

Aalborg Universitet

A comparison of two approaches for solving unconstrained influence diagrams

Ahlmann-Ohlsen, Kristian S.; Jensen, Finn Verner; Nielsen, Thomas Dyhre; Pedersen, Ole;
Vomlelová, Marta
Published in:
International Journal of Approximate Reasoning

DOI (link to publication from Publisher):
doi:10.1016/j.ijar.2008.08.001

Publication date:
2009

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Ahlmann-Ohlsen, K. S., Jensen, F. V., Nielsen, T. D., Pedersen, O., & Vomlelová, M. (2009). A comparison of
two approaches for solving unconstrained influence diagrams. International Journal of Approximate Reasoning,
50(1), 153-173. DOI: doi:10.1016/j.ijar.2008.08.001

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60408832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/doi:10.1016/j.ijar.2008.08.001
http://vbn.aau.dk/en/publications/a-comparison-of-two-approaches-for-solving-unconstrained-influence-diagrams(f389dac0-683b-11dd-92a2-000ea68e967b).html

A Comparison of two Approaches for Solving

Unconstrained Influence Diagrams

Kristian S. Ahlmann-Ohlsen, Finn V. Jensen,
Thomas D. Nielsen ∗, Ole Pedersen 1 , Marta Vomlelová b

Dept. of Computer Science, Aalborg University, Denmark,

{ahlmann, fvj, tdn, ole}@cs.aau.dk

bFaculty of Mathematics, Charles University, Prague, Czech Rep.,

marta@kti.mff.cuni.cz

Abstract

Influence diagrams and decision trees represent the two most common frameworks
for specifying and solving decision problems. As modeling languages, both of these
frameworks require that the decision analyst specifies all possible sequences of ob-
servations and decisions (in influence diagrams, this requirement corresponds to the
constraint that the decisions should be temporarily linearly ordered). Recently the
unconstrained influence diagram was proposed to address this drawback. In this
framework, we may have a partial ordering of the decisions, and a solution to the
decision problem therefore consists not only of a decision policy for the various de-
cisions, but also of a conditional specification of what to do next. Relative to the
complexity of solving an influence diagram, finding a solution to an unconstrained
influence diagram may be computationally very demanding w.r.t. both time and
space. Hence, there is a need for efficient algorithms that can deal with (and take
advantage of) the idiosyncrasies of the language. In this paper we propose two such
solution algorithms. One resembles the variable elimination technique from influ-
ence diagrams, whereas the other is based on conditioning and supports any-space
inference. Finally we present an empirical comparison of the proposed methods.

Key words: Unconstrained influence diagrams, solution algorithms, variable
elimination, any-space inference.

1 Current email address: oleslir@gmail.com
∗ Corresponding author.

Preprint submitted to Elsevier 11 August 2008

1 Introduction

The two must common languages for graphical representation of decision prob-
lems are decision trees and influence diagrams (Howard and Matheson, 1981;
Shachter, 1986). Both of these languages share the virtues that they have a
very simple syntax and semantics, making them well suited for human spec-
ification as well as computer calculation. Decision trees have a very high ex-
pressive power. However, as the size grows exponentially with the number
of decision and observation variables, they are badly suited for representing
complex decision problems. Influence diagrams on the other hand give a very
compact representation, which does not increase more than quadratically in
the number of variables in the decision problem. To be able to represent a
decision problem as an influence diagram, the problem has to meet certain
constraints, and the most restrictive is that the problem must be symmetric.
In short, this means that all decision variables are considered and all obser-
vations are taken, and the observations and decisions are temporarily linearly
ordered.

Unconstrained influence diagrams (Jensen and Vomlelova, 2002) is a language
very close to influence diagrams. The main difference is that they do not
require a linear temporal order of the decisions and observations. We shall
use the abbreviation ID for influence diagrams and accordingly UID for un-
constrained influence diagrams. UIDs represent a language, which in a very
compact way can model scenarios with a partial temporal ordering of decisions
and observations. Although the representation is compact, a solution to the
decision problem may be very complex. Contrary to IDs (Jensen et al., 1994;
Cano et al., 2006), a solution for a UID not only includes an optimal policy
for the various decisions, but also a conditional specification of what decision
to choose next.

The basic computational structure for establishing an optimal strategy is a
so-called normal form S-DAG, which is a structure supporting a large set of
strategies among which at least one is optimal. Given the normal form S-DAG,
there are basically two approaches to finding an optimal strategy. One is to
perform variable elimination similarly to the solution methods for IDs, and
the other is to simultaneously solve and unfold the S-DAG into a decision tree.
We will show how the latter method supports an any-space algorithm, and we
present experimental results comparing both approaches.

2 The Representation Language

The following two sections are extracts of what can be read elsewhere, e.g.
(Jensen and Nielsen, 2007).

2

We start by considering an everyday situation (Howard, 1962): we would like to
buy a used car, but only if it is in a satisfactory condition. We cannot observe
the real state of the car (C) directly, but we can get some information I by just
looking at the car. We may also obtain additional information by performing
some tests (tA and tB) before we decide whether to buy. For simplicity, we
assume all variables to be binary.

The tests can be performed in any order, so to represent this decision problem
as an influence diagram we need to introduce two (artificial) decision variables,
Test1 and Test2, representing the decisions on the first and the second test,
respectively. Both variables have the states tA, tB, and no-test. Similarly, we
introduce two chance nodes O1 and O2 to represent the outcomes of the two
tests (see Figure 1).

Test1 Test2

Buy?I C

O1 O2

C1 C2

CB

U

Fig. 1. An influence diagram representation of the buy-a-used-car example. The
Test-nodes have three options, tA, tB and no-test. The O nodes have five states,
posA, posB ,negA,negB , and no-test. The arc O1 → O2 indicates that repeating a
test will give identical results. No forgetting is assumed. For example, I, Test1, are
known together with O1 when deciding on Test2.

In the used car buyer problem, you have the freedom of choosing the order
of the two decisions. However, as the ID framework does not support this
freedom, it is hidden in the specification of the state spaces. A more natural
representation would be to have the two test options represented directly. This
is done in Figure 2, where we furthermore represent the observable chance
nodes explicitly: A double-circled chance node indicates that the node can be
observed when all its preceding decisions are taken. For example, I does not
have any preceding decisions so it may be observed at any point in time. But
e.g. OA is preceded by TestA? so it can be observed only after TestA? has
been decided upon. In this model we have dropped the requirement of the
decisions being temporarily linearly ordered and left the sequencing as a part
of the solution to the problem.

Looking at Figure 2 it may seem that we have to analyze all possible se-

3

TestA? TestB?

Buy?C

I OA OB

Cα Cβ

U

Fig. 2. An unconstrained influence diagram representation of the buy-a-used-car
example. A double circled chance node can be observed when its preceding decision
nodes have been decided upon. TestA? has the states yes and no, and OA has the
states posA, negA, and no-test. Similarly for TestB? and OB .

quences of observations and decisions in order to establish a solution. How-
ever, as the expected utility (EU) can never increase by delaying a “cost
free” observation, it is sufficient to consider sequences starting with observ-
ing I. For the same reason, OA and OB shall be observed immediately after
the corresponding test decision has been taken. Finally, consider the sequence
< I, TestA?, OA, Buy?, T estB?, OB >. As Buy? and TestB? can be commuted
without affecting the expected utility, it is equivalent to considering the se-
quence < I, TestA?, OA, T estB?, Buy?, OB >. Again, EU is not decreased if
OB is moved immediately to the right of TestB?, and we get a sequence end-
ing with Buy?. In summary, our sequencing options have been reduced to the
ones illustrated in Figure 3.

I

TestA OA TestB

OB
TestB TestA

OA

OB

Buy?

Fig. 3. A directed graph representing the possible optimal temporal sequences of
observations and decisions for the used can buyer example. After observing I we
should decide on the initial test, and in the end we must decide on Buy?.

From the structure of Figure 3 we can infer that solving the decision problem
boils down to solving two influence diagrams, one for each of the two paths.
The only thing left to resolve is to determine which path to follow as a function

4

of the value of I. This is done as follows: Let σA(I) and σB(I) be the optimal
policies for the first decision in the two influence diagrams, and let EUA(I)
and EUB(I) be the expected utilities of following these policies. For any state
i of I we compare EUA(i) and EUB(i) and choose the initial action of the
model with maximal expected utility.

Next, consider a slightly more complex example. A patient may suffer from
two different diseases (D). There are two possible tests, TA and TB, and each
disease has a specific treatment Tr1 and Tr2. After each treatment, the new
state of the disease is observed (the O-nodes). In Figure 4 the decision problem
is represented graphically.

