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ABSTRACT

This paper presents a variable Speech Distortion Weighted

Multichannel Wiener Filter (SDW-MWF) based on soft out-

put Voice Activity Detection (VAD) which is used for noise

reduction in hearing aids. A traditional SDW-MWF uses

a fixed parameter to trade-off between noise reduction and

speech distortion. Consequently, the improvement in noise

reduction comes at the cost of a higher speech distortion.

With a variable SDW-MWF the goal is to improve the noise

reduction without increasing the speech distortion. A soft

output VAD is used to distinguish between speech, noise

and to incorporate a variable trade-off. In speech dominant

segments it is desirable to have less noise reduction to avoid

speech distortion. In noise dominant segments it is desirable

to have as much noise reduction as possible. Experimental

results with a variable SDW-MWF show a SNR improvement

with a lower speech distortion compared to a SDW-MWF.

Index Terms— Multichannel Wiener Filter, Noise reduc-

tion, Speech distortion, Soft output VAD.

1. INTRODUCTION

Background noise (multiple speakers, traffic etc.) is a signif-

icant problem for hearing aid users and is especially damag-

ing to speech intelligibility. To overcome this problem both

single-channel and multichannel noise reduction schemes

have been proposed. The limitation of single-channel noise

reduction is that only temporal and spectral signal charac-

teristics are used. Multichannel noise reduction in addition

exploits the spatial diversity of the speech and the noise

signals. The objective of noise reduction algorithms is to

maximally reduce the noise while minimizing speech dis-

tortion. A known multichannel noise reduction technique is
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the Speech Distortion Weighted Multichannel Wiener Filter

(SDW-MWF) [1] [2] that allows for a trade-off between noise

reduction and speech distortion. However, the improvement

in noise reduction comes at the cost of a higher speech distor-

tion. Recently, soft output Voice Activity Detection (VAD)

has been used in speech enhancement for gain modification

and noise spectrum estimation [3] [4] [5]. The concept is

to increase the gain when there is a high probability that

speech is present and to apply a lower gain in the presence

of noise i.e. when there is a lower probability that speech

is present. Soft output VAD has also been used for control-

ling the compression gain when noise reduction and dynamic

range compression are integrated [6]. Here, the soft output

VAD was used to distinguish between the speech and the

noise dominant segments in order not to amplify the residual

noise after the noise reduction. This paper presents a variable

SDW-MWF based on soft output VAD which allows for a

variable trade-off between noise reduction and speech distor-

tion in the SDW-MWF procedure.

The paper is organised as follows. In Section 2 the signal

model and the SDW-MWF is described. In Section 3 the

SDW-MWF is extended with a soft output VAD. In Section 4

experimental results are presented. The work is summarized

in Section 5.

2. MULTICHANNEL WIENER FILTER

2.1. Signal model

Let Xi(f), i = 1, ..., M denote the frequency-domain micro-

phone signals

Xi(f) = Xs
i (f) + Xn

i (f) (1)

where f is the frequency domain variable and the superscripts

s and n are used to refer to the speech and the noise contribu-

tion of a signal, respectively. Let X(f) ∈ CM×1 be defined

as the stacked vector

X(f) = [X1(f) X2(f) ... XM (f)]T (2)

= Xs(f) + Xn(f) (3)



where the superscript T denotes the transpose. Defining

Hs
i (f) as the acoustic transfer function from the speech
source S(f) to the i-th microphone,Xs(f) can be written as

X(f) = H(f)S(f) + Xn(f) (4)

Xs(f) = Hs(f)S(f) = H̃
s
(f)Xs

1
(f) (5)

with H̃
s
(f) the vector with transfer function ratios relative to

the first microphone.

In addition, we define the noise and the speech correlation

matrix as

Rn(f) = ε{Xn(f)Xn,H(f)} (6)

Rs(f) = ε{Xs(f)Xs,H(f)}

= P s
Xi

(f)H̃
s
(f)H̃

s,H
(f) (7)

where ε{} denotes the expectation operator, H denotes Her-
mitian transpose and P s

Xi
(f) is the power spectral density

(PSD) of the speech in the i-th microphone signal.

