? = 1) Tr [y u T2 (5)]

= T[T2(p) — 27" +w]_ +[(aag)? = 1 Tr[y0,Toz(D)] -
It remains to show that [(aag!)? — 1] Tr[Ya,xToz(p)] — 0 as a — ap. For this, it obviously
suffices to show that Tr [fya,,{Taz (f))] is uniformly bounded for, say, a € («ap, A] for some
A € (ap,2/m). But this follows as in the proof of (118). This proves continuity from the
right of Tr[T,2(p) — ||~ + k] _ at ag € (0,2/7). To prove continuity from the left, assume
a < ap, and let 74, be defined as above. Then, by (119) and the variational principle,
Te[Too(p) — [#1+ w]_ > Te[Toa(3) — 817" + ] = Tt Yoo (Toa(5) — |31~ + )]

= Tr ['Yao,/f (Ta2 (D) — ‘fﬂ_l + “)] +Tr ['Vao,n(Tag (D) — T2 (ﬁ))]
Tr[To2(p) — |27 + K]+ [1 = (a0a™)? Tr [yag,Toz (0)] -

v

As before, the last trace is finite by arguments as in the proof of (118) (since ap < 2/7).
This proves continuity from the left, and therefore, continuity, of Tr [Ta2 (p) — |27 + /{] B
at ag € (0,2/7).

Finally we prove the continuity at ag = 2/7. Here, arguments as in the proof of (118)
are no longer at our disposal. Therefore, let € > 0, and let 74, be defined as above, and
choose ¢1,...,¢n € C°(R3), (¢4, ;) = d; j, such that

Tr[yn (Toz(B) — |27 + )] (120)
< T [agu (Taz (B) — 12171 + £)] + /2 = Tr[To2(p) — |2 + &]_ +¢/2,

for yn(z,y) = Zjvzl ¢j(x)¢;(y). This is possible since the operator is defined as the
Friedrichs extension from C§°(R?). (Here, both N and the ¢;’s depend, of course, on ).
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Recall that yy is finite dimensional and ¢; € C§°(R3). Using this, (119), and the variational
principle gives that (for any a € (ap/2, ap)),
Tr[yn (To2 (B) — 137" + 5)] = T[Tz (8)] + Tr[yn (= |27 + )]

Tr[vn (Taz(®) — 127" + 6)] + [(ag 'a)® = 1) Tr[ynTp2 (D)]
T[T (p) — 127" + K] + [(ag 'e)® = 1 Tr[yn Tz 12(9)] - (121)
Choose now ¢ > 0 such that

a € (ap—d,a0) N (a0/2,0) = [(ag'@)® —1]Tr [’YNTag/z(ﬁ)] > —€/2. (122)

Then, combining (120), (121), and (122) (and using (119) again) we have proved that, for
all € > 0 there exists 0 < 0 < ap/2 such that

>
>

a € (ap — 4§, )
= Tr[Tp2(p) — 217" +w]_ = Tr[T2(p) — 187" + k] _ > Tr[To2(p) — |21 + 5] —e.

This proves the continuity from the left of Tr[T,2(p) — |£| ' +£] _ at ag = 2/, and therefore
finishes the proof that S : [0,2/7] — R is continuous.
This completes the proof of Theorem 4. (|

5. LOCAL RELATIVISTIC SEMI-CLASSICAL ESTIMATES USING NEW COHERENT STATES

In this section we study the sum and the density of the negative eigenvalues of the localised
Hamiltonian ¢Hg¢, with ¢ compactly supported and Hg = Tg(—ihV) + V(&). Here, T is
given by (3), and V is a (sufficiently) regular potential (see below for details). For the most
part we suppress the index 8 but all estimates, in particular the constants C, will be uniform
in 5 €10,1].

We first recall the definition and the main properties of the coherent states (operators)
introduced in [36], where all proofs can be found. These coherent states are denoted by G, 4.
Let 1/a > h > 0. The kernel of G, 4 is given by

x 2 .
Guglar.y) = (rh) /2o (5] el i o), (123)
A first important property of these operators is their completeness.

Lemma 28 (Completeness of new coherent states). The coherent operators G, 4 satisfy

dq du
2 . 2 .
Gl — ——— = Gyp(—ihV — 124
/gu,q (27’[’]1)” (& —u), /gu,q (27[']1)” p(—i q), ( )
where & denotes the operator multiplication by the position variable x. Here Gy(v) =
(b/m)"/ 2" with b = 2a/(1 + h2a?). Note that Gy, has integral 1 and hence

dudq
2
Ton = 1 125
/ Guuag (2wh)™ (125)
We shall consider operators of the form

/ Guq f(A\U,q) Gu,q dudg,, (126)

where f : R — R is any polynomially bounded real function. As we shall see in the next
theorem the integrand above is a trace class operator for each (u,q). The integral above is
to be understood in the weak sense, i.e., as a quadratic form. We shall consider situations
where the integral defines bounded or unbounded operators.



36 J. P. SOLOVEJ, T. OSTERGAARD SORENSEN, AND W. L. SPITZER

Theorem 29 (Trace identity). Let f : R — R and V : R™ — R be polynomially bounded,
real-valued measurable functions and let

A = By + Bii — ihB2V
be a ﬁTst order self-adjoint differential operator® with By € R, Bis € R". Then
Gug F(A)Guyg V(&) is a trace class operator (when extended from C§°(R™)) and

Tr[Gug F(A) Gug V(#)] = /f(Bo + B1v + Bap) Gp(u — v)Gy(q — p)G(p2p)-1(2)

x V(v + h%ab(u — v) + z) dvdpdz .
In particular, Tr [gg’q] =1.

We shall also need the following extension of this theorem, where we however only give
an estimate on the trace.

Theorem 30 (Trace estimates). Let f, A be as in the previous theorem. Let moreover
¢ € C"4(R"™) be a bounded, real function with all derivatives up to order n + 4 bounded,
and let V, F € C*(R") be real functions with bounded second derivatives. Then, for h < 1,
1 <a<1/h and b= 2a/(1 + h%a®) we have, with o(u,q) = F(q) + V(u), that*

Tr[Guq f(A) Gug 6(2) (F(=1hV) + V(2)) 6(2)]
[ £+ Bro s Bap) Gofu —)Gola - »)
x [(¢(v + h2ab(u — v))? + By (u, v))o (v + h%ab(u — v), p + h2ab(q — p))
+ Ea(u,v;q,p) | dvdp,

with || E1|oo, | Ballcc < Ch%b, where C depends only on
sup  [|07¢llec, sup |0V |oo , and sup [[0"F]lo .
lv|<n+4 lv|=2 v|=2
(Note that the assumption 1 < a < 1/h implies1 <b < 1/h.)

We will use the above theorem to prove an upper bound on the sum of eigenvalues of the
operator F(—ihV) 4+ V(Z), in the case when F(q) = T(q) from (3) with 3 € [0,1] (equal
to /B~ 1¢2 + 32— 7! for B € (0,1], and to %q2 when 8 = 0). This is done in Lemma 34
below by constructing a trial density matrix on the form (126).

To prove a lower bound on the sum of the negative eigenvalues one approximates the
Hamiltonian F'(—ihV) + V(Z) by an operator also represented on the form (126).