TA

TB

OA

OB

OT

D

Tr1

Tr2

D2

D1

D′

O1

O2

U

Fig. 4. An unconstrained influence diagram for a problem with two tests and two
treatments. D1 and D2 represent the disease-situation after treatments, and D′

represents the final situation.

Even for a simple decision problem as above it is extremely cumbersome to
draw a decision tree, and as the problem does not include information about
temporal orders it is rather tricky to squeeze the decision problem into the ID
straight jacket. All possible sequences would have to be represented explicitly
in the influence diagram.

Definition 1 An unconstrained influence diagram (UID) is a directed acyclic
graph (DAG) over decision nodes (rectangular shaped), chance nodes (circular
shaped), and utility nodes (diamond shaped). Utility nodes have no children.
There are two types of chance nodes, observables (doubly circled) and non-
observables (singly circled). Non-observable chance nodes do not have decision
nodes as children.

The quantitative specification for a UID is similar to the specification for IDs:
conditional probabilities and utility functions. We add the convention that
each decision variable D has a cost. If this cost only depends on D, it need
not be represented graphically, and the cost function is then attached to D.
We say that a UID is instantiated when the structure has been extended with

5

the required quantitative specification, i.e., probabilities and utilities.

The semantics of a UID is similar to the semantics of an ID. A link into
a decision node represents temporal precedence; a link into a chance node
represents causal influence; a link into a utility node represents functional
dependence. We assume no-forgetting: at each point in the decision process
the decision maker remembers all previous decisions and observations.

An observable can be observed when all its antecedent decision variables have
been decided upon. In that case we say that the observable is free, and we
release an observable when the last decision in its ancestral set is taken. Notice
that observing a free variable is cost free. This does not cause a problem; if
an observation has a cost, observing it needs to be decided, and it then has to
be modeled as a test decision.

The structural specification yields a partial temporal order. The partial tem-
poral ordering for the previous example was very simple, but this is rarely the
case. For illustration we will in the following use the partial temporal ordering
given in Figure 5.

If a partial ordering is extended to a linear ordering we get an influence dia-
gram. Such an extension is called an admissible ordering.

3 Strategies and S-DAGs

A strategy for a UID is more complex than in the case of IDs. In principle
we look for a set of rules telling us what to do given the current information,
where ”what to do” is to choose the next action as well as choosing a decision
option if the next action is a decision.

A solution method could be to unfold the UID to a decision tree and com-
pute an optimal strategy. However, this is unnecessarily complex. Structural
analysis as performed above on the buy-a-used-car example can reduce the
number of scenarios to consider substantially. For this purpose we construct
a strategy-DAG (S-DAG). An S-DAG is a directed acyclic graph representing
possible conditional orderings of the variables, including the optimal one. The
S-DAG may then be unfolded to a decision tree or it may be used for variable
elimination, analogous to variable elimination for IDs.

Notation Let Γ be a UID. The set of decision variables is denoted DΓ, the
set of observables is denoted OΓ. Let X ⊆ DΓ ∪ OΓ be a set of variables;
sp(X) denotes the set of configurations over X (ignoring order). The partial
temporal order induced by Γ is denoted ≺Γ. When obvious from the context

6

we avoid the subscript.

Definition 2 Let Γ be a UID. An S-DAG is a directed acyclic graph Σ. The
nodes are labeled with variables from DΓ∪OΓ such that each maximal directed
path in Σ represents an admissible ordering of DΓ ∪ OΓ. For notational con-
venience we add two unary nodes labeled source and sink. source is the only
node with no parents and sink is the only node with no children. Source con-
tains all the initially free chance variables, and sink contains all the chance
variables which are never observed (both nodes may be empty).

D1

D2

D3

O1

O2

D4

D5

D6

O4

O5

O6

D7

Fig. 5. An example partial temporal ordering from a UID.

Consider the partial temporal order in Figure 5. Figure 6 shows an S-DAG for
a UID with this partial order.

Since an S-DAG encodes the possible orderings to consider, we define a strat-
egy relative to an S-DAG. Let X be a node in an S-DAG Σ. The past of X
(denoted Past(X)) is the union of labels of X and its ancestors. The union of
labels of X’s children is denoted ch(X). A step-policy for X is a function σ :
sp(Past(X))→ ch(X), where sp(Past(X)) denotes all possible configurations
of the variables in Past(X). If X has only a single child, then the step-policy
is trivial. For example, a step-policy for the O2 node between “Step 5” and
“Step 4” in Figure 6 could be “if O2 = o2

1 then D6 else D5”.

A step-strategy for Γ is a couple (Σ,S), where Σ is an S-DAG for Γ and S is
a set of step-policies, one for each node in Σ (except for sink).

A policy for X is an extension of a step-policy, such that whenever the step-
policy yields a decision variable D, then the policy yields a state of D. A
strategy for Γ is an S-DAG together with a policy for each node. A policy for
the O2 example above could be “if O2 = o2

1 then D6, and if O1 = o1
3 then

D6 = d6
2, else . . . ”.

In order to specify an optimal strategy, we need to define the expected utility
(EU) of a strategy for a UID. As a precise definition is unnecessarily complex
we shall take the easy way: any strategy ∆ for a UID can be folded out to a
strategy tree. Following the policies in ∆ we construct a tree, where all root-
leaf paths represent admissible orderings. The expected utility of a strategy

7

D
1
,D

2

D
2
,D

3

D
1

D
1

D
1

D
1

D
3

D
4

D
4

D
5

D
5

D
5

D
5

D
6

D
6

D
6

D
6

D
6

D
7

O
1

O
1

O
1

O
1

O
1

O
2

O
2

O
4

O
4

O
5

O
5

O
5

O
5

O
6

O
6

O
6

O
6

O
6

so
u
rc

e

si
n
k

S
te

p
6–

7
S
te

p
5

S
te

p
4

S
te

p
3

S
te

p
2

S
te

p
1

Fig. 6. An S-DAG for the partial order in Figure 5. The steps are explained in
Section 4.

tree is defined as for decision trees, and the expected utility of a strategy is
the expected utility of the corresponding strategy tree.

A solution to a UID is a strategy of maximal EU. Such a strategy is called
optimal.

8

4 The Normal Form S-DAG

We wish to construct an S-DAG which is guaranteed to contain an S-DAG for
an optimal strategy. To be on the safe side, you could let the S-DAG contain
all possible admissible orderings. However, this will most likely be intractable.
Instead you can reduce the S-DAG by exploiting the following two observations

(1) The expected utility can never increase by delaying an observation. 2 So,
we need not have a path on which a decision variable is placed before an
already free observation.

(2) As two maximizations (summations) over finite variables are commutable,
a sequence of variables of the same type can be commuted without chang-
ing the EU. So, a sequence of consecutive variables of the same type can
be characterized as a set rather than a sequence.

Due to observation 2 we let the labels of the nodes be sets (represented by
calligraphic letters, e.g. X , Y , and Z) rather than single variables. When it
causes no confusion we will not distinguish between a node and its label, and
when the label consists of one variable, we avoid talking about it in set terms.
In general, we will use calligraphic letters to denote nodes in an S-DAG. With
this convention, the labels of nodes are sets of variables of the same type, and
we classify them as decision nodes and observation nodes.

Definition 3 The set of admissible orderings of an S-DAG is the set of se-
quences of variables that can be obtained by following the directed paths from
source to sink.

Two admissible orderings yield the same EU if they only differ in the order of
neighboring nodes of the same type. We shall call such orderings equivalent,
and our concern is the set of equivalence classes represented in an S-DAG. In
order not to obscure terminology, we do not distinguish between an admissible
order and its equivalence class.

Definition 4 Two S-DAGs are equivalent if their corresponding sets of ad-
missible orderings are identical.

By letting sequences of variables of the same type be represented as sets, it is
sometimes possible to merge nodes in an S-DAG, thereby obtaining a smaller
equivalent representation. Examples are given in Figure 7.

A minor matter should be resolved at this point. It may happen that there is
a temporal link between two decision variables (you cannot take out the spark
plugs before you have opened the motor hood). In this case we allow the two

2 Recall that observations are cost free.

9

O1

O1

O1

O1

O2

O2

O3

O3 D1

D1

D1

D1

D1

D2
D2

D2

D2

D3

D3

D3D3

O1,O2,O3

D1,D2

D1,D2

Fig. 7. Examples of merging nodes in an S-DAG.

decision variables to be placed in the same node, and since it does not affect
the expected utility we also allow them to be commuted.

Definition 5 An S-DAG is minimal if no consecutive nodes can be merged
without changing the set of admissible orderings.

Definition 6 Let ≺ be a partial order induced by the UID Γ, let σ be an ad-
missible ordering, let O be an observation variable, and let D be O’s immediate
decision predecessor in σ. O is misplaced if D ⊀ O.

