

Aalborg Universitet

Automatic primitive finding for action modeling

Baby, Sanmohan; Krüger, Volker

Published in:
Proceedings of First International Workshop, Themis 2008

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Baby, S., & Krüger, V. (2008). Automatic primitive finding for action modeling. In Proceedings of First
International Workshop, Themis 2008 (pp. 35-43)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60409501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/automatic-primitive-finding-for-action-modeling(776f32d0-735a-11dd-9a60-000ea68e967b).html

Automatic primitive finding for action modeling

Sanmohan and Volker Krüger

Abstract

There has been a recent interest in segmenting action sequences into mean-
ingful parts (action primitives) and to model actions on a higher level based
on these action primitives. Unlike previous works where action primitives
are defined a-priori and search is made for them later, we present a sequential
and statistical learning algorithm for automatic detection of the action prim-
itives and the action grammar based on these primitives. We model a set of
actions using a single HMM whose structure is learned incrementally as we
observe new types. Actions are modeled with sufficient number of Gaussians
which would become the states of an HMM for an action. For different ac-
tions we find the states that are common in the actions which are then treated
as an action primitive.

Keywords
Imitation learning, High-level behaviour recognition and scene understanding,Natural-

language description of human behaviours, generative and discriminative models .

1 Introduction
Similar to phonemes being the building blocks of human language there is biological
evidence that human action execution and understanding is also based on a set primitives
[1]. But the notion of primitives for action does not only appear in neuro-biological
papers. Also in the vision community, many authors have discussed that it makes sense
to define a hierarchy of different action complexities such as movements, activities and
actions [2]In terms of Bobick’s notations, movements are action primitive, out of which
activities and actions are composed.

Many authors use this kind of hierarchysee here the review by Moeslund et al[8]. One
way to use such a hierarchy is to define a set of action primitives in connection with a
stochastic grammar that uses the primitives as its alphabet. There are many advantages
of using primitives are, for example: (1) The use of primitives and grammars is often
more intuitive for the human which simplifies verification of the learning results by an
expert. (2)Parsing primitives for recognition instead of using the signal directly leads
to a better robustness under noise [9, 13]; (3) AI provides powerful techniques for higher
level processing such as planning and plan recognition based on primitives and parsing. In
some cases, it is reasonable to define the set of primitives and grammars by hand. In other
cases, however, one would wish to compute the primitives and the stochastic grammar
automatically based on a set of training observations. Examples for this can be found in
robotics , surveillance, and DNA sequencing.

In this paper, we present an HMM-based approach to learn primitives and the corre-
sponding stochastic grammar based on a set of training observations. Our approach is
able to learn on-line and is able to refine the representation when newly incoming data

supports it. We test our approach on a typical surveillance scenario similar to [11] and on
the data used in [13] for human arm movements.

A number of authors represent action in a hierarchical manner. Staffer and Grimson
[11] compute for a surveillance scenario a set of action primitives based on co-occurrences
of observations. This work is used to motivate the surveillance setup of one of our exper-
iments.

In [10] Robertson and Reid present a full surveillance system that allows high-level
behavior recognition based on simple actions. Their system seems to require human in-
teraction in the definition of the primitive actions such as walking, running, standing,
dithering and the qualitative positions (nearside-pavement, road, driveway, etc). This is,
what we would like to automate.

In [3] actions are recognized by computing the cost through states an action pass
through. The states are found by k-means clustering on the prototype curve that best fits
sample points according to a least square criterion. Hong et al [7] built a Finite State
Machine for recognition by building individual FSM s for each gesture. Fod et al. [4]
uses a segmentation approach using zero velocity crossing. Primitives are then found
by clustering in the projected space using PCA. In these methods the k-means clustering
can cause the points belong to states or segments violating temporal order. Our approach
overcomes this problem very efficiently.

The idea of segmenting actions into atomic parts and then modeling the temporal
order using Stochastic Context Free Grammar is found in [6]. In [5], signs of first and
second derivatives are used to segment action sequences. These works require the storage
of all training data if one wishes to modify the model to accommodate a new action. Our
approach eliminate this requirement and thus make it suitable for imitation learning.

Our idea of merging of several HMMs to get a more complex and general model is
found in [12]. The merging strategy explained in [12] is applicable for discrete HMMs
only. We introduce a way of merging for the continuous case. New models can be intro-
duced and merged online.

