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A B S T R A C T   

Cell-mediated cytotoxicity (CMC) is essential in eradicating virus-infected cells, involving CD8+ T lymphocytes 
(CTLs) and natural killer (NK) cells, through the activation of different pathways. This immune response is well- 
studied in mammals but scarcely in teleost fish. Our aim was to investigate the adaptive CMC using head-kidney 
(HK) cells from European sea bass infected at different times with nodavirus (NNV), as effector cells, and the 
European sea bass brain cell line (DLB-1) infected with different NNV genotypes, as target cells. Results showed 
low and unaltered innate cytotoxic activity through the infection time. However, adaptive CMC against RGNNV 
and SJNNV/RGNNV-infected target cells increased from 7 to 30 days post-infection, peaking at 15 days, 
demonstrating the specificity of the cytotoxic activity and suggesting the involvement of CTLs. At transcriptomic 
level, we observed up-regulation of genes related to T cell activation, perforin/granzyme and Fas/FasL effector 
pathways as well as apoptotic cell death. Further studies are necessary to understand the adaptive role of Eu
ropean sea bass CTLs in the elimination of NNV-infected cells.   

1. Introduction 

Cell-mediated cytotoxicity (CMC) is a pivotal immunological process 
in mammals devoted to the elimination of virus-infected and tumour 
cells (Golstein and Griffiths, 2018; Russell and Ley, 2002). Natural killer 
(NK) cells and cytotoxic CD8+ T lymphocytes (CTLs) are key effector 
leucocytes of the innate and adaptive CMC response, respectively 
(Andersen et al., 2006; Smyth et al., 2005). During the CMC process, NKs 
and/or CTLs directly interact with the altered cells (targets) and induce 
their death through a series of coordinated steps, which encompasses the 
recognition and engagement of antigens presented on the surface of 
target cells by effector receptors. For CTLs, the response is initiated by 
the specific binding of the T cell receptor (TCR), and its co-receptor CD8, 
with the major histocompatibility complex (MHC) class I of the target 
cells presenting the viral or anormal peptides (Cole et al., 2007). Sub
sequently, effectors activate and deliver a cascade of cytotoxic mediators 
that culminate in the efficient destruction of the target cells (Halle et al., 
2017; Squier and John Cohen, 1994). Overall, cytotoxic effectors mainly 
use the perforin/granzyme (PRF/GZM) or the Fas/FasL pathways, 

granule- and Ca++-dependent or -independent respectively, leading to 
the target cell death by either apoptosis or necrosis (Halle et al., 2017). 

CMC is also present in fish, with both innate and adaptive arms, 
though slightly studied. Regarding the innate CMC, two types of NK 
homologues have been discovered, known as non-specific cytotoxic cells 
(NCC) and NK-like cells (Nakanishi et al., 2015). Although studies on 
these cell types are limited, they have been univocally linked to innate 
cytotoxic functions as they clearly show the ability to kill xenogeneic, 
allogeneic and virus-infected cells by using the PRF/GZM and/or Fas/
FasL pathways (Bishop et al., 2000; Hogan et al., 1996; Jaso-Friedmann 
et al., 2000; Yoshinaga et al., 1994). Focusing on the study model, the 
European sea bass (Dicentrarchus labrax), previous studies have identi
fied the effector leucocytes, demonstrated that target cells suffer 
morphological features proper of necrotic and apoptotic cell death or 
determined the innate CMC (Cammarata et al., 2000; Chaves-Pozo et al., 
2012, 2017; Meloni et al., 2006; Meseguer et al., 1996; Mulero et al., 
1994). Although homologous sequences for TCR (Hordvik et al., 1996; 
Nam et al., 2003; Wermenstam and Pilström, 2001), CD8 (Buonocore 
et al., 2006; Somamoto et al., 2005; Xu et al., 2011), and MHC class I 
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(Grimholt et al., 1993; Hashimoto et al., 1990; Loh et al., 2022) have 
been widely described in several teleost species, the adaptive CMC, at 
functional level, has been scarcely studied in fish due to the lack of 
available study models. In recent years, virus-specific killing by adaptive 
CMC has been clearly demonstrated in very few fish species. Thus, in 
ginbuna crucian carp (Carassius auratus langsdorfii), the MHC class 
I-restricted CMC has been demonstrated thanks to the use of clonal fish 
and cell lines derived from them (Somamoto et al., 2002, 2009). In fact, 
leucocytes from ginbuna crucian carp infected with hematopoietic ne
crosis virus (CHNV) were able to efficiently kill CHNV-infected cell lines 
if they are syngeneic, but not when being allogeneic. Moreover, they 
also demonstrated that CD8α-positive cells are involved in the killing of 
CHNV-infected cells, in contrast to NK-like cells and monocytes 
(Somamoto et al., 2013). In the same species, most allo-sensitized 
CD8α-positive lymphocytes were capable of activating the perforin/g
ranzyme pathway to kill the target cells (Toda et al., 2011a). In rainbow 
trout (Oncorhynchus mykiss), MHC class I-restricted CTL activity has 
been also demonstrated against infectious hematopoietic necrosis 
(IHNV)- and viral haemorrhagic septicaemic virus (VHSV)-infected cells 
(Fischer et al., 2006; Utke et al., 2007). In contrast, in most teleost fish, it 
is extremely challenging to investigate the CTL activity due to the lack of 
MHC class I matched effector and target cell systems. 