Theorem 31 (Coherent states representation). Consider functions F,V € C3(R"),
for which all second and third derivatives are bounded. Let o(u,q) = F(q) + V (u), then for
a < 1/h and b = 2a/(1+h?a?) we have the representation (as quadratic forms on C§°(R™)),

dud
( 1hV +V /guq quu,q U()]

with the operator-valued symbol
3The operator A is essentially self-adjoint on Schwartz functions on R".

AThe operator Gu q f(A) Gu.q (&) (F(—ihV) + V(&)) (&) is originally defined on, say, C§°(R™), but it is
part of the claim of the theorem that it extends to a trace class operator on all of L?(R™).
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The error term, B, is a bounded operator with

B < Cb=2 Y [10"0llo +Ch?b Y 1070 loc -

lv|=3 lv|=2

Let us recall our convention that x_ = min{z,0} and that y = X(-o0,0] denotes the
characteristic function of (—oo, 0].
The next theorem is the main result of this section.

Theorem 32 (Local relativistic semi-classics). For n > 3, let ¢ € CiT4(R") be
supported in a ball By C R™ of radius 1 and let V. € C3(Bjy) be a real function. Let
0<pB <1, h>0,and let og(u,q) = Ts(q) + V(u) and Hz = Tp(—ihV) + V(&) with

Tola) = /B2 + B2 = 57 for B € (0,1) and To(q) = 3a?.
Then

Tw[ot 0]~ (2n) " [ o(wPop(u,)- dudg| < CHT,

The constant C > 0 here depends only on ||¢||cnta, ||V cs,® and the dimension n, but not
on € [0,1].

The important property for our method to work is that the second and third order
derivatives of the kinetic energy function T(¢q) are bounded uniformly in ¢ and 8. Thus
the error term above is independent of 5 € [0,1], and in particular the same as for the
non-relativistic case, — h?A/2+ V, which corresponds to the limit 3 — 0. We prove upper
and lower bounds and start with the lower bound.

Lemma 33 (Lower bound on Tr[¢pHgp|_). Under the same conditions as in Theorem
32,

Tr[pHpo|- = (2mh)™" / é(u)?o5(u, q)— dudg — Ch="+5/5.

The constant C > 0 here depends only on ||¢||cn+4, ||V o3, and the dimension n, but not
on B € [0,1].

Proof. Since ¢ has support in the ball B; we may assume without loss of generality that
V € C3(R") with the support in a ball By of radius 2 and that the norm ||V||¢s refers to
the supremum over all of R™. We shall not explicitly follow how the error terms depend
on ||¢||gn+4 and ||V||gs. All constants denoted by C' depend on ||¢||cn+4, ||V |cs, and the
dimension n but, in particular, not on J3.

We use the Daubechies inequality (Theorem 9) to control various error estimates. Since
T5(q) > Ti(q) for B € [0,1] we may use it with 3 = 1. Then, uniformly in 8 € [0, 1],

dudq _
Tr[pHgp)- > C||8|> _ > —Ch™".
o) > Cloll [ mlwa)- ot >
u€By
Consider some fixed 0 < 7 < 1 (independent of h and 3). If h > 7 then we get that

Tr[¢Hgd]- = / o(u)*o(u, q)- (;:Z()Jn — Cr8/5pH6/5

We are therefore left with considering h < 7.

SWe use the convention that ||¢)||cr = sup|,|<p 10”9l oc-
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If we now use the inequality [z + y]- > [z]- + [y]—, which we will do frequently without
further mentioning, and Theorem 31, we have that

Te[6Hso]. > [ / 0GB )G 0 (d“d§

Tr[p(e/—B1h2A + 32 — 71— C(b732 + 1%b))¢] _. (128)

Here, 0 < ¢ < 1/2 and
AE) = 5(u,0) + 5A5(,q) + 0,5(u,0) (& — u) + 0,5(u, q)(~ih¥ — q)

u7q

with o(u,q) = (1 —€)Ts(q) + V(u). The second trace can be estimated from below using
the Daubechies inequality (Theorem 9) with a = Y2~ m = h~2. Then

Tr[p(ev/—B1h2A + B2 — e~ — C(b™** + h%b)) 9] _
= eTr[p(V/-B1h2A + -2 — 371 — Ce7 (b*2 + 1?b))¢]

> —Ceh™m / (e 67 + 12)) T da
By

— CepPhm / (e71 (7% + h%))" dx. (129)
B

We shall eventually choose € = i(b*3/2 + h2b). Note that then € < 1/2, and that the bound
n (129) is — Ch="(b3/2 + h?b), uniformly for § € [0,1].
By bringing the negative part inside in (128) we obtain the lower bound,

Tr[¢Hpg)- > / 1[0 Gug [A)]_Gug] (d“dg’ O 4 n2)

We first consider the integral over u outside the ball By of radius 2, where V = 0. Using
Theorem 29 (with f(¢) = [t]—, and V replaced by ¢?) and [ ¢? < C, we get that this part
of the integral is

(1=0) [ [Zola) + (nt (n = D)1+ ) 0 (0 )/ VTH 5]
uéBo

dudq

(2mh)™

x Gp(q — p)Gy(u — )G 21 (2) (v + h?ab(u — v) + 2)? dvdpdz

v

(1—¢) / P(2)? / Gp(u — v)Gp2p)-1 (v + h2ab(u — v) — 2) dudvdz
z€DB1 u¢Ba

X/[Tﬁ()+q (p—q@)/V1+B¢*]_Gy(q—p) dgdp

(2wh)™
= (1—¢) / P(2)? / Gp(u)G p2p)-1 (v — 2) dudvdz

2€B; (1—h2ab)u¢gBa—v

/[ Q) +q-p/V1+8¢%] G ;lq;if;

The integration over u, v is obviously bounded by 1. In fact, the u-integration can be shown
to be exponentially small, i.e., less than C'e~“?, but this will not be necessary.
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The domain of integration for the variables ¢, p is contained in the set {(¢,p) | |q| < 2|p|}.
Then,

/[ Q) +q-p/V1+ Bq*]_ Gy(p) dgdp

> _C lq||p] Gy(p) dgdp > — C/ |p|n+2Gb(p) dp = — Cp-(nt+2)/2

V1+ Bq?

It follows that the integral over u & By is bounded from below by —Ch~"b=3/2, since b > 1.

For the integral over u € By we use Theorem 29 as before. This time, expanding ¢? to
second order in z at the point z = 0 and using the crucial fact (which we shall use without
mentioning later) that, for any A > 0,

/xj Ga(z)dz =0, / 2™ Gy(z) de = C A2, (130)

lal<2p|

implies that

Tr(pHpp|— > / [qb(v + h2ab(u —v))? + C'th] Gp(u —v)Gp(q — p)

u€Bo

< [HE)0.0)] gy — Ch (I W), (181)

(2mh)"

£
S

where
HE)(v,p) = 5(u, q) + 5AF(u, q) + 045 (u, q) (v — ) + 9,5 (u, ) (p — q) -

The rest of the proof is simply an estimate of the integral in (131). This analysis is an
elementary but tedious exercise in calculus. For the convenience of the reader it is given in
detail in Appendix B below. ]

Lemma 34 (Construction of a trial density matrix). Under the same conditions as
in Theorem 32 there exists a density matriz v on L*(R™) such that

dudq

Tr[¢(Tp(—ihV) + V (2))¢y] < /qs *o5(u,q)— Q) + Ch /5 (132)
Moreover, the density p, of v satisfies
o) — (@)~ [V "2 4 BIV- )" 2(x)| < CR91, (133)

for (almost) all x € By and

\/qs %, (@) do — (2mh)~ /¢> 2|V |22 + BV () da| < CH 05, (134)

where wy, is the volume of the unit ball By in R™. The constants C' > 0 in the above estimates
depend only on n, ||¢||cn+e, and ||V || g3, but not on 5 € [0, 1].