Note that due to observation 1 any UID has an optimal strategy without
misplaced observations. We aim at constructing an S-DAG containing exactly
all admissible orderings without misplaced observations.

Definition 7 Let Γ be a UID. A minimal S-DAG containing exactly all ad-
missible orderings without misplaced observations is a normal form S-DAG
(NFS-DAG) for Γ.

The S-DAG in Figure 6 is a normal form S-DAG for a UID with the partial
ordering in Figure 5.

Proposition 4.1 Let G be an S-DAG for the UID Γ, and let G′ be a normal
form S-DAG for Γ. Then the expected utility of an optimal strategy for G′ is
not smaller than the expected utility of an optimal strategy for G.

10

Proof If the optimal strategy for G has no misplaced observations, it is a
strategy in G′. If it has misplaced observations, it can be improved. 2

We state the following proposition without proof:

Proposition 4.2 Any normal form S-DAG has the following properties

(1) All children (different from sink) of observation nodes are decision nodes.
(2) All children (different from sink) of decision nodes are observation nodes.
(3) A decision node has exactly one child.
(4) An observation node (different from source) has exactly one parent.
(5) Let the observation node O be a child of D; let D ∈ D and O ∈ O. Then

D ≺ O.

Lemma 1 Let D be a decision node in an S-DAG, and let O1 and O2 be
parents of D. If O1 is a proper subset of O2, then any path from source to O2

contains a misplaced observation.

Proof

Let D have the parents O1 and O2 such that O1 ⊂ O2, and let D1 and D2

be their parents, respectively. If D1 ⊂ D2, then any O ∈ O2 \ O1 would be
misplaced with respect to any D ∈ D1 in D2. If D1 6⊆ D2, consider D1 ∈
D1 \ D2. Then D1 must appear in a D3 on any path from source to O2 (see
Figure 8). Consider O3 ∈ O3. Since O3 /∈ O1 (as O1 ⊂ O2), we have D1 ⊀ O3,
and O3 is misplaced. Finally, if D1 = D2, then O ∈ O2 \ O1 is misplaced.

D1

D

O1

D2O3D3 O2

Fig. 8. The situation with O1 ⊂ O2 and D2 ⊆ D1.

2

Proposition 4.3 Let D be a decision node in a normal form S-DAG, and let
O1 and O2 be parents of D. Then O1 6⊆ O2.

Proof IfO1 = O2, then they can be merged, and ifO1 ⊂ O2, then according to
Lemma 1 the S-DAG contains a misplaced observation and cannot be minimal.
2

Let D be a decision node with child O. The decision children of D are the
children of O.

11

5 Construction of Normal Form S-DAGs

To exploit Proposition 4.3, we construct a normal form S-DAG by starting
with sink and move backwards in time. If the UID has n decision variables,
the construction is performed in up to n+1 steps starting by determining the
set of possible last decisions. At each step, we first identify the set of possible
preceding decisions, and afterwards the sets of observations released by these
decisions are found and links are entered.

We shall illustrate the method by using a UID with the partial temporal
ordering illustrated in Figure 5.

We start the construction by introducing the node sink and entering all non-
observables to sink . Next, consider which decisions may be the last decision.
This is the decision variable D7. As D7 does not release any observations,
we enter the link (D7, sink). Next, we determine the set of decisions that may
precede D7. These areD4,D5, andD6. These decisions release the observations
O4, {O4, O5}, and O6, respectively. As the observations released by D5 contain
the observations released by D4, Proposition 4.3 yields that D5 is not really
an option. Hence, the situation is as illustrated in Figure 9.

SinkD7

O6

O4

D6

D4

Fig. 9. The construction after Step 2.

The nodes D4 andD6 are called the top nodes of Step 2, and the set of decision
variables on the path starting in a top node T and ending in sink are called
the future of T .

In Step 3 we investigate whether top nodes from Step 2 have identical future.
This is not the case, and we determine the possible decision parents for each
top node. After determining the released observations and entering links, we
get the situation in Figure 10.

In Step 4 we realize that the paths from the top nodes D6 and D4 to sink
contain the same variables. The past of D6 and D4 must then also contain
the same variables. This means that the decision options from source to D4

and D6, respectively, are identical. In short, they have identical past, and they
shall be given the same parents. We determine the possible decision parents
for each top node, determine released observations, enter links, and we get the
situation in Figure 6 indicated with ’Step 4’.

12

O4

Sink

D1

D5

D6

D4

O1

O5
D4

D6 O6

D7

O4

O6

Fig. 10. The construction after Step 3.

In Step 5 we determine that the upper D5 and the upper D1 have common
future, etc. and we get the situation indicated with ’Step 5’. In Step 6, the
three upper top nodes have common future, and as D2 ≺ D3, the parent is
D3. For the top node D3, the possible parents D1 and D2 release the same
observations, and the two decisions are merged into one node (thereby Step 7
has also been performed for the lower branch). In Step 7 we ignore D2 ≺ D3

and merge. The construction is finished by adding possible free observations
to source, and we get the S-DAG in Figure 6.

Proposition 5.1 The construction results in a normal form S-DAG.

Proof We shall prove that (1) no nodes can be merged, (2) there are no
misplaced observations, and (3) all admissible orderings without misplaced
observations are represented.

(1) No consecutive nodes are of the same type.
(2) When an observation node O with parent D is entered, none of O′s ob-

servations are misplaced. However, if D in the next step is extended with
a new decision variable D (that is, D does not release any observations
at that step), then some elements of O may be misplaced with respect
to D. As D in step i + 1 does not release observations, then its released
observations must be a subset of O. In that case we could in step i have
branched to D as well as D, but since the observations released by D
form a proper subset of O, then branching to D would have been refuted
by Proposition 4.3.

(3) Let σ = < x1, . . . , xm > be an admissible ordering without misplaced
observations, and assume that the subsequence < xi, . . . , xm > is repre-
sented, where xi is a decision variable. Let xj be the immediate preceding
decision variable, and let the subsequence start in the node D from the
S-DAG with decision parents D1, . . . ,Dk (see Figure 11).

As all temporal descendants of xj are included in the structure at D′s
position, xj has been considered at that place during the construction.

13

xiDk

O1

Ok

D

D1

Fig. 11. The situation for the proof of Proposition 3.

If xj ∈ D1, say, then the elements of O1 would be misplaced if they
occur after xi in σ, and they cannot occur before xj . Hence the variables
between xj and xi are exactly O1, and the subsequence < xj , . . . xm > is
represented. If xj is not a member of any Dq, then it has been refused in
the construction due to Proposition 4.3, and from the proof we infer that
σ must have a misplaced observation.

2

6 Solving an S-DAG with Variable Elimination

An S-DAG is solved in almost the same manner as an influence diagram
(Shachter, 1986; Shenoy, 1992; Jensen et al., 1994; Shenoy, 1994; Madsen and
Jensen, 1999). Variables are eliminated in reverse order and when a branch-
ing point is met, the elimination is branched out. When several paths meet,
the probability potentials are the same, and the utility potentials are unified
through maximization.

Using the method of Jensen and Vomlelova (2002) this results in the following
operations; all potentials are initially divided into two sets, one that includes
the probability potentials, Φ, and one that includes the utility potentials, Ψ.

When eliminating a variable,N , the potential sets are modified in the following
way. First we identify the sets

ΦN←{φ ∈ Φ|N ∈ dom(φ)};

ΨN←{ψ ∈ Ψ|N ∈ dom(ψ)}.

It is from these sets that N is eliminated resulting in the potentials φN and
ψN . If N is a chance variable, then

14

φN←
∑

N

∏

ΦN ; (1)

ψN←
∑

N

∏

ΦN

(

∑

ΨN

)

,

where the notations
∏

Φ and
∑

Ψ denote the product of all probability po-
tentials in Φ and the sum of all utility potentials in Ψ, respectively.

If N is a decision variable, then 3

φN←max
N

∏

ΦN ; (2)

ψN←max
N

∏

ΦN

(

∑

ΨN

)

.

Finally, the potentials that did not include N in their domains are joined with
the potentials resulting from the elimination:

Φ← (Φ\ΦN) ∪ {φN}; (3)

Ψ← (Ψ\ΨN) ∪

{

ψN

φN

}

.

With the above procedure for eliminating a variable, it is now possible to
eliminate variables along the branches of an S-DAG; at branching points Φ
and Ψ are copied, so that the variable elimination can continue along each
branch, and at points where branches meet, the potentials in Ψ are unified by
means of max-combination:

Ψ←
{

max
(

∑

Ψ1, . . . ,
∑

Ψn
)}

,

where n is the number of branches that connect at a specified node in the S-
DAG and Ψi is the set Ψ of branch i. There is no need to join sets of probability
potentials, as their products are identical for each branch that meet in a point.
This is due to the fact that they are all the result of sum-marginalizing out the
same set of variables from the same set of potentials. As sum-marginalizations
can be commuted, all the branches must give the same result, and an arbitrary
set can be used for the following marginalizations.