Nodavirus (NNV), or Betanodavirus, is one of the most threatening 
viruses for marine fish species, being European sea bass (Dicentrarchus 
labrax) and groupers (Epinephelus spp.) amongst the most susceptible 
target species, mainly at larvae and juvenile stages (Chaves-Pozo et al., 
2012; Chi et al., 1997). Betanodavirus are small, non-enveloped virus 
with a genome composed by two positive-sense single-stranded RNA 
segments (RNA1 and RNA2) and traditionally differentiated into four 
genotypes (RGNNV, SJNNV, BFNNV and TPNNV) according to the 
sequence of a variable epitope in the capsid protein (T4 region), coded 
by the RNA2 (Bandín and Souto, 2020). In addition to traditional ge
notypes, two reassortant genotypes have also been described and named 
accordingly with their RNA1/RNA2 composition as RGNNV/SJNNV and 
SJNNV/RGNNV (Bandín and Souto, 2020). Regarding the innate CMC 
response against NNV, it has been demonstrated that head-kidney leu
cocytes (HKLs) from NNV-infected European sea bass showed an 
increased innate CMC against xenogeneic cells (Chaves-Pozo et al., 
2012). In contrast, HKLs from naïve European sea bass failed to activate 
this activity against several NNV-infected target cell lines, which point 
out the ability of NNV to escape from the innate CMC as an important 
factor involved in its high pathogenicity (Chaves-Pozo et al., 2012, 
2017). Interestingly, orange-spotted grouper (Epinephelus coioides) 
showed, upon NNV infection, increased levels of circulating CD8α+

lymphocytes and adaptive CMC restricted to the MHC I (Chang et al., 
2011). Similarly, NNV-infected European sea bass have shown in im
mune (head-kidney) and NNV-target tissues (brain and retina) a clear 
increase in various CTL markers, including cd8a, tcrb, cd28, ctla4 
(cytotoxic T-lymphocyte-associated protein 4) and crtam (cytotoxic and 
regulatory T cell molecule) (García-Álvarez et al., 2023; 
González-Fernandez et al., 2021; Valero et al., 2018) and CMC media
tors, such as gzma, gzmb and prf (Chaves-Pozo et al., 2019b; García-Ál
varez et al., 2024; Valero et al., 2018). All these data support the 
hypothesis about the involvement of CTLs in the adaptive CMC in Eu
ropean sea bass because most of these changes were mainly observed 
from 15 days of infection onwards, but not earlier. Nevertheless, our 
knowledge about the adaptive CMC response of European sea bass 
against NNV is still scarce. 

Therefore, we aimed to study the adaptive CMC response of Euro
pean sea bass using NNV-infected head-kidney (HK) cells at different 
times post-infection against mock- or NNV-infected cells from a Euro
pean sea bass brain derived cell line susceptible to NNV (Chaves-Pozo 
et al., 2019a). This work will shed light on the adaptive CMC in Euro
pean sea bass and how it is regulated by NNV infection. 