1.1 Problem Statement
We define two sets of primitives. One set contains parts that are unique to one type of
action and another set that contains parts that are common to more than one type of action.
Two sequences are of the same type if they do not differ significantly, e.g., two different
walking paths. Hence we attempt to segment sequences into parts that are not shared and
parts that are common across sequences types. Then each sequence will be a combination
of these segments. We also want to generate rules that govern the interaction among the
primitives. Keeping this in mind we state our objectives as:

1. Let L = {X1,X2, · · · ,Xm} be a set of data sequences where each Xi is of the form
xi

1xi
2 · · · ,xi

Ti
and xi

j ∈ Rn . Let these observations be generated from a finite set of
sources (or states) S = {s1,s2, · · ·sr}. Let Si = si

1si
2 · · · ,si

Ti
be the state sequence

associated with Xi. Find a partition S ′ of the set of states S where S ′ = A ∪B
such that A = {a1,a2, · · · ,ak} and B = {b1,b2, · · · ,bl} are sets of state subse-
quences of Xi’s and each of the ai’s appear in more than one state sequence and
each of the b j’s appear in exactly one of the state sequence. The set A corresponds
to common actions and the set B correspond to unique parts.

2. Generate a grammar with elements of S ′ as symbols which will generate primitive
sequences that match with the data sequences.

2 Modeling the Observation Sequences.
We take the first sequence of observations X1 with data points x1

1x1
2 · · ·x1

T1
and generate a

few more spurious sequences of the same type by adding Gaussian noise to it. Then we
choose (µ1

i ,σ1
i), i = 1,2, ...k1 so that parts of the data sequence are from N (µ1

i ,Σ1
i) in

that order. The value of k1 is such that N (µ1
i ,Σ1

i), i = 1,2, ...k1 will cover the whole
data. This value is not chosen before hand and varies with the variation and length of the
data.

The next step is to make an HMM λ1 = (A1,B1,π1) with k1 states . We let A1 to be
a left-right transition matrix and B1

j(x) = N (x,µ1
j ,Σ

1
j). All the states at this stage get a

label 1 to indicate that they are part of sequence type 1. This model will now be modified
recurcively.

Now we will modify this model by adding new states to it or by modifying the current
output probabilities of states so that the modified model λM will be able to generate new
types of data with high probability.

Let n−1 be the number of types of data sequences we have seen so far. Let Xc be the
next data sequence to be processed. Calculate P(Xc|λM) where λM is the current model
at hand. A low value for P(Xc|λM) indicates that the current model is not good enough
to model the data sequences of type Xc and hence we make a new HMM λc for Xc as
described in the beginning and the states are labeled n. The newly constructed HMM λc
will be merged to λM so that the updated λM will be able to generate data sequences of
type Xc.

Suppose we want to merge λc into λM so that P(Xk|λM) is high if P(Xk|λc) is high.
Let Cc = {sc1,sc2, · · · ,sck} and CM = {sM1,sM2, · · · ,sMl} be the set of states of λc and λM
respectively. Then the state set of the modified λM will be CM ∪D1 where D1 ⊆Cc. Each
of the states sci in λc affects λM in one of the following ways:

1. If d(sci,sM j) < θ , for some p ∈ {1,2, · · · l}, then sci and sM j will be merged into a
single state. Here d is a distance measure and θ is a threshold value. The output
probability distribution associated with sM j is modified to be a combination of the
existing distribution and bk

sci(x). Thus bM
M j(x) is a mixture of Gaussians. We

append n to the label of the state sM j. All transitions to sci are redirected to sM j and
all transitions from sci will now be from sM j. The basic idea behind merging is that
we do not need two different states which describe the same part of the data.

2. If d(sci,sM j) > θ , ∀ j, a new state is added to λM . i.e. sci ∈ D1. Let sci be the
rth state to be added from λc. Then, sci will become the (Ml + r)th state of λM .
The output probability distribution associated with this new state in λM will be the
same as it was in λc. Hence bM

Ml+r(x) = N (x,µsci
,Σsci

) . Initial and transition
probabilities of λM are adjusted to accommodate this new state. The newly added
state will keep its label n.