The procedure above determines the maximal expected utility of an optimal
strategy, but is easily modified to also specify an optimal strategy.

3 The potentials in ΦN are constant over N and the first max-operation in (2) can
therefore be replaced by any other operator fixing the state of N .

15

7 Solving an S-DAG by Conditioning

The variable elimination (VE) algorithm solves a UID by eliminating the vari-
ables in reverse temporal order as specified by the S-DAG. This approach may
give rise to (at least) two potential problems. First of all, if the decision maker
stops the algorithm prematurely (due to time constraints), she would most
likely be interested in a solution that at least covers the first decision in the
UID. Unfortunately, the first decision in the UID is also the last decision being
visited by the VE algorithm. Secondly, if a large part of the past is relevant
for a particular decision we may end up with intermediate potentials that are
intractably large.

To address these problems, we may look for alternative solution methods. For
example, rather than going in the reverse temporal order, the UID may be
solved by recursively “unfolding” the model into a decision tree using a depth-
first search procedure. When a “call” returns to a chance node we simply add
the returned value to any previous value associated with that node, and when
a “call” returns to a decision node we keep the existing value if it is larger than
the returned value, otherwise we keep the returned value. The probabilities for
the decision tree may be found from the probability model embedded in the
UID; for the purpose of calculating the probabilities required by the decision
tree, the UID can be treated as a Bayesian network.

This algorithm has two potential advantages over VE: the algorithm starts
with the first decision, hence by devising an appropriate heuristic function for
estimating the expected utility at any node in the tree, we may get an any-time
algorithm that always returns a solution for the first decision. 4 Moreover, due
to the way in which the tree is simultaneously expanded and solved, we only
need to store a single number for each variable in the UID including branch
point decisions (disregarding the space required for calculating the probabili-
ties). Thus, we have a linear space algorithm for solving UIDs. The drawback
of this procedure is that the time complexity is exponential in the number of
variables. In particular, by using the decision tree framework as the underlying
computational structure we are faced with complexity problems of at least the
same magnitude as when influence diagrams are unfolded into decision trees.
This problem points towards another framework for organizing the calcula-
tions: instead of working on the decision tree representation of the UID, we
take outset in the corresponding S-DAG and perform the search/conditioning
in this structure; by conditioning we refer to the instantiation of the past of a
node in the S-DAG.

In what follows we describe a linear-space solution procedure, called S-DAG

4 Devising such a heuristic function is a subject of ongoing research.

16

conditioning (SC), which follows the approach outlined above. The algorithm
also incorporates a space efficient algorithm for calculating the required prob-
abilities, and it will subsequently be extended with a cache that will effectively
make it an any-space algorithm. 5

7.1 Initializing the S-DAG Structure

When performing S-DAG conditioning we first initialize the S-DAG with the
probability and utility potentials from the UID: by traversing all paths from
sink to source, a pointer from a node X to a potential is introduced if i) the
potential contains a variable from X in its domain, and ii) it has not been
assigned to another node on the path between X and sink . We shall use ΦX

and ΨX to denote the probability potentials and the utility potentials assigned
to node X ; for each φ ∈ ΦX we have dom(φ) ⊆ Past(X) ∪ {X} (similarly for
each ψ ∈ ΨX).

Note that based on the initialized S-DAG structure it is easy to verify that the
maximum expected utility ρDk

for any decision node Dk (as also calculated by
the VE algorithm) can be written as (see Figure 12)

ρDk
(Past(Dk)) = max

Dk

∑

ΨDk
+

∑

Ck

P (Ck | Past(Dk),Dk)
[

∑

ΨCk
+ ρDk+1

]

 ,

(4)
where ρDk+1

is the maximum over the expected utility potentials {ρD1
k+1
, ρD2

k+1
,

. . . , ρDl
k+1
} for the children of Ck.

Dk Ck

D1
k+1

D2
k+1

Dl
k+1

Fig. 12. A partial S-DAG.

7.2 Performing S-DAG Conditioning

In S-DAG conditioning we start in source and move towards sink following a
depth first search. Every time a new node X is reached we iteratively consider

5 The algorithm is inspired by the version of recursive conditioning for Bayesian
networks introduced by Darwiche (2001).

17

all configurations over the variables in X and calculate their contribution to
the expected utility.

Assume now that the recursion has reached a decision node Dk and that the
variables in Past(Dk) are instantiated to past(Dk). In order to calculate the
expected utility at Dk we should evaluate

∑

ΨDk
+

∑

Ck

P (Ck | past(Dk),dk) ·
(

∑

ΨCk
+ ρDk+1

)

(5)

for each instantiation dk of the variables in Dk and select the maximum value
(see Equation 4).

For the first part of the expression above, we have that all variables down to
Dk are instantiated, and

∑

ΨDk
is therefore reduced from a sum of potentials

to a sum of terms from the potentials in ΨDk
. For the second part, consider the

chance node Ck following Dk. The chance variables in this node are marginal-
ized out by evaluating (and summing together) the following expression for
each instantiation of Ck:

P (ck | past(Dk),dk) ·
(

∑

ΨCk
+ ρDk+1

)

. (6)

As in (5), the operation
∑

ΨCk
is a sum of lookups in the original potentials.

Moreover, the expected utility ρDk+1
is found by taking the maximum of ρD1

k+1
,

. . . , ρDl
k+1

, where D1
k+1, . . .D

l
k+1 are the children of Ck; each of these terms are

evaluated in the same way as (5).

The recursion stops at sink , and when the procedure returns to source we have
the maximum expected utility of the UID. From the description above we also
see that we only need to store a single number for each node being visited,
hence the expression in Equation 4 is reduced from (space consuming) opera-
tions on potentials to operations working on the “entry-level” of the potentials.
Thus, we have a linear space algorithm for solving UIDs (not including the
space used for representing the UID and the normal form S-DAG). 6

7.3 Calculation of Probabilities

The calculations above require the conditional probabilities P (ck | past(Ck)),
for all instantiations ck of Ck and for all k. These probabilities can be calculated
as

P (ck | past(Ck)) =
P (ck, past(Ck))

∑

ck
P (ck, past(Ck))

.

6 It is still an open problem how to avoid holding the full normal form S-DAG in
memory.

18

For the last chance node in an S-DAG the probability is given by

P (cn | past(Cn)) =

∏

ΦCn
(xn)

∑

Cn

∏

ΦCn
(xn)

, (7)

where xn is the recorded instantiation of the potentials in ΦCn
. By iterating

over all the configurations of Cn and calculating the numerator, the denomi-
nator can be found as the sum of the numerators. Thus, we do not need to
calculate the denominator separately. For the second last chance node Cn−1

the probabilities are given by

P (cn−1 | past(Cn−1)) =

∏

Φn−1(xn−1) [maxDn

∑

Cn

∏

Φn(xn)]
∑

Cn−1

∏

Φn−1(xn−1) [maxDn

∑

Cn

∏

Φn(xn)]
.

It is worth emphasizing that these calculations simply mimics the probability
calculations done by variable elimination. Note also that the maximization is
vacuous, since the involved potentials are constant over the decision variables
in question (see Equation 2).

In general, the probabilities for Ck can be calculated (recursively) from the
potentials assigned to Ck together with the probability (the denominator) cal-
culated at the previous step:

P (ck | past(Ck)) =

∏

Φk(xk) pk+1
∑

Ck

∏

Φk(xk) pk+1
(8)

where
pk+1 = max

Dk+1

∑

Ck+1

∏

Φk+1(xk+1) · · ·max
Dn

∑

Cn

∏

Φn(xn). (9)

Observe that pk+1 is the potential/value obtained by eliminating all variables
following Ck; in that way the procedure above resembles updating steps 1 and
3 in the VE algorithm (except that this calculation should be done for all
chance variables due to the recursion).

From the above expression we see that the space required for calculating the
necessary probabilities is linear in the number of variables.

The low space complexity is achieved at the expense of the time complexity
of the algorithm: For each node in the S-DAG and for each configuration
of its past, we calculate both the expected utility and the probability for
that configuration. Since these calculations are performed without reusing
previous results, all the expected utility calculations involve iterating over all
configurations and admissible orderings (bounded by the number of paths in
the S-DAG) of the future variables for the node in question; the same holds for
the probability calculations except that the ordering is irrelevant. An upper
bound on the time complexity is therefore given by O(n · (nPath · exp(nDec +
nObs + nHid) + exp(nObs + nHid)), where n is the number of nodes in the

19

S-DAG, nPath is the number of different directed paths from source to sink ,
nDec is the number of decision variables, nObs is the number of observable
chance variables, and nHid is the number of unobservable chance variables.