2. Material and methods 

2.1. Animals 

Healthy adult specimens of European sea bass (Dicentrarchus labrax) 
were bred at the Oceanographic Centre of Murcia (Spanish Institute of 
Oceanography (COMU-IEO), Mazarrón, Spain) and transported to the 
Marine Fish Facilities at the University of Murcia. Animals (250 ± 25 g) 
were kept in marine recirculating aquaculture systems (RAS) (30‰ 
salinity, 22–25 ◦C, 12:12 light: dark photoperiod) with suitable aeration 
and filtration systems and fed ad libitum with a commercial pellet diet 
(Skretting). Specimens were allowed to acclimatize for at least 2 weeks. 
Procedures were approved by the Bioethical Committee of the Univer
sity of Murcia (reference REGA ES300305440012 and Permit Number 
A13170109). 

2.2. Nodavirus stocks 

Parental NNV (genotype RGNNV, strain 411/96; genotype SJNNV, 
isolate SJNag97; and genotype TPNNV, isolate TPKag93) and NNV 
reassortants (genotype RGNNV/SJNNV, isolate 367.2.2005 and geno
type SJNNV/RGNNV, isolate 389/I96) were propagated in the E− 11 cell 
line as elsewhere (Iwamoto et al., 2001). NNV stocks were titrated and 
the mean tissue culture infectious dose (TCID50/mL) calculated (Reed 
and Müench, 1938). 

2.3. Nodavirus infections 

Two experiments were performed, with duplicate tanks per group in 
each trial. In all cases, European sea bass were slightly sedated with 40 
μg/L of clove oil in sea water and received a single intramuscular in
jection of 100 μl culture medium or containing 106 RGNNV TCID50/fish 
(mock-or NNV-infected groups, respectively). In the first experiment, six 
fish from each group were sampled at 0, 2, 7, 15 and 30 days post- 
infection (dpi). In the second experiment, six fish from each group 
were sampled at 15 dpi to validate and evaluate the specificity of the 
cytotoxic activity. 

2.4. Fish sampling and preparation of effector cells 

European sea bass HK cells were isolated from mock- and RGNNV- 
infected fish and used as effectors to evaluate the cytotoxic activity. 
Briefly, after bleeding, head-kidney was cut into small fragments and 
transferred to 10 mL of Leibovitz’s L-15 (Gibco) supplemented with 10% 
foetal bovine serum (FBS; Gibco), 2 mM glutamine (Gibco), penicillin 
(100 IU/mL; Gibco), streptomycin (100 μg/mL; Gibco) and 20 mM 
HEPES (Gibco). Cell suspensions were obtained by forcing fragments 
through a nylon mesh (100 μm). HK cells were washed three times in 
Leibovitz’s L-15, counted in a Z2 Coulter Particle Counter (Beckman 
Coulter) and adjusted to 107 cells/mL. Cell viability was determined by 
the trypan blue exclusion test. 

2.5. Preparation of target cells 

The nodavirus-susceptible European sea bass brain DLB-1 cell line 
(Chaves-Pozo et al., 2019a) was used as target cells in the cytotoxicity 
assays. Exponentially growing DLB-1 cells cultured in Leibovitz’s L-15 
culture medium supplemented with 2% FBS, glutamine and antibiotics 
as above were detached by routine trypsinization, seeded at 15,000 
cell/well in 96-flat well plates (Nunc) and incubated for 24 h at 25 ◦C. 
Afterwards, DLB-1 cell cultures were infected with 105 TCID50 of 
RGNNV, SJNNV, TPNNV, SJNNV/RGNNV or RGNNV/SJNNV/mL for 
24 h at 25 ◦C. As controls, uninfected DLB-1 cells were used. 
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2.6. Cell-mediated cytotoxicity assays 