The MWF optimally estimates a desired signal, based on

a Minimum Mean Square Error (MMSE) criterion. Here, the

desired signal is the speech componentXs
1
(f) in the first mi-

crophone. The MWF has been extended to the SDW-MWF

that allows for a trade-off between noise reduction and speech

distortion using a trade-off parameter µ [1] [2]. Assume that

the speech and the noise signals are statistically independent,

then the optimal SDW-MWF that provides an estimate of the

speech component in the first microphone is given by

W(f) = (Rs(f) + µRn(f))
−1
Rs(f)e1 (8)

where the M × 1 vector e1 equals the first canonical vector
defined as e1 = [1 0 ... 0]T . The second-order statistics
of the noise are assumed to be stationary which means Rs(f)
can be estimated as Rs(f) = Rx(f) − Rn(f) where Rx(f)
and Rn(f) are estimated during periods of speech+noise and
periods of noise-only, respectively. For µ = 1 the SDW-MWF

solution reduces to the MWF solution which for µ > 1 the
residual noise level will be reduced at the cost of a higher

speech distortion. The output Z(f) of the SDW-MWF can
then be written as

Z(f) =WH(f)X(f). (9)

3. MULTICHANNEL WIENER FILTER WITH SOFT

OUTPUT VAD

Traditionally, the trade-off parameter µ is set to a fixed value

and the improvement in noise reduction comes at the cost of

a higher speech distortion. Furthermore, the speech+noise

segments and the noise-only segments are weighted equally,

whereas it is desirable to have more noise reduction in the

noise-only segments compared to the speech+noise segments.

With a variable SDW-MWF it is possible to distinguish be-

tween the speech+noise segments and noise-only segments

using a soft output VAD. The soft output VAD can be imple-

mented according to [3] [4] [5]. The variable SDW-MWF is

derived from the MSE criterion as (The frequency parameter

f is omitted in the sequel for the sake of conciseness)

W = argmin
W

ε{|Xs
1
−WHX|2} (10)

W = argmin
W

ε{p · |Xs
1
−WHX|2 +

(1 − p) · |WHXn|2} (11)

where p is the probability that speech is present in a given

signal segment. The solution is then given by

W = (p · ε{XsXs,H}+ p · ε{XnXn,H}+

(1 − p) · ε{XnXn,H})−1p · ε{XsX
s,H
1
} (12)

W = (p · ε{XsXs,H}+ ε{XnXn,H})−1p · ε{XsX
s,H
1
} (13)

the variable SDW-MWF can then be written as

W =
(

Rs +
(

1

p

)

Rn
)
−1

Rse1. (14)

Compared to Eq. 8 with the fixed µ the term 1

p is now chang-

ing based on the soft output VAD. The concept goes as fol-

lows

• If p = 0, i.e. the probability that speech is presence is
zero, the variable SDW-MWF will attenuate the noise

by applyingW← 0.

• If p = 1 the variable SDW-MWF solution corresponds
to the MWF solution.

• If 0 < p < 1 there is a trade-off between noise reduc-
tion and speech distortion.

3.1. Spatial and Spectral Filtering

For further analysis the SDW-MWF can be decomposed into

a spatial filter and a spectral filter [7] [8]. Assuming that Rs

is rank 1 and using the definitions in Eq. 7 we can write the

optimal filter as

W =
(

P s
X1
H̃

s
H̃

s,H
+

(
1

p

)

Rn
)
−1

P s
X1
H̃

s
. (15)

Applying the matrix inversion lemma the optimal filter can

then be decomposed into



W =
Rn−1

H̃
s

H̃
s,H
Rn−1

H̃
s

︸ ︷︷ ︸

TF-GSC

(
P s

X1

P s
X1

+ Pn
X1

)

︸ ︷︷ ︸

Postfilter

(16)

where

Pn
X1

=
1

H̃
s,H

( 1

p )Rn−1

H̃
s

(17)

is the output noise power from the Transfer Function General-

ized Sidelobe Canceller (TF-GSC) beamformer. This shows

that the residual noise after the beamformer (spatial filter)

can be further suppressed by the postfilter (spectral filter).