It is convenient to introduce the function
n(t) = n/o X[Ta(p) +t]Ip|" " dlp| = [t—|""*(2 + Blt_|)™/2. (135)

(Recall that y is the characteristic function of R_.)
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Proof. We will occasionally drop the index 8 in Hg and og. It is important to realize,
however, that all estimates are uniform in §. We first note that since T1(p) < Tg(p) <
To(p) = p*/2 we have that

1
pl = C <o(v,p) < 5p° +C. (136)

Let us start by choosing some fixed 0 < 7 < 1. For h > 7 and for some C' > 0 we have by
(136) that

/ ¢(u)?o(u,q)- (;Z“fjn +Cr RO > 0,
™

and that for any s > 0,

(2mh) " "n(V(z)) < CT=5h~ "5,
If h > 7 we may therefore use v = 0, and s = 9/10 and s = 6/5 for (133) and (134),
respectively. From now on we assume that h < 7 and, if necessary, that 7 is small enough
depending only on ¢ and V. Also, as for the lower bound, we may assume that V € C3(R")
with support in the ball B3/, concentric with By and of radius 3/2.
In analogy to the previous proof for the lower bound we define now for each (u,q) an
operator fzu,q by

- o(u,q) + 5Ac(u,q) + Vo(u,q) - (& —u,—ihV —q) if u € By
wa 0 ifu & By

The corresponding function is

h (U p) — 0'(’[1,, q)—%—ﬁAa(u,q)—l—VJ(u, Q) ’ (v—u,p—q) ifue 32
u,q\ U, 0 if u € By
As for the lower bound we shall choose a = h~%/%; then a < h~'. In fact, we will assume
that (1 — h%ab) > 1/2. Recall here that b = 2a/(1 + h%a?) (i.e., in particular a < b < 2a).
Similar to (172) (for € = 0) we have for u € By that

‘hu,q(vvp) - O'('U,p) - gv,p(u —0,q _p)‘

< Clu—v|(b™" + Ju =) + Clg = pl(b~" + g —pl?), (137)
where
Eop(u,q) = A0 (v,p) = 5 > 00, T5(P)aias — 5 ) 0,0,V (v)uiu; -
i3 2
Recalling that x is the characteristic function of R_ we define
“ dudq
Y= /gu,q X[hu,q] gu,q W . (138)

Since 0 < X[hu,q] <1 it follows from (125) that 0 <~ < 1.
We now calculate Tr[y¢Hg¢| = Tr[vp(T5(—ihV) + V(2))¢]. From Theorem 30 we have
that

Tr[y¢(Tp(—ihV) + V(2))9]
= / X[hu,q(v,p)] Gp(u — v)Gp(q — p) [Ez(u, v;q,p) + (139)

(&0 + h2ab(u — 0))* + By (,0))o (v + h2ablu — v),p + Wab(q — p))]
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where E1, Ey are functions such that ||Eillec + ||[E2llec < Ch2b. The rest of the proof of
(132) is a tedious, but elementary analysis of this integral. A detailed analysis is presented
in Appendix B below.
It remains to estimate the density p, together with [ ¢(z)?p,(z)dz. By Theorem 29 and
(138), v is easily seen to be a trace class operator with density
dudq

pr@) = [ X[t 0D Golw)Gola)Goiny (@ = v = Habu) dodp 522

The proof of (133) and (134) again relies on a detailed analysis of this integral. As for
the estimate on the energy above this analysis is an exercise in calculus. Although it is
still elementary this analysis is more complicated than in the case of the energy. For the
convenience of the reader the analysis is given in detail in Appendix B below. O

(140)

APPENDIX A. VARIOUS PROOFS
In this appendix we collect proofs of various results mentioned in Section 2.

Proof of Theorem 11 (Operator inequality critical Hydrogen). Let f € S(R3) and ¢ >
0 (to be chosen below). By Schwarz’ inequality,

2 [ |f@)P , f(@) (Ipl> + Ipl*\ 2/ lg* + lg["\1/2
= —dr = 2 2 ¢ 2 ¢ dpdg
T Jrs | 7 Jrs wlp ql* \lq|* + gl Ipl* +[p
)2 |pf2 ¢
RsRﬂp—ﬂ > + |g
We first compute the integral in q. Since (|g]* + [q") 7 < |q]72 — |g|"™* + |¢|**~¢ we get
1 1 1
dq</m————KM‘”—mF4+qD%4dm
Lo i e S g e
Note [19, 5.10 (3)] that, for 0 < 7,0 < n, with 0 < 74+ 0 < n,

ﬁ/]|y-—zr"wao”dz::-iﬁ;l—ffiﬁl—ryr+”", (142)

Cr+oCn—1Cn—0c

where ¢, = 7~7/2T'(7/2). In particular, if n = 3, then
/?\y——d_%zﬁwdz::kAyP_rﬁn?“e(L3), (143)

with :

(144)

It follows that, for 3 < 2t < 5,

/ PE P g <yl 4 (ks — ) [l (145)
R

s [p—al® lgI? + laff
+ (ko—2t — ka—t) [P[*" ™ + kg—2¢ | .
We see from (144) that k is symmetric with respect to r = 2. Using I'(1 + z) = 2I'(z) in
the denominator in (144) with z = 1 — /2 and the relation I'(2)I'(1 — 2z) = 7/ sin(7z) (for
0 < z < 1) in the denominator and numerator we obtain
o tan(mr/2)
1—r/2 "

ky = —
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which shows that k is decreasing on (1,2) and increasing on (2, 3).
Hence from (145), choosing further ¢ > 5/3, we find, for positive constants A_1)/s,
B(t—l)/27 that

1 |p[*+ Ipl’ 3 -1, 3
dg < k — w2 Ag_ + 7B . 146
/R3 |p_q|2 |q|2+ |q|t q = 2 |p| m (t 1)/2‘p| ™ (t 1)/2 ( )
Since kg = 73, this and (141) implies that
2 f(x)]? P _
—/, F@F < / 1F @) (Ip| = Ag—1)j2lpl ™" + Bg—1)/2) dp, (147)
T Jrs |zl R3

which implies the operator inequality, for all ¢t € (5/3,2),

V_A _ 2A

7| 2|

Choosing t = 2s + 1 proves (21) for s € (1/3,1/2). For s € [0,1/3], (21) follows from the

existence of positive constants A(-_1y/2, B(r—1y/2, given 7 € [1,5/3],t € (5/3,2) and positive
constants A;_1/2, B1—1)/2, such that

> A1y (D) V2 By (148)

|’T—1

Ag_nyplpl™ = Bu—tye > Ag—nypelpl™ = Aoy -

0

Integral representation for the relativistic kinetic energy. We shall here give a
self-contained presentation of the integral formulas for the relativistic kinetic energy. The
relativistc kinetic energy will be given in terms of the modified Bessel functions of the second
kind, K. To identify the modified Bessel functions we use that [1, 9.6.23]

o} efwt
K = _— 14

and the recursion relation [1, 9.6.28]
d
K, (t) = —t”%(t_”K,,(t)), t>0. (150)

We emphasise that we use these properties only as definitions of the Bessel functions, and
derive all other properties of these functions that we need. Note that K, : Ry — R are
smooth functions.