Cytotoxic activity of the HK cells was determined by measuring the 
release of lactate dehydrogenase (LDH) (Korzeniewski and Callewaert, 
1983) from killed target cells using the commercial CytoTox 96® 
Non-Radioactive Cytotoxicity Assay kit (Promega) according to the 
manufacturer’s instructions. Briefly, uninfected- or NNV-infected DLB-1 
cell cultures were washed twice with culture medium to remove extra
cellular virus and/or cellular debris. Subsequently, 106 HK cells from 
mock- or RGNNV-infected fish were added to each well (~50 effector 
cells: 1 target cell) to a final volume of 100 μL. The plate was then 
centrifuged at 400 g for 1 min to promote cell contact and incubated for 
4 h at 25 ◦C. Thereafter, the plate was centrifuged at 400 g for 5 min and 
50 μL of the supernatant from each well was transferred to another 
96-flat well plate where LDH release was measured according to the 
manufacturer indications including a positive control with 
LDH-standard solution. Targets (DLB-1) or effectors (HK cells) cultured 
alone were used for measuring the spontaneous release of LDH as con
trols. The cytotoxic activity was calculated by the following formula: 

Cytotoxic activity (%) = Experimental− Effector Spontaneous− Target Spontaneous
Target Maximum− Target Spontaneous ∗ 100 

In addition, cytotoxicity assays performed with HK cells from mock- 
or RGNNV-infected specimens after 15 dpi were processed for gene 
expression study. In this case, after incubation of mock- and RGNNV- 
infected HK cells with the target cells, samples were centrifuged, the 
supernatant discarded and 200 μL TRIzol® Reagent (Invitrogen) added 
and stored until being used. Cytotoxicity samples formed by mock- 
infected HK cells and uninfected-DLB-1 cells alone served for gene 
expression normalization. 

2.7. Gene expression by real-time PCR 

Total RNA was isolated from TRIzol® Reagent frozen independent 
samples (n = 6/group) following the manufacturer’s instructions. One 
microgram of total RNA was treated with DNAse I (Promega) to remove 
genomic DNA. Superscript IV Reverse Transcriptase (Life Technologies) 
was used to synthesize the first strand cDNA. Real-time qPCR was per
formed with an ABI PRISM 7500 instrument (Applied Biosystems) using 
SYBR Green PCR Core Reagents (Applied Biosystems). Reaction mix
tures were incubated at 95 ◦C for 10 min, followed by 40 cycles of 15 s at 
95 ◦C, 1 min at 60 ◦C, and finally 15 s at 95 ◦C, 1 min at 60 ◦C and 15 s at 
95 ◦C. For each mRNA, gene expression was corrected by the elongation 
factor 1 alpha (ef1a) and ribosomal protein S18 (rps18) gene expression 
in each sample and expressed as either 2− ΔCt or 2− ΔΔCt (Pfaffl, 2001). 
The primers used are shown in the Supplementary Table S1. Prior to the 
experiment, the specificity of each primer pair was studied using posi
tive and negative samples. A melting curve analysis of the amplified 
products validated the primer for specificity. Negative controls with no 
template were always included in the reactions. 

2.8. Statistical analysis 

All data are presented as mean ± standard error of the mean (SEM). 
Data of the CMC and gene expression were analysed by one- or two-way 
ANOVA followed by a Tukey comparison of means test. The level of 
significance was fixed at either 0.1 or 0.05. A Pearson correlation tests 
were applied to test correlations among gene expression levels and 
adaptive CMC. 

3. Results 

The accumulated mortalities after 30 and 15 days of NNV challenge 
in trials 1 and 2 were of 60 and 57%, respectively. 

3.1. CMC against NNV-infected cells increases in infected European sea 
bass 

The cytotoxic activity of HK cells isolated from RGNNV-infected fish 
against uninfected-, RGNNV- and SJNNV/RGNNV-infected target cells 
was determined at 0, 2, 7, 15 and 30 dpi (Fig. 1). HK cells from RGNNV- 
infected European sea bass also showed very low cytotoxic activity 
against uninfected DLB-1 target cells at all the experimental times 
(Fig. 1), very similar to that of HK cells from mock-infected fish (data not 
shown). However, HK cells from RGNNV-infected European sea bass 
displayed a statistically significant increase in the cytotoxic activity 
from 7 until 30 dpi against RGNNV- and SJNNV/RGNNV-infected DLB-1 
target cells, peaking at 15 dpi for both genotypes (Fig. 1). Two-way 
ANOVA test revealed that the infection time (p < 0.001) and the 
target cell type (p < 0.001) factors, and their interaction (p < 0.0235), 
showed statistical significance. 