The beamformer reduces the noise while keeping the speech

component in the first microphone signal undistorted. The

soft output VAD 1

p only affects the spectral post filtering.

The postfilter can be viewed as a single-channel Wiener fil-

ter where each frequency component is attenuated based on

the signal-to-noise ratio.

4. EXPERIMENTAL RESULTS

In this Section, experimental results for the variable SDW-

MWF based on soft output VAD are presented and compared

to SDW-MWF with fixed values for µ.

4.1. Set-up and performance measures

We have performed simulations with a 2-microphone behind-

the-ear hearing aid. The speech is located at 0◦ and the two
multi-talker babble noise sources are located at 120◦ and
180◦.
To assess the noise reduction performance the intelligibility-

weighted signal-to-noise ratio (SNR) [9] is used which is

defined as

∆SNRintellig =
∑

i

Ii(SNRi,out − SNRi,in) (18)

where Ii is the band importance function defined in [10] and

SNRi,out and SNRi,in represents the output SNR and the in-

put SNR (in dB) of the i-th band, respectively. For the speech

distortion an intelligibility weighted spectral distortion mea-

sure is used defined as

SDintellig =
∑

i

IiSDi (19)

with SDi the average spectral distortion (dB) in the i-th one

third octave band,

SDi =
1

(21/6 − 2−1/6)f c
i

∫
2
1/6fc

i

2−1/6fc
i

|10 log
10

Gs(f)|df (20)
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Fig. 1. A comparison of variable SDW-MWF with SDW-

MWF with fixed settings of µ

with the center frequencies f c
i and Gs(f) the power spectral

transfer function for the speech component from the input to

the output of the noise reduction algorithm.

4.2. Variable vs. fixed SDW-MWF

In the first experiment the variable SDW-MWF is compared

to SDW-MWF with different values of µ at input SNR 0dB.

The SNR improvement is shown in figure 1(a). The SNR im-

provement for the SDW-MWF with different µ’s are shown

with the solid line and here the SNR improvement is as ex-

pected increasing with µ > 1. On the other hand, the speech
distortion is also increased which is shown in figure 1(b).

The variable SDW-MWF shows that the SNR improvement is

achieved at lower speech distortion. The reason for this is that

the noise dominant segments are suppressed more compared

to the speech dominant segments, resulting in an improved

SNR at lower speech distortion.

In the second experiment the variable SDW-MWF is com-

pared to SDW-MWF with µ = 1 at input SNR -5dB to 5dB.
The SNR improvement for different input SNR is shown in
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(b) Speech distortion for variable SDW-MWF at different in-

put SNR

Fig. 2. A comparison of variable SDW-MWF with SDW-

MWF with µ = 1 at different input SNR

figure 2(a). The solid line shows the SNR improvement for

µ = 1 which shows less SNR improvement compared to the
variable SDW-MWF. As expected the speech distortion for

µ = 1 is still lower compared to the variable SDW-MWF at
different input SNR. It is worth noting that at low input SNR

like -5dB the SNR improvement comes at the cost of a much

higher speech distortion. Whereas, at high input SNR e.g.

5dB the SNR improvement is achieved with a speech distor-

tion close to the case with µ = 1.

5. CONCLUSION

In this paper, we have presented a variable SDW-MWF that

makes a trade-off between noise reduction and speech distor-

tion based on the soft output VAD i.e. probability that speech

is present in a given signal segment. Through simulations

we have shown that with a variable SDW-MWF the noise re-

duction performance can be improved without increasing the

speech distortion compared to the SDW-MWF with a fixed

trade-off parameter.
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