Consider the function G™ € L'(R") (the Yukawa potential) whose Fourier transform is

Gr(&) = 2m) "2 (EP + m?) 7

Using that v~ ! = fooo e " du we get from the Fourier transform of Gaussian functions the
following integral representation for G,

Gm(z) = /0 (dru) "/ 2e—mPu—I22/ () g (151)

It follows from this that G is non-negative, smooth for z # 0, and indeed in L'(R"™).

For odd n the above integral can be explicitly calculated. For even n it is as we shall now
see expressible as a modified Bessel function K, of integer order v. By a simple change of
variables (2w = v + v~ with v = 2mu/|z|) in the integral (149) we see from (151) that
G%(z) = (27) "1 Ky(m|z|) . From the recursion formula (150) we then find inductively that
for even n

G (z) = m Do) 2L =D (ml2]) (152)
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In fact, the same formula holds for all n, but we do not wish to discuss the modified Bessel
functions of fractional order (one could simply take this formula as their definition).

Lemma 35. The heat kernel for the operator /—A +m?2 on L?>(R™) is given by

exp(—tvV —A+m?)(x,y)
= —20,Gpl4 (2 —y,t)

(n+1)/2 t ) .
= 2 <§> (‘x_y‘z+t2)(n+1)/4K(n+1)/2(m(|x—yl +12)1/2)

fort > 0.

Proof. Tt suffices to show that the two tempered distributions on R**1,

|t| exp(—|t|]vV—A+m?)(z,0) and —20,G} (x,1),

have the same Fourier transform. The Fourier transform as a function of £ = (p,s) with
p € R® and s € R of the first distribution is

0 . _(n
(2m) -+ D/2( _ / N = / Ooe_its_t\/mdt) _ 2is(2m) 2
0

_oo p|? + 52 +m?2

The Fourier transform of the second distribution above is

—2is(2m) (" +1)/2
Ip|? + 52 + m?

—2is @nmﬂ(P» s) =
The last identity in the lemma follows from (150) and (152). O

If we set z = y in the above lemma we find the following integral formula for the modified
Bessel function

L NeY2
K(n+1)/2(t):§(§> /ne WLy, 1> 0.

For n = 3 this simplifies to
Ko(t) = t/ooo e VST HLg2 gg (153)
from which we immediately get the estimate
Ko(t) < Ct™2e 12, (154)

Proof of Theorem 13 (Relativistic IMS formula). By scaling, it suffices to prove the
statement for a = 1. We start from the identity

(f. (V=D + m2 —m)f /\f W)2F(z — y) dudy

with

Fla-y)=—S5—73 " (155)
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where K is the modified Bessel function of second order defined above (see (149)—(150)).
The identity follows from Lemma 35 (for a proof, see [19, 7.12]). Then,

(f,(\/—A+m2—m)f)
= /\f )’ F(z — y) dady
= // (@)[* + 0u(y)*|f ()I*] Fla - y) du(u)dzdy

F@)f) + f@)f(y)] F(z —y) du(u)dady

@) fy) + f(2) f(y)] Fx —y) dp(u)dzdy

This proves (23) with L given by (24)—(25). We now show that || Ly, || < Cm ™|V, for
fixed u. By (25), Young’s inequality, and (154),
(Lo h] < TV [ 151 Katmlz ) dedy
< Cot VORI [ P Kamt)de
0
= Cm™ | VOu|5IIF113- (156)

This proves that Lg, is a bounded operator. O

Proof of Theorem 14 (Localisation error). Again, by scaling, it suffices to prove the state-
ment for « = 1. With xq the characteristic function of Q (and L = Ly) we have from the
representation (25) of L, since 6 is constant on Q°, that

L = xaLxa + (1 = xa)Lxa + xaL(1 — xa). (157)
If 'y, I'y are bounded operators, then (I'y — I'y)(I'y — I'2)* > 0 implies that I'1I'5 + T'2I'f <

'} + oI, Using this with I'y = 51/2XQ,F2 = 5_1/2(1 — xq)L for some € > 0 which we
choose later, we get

L < xqoLxq +exa+ 5_1(1 — XQ)L2(1 - xq) - (158)

To bound the first term on the right side recall that ||L|| < Cm™Y|Vo|%, (see (156)).
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Let us now look at the third term in (158). Since 6 is constant on Q¢ and
dist(Q¢, supp V) > ¢, using (25) gives

Tr[(1 - xo)L*(1 - xa)] = L(x,y)* dxdy

\/x\GQc7y€Q,|{L‘y|>f

cmt vl [ K (mlz — y|)? dudy.
erC,yEQ,\x7y|>€

IN

Using (154),

/ Ky(mle — y)? dudy
xGQC,yEQ,\xfy|>Z

< Ce_mé/ (m|z — y|)~* dedy
z€QCYEQ,|z—y| >~
oo
e Q| / (mt) =42 dt = Cm=3(me)"Le ™).
L

This gives the bound
Tr[(1 - xo)L*(1 - xa)] < CYVE|le™™(Q.

Finally, we choose ¢ = m~!|V#||%,. Then by the above the two first terms in (158) are
bounded by C'm~ 1||V9||OOXQ, and the trace of the third term (which we denote @Qp) is
bounded by Cml~te™™|| V0|2, |Q. O

For the proof of the combined Daubechies-Lieb-Yau inequality (Theorem 16) we need the
following inequality [5].

Lemma 36. For f € S(R3),

2 1 2
e—mem || T
[ P <]
R3

||

— (f,(V=A+m2—m)f). (159)

Proof. Let = m2r~!. Then

el 1 = 1
I= 24 :—/ L (pe) dprdps,
/R3 ‘ | ‘f( )| €T D) w3 Jrs f(pl)’pl _p2|2 g(pQ) p1ap2

with g(z) = f(:n)e_“mz. Writing g(p2) explicitly as the convolution with the Fourier trans-
form of e=#** and then applying the Schwarz inequality we get that

|f (p1) [P 1P/ (1) |y |2
dp1dpadq .
16772 () 3/2 /]Rs /RS /]1{3 lp2 —p1 —q|?  |p2/?