3.2. CMC is specific to RGNNV and SJNNV/RGNNV genotypes 

Firstly, we evaluated if European sea bass specimens and the DLB-1 
target cells share some MHC class I alleles, which is mandatory for the 
adaptive response. Fish used in this study and the one used to generate 
the DLB-1 cell line come from the same broodstock so might share ge
netic families. Thus, we searched data from RNA-seq studies carried out 
in our laboratory (Chaves-Pozo et al., 2019a; unpublished data). We 
found 11 MHC class Iα coding alleles shared among fish tissues and 
DLB-1 cells, which are different according to the sequences and phylo
genetic tree (Supplementary Fig. 1A). In addition, 9 out 11 were 
significantly increased in the DLB-1 cells upon infection with RGNNV 
(Supplementary Fig. 1B). 

Then, after proving that CMC was increased only against DLB-1 cells 
infected with RGNNV and SJNNV/RGNNV genotypes (Fig. 1), which 
share the same capsid protein, we aimed to evaluate whether this ac
tivity really is genotype-specific. For this, we used different NNV ge
notypes since this capsid protein acts as the major immunogenic antigen 
(Coeurdacier et al., 2003). The results demonstrated that HK cells from 
RGNNV-infected sea bass were only capable to increase their CMC 
response against target cells that expressed the same capsid antigen, 
RGNNV and SJNNV/RGNNV, but not others, RGNNV/SJNNV, SJNNV or 
TPNNV (Fig. 2). These data suggest that the recognition is in an 
antigen-specific manner, and probably restricted to the MHC class I. 

3.3. Transcription profile points to T cell activation, PRF/GZM and Fas/ 
FasL pathways and apoptosis during the specific CMC 

After demonstrating that the adaptive CMC is activated in RGNNV- 
infected European sea bass HK cells against infected cells, we evalu
ated the transcription of some relevant genes at the peak of the CMC 
response, 15 dpi. Data are expressed as fold change in a heatmap with 
hierarchical clustering (Fig. 3) using the CMC assays from mock-infected 
sea bass HK cells against uninfected DLB-1 target cells as calibrators. 
Regarding groups (columns), the clustering analysis yielded two clus
ters: Cluster 1 comprised the samples where a control was used, either 
mock-infected fish or uninfected targets, while cluster 2 contained both 
infected fish and target cell combinations. As regards the genes (rows), 
these were divided into two clusters, A and B. Cluster A is composed by 
fasl prf1.2, nccrp1, gzma and cd28 genes that were highly up-regulated in 
cluster 2 when compared to cluster 1 levels (Fig. 3). Cluster B is 
composed by ctla4, bcl2, il2, bax, casp3, cd8a, tcrb, nkl, grzmb and three of 
the genes coding for perforin (prf1.3, 1.5 and 1.9). Similarly to the genes 
of cluster A, the transcription levels of prf1.9, gzmb, il2 and bax genes 
from cluster B were also increased in samples of cluster 2 compared to 
cluster 1 (Fig. 3). In fact, the lowest levels of prf1.9 expression were 
observed in RGNNV-infected HK cells against uninfected DLB-1 target 
cell samples. Regarding the transcription of prf1.5, the RGNNV-infected 
HK cells against uninfected DLB-1 target cells, ant the samples of cluster 
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2, showed significantly lower levels than mock-infected HK cells against 
infected DBL-1 target cells. In contrast, tcrb and nkl gene expressions 
increased in the mock-infected fish against RGNNV-infected target cells 
(Fig. 3). In summary, during the adaptive CMC against RGNNV the 
transcription of T cell activation markers (il2 and cd28), CMC mediators 
(prf1.2, prf1.9, gzma, gzmb, fasl) and apoptosis (bax) was significantly 
increased. 