We use Kullback-Leibler Divergence to calculate the distance between states. The

K-L divergence from N (x,µ0,Σ0) to N (x,µ1,Σ1) has a closed form solution given by :

DKL(Q||P) =
1
2

(
log
|Σ1|
|Σ0|

+ tr(Σ−1
1 Σ0)+(µ1−µ0)T

Σ
−1
1 (µ1−µ0)−n

)
(1)

Here n is the dimension of the space spanned by the random variable x.
Now we elaborate more on the addition and merging of states into the combined

model. Our aim is to make the new model compatible with the newly observed type
of data sequences. Since the states are probability distributions, if we see that two prob-
ability distributions corresponding to different states are very close we do not need to
keep them apart. Keeping these two states together will help us to model the observations
generated from two distributions by a single one. We use (1) to compute the similarity
measure of two states. We can observe that (1) will not handle mixture of Gaussians. We
still use this equation to evaluate componetwise distances in mixtures and check if any of
the components are close to the distribution we are testing. We justify this criteria since
our aim is to find out if a new state is to be embedded into another state or not.

2.1 Finding Primitives
When all sequences have been processed, we apply Viterbi algorithm on the final merged
model λM , and find the hidden states associated with each of the sequences. Let P1,P2, · · ·Pr
be different Viterbi paths at this stage. Since we want the common states that are con-
tiguous across state sequences, it is similar to finding the longest common substring(LCS)
problem. We take all paths with non-empty intersection and find the largest common sub-
string ak for them. Then ak is added to A and is replaced with an empty string in all the
occurrences of ak in Pi, i = 1,2, · · ·r.

We continue to look for largest common substings until we get an empty string as the
common substring for any two paths. Thus we end up with new paths P′1,P

′
2, · · ·P′r where

each P′i consists of one or more segments with empty string as the separator1. These
remaining segments in each P′i are unique to Pi. Each of them are also primitives and
form the members of the set B. Our objective was to find these two sets A and B as was
stated in Sec. 1.1.

3 Generating the grammar for primitives
Let S ′ = {c1,c2, · · ·cp} be the set of primitives available to us. We wish to generate rules
of the form P(ci → c j) which will give the likelihood of occurrence of the primitive c j
followed by primitive ci. We do this by constructing a directed graph G which encodes
the relations between the primitives. Using G we will derive a formal grammar for the
elements in S ′.

Let n be the number of types of data that we have processed. Then each of the states
in our final HMM λM will have labels from a subset of {1,2, · · · ,n}, see Fig.1. By way
of definition each of the states that belong to a primitive ci will have the same label set
lci . Let L = {l1, l2 · · · , lp} p ≥ n be the set of different type of labels received by the
primitives.Let G = (V,E) be a directed graph where V = S ′ and ei j = (ci,c j)∈ E if there

1The segmentation is caused by the gaps produced by the removal of elements of A .

2

4

3

1 1

1

2

4

12

2 2 2

4

4

3

3

3

3

3

3

1

1

2

4

1,2,4 2,3

3,4

3

1,4

4

1,3

2

4

1,2

3

1

1,2

1

2

3

Figure 1: Directed graph for finding the grammar

is a path Pk = · · ·cic j · · · for some k. We have given the directed graph constructed for out
test data in Fig. 1.

We proceed to derive a precise Stochastic Context Free Grammar (SCFG) from the
directed graph G we have constructed. Let N = S ′ be the set of terminals. To each vertex
ci with an outgoing edge with label lei j , associate a corresponding non-terminal Alei j

ci
. Let

N = S∪{Alei j
ci
} be the set of all non-terminals where S is the start symbol. For each

primitive ci that occurs at the start of a sequence and connecting to c j define the rule

S−→ ciAlci
c j

(2)

To each of the internal nodes c j with an incoming edge ei j connecting from ci and an
outgoing edge e jk connecting to ck define the rule

Alci∩lc j
ci

−→ c jAlc j∩lck
ck

(3)

For each leaf node c j with an incoming edge ei j connecting from ci and no outgoing edge
define the rule

Alci∩lc j
c j

−→ ε (4)

The symbol ε denotes an empty string. We assign equal probabilities to each of the
expansions of a nonterminal symbol except for the expansion to an empty string which
occurs with probability 1. Thus

P(Ali j
ci −→ c jA

l jk
c j) =

1

|c(o)
i |

if |c(o)
i |> 0 (5)

P(Alei j
ci
−→ ε) = 1 if |c(o)

i |= 0 (6)

where |c(o)
i | represents the number of outgoing edges from ci and lmn = lcm ∩ lcn . Let R be

the collection of all rules given in (2), (3), and (4). For each r ∈R associate a probability

P(r) using (5) and (6). Then (N ,S ′,S,R,P(.)) is the stochastic grammar that models
our primitives.