7.4 Pseudo Code for the S-DAG Conditioning Algorithm

The full SC-algorithm (described above) is summarized in Algorithm 1 and
Algorithm 2; Algorithm 1 handles the probability calculations and Algorithm 2
implements the expected utility calculations.

Algorithm 1 marginalizes out chance and decision variables from the proba-
bility potentials. The most basic function is LookUpProb, which performs a
simple lookup in the relevant probability tables according to the recorded
instantiation (globally defined). The functions SumMarProb and Max-
MarProb correspond to steps 1 and 3 in the VE algorithm (i.e., the first
part of (1) and (2), respectively). In SumMarProb we calculate the prob-
ability of the recorded past for chance node C. The calculations depend on
whether C has any temporal successors: if no temporal successors exists (i.e.,
C is sink), then we can directly marginalize out C (lines 5–6). Otherwise we
first (recursively) eliminate the successor nodes before marginalizing out C
(lines 8–9). In MaxMarProb we exploit that the past of a decision variable
D is independent of D. Thus, finding the probability P (past(D)) basically
amounts to picking an arbitrary state for D (line 1) and marginalizing out the
variables in the future of D (lines 2-3).

Algorithm 2 consists of four sub-functions. SumMarUtil and MaxMarUtil
perform the actual marginalizations of chance and decision variables, respec-
tively. 7 The algorithm MaxCombUtil performs maximization at branching
points (which, according to Proposition 4.2, are always chance nodes) and
LookUpUtil performs a simple lookup in the relevant utility tables accord-
ing to the recorded instantiation. Similar to SumMarProb, SumMarUtil
considers two situations depending on whether C has any temporal successors.
If C is sink , then for each state of C we find the relevant probability and utility
by simply indexing the associated tables (lines 6–7). On the other hand, if C is
not sink , then for each configuration of C we calculate the corresponding util-
ity (line 9) by combining the associated utility with the expected utility of the
recorded instantiation (calculated recursively using MaxCombUtil); similar
calculations are performed when finding the associated probability (line 11).
Finally, the expected utility of C is calculated (lines 12–13 and 15). The func-

7 For notational convenience we assume that the algorithms are invoked on an
NFS-DAG, which also guarantees that neighboring nodes will be of opposite type
(disregarding source and sink). The proposed algorithm can, however, easily be
adapted to handle general S-DAG structures.

20

tion MaxMarUtil marginalizes out decision variables by keeping track of
the state having the highest expected utility (calculated recursively).

Algorithm 1 Calculates required probabilities
SumMarProb(C) - Find P (past(C))

Input: C - an S-DAG node containing chance variables
1: y← the recorded instantiations
2: p← 0
3: for all instantiations, c, of C do

4: record instantiation c

5: if C is sink then

6: p← p + LookupProb(C)
7: else

8: D ← a child of C.
9: p← p + LookupProb(C) ·MaxMarProb(D)

10: un-record instantiation c

11: return p

MaxMarProb(D) - Find P (past(D))
Input: D - an S-DAG node containing decision variables

1: Record any instantiation of the variables in D
2: C ← a child of D.
3: p← SumMarProb(C)
4: un-record the instantiation of variables in D
5: return p

LookupProb(C)
Input: C - an S-DAG node

1: ΦC ← the probability potentials associated with C.
2: x← the recorded instantiations of the potentials in ΦC .
3: return

∏

ΦC(x)

8 S-DAG Conditioning with Cache

During S-DAG conditioning, we may perform the same calculations several
times. For example, the calculation of the maximum expected utility for a
certain node X is independent of the ordering of the nodes in the past of X .
Thus, if there are several paths between source and X , then the maximum
expected utility for X will be the same for each path.

In this section we address this issue by extending the conditioning algorithm
with a cache that allows calculations to be stored and reused, thus reducing
the required number of recursions and thereby the runtime. Moreover, since
we can control the amount of space reserved for cache, it is possible to make
an explicit trade-off between time and space.

21

Algorithm 2 Determines the MEU for an S-DAG.

SumMarUtil(C)
Input: C - an S-DAG node containing chance variables

1: y← the recorded instantiations
2: eu, p, n, u← 0
3: for all instantiations, c, of C do

4: record instantiation c

5: if C is sink then

6: u← LookupUtil(C)
7: p← LookupProb(C)
8: else

9: u← LookupUtil(C) + MaxCombUtil(C)
10: D ← a child of C.
11: p← LookupProb(C) ·MaxMarProb(D)
12: eu← eu + p · u
13: n← n + p.
14: un-record instantiation c

15: return eu/n

MaxMarUtil(D)
Input: D - an S-DAG node containing decision variables

1: y← the recorded instantiations
2: C ← the S-DAG node containing chance variables released by D
3: v ← −∞
4: for all instantiations, c, of D do

5: record instantiation c.
6: v ← max{v,LookupUtil(D) + SumMarUtil(C)}
7: un-record instantiation c.
8: return v

MaxCombUtil(C)
Input: C - an S-DAG node containing chance variables

1: v ← −∞
2: for all child nodes, Di, of C do

3: v ← max{v,MaxMarUtil(Di)}
4: return v

LookupUtil(X)
Input: X - an S-DAG node

1: ΨX ← the utility potentials associated with X .
2: x← the recorded instantiations of the potentials in ΨX .
3: return

∑

ΨX (x).

8.1 Caching Expected Utility Calculations

Consider a node X in an S-DAG, and let xi and xj be two instantiations of
the past for X differing only on the state of a variable Y ∈ Past(X). If the

22

maximum expected utility for X is the same for both xi and xj , then we can
cache the result for xi and reuse that result instead of invoking the algorithm
on xj . To determine when calculations can be reused involves identifying the
variables in the past of a node, say X , that do not influence the expected
utility at X .

Definition 8 Let X and Y be two variables in a UID and let ≺ be an admis-
sible ordering with Y ≺ X. Y is said to be EU-relevant for X w.r.t. ≺ if there
exists a realization and a configuration c ∈ sp(Past(X)≺ \ {Y }) s.t.

ρ≺X(c, yi) 6= ρ≺X(c, yj) for some yi, yj ∈ sp(Y),

where ρ≺X is the expected utility of X under the admissible ordering ≺.

We say that Y is EU-relevant for X if there exists an admissible order-
ing ≺ so that Y is EU-relevant for X w.r.t. ≺. The set of variables being
EU-relevant for X under ≺ is called the EU-Context for X w.r.t. ≺ (de-
noted by EU-Context(X)≺), and the set of EU-relevant variables is denoted
EU-Context(X). Finally, if X is a set of variables, then Y is EU-relevant for
X if Y is EU-relevant for some X ∈ X . The configurations over the variables
in EU-Context(X) therefore constitute the necessary and sufficient set of con-
figurations over the past of X for which we need to calculate the expected
utility.

In order to specify a syntactical characterization of the EU-Context, we note
that if a past variable Y should influence the expected utility at X it should
(loosely speaking) influence a utility function being relevant for either X or a
variable in the future of X . The set of variables influencing a utility function
relevant for X is called the required past for X (denoted by Req(X)), see
below for details. Based on the notion of required past we have the following
proposition.

Proposition 8.1 Let I be a UID and let X be a node in an S-DAG repre-
senting I. Then

EU-Context(X) =

⋃

Y∈Ftr(X)

Req(Y)

 ∩ past(X), (10)

where Ftr(X) are the nodes (including X) on the path from X to sink.

In order to establish a precise definition of the required past, consider a UID
with a variable X. The set of variables required for X depends on the ordering
of the variables succeeding X. Thus, each admissible ordering ≺ of the suc-
ceeding variables defines a set of required variables Req(X)≺, and the union
of these sets corresponds to the variables Req(X) required for X. Since a UID
with an admissible ordering is basically an ID, we can use a specification of the

23

required variables in IDs to characterize the required variables in UIDs: each
path from a node X to sink represents an ordering, so to find the required
past for X we identify the required past for X for each of these orderings.
Precise definitions as well as algorithms for performing this type of analysis
in IDs are described in (Nielsen and Jensen, 1999; Shachter, 1999; Lauritzen
and Nilsson, 2001), and since they are easily adapted to UIDs we have chosen
not to include their (slightly) modified versions in this paper. Note that the
required variables are described for decision variables only, but the definitions
can easily be generalized to chance variables.