In order to support the potential implication of apoptosis during the 
adaptive CMC, two of the master regulators, the antiapoptotic gene bcl2 
and the proapoptotic gene bax were analysed. Transcription of bcl2 was 
unaltered during the CMC whilst bax was significantly increased. 
Therefore, the ratio of bax/bcl2 was significantly increased during the 
CMC using RGNNV-infected cells as effectors (Fig. 4) and positively 
correlated with the adaptive CMC (Pearson coefficient = 0.562; P <
0.0001). 

4. Discussion 

As in mammals, the existence of a CMC carried out by different 
effector cells has been evidenced in fish, even in a MHC class I-restricted 
manner. In this study, for the first time, we have evaluated the adaptive 

Fig. 1. Cell-mediated cytotoxic activity of RGNNV-infected European sea bass head-kidney effector cells at 0, 2, 7, 15 and 30 days post-infection (dpi) against 
uninfected-, RGNNV- or SJNNV/RGNNV-infected DLB-1 cells as target cells. Results are expressed as the mean ± SEM (n = 6 fish/group). Different letters denote 
significant differences between the infection time and target cells according to a two-way ANOVA test (p < 0.05). 

Fig. 2. Cell-mediated cytotoxic activity of RGNNV-infected European sea bass 
head-kidney effector cells at day 15 of infection against DLB-1 cells infected 
with different NNV strains as target cells. Results are expressed as the mean ±
SEM (n = 6 fish/group). Different letters denote significant differences between 
uninfected- and NNV-infected target cells according to one-way ANOVA and 
Tukey’s comparison of means tests (p < 0.05). 

Fig. 3. Heatmap and two-way hierarchical clustering analysis (Euclidean 
method) of immune related-genes expression in cell-mediated cytotoxic assays 
between mock- and RGNNV-infected sea bass head-kidney cells (effectors) after 
15 days of infection against uninfected- or NNV-infected DLB-1 target cells. 
Data are shown as mean of fold change (n = 6 fish/group) respect to the mock 
effectors against uninfected target cells. Asterisk and # symbols denote signif
icant differences at p < 0.05 or p < 0.1 respectively, according to one-way 
ANOVA and Tukey’s comparison of means tests. 
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CMC in RGNNV-infected European sea bass specimens using as target 
cells the NNV-susceptible DLB-1 cell line (Chaves-Pozo et al., 2019a) 
infected with different genotypes of NNV. Previous studies have 
demonstrated that leucocytes from different teleost species were capable 
of exert innate CMC against virus-infected cells via NCC or NK-like cells 
(Hogan et al., 1996; Moody et al., 1985). In fact, European sea bass 
leucocytes from naïve (Cammarata et al., 2000; Meloni et al., 2006; 
Meseguer et al., 1996; Mulero et al., 1994) or NNV-infected specimens 
(Chaves-Pozo et al., 2012) were able to kill xenogeneic tumour cells 
thanks to the engagement of NCCs and the up-regulation of the nccrp1 
gene. However, leucocytes derived from naïve sea bass showed the same 
innate killing efficiency against NNV-infected target cell lines, including 
the DLB-1, than against the mock-ones (Chaves-Pozo et al., 2017). We 
found similar results in this study, where leucocytes from mock-infected 
sea bass did not increase innate CMC against NNV-infected targets. 

Regarding the adaptive CMC, surprisingly, HK cells from infected 
fish increased this activity against RGNNV and SJNNV/RGNNV-infected 
target cells from 7 to 30 dpi, whereas mock-infected HK cells did not. To 
study if this activity was virus-specific, we repeated the same experi
ment using HK cells at the peak of the response, 15 dpi, but against DLB- 
1 target cells infected with the same virus or with RGNNV/SJNNV, 
SJNNV or TPNNV genotypes. Strikingly, the CMC was only increased 
against RGNNV and SJNNV/RGNNV-infected target cells, what strongly 
suggests that this CMC is specific and carried out by CTLs. This hy
pothesis is supported by the modulation in vivo of numerous CTL-related 
genes upon a NNV infection from 7 to 15 dpi and not earlier (Gar
cía-Álvarez et al., 2023; González-Fernandez et al., 2021; Valero et al., 
2020). The increase of circulating CTLs as well as the adaptive cytotoxic 
activity upon a NNV infection was also demonstrated in orange-spotted 
grouper (Chang et al., 2011). Virus-specific CTL activity has been also 
confirmed in rainbow trout (Utke et al., 2007, 2008) and ginbuna cru
cian carp (Somamoto et al., 2000, 2006, 2009, 2013; Tajimi et al., 
2019). Furthermore, in our model of study, we demonstrated that both, 
effector and target cells, share numerous MHC class I alleles, which 
suggests that the adaptive CMC response observed might also be MHC 
class I-restricted. However, further studies are mandatory to clearly 
establish the relationship between adaptive CMC and MHC class I alleles 
in a NNV infection in European sea bass. 