One might wonder why the HMM λM is not enough to describe the grammatical
structure of the observations and why the SCFG is necessary. The HMM λM would have
been sufficient for a single observation type. However for several observation types as in
final λM , regular grammars, as modeled by HMMs are usually too limited to model the
different observation types so that different observation types can be confused.

4 Experiments
We have run three experiments: In the first experiment we generate a simple data set with
very simple cross-shaped paths. The second experiment is motivated by the surveillance
scenario of Stauffer and Grimson [11] and shows a complex set of paths as found outside
our building. The third experiment is motivated by the work of Vincente and Kragic [13]
on the recognition of human arm movements.

4.1 Testing on Simulated Data
We illustrate the result of testing our method on a set of two sequences generated with
mouse clicks. The original data set for testing is shown in Fig. 1 We have two paths one
from A to B and the other from C to D. These paths intersect in the middle at E . If we
were to remove the points around E we will the have segments AE, EB, CE and ED. We
extracted these segments with the above mentioned procedure. When the model merging
took place, the overlapping states in the middle were merged into one. The result is shown
in Fig. 2. The primitives that we get are colored. As one can see in Fig. 2, primitive b is
a common primitive and belongs to our set A, primitives a,c,d,e belong to our set B.

4.2 2D-Trajectory Data
The second experiment was done on a surveillance-type data inspired by [11]. The paths
represent typical walking paths outside of our building. In this data there are four different
types of trajectories with heavy overlap, see Fig. 2 bottom left. We can also observe that
the data is quite noisy.

The result of primitive segmentation is shown in Fig. 2 on the bottom right. Different
primitives are colored differently and we have named the primitives with different letters.
As one can see, our approach results in primitives that coincide roughly with our intuition.
Furthermore, our approach is very robust even with such noisy observations and lot of
overlaps.

4.3 Hand gesture data
Finally, we have tested our approach on the dataset provided by Vincente and Kragic [13].
In that data, several volunteers performed a set of simple arm movements such as grasp
object, rotate object move object by lifting,push object aside and push object forward.
Five different actions are considered: a) pick up an object from a table, b) rotate an object
on a table, c) push an object forward, d) push an object to the side, and e) move an object
to the side by picking it up. Each action is performed in 12 different conditions: two

Figure 2: The top left figure shows the simulated 2d data sequences. The top right fig-
ure shows the finally detected primitives with different colors. Primitive b is a common
primitive and belongs to set A , primitives a,c,d,e belong to set B. The bottom left figure
shows trajectories from tracking data. Each type is colored differently. Only a part of
the whole data is shown. The bottom right figure shows the detected primitives. Each
primitive is colored differently.

different heights, two different locations on the table, and having the demonstrator stand
in three different locations (0, 30, 60 degrees) . Furthermore, all actions are demonstrated
by 10 different people. The movement is measured using magnetic sensors placed on:
chest, back of hand, thumb, and index finger. The observation in [13] was that for many
arm movements the approach movement towards an object was followed by a grasping of
the object so that they could naturally be decoupled. By considering two different models
for manually segmented primitives they found that the recognition rate was much higher
when the primitives that are common across actions are considered separately. Using
their dataset, our approach is able to provide the primitives and the grammar automati-
cally. We have used the 3-d coordinates from the sensors along with velocity of the hand.
The forward and backward motion of the hand trajectory belongs to different states even
though they spatially adjacent. The temporal order of primitives for actions for a par-
ticular position are shown in 3(a). We have used the Natural Language Toolkit (NLTK,
http://nltk.sourceforge.net) for parsing. The parsing tree for push-object forward action is
shown in Fig. 3(b)

All these actions started from rest pose and ended at almost same position. We were
able to extract these obvious common primitives accurately. The large number of prim-

Figure 3: Left figure shows the temporal order for primitives of hand gesture data. Node
number corresponds to different primitives. Right figure shows the parse tree from NLTK
for push-object forward action.

itives are due to the variations in repetitions by several subjects. We have experimented
with supervised placing of states along tranjectories and ended up with less number of
primitives. But the unsupervised learning is more challenging and interesting and hence
we ignore the number of primitives we end up with.