Since [19, 5.10 (3)]

1 1 w3
s P =
r3 [P2 — p1 — q|? |p2] Ip1 — ¢

p1 ’26 g2/ (4ys) )
dpidq .
1671’1/2 3/2 /]R3 /Rfs |p1 ’pl, p1ed

we have
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By Newton’s theorem [19, 9.7 (5)],

142 4 _1A4l2 4
/ e—lal?/(4p) g — 1 o lal2/ () dq+/ e—lal*/(4p) dq
rs |p1— 4| P1] Jigl<p1| >l 14l
8 Ip1] 1/2
il e~/ g < 87y min {1, (1) } .
p1l Jo |1
Substituting 1 = m?7~! we find that
™ 5 .
1< o | 1f0 P win{ln . mipl dia.
m Jr3
from which the claim follows since v#2 +1 — 1 > (v/2 — 1) min{t?, ¢} for ¢ > 0. O
Proof of Theorem 16 (Combined Daubechies-Lieb-Yau). We may assume that W (z) <

0 otherwise we simply replace W by W_.
Assume first that va < 3/(16mM). By the Daubechies inequality (17),

Tr[vV—a=2A + m2a=* —ma™2 + W(2)]_
> %Tr[\/—a”A +m2a—4 —ma~2 + 2WX{dR(x)<am_1}] B (160)

- Cm3/2/ W ()2 d — Ca3/ W ()[4 da
dr(z)>am—1 dr(z)>am=1

The assumption on the positions of the nuclei implies that x{gz@)<am-1} =

ij\il X{jz—R;|<am~1}, and so, using the assumption on W, we obtain

TI"[\/—OFQA +m2a—4 —ma~? + 2WX{dR(x)<am—1}] B

QUM
|2 — Ry

v

M
1
Vi Z Tr[\/—a_QA +m2a—4 —ma~?% - ( + C’VMma_l)X{‘x,RjKamq}] B
i=1

= Tr[v—a2A+m2at —ma? = (2vM|2]™ + CvMma™") X{jz/<am-1}]

. (161)
The last equality follows from the translation invariance of — A. By scaling,
Tr[\/—oFQA +m2a~4 —ma~? — (21/M\:%|_1 + Cl/Mm()é_l)X{‘x|<am—l}j| 3
= a2 Tr[\/ —A4+m2—m— (7|:%|_1 + C’vm)x{|x|<m_1}] -, (162)
with v = 2Mva < 3/(87). Using Lemma 36 and the Daubechies inequality, we get that

TI‘[\/ —A + m2 —m — (’7|§?|_1 + C’ym)x{|x|<m_1}] .
1 . eim2ﬂ.71|i.|2

> (1= F9) T [V-At+m? —m - —4%7)_1(T+0m)><{\x|<mﬂﬂf

_1|£L"2

( 1 _ efm27r

4
—i—m) dx ,
|z

> _C,Y5/2m3/2/

|z|<m—1

(]x\_l + m)5/2 dx — C’y4/

|z|<m—1

where we have used that v/2 — 1 > 3/8 and v < 3/(8).
Note that

1— e_mzﬂ_lle

4
/ (]w]_l—i—m)S/Qd:cSCm_l/Q , / (——i—m) dx < Cm,
| <m1 o] <m—1 |z
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and so

Tl"[\/ —-A+ m2 —m — (’7|i‘|_1 + C'ym)x{|m|<m71}] _ > — 0(75/2 + 74)77”6 . (163)
Combining (162) and (163), and using v = 2Mva, va < 2/7, we get that

Tr[\/—a—QA +m2a—4 —ma~2 — (21/M\56]_1 + Cz/Mma_l)X“zKamfl}] 3
> —Ca (P +4Nm > — 2 Pm. (164)

Combining (160), (161), and (164), yields (32) for va < 3/(167M).

Assume now that va € [3/(167M),2/].

Let § € C§°(R3) satisfy 0 < f(z) < 1, O(z) = 1 for |x| < am™1/4, 0(z) = 0 for
lz| > am™1/2, (1 —6*)'/2 € C*(R), and

[VO]loo < Ca_1m> V(1- 02)1/2||oo <Ca'm.

Let 0j(xz) =0(x — R;),j=1,...,M, and Opr41(x) = (1 — Z]]Vil 9?)1/2 (the latter is well-
defined due to the assumption ming¢ |Ry — Ry| > 2am~1). The relativistic IMS formula
and the localisation estimate (26) used for €5, j = 1,..., M, being the balls centered at
Rj with radii 3am™1/4 and £ = am~'/4, and Q11 being the (disjoint) union of the same
balls and £ = am~!/8, gives the operator inequality

V—a2A + m2a—* — ma~? + W ()

M
> O (\/—a_2A +m2a—4 —ma~? — Cma 2 Z xo, + W(&))0u4  (165)
j=1

M M+1
+ Zﬁg (V—a=2A + m2a—* —ma~? — Cma ™2 + W (%))6; — Z Qi
J=1 =

with
Tr [QJ] < Cma™?
Here we have used that eiXQjei = 0ij 0;2,i,j € {1,..., M}, Onr1xoy 01 = 0, and
OiXn 100 < 02,14 M+ 1.
Using the Daubechies inequality on the first term in (165) and the assumption on W in the
second (noticing that 0;(x)/dr (v) = 0;(x)/|x—R;| due to the assumption ming, | Ry —Re| >
2am ™), we get from this that

Tr[V/—a2A + m2a—* — ma~2 + W ()]
> —Cm’? / (W ()2 dz — Ca® / W (z)|* de — C ma™2

dR(a:)>am*1/4 dr(z)>am—1/4
- C’Z m3/?(ma~2)%? + a3(ma_2)4) {z| iam_l <lr—Rj| < %am_l}‘ (166)
+ ZT&" (V—a2A + m2a—* —ma~? — Cma™2 - ﬁ — Cvma™1)0;] _
Yy

By the translatlon invariance of —A, the last term equals

MTr[H(\/—orzA +m2a~t — Cma™? — Cvma™" —v|2|71)0] _,
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and using the Lieb-Yau inequality (and the properties of # and that va < 2/7),

Tr [9(\/—a—2A +m2a~4 — Cma™2 — Cvma™! — V|§7’71)9]

2
> o 'Tr[0(vV-A - =3 = Cma )] _ > — Cma2. (167)
T
Further, by the assumption on W, and the assumption ming, Ry — Re| > 2am ™1,

m3/2 / W ()2 da

am~—1/4<dr (z)<am™1
M
< Z Cv°Pm?/? / (Jz — R+ oz_lm)B/2 dz < Cv°?a'?m,
j=1

am~1/4<|z—Rj|<am~1

and, since va < 2/,

a3 / W (2)|* da

am~—1/4<dgr (z)<am=!

M
< Z cvia?® / (\x — Rj\*l + oflm)éldx < Ovta®m < CvP2a?m.
7j=1

am~!/4<|z—R;|<am™1!

It follows from this, (167), and (166) that

Tr[vV—a2A + m2a—* — ma~2 + W(2)]_
> — Cma 2 — Cv2aY2m — Cm?/? / |W(x)\5/2 dx — Ca? / ]W(x)|4dx.

dr(z)>am=1 dr(z)>am~1

Since ma~2 < Cv®2a/?m when va € [3/(16mM),2/x] this proves (32) in this case. This
finishes the proof of Theorem 16. O

Proof of Theorem 17 (Correlation inequality). The proof essentially uses superhar-
monicity and positive definiteness of |z|~* (see [19]). By superharmonicity and the spherical
properties of ®g,

|z —y| 7t > /‘PS(Z —2) |z = 2|7 By (2 — y) dzd? .
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Also note that for the Coulomb energy, D(®,, ®;) = s 'D(®,®) = Cs~!. Therefore, we
immediately get that

> mi—ayl!