At gene level, HK cells from mock-infected fish specimens against 
RGNNV- or SJNNV/RGNNV-infected targets underwent little or non- 

transcriptional variation. In fact, the increased levels of trcb and nkl in 
mock-infected HK cells responding against RGNNV-infected cells sug
gest a slight activation of T lymphocytes upon the first contact with 
RGNNV-infected target cells. However, the displayed CMC was not 
sufficient to kill them probably due to the lack of a previous contact with 
the antigen. Interestingly, nkl gene in European sea bass is mainly 
expressed by T lymphocytes and is modulated upon an in vivo infection 
with NNV (Valero et al., 2020). The opposite appears to occur in the HK 
cells from infected fish against target cells alone, where there was a 
decrease in prf1.9 and prf1.5, a fact that keeps in line with previous data 
in our group (García-Álvarez et al., 2024). Also, an RNA-seq study car
ried out during the innate CMC using naïve HKLs of European sea bass 
against RGNNV-infected DLB-1 cells, evidenced that most of the 
up-regulated genes in NNV-infected target cells were related to meta
bolism and very few to immunity (Chaves-Pozo et al., 2017). As we 
mentioned previously, our hypothesis posits a significant role of CTLs in 
the observed cytotoxic activity, which is supported by the substantial 
up-regulation of il2 and cd28 (indicators of T cell activation) and the lack 
of modulation of ctla4 (inhibitory co-receptor) genes. In the case of sea 
bass, the expression of cd28 is not only associated with T cells but also 
plays a role in the immune response against NNV infection, as it is 
involved in the activation of T cells (González-Fernandez et al., 2021). 
Furthermore, the interaction of CD28 to its ligand leads to an increase in 
the cytokine IL-2, a well-known T cells growth factor (Esensten et al., 
2016). This phenomenon is also observed in our study, where, akin to 
humans, the involvement of IL-2 in the development of T cells has been 
documented (Buonocore et al., 2020). Regarding the underlying mech
anism activated by European sea bass CTLs, during the specific CMC 
displayed by HK cells from infected fish against RGNNV- and 
SJNNV/RGNNV-infected target cells, the increase of the fasl, prf1.9, prf 
1.2, gzmb and gzma gene transcription could evidence the activation of 
the perforin/granzyme and Fas/FasL pathways characteristic of CTLs. In 
European sea bass, the up-regulation of gzma and prf1.9 gene expres
sions suggested a major role of these genes in the fish CMC against 
virus-infected cells both in vivo and in vitro (Chaves-Pozo et al., 2019a, 
2019b; Valero et al., 2018), agreeing what was observed in this study. 
However, prf1.2 was also up-regulated in the HK of RGNNV-infected 
European sea bass at 15 dpi (García-Álvarez et al., 2024). Strikingly, 
our data also show that the mRNA level of prf1.5 decreased in HK cells 
from RGNNV-infected specimens against infected- and uninfected-target 
cells. This could be explained by a regulatory feedback induced by the 
increased production of other prf genes such as prf1.2 and prf1.9, as also 
observed in zebrafish with prf1.9b (Varela et al., 2016). It is worthy to 
note that gzmb transcription levels increased in the HK of NNV infected 
sea bass after 7 and 15 dpi, as well as GzmB+ cells also increase in 
NNV-infected gilthead seabream (Chaves-Pozo et al., 2019b). In that 
sense, our data also showed an increase of gzmb transcription levels in 
HK cells from infected European sea bass responding against 
SJNNV/RGNNV-infected target cells, supporting the idea that gzmb 
plays an important role against NNV. In fact, the participation of the 
perforin/granzyme pathway, which is a granule- and calcium dependent 
process, in fish adaptive CMC has also been evidenced in other fish 
species. For example, the use of calcium chelators had a negative impact 
in the adaptive CMC in common carp (Cyprinus carpio L.) (Companjen 
et al., 2006). In ginbuna crucian carp, the use of perforin inhibitors, such 
as concanamycin A, cause the suppression of CD8+ lymphocyte activity 
in a dose-dependent manners, probably due to perforin depolymeriza
tion (Toda et al., 2011a). Additionally, the use of EGTA caused a sig
nificant decrease in the CMC, a fact that was reversed with the addition 
of Ca2+. In this species, the use of 
carbobenzyloxy-Ile-Glu-Thr-Asp-fluoromethyl ketone (Z-IETD-FMK), 
that blocks the activity of granzyme B, caused a significant but not 
complete decrease in the adaptive CMC, suggesting the participation of 
other molecules in the cytotoxic pathway (Toda et al., 2011b). The levels 
of gzma were also increased in leucocytes of rainbow trout and RTS-11 
cell line against VHSV (Ordás et al., 2011) and in Atlantic salmon (Salmo 