5 Conclusions
We have presented and tested an approach for automatically computing a set of primitives
and the corresponding stochastic context free grammar from a set of training observations.
Our stochastic regular grammar is closely related to the usual HMMs. One important
difference between common HMMs and a stochastic grammar with primitives is that with
usual HMMs, each trajectory (action, arm movement, etc.) has its own, distinct HMM.
This means that the set of HMMs for the given trajectories are not able to reveal any
commonalities between them. In case of our arm movements, this means that one is not
able to deduce that some actions share the grasp movement. Using the primitives and
the grammar, this is different. Here, the different actions share common primitives which
would even allow to use AI techniques for, e.g., planning or plan recognition. Another
important aspect of our approach is that we can modify our model to include a new action
without requiring the storage of previous actions for it.

Many authors point at the huge task of learning parameters and the size of training
data for an HMM when the number of states are increasing. But in our method, transition,
initial and observation probabilities for all states are assigned during our merging phase
and hence the use of EM algorithm is not required. Thus our method is scalable to the

number of states. Our approach of using states have a close connection to [3] but our
method is superior in preserving the temporal order and hence in recognition.

It is interesting to note that stochastic grammars are closely related to Belief networks
where the hierarchical structure coincides with the production rules of the grammar. We
will further investigate this relation ship in future work.

In future work, we will also evaluate the performance of normal and abnormal path
detection using our primitives and grammars.

References
[1] Giszter SF Loeb E Mussa-Ivaldi FA Saltiel P. Bizzi E. Modular organization of motor behavior

in the frog’s spinal cord. Trends Neurosci., 18(10):442–446, 1995.

[2] A. Bobick. Movement, Activity, and Action: The Role of Knowledge in the Perception of
Motion. Philosophical Trans. Royal Soc. London, 352:1257–1265, 1997.

[3] A.F. Bobick and A.D. Wilson. A state-based approach to the representation and recognition
of gesture. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(12):1325–
1337, Dec 1997.

[4] Ajo Fod, Maja J. Matarić, and Odest Chadwicke Jenkins. Automated derivation of primitives
for movement classification. Autonomous Robots, 12(1):39–54, 2002.

[5] G. Guerra-Filho and Y. Aloimonos. A sensory-motor language for human activity understand-
ing. Humanoid Robots, 2006 6th IEEE-RAS International Conference on, pages 69–75, 4-6
Dec. 2006.

[6] Cornelia Fermüller Gutemberg Guerra-Filho and Yiannis Aloimonos. Discovering a language
for human activity. In AAAI 2005 Fall Symposium on Anticipatory Cognitive Embodied Sys-
tems, Washington, D.C, pages 70–77, 2005.

[7] P. Hong, M. Turk, and T. Huang. Gesture modeling and recognition using finite state machines,
2000.

[8] T. Moeslund, A. Hilton, and V. Krueger. A survey of advances in vision-based human motion
capture and analysis. Computer Vision and Image Understanding, 104(2-3):90–127, 2006.

[9] L.R. Rabiner and B.H. Juang. Fundamentals of Speech Recognition. Prentice Hall, Englewood
Cliffs, 1993.

[10] N. Robertson and I. Reid. Behaviour Understanding in Video: A Combined Method. In
Internatinal Conference on Computer Vision, Beijing, China, Oct 15-21, 2005.

[11] C. Stauffer and W.E.L. Grimson. Learning Patterns of Activity Using Real-Time Tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):747–757, 2000.

[12] A. Stolcke and S. M. Omohundro. Best-first model merging for hidden Markov model induc-
tion. Technical Report TR-94-003, 1947 Center Street, Berkeley, CA, 1994.

[13] I. S. Vicente, V. Kyrki, and D. Kragic. Action recognition and understanding through motor
primitives. Advanced Robotics, 21:1687–1707, 2007.