1<i<j<N
> Z / (z —ai) |z — 2|7  ®s(2 — ;) dzd?’
1<i<j<N
= / Z )\z—z\ 1( Z @S(z’ij)> dzdz'

1<j<N 1<j<N

/<I> (2)|z — 2|7t ®4(2') dzd?’
= / Z (z — z) p(z)) |z — 2|1 < Z Py(2 — xj) — p(z’)) dzdz’

1<j<N 1<j<N

+ /p(z) |z — 2|7} Z (2 — xj) dzd’

1<j<N

-1 /p(z) |z — 2|7t p(2') dzdz’ — ND(®,, ®,)

> Y (pxlalt# ) (2;) - D(p) — CNs .
1<j<N
In the last inequality we have used the positive definiteness of |x|~! and dropped the first
term. This proves inequality (33). O
Proof of Corollary 21 (Estimate on p™F x |z|7! % (5o — ®;)). Let, with d, as in (4),
ge(2) = min{dy (z) V2, dp(2) 2} . (168)
We claim that for some constant C' > 0,
}VpTF * \x|_1‘ < Cgyp(z). (169)

To prove this we distinguish two regions.
First, let dy(z) > 1. Then gy(x) = dp(x) 2. Using that [VVF|(z) < Ogp(z)%de(z)~t =
dr(2)~® we obtain
M

Vo w2 = V(D= = V@)

j=1

< Zzﬂx — 7|2 dp(z) 0 < M max{z;}(min|z — rj])72 + dp(z)7°
, J J
7j=1
= Cdp(2)? +de(2)™° < Cye(2).
If on the other hand dy(z) < 1, then, by using (36) and (41),

Vo™ |27 < / Vo ()] |l =yl dy < C / gr (1) de(y) " o —y| " dy

M
-y / G de () 2 — 4] "L dy.

—
T = e (y)=ly—r;]
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Since gr(y) < de(y)™'/? = |y — ;|72 when d;(y) = |y — r;| this implies that
M
SR e S e e e

M
= O |z — 7|72 < OMdi(2) 7% = Cye(a).
j=1
This finishes the proof of (169).

Let us now proceed to prove inequality (43). That the difference is positive is again just
superharmonicity of |z|~!. It is easy to see that

|de () — de(y)| < |z —y]. (170)
In the case when dy(x) > 2t we can conclude that

Sup. {WPTF*|Z|_1\}/\w—y\q’t(l‘—y)dy

|[z—z|<

< Ct sup gr(2) < Ctge(x).
|z—z|<t

IN

prl |zl ™t = p T s 2| T 2y

In the last step we have used that if dy(z) > 2t and |z — x| < t (this condition stems from
the support of ®;), then inequality (170) guarantees that Sdy(z) < dp(2) < 3dy(z). This in

turn implies (3)72g,(2) < ge(2) < (3)7Y 200 (2).
If, on the other hand, d,(z) < 2¢, then we claim that

[P ] = oy < Cla— 2 (71)

This can be seen as follows.

p™ s [Tt = p Ty

1
d ( TF -1
/O %(p %10z + (1 0)y] )dﬁ‘
1
/0 V(pTF |0z + (1 — 9)y|_1) (T —y) de‘

1
< c/ ge(02 + (1= 0)y) |z — y| o
< C|m—y|2/ 0z + (1 —0)y —r;|~ 172 49
_ C\x—y’mZ/’ vors [
p \w—y\ Ty

Let n = (z—y)/|x—y|, b= (y—r;)/|x—y|, and ¢ = n-b. Then |On+bJ> > |0+n-b> = (0+c)%.
Therefore

M-
P ol T eyl < ol 2 S [l el as.

The integral fol 0 + ¢|~1/2 d# is bounded uniformly for ¢ € R. This proves (171).
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This allows us finally to show that for d,(z) < 2t,

P T T / (07 |2 ~1 = pTF x|y 1) @, ( — ) dy

IN

C/\m—y\l/zq)t(x—y)dy:Ctl/z.

This finishes the proof of the corollary. g

APPENDIX B. ESTIMATES OF SEMI-CLASSICAL INTEGRALS

In this appendix we give the remaining arguments on the analysis of the integrals in the
semi-classical proofs of Lemma 33 and Lemma 34.

Proof of Lemma 33 (Lower bound on Tr[¢pHg¢|_): Estimate of integral (131). It re-
mains to estimate the integral in (131). Note that by Taylor’s formula for & we have

Hui%(”?])) > &(UJ)) +g),p(u_v7q_p) —C|U—’U|(b_1 + ’u_U‘Q) (172)
= Clg—pl(0~" +lg—p*).
where
Eop(u,q) = A5(v,p) = (1 —2)3 Y 00 Ts(p)aig; — 5 > 0:0;V (v)usu; .
] ]
We have used that |[Ac(v,p) — Ao (u, q)| < Clu—wv|+Cl|q—pl|, and similarly, when replacing
0;0;F (q) by 0;0,F (p), and 0;0;V (u) by 0;0;V (v). We get that:

HE)(v,p) <0 = [p| <C(1+lu—v[*+]qg—p*). (173)

(Note that this holds also for e = 0, and uniformly in 5 € [0,1]; to see the latter, use that
Ts(p) > T1(p).) This implies that
/ (Ju—o|™ +|q — pI"™) Go(u — v)Gy(q — p) dpdudg < Cb~™/2, (174)
H{) (v:p)<0
and
/ (lu = o™ + |q — pI™) Gy(u — v)Gy(q — p) dpdvdg < Cb~™/2. (175)
H{E) (v:p)<0

From this we obtain that

[ Gotu=)Guta = ) [HEY(0.1)]_dpdgan = . (176)
and hence from (131) that
Tr[¢pHp¢]-
2ab(u — ))2C (1 — _ _dudq_
> d(v + h*ab(u — v))*Gy(u — v)Gp(q — p) [Hu,q(v,p)]_ (27rh)ndvdp
u€ By

— Ch™™(b™3/% + h%b) .
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Here we have used the fact that the u-integration is over a bounded region. From now on
we may however ignore the restriction on the u-integration. We note that, by using (173)
and (174), that ¢ has support in Bj, and that b > 1, we get that

/ 6w+ h2ab(u — )2 (Ju — v (™" + [u — v[2) + g — p| (0~ + g — p[?)
HE) (v,p)<0

x Gy(u —v)Gy(q — p) dudgqdvdp < Cb=3/% .

Using this and (172) we find after the simple change of variables u — u +v and ¢ — ¢+ p
that

Tr[pHag]-
> / d(v + h2abu)?Gy(u)Gy(q)

< [510:)+ Eoplusd) — Clul 0™+ uf2) = Clal(6™" + 1) _ ey
— Ch™™(b3/% + h?b)
> /(ﬁ(v + h?abu)?Gy(u)Gy(q) [(v, p) + Eop (U, q)]_ %dvdp
—Ch™ (0732 + n%b). (177)

At this point we divide the (v, p)-integration into three regions given in terms of a parameter
A >0 by

Q- ={(v,p) | o(v,p) < =A}, @ ={(v,p) | o(v,p) 2 A}, Qo = {(v,p) | [o(v,p)| <A},

The parameter A will be chosen such that 1 > A > Cb~! for some sufficiently large
constant C'. This is possible if 7 is small enough and hence b large enough. Then, since all
the second derivatives of & are bounded we may assume that 4 |Ad(v,p)| < A/2 for all
(v, p), uniformly in S.