8.2 Caching Probability Calculations

First of all, recall that Equation 8 specifies the calculation of the probability
for chance node Ck. In this expression the factor pk+1 is found according to
Equation 9, which in turn corresponds to the denominator of Equation 8
calculated at Ck+1. Thus by storing the denominator pk+1 found at Ck+1 it will
not be necessary to recalculate Equation 9 when the recursion returns to Ck.

As for the calculation of expected utilities, the probabilities are calculated
based on a specific instantiation of the past variables. However, for probabil-
ity calculations, the set of variables defining the context for a node (called
the P-Context) is slightly different from the EU-Context for that node. More
precisely, the P-Context for a node C is the set of nodes in the past of C
that may influence the conditional probability of either C or a descendant of
C. If ReqP (C) ⊆ Past(C) denotes the variables on which C is conditionally
dependent given the remaining variables in its past, then we have:

P-Context(C) =

⋃

X∈Ftr(C) ∧ X is a chance node

ReqP (X)

 ∩ Past(C).

For the syntactical characterization of the variables being required for a chance
variable we first note that this set is independent of the ordering of both the
future and the past variables; all variables in the past are instantiated and the
future chance variables may be commuted (no future decision can influence
the probability of the node in question). Based on this observation we have
that:

ReqP (C) = {Y |Y ∈ Past(C) and Y is d-connected to C given Past(C)\{Y }}.

Finally, it should be noted that this characterization may include redundant
variables. For example, Y ∈ P-Context(X) is redundant if Y and X may
be commuted without affecting the expected utility, or if Y is included in

24

A B

C

D1

D2

U1

U2

Fig. 13. A is required for C under {A} ≺ D1 ≺ {B} ≺ D2 ≺ {C}, but A is not
required for C under the EU-equivalent ordering {A} ≺ D1 ≺ D2 ≺ {B,C}.

P-Context(X) because Y ∈ ReqP (Z) and Z is effectively barren (i.e., it can
be marginalized out without affecting the expected utility).

Example 2 A UID with an admissible ordering of the variables basically cor-
responds to an ID, hence we can consider the ID depicted in Figure 13 as a
UID. This model specifies the ordering {A} ≺ D1 ≺ {B} ≺ D2 ≺ {C}, and
according to the characterization above we find that A ∈ P-Context(C). How-
ever, B and D2 can be commuted since B is not required for D2, in which case
we get the ordering {A} ≺ D1 ≺ D2 ≺ {B,C}, and for this ordering we find
that A 6∈ P-Context(C).

8.3 Extending the conditioning algorithm with cache

The proposed conditioning algorithm can easily be changed to take advantage
of a cache. Basically we simply need to check for existing cache entries in the
beginning of each algorithm and, if required, add the result of the algorithm
to the cache prior to returning. In Algorithm 2, the cache check is accom-
plished by including the following line of code between lines 1 and 2 in both
MaxMarUtil(X) and SumMarUtil(X).

if EU-cacheX [y] 6= nil then return EU-cacheX [y]

Any result calculated in MaxMarUtil(X) may be added to the cache by in-
cluding the following line of code between lines 7 and 8 (EU-cache? (X ,y) rep-
resents the caching strategy determining whether a result should be cached).

if EU-cache? (X ,y) then EU-cacheX [y]← v

SumMarUtil(X) also includes the above command, but in addition it also
includes the following command (between lines 14 and 15) that populates
the probability cache (basically storing the value of the denominator from
Equation 8 in the cache).

if P-cache? (X ,y) then P-cacheX [y]← n

25

For Algorithm 1, cache-handling is done by SumMarProp(X), and it needs
only to implement a cache check since the probability cache is populated by
SumMarUtil(X). In order to accomplish this, the following command should
be included between lines 1 and 2.

if P-cacheX [y] 6= nil then return P-cacheX [y]

8.4 Complexity of the SC Algorithm with Cache

An upper bound for the space complexity of the SC algorithm with full cache
is the size of the contexts for all the S-DAG nodes. For the time complexity we
note that the number of calls made to a given node is the sum of the number of
calls made from each of its parents. For a parent node we make a call for each
configuration of the variables in that node and its context. An upper bound
on the time complexity is therefore O(n · |nParents|∗ ·exp(|Context+Node|∗)),
where |nParents|∗ is the maximum number of parents for an S-DAG node, and
|Context + Node|∗ is the maximum number of variables in the context of the
nodes and the variables in the nodes itself.

8.5 Caching Strategies

The EU-Context and the P-Context define the variable configurations for
which calculations may be repeated and therefore the configurations for which
results may be cached and possibly reused. Since not all results should nec-
essarily be cached (e.g. due to memory constraints), we introduce a caching
function specifying the proportion of the context for a given node that will
have a cache attached; the notion of a caching function is inspired by Darwiche
(2001).

Definition 9 A caching function for an S-DAG is a function cf that for each
node X in the S-DAG returns a number, 0 ≤ cf(K) ≤ 1. For a given node K,
the caching function specifies a caching factor cf(K).

Since we are dealing with two types of contexts, we use ucf and pcf to refer to
the caching functions for the EU-Contexts and the P-Contexts, respectively.
The caching factor ucf(X) specifies the fraction of | sp(EU-Context(X))|, for
which we allocate space in memory. Using EU-Context(X)# as a shorthand
for | sp(EU-Context(X))|, we get the following for the total size of the cache
for node X

26

|EU-cacheX | = ucf(X) · EU-Context(X)#;

|P-cacheX | = pcf(X) · P-Context(X)#.
(11)

We may employ different strategies for assigning cache (i.e., determining ucf
and pcf), and in the following we will describe two such strategies.

8.5.1 Naive Caching

A simple caching strategy could be to give all nodes the same caching factor.
That is, if Mem is the total amount of memory available, then the caching
function is given by

ucf(·) =
Mem

∑

X EU-Context(X)# +
∑

X P-Context(X)#
.

This naive algorithm is introduced merely as a point of reference for the fol-
lowing algorithm.

8.5.2 Greedy Caching

The main aim of caching is to reduce the runtime by increasing the amount
of space available to the conditioning algorithm. Since the runtime of the
algorithm is proportional to the total number of lookups in the probability
and utility potentials (see Section 9.1), we look for a caching strategy that
seeks to minimize this number.

In this section we define a greedy caching strategy that repeatedly assigns a
full cache to the node for which we obtain the greatest reduction in the total
number of lookups relative to the size of the cache. 8

In general, the total number of lookups is the number of lookups for the
expected utility calculations and the number of lookups for the probability
calculations:

TotalReadsucf ,pcf = EU-TotalReadsucf + P-TotalReadsucf ,pcf . (12)

The total number of lookups for the expected utility calculations is the sum
of the number of lookups at each node:

EU-TotalReadsucf =
∑

X

EU-Reads(X)ucf .

8 This algorithms is inspired by the greedy algorithm of Allen et al. (2004).

27

The value of EU-Reads(X)ucf is the sum of the number of lookups performed
at each call to X . A single call to X involves a cache check and if a cache-entry
is not found the algorithm iterates over the configurations of the variables in
X ; at each iteration we make a lookup in the potentials in ΦX and ΨX . The
proportion of the number of calls for which a cache-entry will not be found
is (1 − ucf), and since the number of lookups required to fill the cache is
|EU-cacheX | · X

· (|ΦX |+ |ΨX |) we get:

EU-Reads(X)ucf =EU-CallTo(X)ucf(1 + (1− ucf)X#(|ΦX |+

|ΨX |)) + |EU-cacheX |X
#(|ΦX |+ |ΨX |).

If X is not the source node, then the total number of calls to X is the sum of
the number of calls to X made from each of its parents pa(X) in the S-DAG.
For each parent P we make P# calls for each cache entry at P together with
P# calls for each call to P that is not covered by the cache (there will be
(1− ucf(P))EU-CallTo(P)ucf such calls). Thus we have

EU-CallTo(X)ucf =

1 if X = source
∑

P∈pa(X)

(

[1− ucf(P)] EU-CallTo(P)ucf P
#

+ |EU-cacheP | P
#

)

else.

The derivations above do not cover the number of lookups needed to per-
form probability updating. Probability updating is always initiated by the
expected utility calculations at a chance node. When calculating a probability
at a chance node C, the algorithm performs lookups at all nodes on the path
between C and sink :

EUtoP-Reads(C)pcf =
∑

Y∈Path(C,sink)

P-Reads(Y)pcf , (13)

where Path(C, sink) is any path from C to sink . The value of P-Reads(Y)pcf

is determined by Algorithm 1. Recall that this algorithm is not responsible
for filling the P-cache and, in particular, for the node in question the cache is
filled before the first call to Algorithm 1. The number of lookups for a node
X is therefore

P-Reads(X)pcf =

0 if X is a dec.

P-CallTo(X)pcf ·
(

1 + [1− pcf(X)] X# |ΦX |
)

else.

If X is the start node for the current recursive call (for probability calcula-
tions) initiated in Equation 13, then P-CallTo(X)pcf is set to 1. Otherwise, the

28

number of calls to X is (the derivation follows the derivation for Equation 8)

P-CallTo(X)pcf =

1 if X = source

P-CallTo(P)pcf if P is a dec.

[1− pcf(P)] P-CallTo(P)pcfP
#+

|P-cacheP |P
else,

where P is a parent of X .

Finally, the total number of lookups for probability calculations is the number
of lookups required to perform the expected utility calculations at all the
chance nodes:

P-TotalReadsucf,pcf =
∑

C∈VC

(

|EU-cacheC|C
#EUtoP-Reads(DC)+

(1− ucf(C))EU-CallTo(C)ucfC
#EUtoP-Reads(DC)pcf)

)

,

where VC are the chance nodes in the S-DAG and DC is any decision child of
C.

We now have a specification of the number of lookups performed by the al-
gorithm using caching functions ucf and pcf. In order to identify the caching
functions that minimize the total number of lookups using the least amount of
memory, we employ a greedy strategy: myopically change ucf and pcf so that
a full cache is assigned to the node that gives the largest reduction in the total
number of lookups relative to the size of the context/cache. This corresponds
to changing either ucf or pcf so that a full cache is assigned to the context
with largest score (ucfX represent the caching function obtained from ucf by
assigning a full cache to X ; similar for pcfX):

EU-Scoreucf,pcf(X) =
TotalReadsucf,pcf − TotalReadsucfX ,pcf

EU-Context(X)#

P-Scoreucf,pcf(X) =
TotalReadsucf,pcf − TotalReadsucf ,pcfX

P-Context(X)#
,

where ucf(X) = 0, ucfX (X) = 1, pcf(X) = 0, pcfX (X) = 1,. Note that after a
node has been assigned a cache, the scores need to be recalculated. However,
we may exploit that only the future of the node in question are affected by
the cache assignment.

The greedy caching strategy terminates when all available memory has been
assigned or if all nodes have zero score. In the latter case, no reduction in
runtime can be achieved by using more memory on cache. Note that some
scores may be zero even if they have no cache assigned. This can happen if
e.g. the context of a node corresponds to its parent node and the context of
that node.

29

Finally, it should be noted that the calculation of the scores can be imple-
mented using dynamic programing starting at source and going towards sink .

9 Empirical Results

The proposed algorithms have been tested on a collection of randomly gener-
ated UIDs. The UIDs were generated using a modified version of the algorithm
described by Ide and Cozman (2002) for generating Bayesian networks. 9 The
modified algorithm is specified in Algorithm 3, and the generated UIDs are
summarized in Table 1, where the UIDs are grouped together in sets with
similar structural properties. For example, TS3 consists of 20 randomly gen-
erated UIDs, each of which has 3 decision nodes, 16 observable chance nodes,
2 hidden chance nodes, and 16 utility nodes. All nodes have an in-degree of 2
and the corresponding normal form S-DAG has 3 paths between source and
sink . The two singleton test sets represent handcrafted models: PigsLegs4 is
shown in Figure 14, and TT33 is similar to Figure 4, but with an extra test
and treatment decision added. Observe that the S-DAG for PigsLegs4 contains
a single path, which implies that the UID basically corresponds to an ID.

Algorithm 3 Random generation of UIDs.
UIDGenerator(nObs, nHid, nDec, nUtil, nDeg, nIt)

Output: A random UID.
1: Create a path with nObs observable chance nodes, nHid unobservable chance

nodes, and nDec decision nodes. In this path no edge may go from an unobserv-
able chance node to a decision node.

2: for i = 1 to nIt do

3: Select two different nodes s and p.
4: if there is an edge between s and p then

5: remove it provided that the graph remains connected.
6: else

7: Otherwise add an edge from s to p, provided that: (a) it will not make
the graph cyclic, (b) p is not an unobservable chance node and s is not
an decision, and (c) the number of children of s and parents of p does not
extend nDeg.

8: Add nUtil utility nodes with nDeg randomly selected parents (ensure that all
decision nodes have a utility node as child). Add randomly generated utility
functions to the utility nodes, and randomly generated probability potentials to
the chance nodes.

All tests have been performed using a Standard Java 2 implementation ex-
tending the Elvira framework and running on a Windows XP Pro SP2 PC
with a 1.7GHz Pentium 4 CPU and 512MB RAM.

9 Following Ide and Cozman (2002) we used nIt = 6 · (nObs+nHid+nDec)2 in the
algorithm.

30

Name nUID nDec nObs nHid nUtil nDeg nPath

TS3 20 3 16 2 16 2 3

TS4 20 4 8 12 4 3 3

TS7 20 7 14 7 7 3 12

TS16 20 16 4 2 3 6 1

PigsLegs4 1 12 8 5 13 3 1

TT33 1 6 7 5 7 7 360

Table 1
The test sets used for the empirical tests. nUID is the number of UIDs in the test
set.

H1 H2 H3 H4 H5

O1 O2 O3 O4

T1 T2 T3 T4

R1 R2 R3 R4

Tra
1 Tra

2 Tra
3 Tra

4

Trb
1 Trb

2 Trb
3 Trb

4

V

Fig. 14. A UID modeling test and treatment decisions for pigs with recurring leg
problems. At time i, Hi represent the health state of the pig, Oi is a cost-free
observation of symptoms, Ti is a test that produces the test result Ri, and Tra

i and
Trb

i are possible treatments.

9.1 Estimating the Runtime of the SC Algorithm

The greedy caching algorithm is based on the assumption that the running
time is proportional to the number to lookups in the probability and utility
tables. To verify this, we plotted the running time and the number of lookups
for each of the randomly generated UIDs. The results are shown in Figure 15
and confirm the assumption.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 0 500 1000 1500 2000 2500

N
um

be
r

of
 lo

ok
up

s

Time (sec)

Fig. 15. The plot shows the running time versus the number of lookups in the
probability and utility potentials for the randomly generated UIDs in Table 1.

As indicated by the plot, the number of lookups is a good predictor for the

31

actual running time of the algorithm. For a given amount of memory we can
therefore predict the running time of the algorithm, and thereby allow the
user to make an explicit trade-off between time and space prior to running
the algorithm.

9.2 Time-Space Trade-off for the SC Algorithms

We have tested the performance of the greedy caching algorithm compared to
the naive algorithm. Specifically, for each of the UIDs we have calculated the
number of lookups as a function of the amount of memory available. This has
been done for both algorithms, and the results are shown in Figures 16(a)-
16(f). The graphs show that the greedy algorithm consistently outperforms
the naive algorithm. The graphs also shows that the running time quickly
drops, when you allow the algorithm to use just a small amount of space for
caching.

9.3 VE vs. SC Using Full Cache

We have compared the variable elimination algorithm with the conditioning
algorithm using full cache and for both types of caching strategies. The tests
are intended to show to what extend the SC algorithms are competitive with
variable elimination when memory usage is not a problem.

Table 2(a) shows the memory usage of the algorithms and Table 2(b) shows the
time usage. The time reported is the time needed for calculating the MEU and
the space is the maximum heap size allocated by Java during the calculation of
the MEU. The latter includes the space for representing the UID, the normal
form S-DAG, the potential sets Φ and Ψ, the temporary potentials produced
by the variable eliminations (for the VE algorithm only), and the space used
for cache (for the SC algorithm only). It should be noted that the SC algorithm
(as described in Section 8.3) does not store the optimal policies, however, it
is straight-forward to modify the algorithm so that space is reserved for a
selected subset of these.

If we look at the memory usage of the algorithms we see that the greedy
SC algorithm is at least as good as both the naive SC algorithm and the
VE algorithm. The favorable space complexity of the SC algorithms (and the
greedy algorithm in particular) can be explained by the removal of redundant
variables during the structural analysis that establishes the contexts for the
nodes; the contexts’ sizes determine the maximum size of the cache. A similar
analysis is not performed by the VE algorithm, and the VE algorithm may
therefore produce intermediate potentials that include irrelevant variables.