We first consider ;. We see from (177) that we only need to integrate over the set
{(u,q) | C(lul*+ |g|?) > A}. Also notice that 6(v,p) > 3|p| — C (since T3(p) > Ti(p)) shows
that we only need to integrate over the set {p | |p| < C(1 4+ |q|?> + |u|?)}. Therefore,

/¢(U + h?abu)?Gy(u)Gy(q) [(v, p) + Ev,p(u, q)] _ dudgdvdp > — Ce™ O
(v,p) €4

A similar argument shows that on _ we can ignore the negative part [ | paying the
same price —Ch e~ C0A,
For (v,p) € Q_ we estimate the integral

/gb(v + h2abu) Gy (w)Gy(q) [7(v, p) + Eop(u, q)] dudg > (¢(v)? + Ch2b)5 (v, p) — Chb.
Here we have expanded ¢? to second order at the point v and used the crucial fact that

/ & p(1t, )G (1) Gy(g) dudg = 0. (178)
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For (v,p) € Q_ we have, of course, o(v,p) = o(v,p)—. Since the volume of Q_ is bounded
by a constant we get for the integration over 2_ U Q4

/ o(v+ hQabu)2Gb(u)Gb(q) [5(v,p) + 5)7p(u, q)} _ dudgduvdp
(v,p)EQ_UQL

> / d(v)*5 (v, p)_ dvdp — C(h*b + e~ M) . (179)

(v,p)EQ_UQ 4
Finally, let (v,p) € Q. Observe that, with 9(t) = (2t + 3t2)"/2,
[ dr=ca(@-Ia = VL) = oA+ V) <A, (180)
(va)eQO

by the mean value theorem (uniformly in v). Now,

é(v + h%abu)? Gy(u)Gy(q) [F(v, p) + Eup(u, q)]
> (v + hPabu)® Gy(u)Gy(q) [5(v,p)] _
— Co(v + h*abu)® Gy(u)Gy(q) (0~ + |ul? + |q]*)

and, using the observation above and making the change of variables v — v — h%abu in the
v-integral,

/ d(v + h2abu)? Gp(u)Gy(q) (™" + |u* + |¢|?) dvdpdudg < CAb™.

(’l},p) €Qo

Expanding ¢? to first order at v we have that

/ d(v + h2abu)? Gy(u)Gy(q) (v, p)— dvdpdudq

(v,p)EQ
/ (v _dvdp + Ch2ab / |u| Gp(u)Gp(q)a (v, p)— dudqdvdp
v,p)€Qo (v,p)€Q0,vESUPP V
/ b(v _dvdp — Chb'/?A2.
v,p)€Q0

As a consequence,

/ ¢(v + h2abu)? Gy(u)Gy(q) [(v, p) + gv,p(u, q)] _ dudgdvdp

(v,p)EQo
> / 6(0)25(v, p)_ dvdp — CA(ARBY? 4+ 1) (181)

(v’p)EQO
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Since
[ wr5t0.p)- dvdp
= e [P VT (- P52 - (19 4 V()] _dudp
> (1- E)"/gzﬁ(v)2ag(v,p)_ dvdp
> [ 6wPos(w.p)- dudp - C=.
the lemma follows from (177), (179), and (181) if we choose b = h=%/5, O

Proof of Lemma 34 (Construction of a trial density): Estimates of integrals. We
give here the remaining arguments on the analysis of the integrals in the semi-classical
proofs of Lemma 34.

The energy: proof of (132). It remains to estimate the integral in (139).
Using (173), that T(p) < 1p?, and that hyq(v,p) = 0 unless u € By, we get that

| Xhaalo.p)] Golu = v)Gila ~ p) (1L + Tolp -+ Hablq ~ p))) dudadvdp < C.
This implies that
Tr[y¢Hpgg]

< / Xlhg (0, 9)] Gt — 0)Glg — p)b(v + h2ab(u — v))?

dudq

dvdp + Ch*bh™" .
(2mh)" vep +

X O’(U + h*ab(u — v), p + h*ab(q — p))

From (137) we may now conclude that

Tr[ypHpe)|
< / X[o(v,p) + &up(u, q) — Clul(b™" + [u?) = Clg|(b~" + [4I*)] Go(u)Ge(q)

u€EBy—v

dudq
(2mh)™
At this point we introduce the same partition of the (v, p)-integration into sets 1, as in

the proof of the lower bound above (with & = 0) with the same A = b~1/2 = p?/5,
Then for the integration over 2, we have as above that C(|u|? + |g|?) > A and hence

x ¢(v + h2abu)?o (v + h%abu,p + h?abq) dvdp + Ch?bh™ . (182)

x[0(v,p) + Eop(u, @) = Clul (b7 + [uf?) = Cla| (67" + [qf*)]

(v,p)EQ Y,
u€Bg—v

x ¢(v 4+ h2abu)?o (v + h2abu, p + h?abq) Gy(u)Gy(q) dudgdvdp < Ce N < Oh%p,

where we have used (136) and that ¢ is supported in the ball By.

Similarily, if (v,p) € Q_ then for the (u,q)-integration we can safely assume that the
argument of y is negative to the effect of paying the same e~C price. Likewise we may
ignore the restriction u € By — v, since u € By — v and v + h?abu € Bj implies |u| >
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(1 — h2?ab)~! > 1. Expanding ¢? and ¢ to second order at (v,p) € Q_ and using the fact
that all their second order derivatives are bounded together with (130) we get that

[ X[ow.5) + ol a) = Clul6 + ful?) = Clal 6™ +1aP)]

x ¢(v + h2abu)?c (v + h*abu, p + h*abq) Gy(u)Gy(q) dudg
[ {002 + rabu- 9(6(0) (o(0.9) + B2abu,) - To(0,1) | Gulu)Gol) dud
+Ch%b 4 C e
d(v)%o(v,p)— + Ch*b.

It is important here that ¢ and Vo are bounded uniformly in 8 < 1 on _. This follows
from (136) and |Vog(v,p)| < C(1 + |p|). Indeed, (136), in particular, implies that Q_ is a
bounded set (uniformly in 3). The fact that the volume of Q_ is bounded also gives that
the contribution from _ to the integral on the right side of (182) is bounded above by

IN

IN

2rh)™™ | $(v)*o(v,p)_dvdp + Ch?bh™™.
Q_

Finally, we consider (v, p) € Q. If we expand ¢ to first order at v and o to second order
at (v,p) and use that all second order derivatives of o are bounded and that Vo (v,p) is
bounded for (v, p) € o we obtain that

O(0+ h2abu)o (v+ h2abu, p+ F2abg) < $(v)%0 (v, p) + Ch2ab{(ul + [gl) + Ch*a2 (ul? + |gf?).
This together with the estimate |x(x + y)z — x(z)z| < |y| implies that

S Xlot.p) + €l ) = Clul(7 + uf?) = Clal6™" + la?)
x ¢(v 4 h2abu)?o (v + h2abu, p + h*abq) Gy(u)Gy(q) dudg
< /X[U(Uap) + Eop(u, @) = Clul (b7 + [uf?) = Clal(b™" + [af*)] Gp(u)Go(q) dudg

x¢(v)20 (v, p) + Ch2b%/?
< o)2o(v,p)- +COb" + h2%/?).