32

 0

 2e+007

 4e+007

 6e+007

 8e+007

 1e+008

 1.2e+008

 0 20000 40000 60000 80000 100000 120000 140000

nR
ea

ds

nEntries

Naive Greedy

(a) TS3

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

 3e+008

 3.5e+008

 4e+008

 0 1000 2000 3000 4000 5000 6000 7000

nR
ea

ds

nEntries

Naive Greedy

(b) TS4

 0

 5e+009

 1e+010

 1.5e+010

 2e+010

 2.5e+010

 3e+010

 0 50000 100000 150000 200000 250000 300000 350000

nR
ea

ds

nEntries

Naive Greedy

(c) TS7

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 0 20000 40000 60000 80000 100000 120000

nR
ea

ds

nEntries

Naive Greedy

(d) TS16

 4.6e+008

 4.8e+008

 5e+008

 5.2e+008

 5.4e+008

 5.6e+008

 5.8e+008

 6e+008

 6.2e+008

 6.4e+008

 6.6e+008

 6.8e+008

 0 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006 1.6e+006 1.8e+006 2e+006

nR
ea

ds

nEntries

Naive Greedy

(e) PigsLegs4

 0

 2e+009

 4e+009

 6e+009

 8e+009

 1e+010

 1.2e+010

 1.4e+010

 0 20000 40000 60000 80000 100000 120000

nR
ea

ds

nEntries

Naive Greedy

(f) TT33

Fig. 16. (nEntries,nReads)-graphs. The graphs shows the number of lookups in the
probability and utility potentials as a function of the size of the cache.

Moreover, for VE the maximum size of a potential before eliminating an S-
DAG node X is in the worst case |Past(X) ∪ X |. In comparison, for the SC
algorithm the Context is in the worst case equal to Past(X). 10

The UID PigsLegs4 is an example of a particularly difficult model, since the
required past of a decision node equals the whole past for that node. This

10 The problem of redundant variables is not specific for UIDs, but also occurs
when solving e.g. influence diagrams using standard solution algorithms (see also
Vomlelova and Jensen (2004)).

33

results in large potentials for the VE algorithm and large contexts for the
SC algorithms; in general, the size of the contexts/potentials grows exponen-
tially in the number of time slices in the model. However, it turns out that
EU-Scoreucf,pcf(X) = 0 for every node X , which implies that every EU-cache
is effectively “dead”. Assigning cache to these nodes will therefore not reduce
the running time (this is recognized and exploited in the greedy algorithm).
In fact, in the PigsLegs4 example we got an OutOfMemoryError for the VE
algorithm, and at the same time the greedy algorithm could find the MEU
using only 0.243 Mb.

By considering the evaluation time we see that both SC algorithms perform
almost equally, but the VE algorithm is significantly better than both of them
(even though the theoretical time complexities are comparable). This is not
surprising, since VE may exploit independences within the nodes in the S-
DAG, and there is also a computational overhead involved in making the
recursive calls performed by the SC algorithms.

10 Future Work

The proposed conditioning algorithms rely on a full specification of the S-
DAG to be present in memory. For certain UIDs this may impose a memory
problem in itself, since the size of the S-DAG may grow exponentially in the
number of variables in the UID. An area of future research is to devise an
algorithm for constructing the S-DAG from source to sink , thereby allowing
the construction of the S-DAG to be interleaved with the SC-algorithm.

The current characterization of the P-Context (and the EU-Context for chance
variables) is only unique up to the specified S-DAG. This also implies that in
order to find a minimal P-Context we may need to investigate different S-DAG
representations of the same model. The S-DAG definition imposes certain
constraints on the ordering of the variables. For example, the S-DAG should
not include misplaced variables. However, having misplaced variables does not
necessarily influence the expected utility and this extra degree of freedom may
provide a way to reduce the size of the contexts by allowing certain variables
(of different types) to be commuted. It is a subject for future research to find
a characterization of the contexts that do not include redundant variables.

Acknowledgments

We wish to thank the Machine Intelligence group at Aalborg University for
fruitful discussions. We also thank the authors of the Elvira system for pro-

34

Max heap size (·106 bytes) Eval. time (sec.)

Alg. Avg. Min. Max. Std. Avg. Min. Max. Std.

TS3

VE 1.015 0.268 3.404 0.734 26.588 3.671 96.076 22.628

Naive 0.542 0.267 2.609 0.645 70.277 15.813 224.766 55.353

Greedy 0.318 0.267 0.751 0.133 67.416 14.766 204.234 51.981

TS4

VE 0.219 0.207 0.360 0.034 0.860 0.063 5.688 1.258

Naive 0.209 0.206 0.212 0.001 278.244 0.734 1383.343 364.274

Greedy 0.209 0.206 0.212 0.001 278.129 0.687 1372.015 362.127

TS7

VE 1.051 0.343 3.367 0.796 18.985 0.561 72.297 19.153

Naive 1.256 0.244 7.191 1.830 785.293 11.500 2114.672 699.235

Greedy 0.898 0.239 4.901 1.377 781.980 11.750 2143.922 701.438

TS16

VE 0.663 0.189 3.793 0.902 8.878 0.047 84.501 19.949

Naive 0.716 0.189 4.368 1.122 32.086 0.703 145.828 40.501

Greedy 0.300 0.190 1.118 0.220 32.498 0.719 145.547 40.547

PigsLegs4

VE NA - - - NA - - -

Naive 15.351 - - - 5080.219 - - -

Greedy 0.243 - - - 5003.500 - - -

TT33

VE 2.688 - - - 19.597 - - -

Naive 1.570 - - - 127.282 - - -

Greedy 0.183 - - - 138.188 - - -

(a) (b)

Table 2
Part (a) shows the maximum heap size used during the evaluation of the UIDs.
The heap includes the memory for representing the UID, the normal form S-DAG,
the potentials (for the VE algorithm), and the cache (for the SC algorithms: Naive
and greedy). Part (b) shows the time (in seconds and milliseconds) for determining
the MEU for the normal form S-DAGs. The time does not include the time for
constructing the normal form S-DAG and the time for the determination of the
caching factors for the SC algorithms.

viding the basis for our implementation.

References

Allen, D., Darwiche, A., Park, J. D., 2004. A greedy algorithm for time-space
tradeoff in probabilistic inference. In: Proceedings of the Second European
Workshop on Probabilistic Graphical Models. pp. 1–8.

Cano, A., Gómez, M., Moral, S., May 2006. A forward-backward Monte Carlo

35

method for solving influence diagrams. International Journal of Approxi-
mate Reasoning 42 (1–2), 119–135.

Darwiche, A., 2001. Recursive conditioning. Artificial Intelligence Journal
125 (1–2), 5–41.

Howard, R. A., 1962. The used car buyer. In: Howard, R. A., Matheson, J. E.
(Eds.), The Principles and Applications of Decision Analysis. Vol. 2. Strate-
gic Decision Group, Ch. 36, pp. 691–718.

Howard, R. A., Matheson, J. E., 1981. Influence diagrams. In: Howard, R. A.,
Matheson, J. E. (Eds.), The Principles and Applications of Decision Anal-
ysis. Vol. 2. Strategic Decision Group, Ch. 37, pp. 721–762.

Ide, J. S., Cozman, F. G., 2002. Random generation of Bayesian networks. In:
Brazilian Symposium on Artificial Intelligence. pp. 366–375.

Jensen, F., Jensen, F. V., Dittmer, S. L., 1994. From influence diagrams to
junction trees. In: de Mantaras, R. L., Poole, D. (Eds.), Proceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence. Morgan Kauf-
mann Publishers, pp. 367–373.

Jensen, F. V., Nielsen, T. D., 2007. Bayesian Networks and Decision Graphs,
2nd Edition. Springer-Verlag New York, ISBN: 0-387-68281-3.

Jensen, F. V., Vomlelova, M., 2002. Unconstrained influence diagrams. In:
Darwiche, A., Friedman, N. (Eds.), Proceedings of the Eighteenth Confer-
ence on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers,
pp. 234–241.

Lauritzen, S. L., Nilsson, D., 2001. Representing and solving decision problems
with limited information. Management Science 47 (9), 1235–1251.

Madsen, A. L., Jensen, F. V., 1999. Lazy evaluation of symmetric Bayesian
decision problems. In: Laskey, K. B., Prade, H. (Eds.), Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kauf-
mann Publishers, pp. 382–390.

Nielsen, T. D., Jensen, F. V., 1999. Well-defined decision scenarios. In: Laskey,
K. B., Prade, H. (Eds.), Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence (UAI). Morgan Kaufmann Publishers, pp.
502–511.

Shachter, R. D., 1986. Evaluating influence diagrams. Operations Research
34 (6), 871–882.

Shachter, R. D., 1999. Efficient value of information computation. In: Laskey,
K. B., Prade, H. (Eds.), Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence. Morgan Kaufmann Publishers, pp. 594–601.

Shenoy, P. P., 1992. Valuation-based systems for Bayesian decision analysis.
Operations Research 40 (3), 463–484.

Shenoy, P. P., 1994. A comparison of graphical techniques for decision analysis.
European Journal of Operational research 78 (1), 1–21.

Vomlelova, M., Jensen, F. V., 2004. An extension of lazy evaluation for influ-
ence diagrams avoiding redundant variables in the potentials. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12, 1–17.

36