We have here again used that the effect of removing the restriction u € By — v causes a
smaller error than the last term above. Note that u € By — v and v + h%abu € B; imply
|u| < 3(1 — h%ab)~! < 6 and hence we only need to consider |v| < |v + u| + |u| < 8. If we
use that (180) implies

Vol(Qo N {v | |v] <8} xR™) < CA
we see that the contribution from g to the integral on the right side of (182) is bounded
above by

@2rh)™ | ¢(v)%o(v,p)_ dvdp+ Ch™™ (b~ + h2b3/?)A.
Qo
This finishes the proof of the upper bound on the energy in (132) .

The density: proof of (133) and (134). Here it remains to estimate the integral in
(140). The strategy is to freeze the variable |p| in &, so that the remaining dependence
on |p| is explicitly integrable. This is accomplished in the estimate (183) below. After the
|p|-integration the proof is almost the same as in the non-relativistic case [36].
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We write p = |p|lw and define
po = (BIV (v)-* + 2V (v)-|) /2w = n(V (v))/"w

We will then prove that if u € By — v then

X[ (0, 0) +&v.po (us @)+ B(w, )] < X[hutv.gtp(v; )] < X[0(v,P) +Eo po (1, ¢) = R(u, q)], (183)
where

R(u,q) = O(Ju| (07" + [ul?) + (Ja| + A) 671+ [a*) + 671+ [uf® + [a*) (Jul + [gHA™).
We first prove (183) for (v,p) € Qp. In this case we have

n(V(v) + A" < p* <p(V(v) = A",

from Which it follows that |p? — p0| < CA with a constant independent of 3 € [0, 1].
Let G(t) = /B~ 't + 3-2 — 71, so that Ts(p) = G(p?) (we suppress that G depends on

3). Note that then 0;0;13(p) = 4piij”(p2) + 26Z-jG’(p2), and so, in particular, ATs(p) =
4G" (p*)p? + 2nG' (p?). Therefore, using that p; = |p|wi, poi = |[po|wi,
|€o,p(, @) — &u,po (us @)
< 1Ac(v,p) = Ac(v,po)l + 5 D 0:05(Ts(p) — Ts(po)]| lgias|

Y
< COt+ 1) (1G"*)p* = G"(3)pg| + G (*) — G'(Bd)])
< O+ g p? —pil < CABT +9P). (184)

Here we have used the choice of pyp and that G'(t) and tG”(t) have bounded derivatives
uniformly in 8 € [0, 1]. If we combine (137) with (184) we obtain that

Puoqip(v,0) = 0(0,9) = Eopo(w, @) < Clul (b7 + [ul?) + [al (67! + [al*) + CAL™ + ),

which is, in fact, stronger than (183).

If (v,p) € Q4 we see that the left inequality in (183) is only violated if &, p,(u,q) < —A
and the right inequality is only violated if hy44 g+p(v,p) < 0. Since (v,p) € 4 we must in
both cases have C(|u|? + |g|?) > A. We hence get (again using (137)) that

‘hu+v,q+p(vap) —o(v,p) — v,po (u, q)‘

| hugo,g40(v, D) — (0, D) = &up(, @)| + [Eop(u, @)| + | Eopo (1w, @)

Clul(b™" + [u*) + Clgl(0~" + 1) + C(0~" + [ul* + |g?)

Clul(b~" + [u?) + Clgl (0~ + [[*) + CO~" + [uf* + [g[*) (Jul* + |¢[*)A~!

A

<
<

which gives (183) in this case.

Finally, if (v, p) € Q_ then the left inequality in (183) is only violated if Ay v g4p(v,p) >0
and the right inequality is only violated if &, p,(u,q) > A. In both cases this implies that
C(Jul? +]¢/*) > A and hence the same argument as for 2, proves (183).

Using (183) we can estimate the density in (140) from above and below. We will discuss
the lower bound on the density. The upper bound is similar. Performing the |p|-integral in
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(140) we obtain

dud
po(z) > / = (u, ¢, 0,w)Gy(u)Gy(q)G 2y (& — v — hZabu) dvdw (27rh§” (185)
u€Bo—v
= / Z(u, q, v — habu, w)Gp(u)Gp(q)G (p2p)—1 (7 — v) dvdw dud ,
(2wh)™

(1—h2ab)u€ Bz —v
where
E(u, q,v,0) =070 (V(0) + Eupo (u, q) + R(u, q)) -
We have that
V(v — h*abu) + &, h2apup, (4, @) + R(u, q)
< V(v) = R2abuVV (v) + &y po (u, @) + R(u, q) + Ch*a?b?|ul* + Ch%ablu|(b™" + |uf?)

< V(v) = h2abuV'V (v) + Eupo (u, q) + R(u, q) + Ch*a?b?|u)?. (186)
(In the last line we have used that h%ab < 1 and the definition of R(u,q).) We now use that
Cls —t]3/2 4+ C(|s| + |t])]s — t|? n=3
= —n -1 < n n '
) =) - ool < { G e, RS
(187)

We continue with the case n = 3 and leave n > 4 to the reader.
If we use the fact that n'(V(v)) is bounded independently of 5 € [0,1] we obtain from
(186) and (187)

nZ(u,q,v — h*abu,w) > V() +17(V(©)) (& p(u,q) — h2abuVV (v))
— C’(lfl + |q!2 + \u|2 + h2ab\u| + R(u,q))3/2
— O+ |g)* + |u* + h*ablu| + R(u,q))2
— CR(u,q) — Ch*a®b*|ul* — Ch*ablu] . (188)
It is now crucial that (see (130) and (178))

/ (oo (1:9) — W2abuN'V (1)) Gy () G (q) dudg = 0.

Since v € supp(V') C Byp and (1 — h*ab)u ¢ By — v implies |u| > 1/2 we find

<Ce P <onbc . (189)

/ (&,po (U, q) — hQabuVV(v)) Gp(u)Gy(q) dudg
(1—h2ab)u€Ba—v

Combining this with (188) and inserting it into (185) we arrive at (recall that A = b~1/2)

py(z) > (27rh)_3w3/n[V(U)}G(hzb)q(a:—v)dv
— Ch3 (RS + 6732 + (h2ab)/2p=3/%) . (190)

Here we have removed the constraint (1 — h2ab)u € Ba — v by the same argument as above.
We shift the v-coordinate by x, and then expand n[V(x + v)] in the integral at x by
expanding V' to second order at x and using (187). Then

n[V(z+v)] >n[V(@)] +7'[V(@)]VV(2)-v—C(v? + ).
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Then we obtain from (190) (using (130)) that

py(z) — (27h) Bws [V (2)] > —Ch=3(h%/5 + (R?)%/*) > — Ch=3+9/10,

This finishes the proof of (133).
Lastly, we prove (134). By integrating (190) we see that

[ ot @) ds
> (27h) Cws / ¢(z)? G p2p)-1(z — ) n[V(v)] dedv — Ch—3+6/5

> (ZWh)_3w3/¢(v)2n[V(v)] dv — Ch=3+6/5

In the last step we have expanded ¢? to second order at v to obtain that (see also (130))

/¢(x)2G(hzb)_1 (z —v)dz < ¢(v)% + ChS/.

This finishes the proof of (134) and therefore of Lemma 34. O
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