Fig. 4. Transcriptional ratio between the pro-apoptotic bax and the anti- 
apoptotic bcl2 genes (bax/bcl2) in cell-mediated cytotoxic assays between 
mock- and RGNNV-infected European sea bass head-kidney cells (effectors) 
after 15 days of infection against uninfected- or NNV-infected DLB-1 target 
cells. Results are expressed as the mean ± SEM (n = 6 fish/group). Different 
letters denote significant differences between groups according to one-way 
ANOVA and Tukey’s comparison of means tests (p < 0.05). 
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salar) infected with infectious pancreatic necrotic virus (IPNV) 
(Munang’andu et al., 2013). Additionally, the increment of fasl gene 
suggested the activation of the granule-independent cytotoxic activity 
against NNV, in line with previous observations in the pacific cod (Gadus 
macrocephalus) where NNV could trigger apoptosis through the Fas/FasL 
pathway (Mao et al., 2021). Therefore, our data showing increased ra
tios of bax/bcl2 indicate the proapoptotic tendency in the adaptive CMC 
samples in the groups of cluster 2 and show good correlation with CMC, 
suggesting the induction of apoptosis by specific CTLs. These data, 
together with the activation of different perforins, granzymes and fasl 
genes reinforce the idea of the activation of both pathways for the 
clearance of NNV-infected cells, leading to, at least, apoptosis target cell 
death, as observed in a previous study (Chaves-Pozo et al., 2019a). CMC 
response from infected fish specimens against RGNNV and 
SJNNV/RGNNV-infected target cells also resulted in a significant 
up-regulation of nccrp1 gene. The role of NCCs against viral infection has 
been confirmed in crucian carp, where a small fraction of leucocytes 
could lyse syngeneic cells infected with IPNV (Somamoto et al., 2000), 
in gilthead seabream (Sparus aurata), where innate immune response 
against VHSV had been described (Esteban et al., 2008), or in European 
sea bass against NNV (Chaves-Pozo et al., 2012, 2017). Despite the fact 
that NCCs are also capable of producing cytotoxic molecules such as 
perforin, granzyme or even FasL (Jaso-Friedmann et al., 2000), our CMC 
data demonstrated that the main effector cells of such activity are CTLs 
due to the high specificity displayed against target cells expressing the 
RGNNV capsid. Anyway, the increase in nccrp1 expression levels also 
point to a role of NCCs in the elimination of infected cells. A further 
characterization of the relation between this receptor and the adaptive 
CMC is mandatory to ascertain the regulation and interplay of innate 
and adaptive CMC in fish. 

5. Conclusions 

To conclude, our study confirms that the CMC in RGNNV-infected 
European sea bass HK cells increases over infection, peaking at 15 dpi. 
This cytotoxic activity is specific against DLB-1 target cells infected with 
different NNV genotypes displaying the RGNNV capsid protein, as ex
pected for adaptive CMC response. At transcriptional level, genes related 
to T cell activation, the perforin/granzyme and Fas/FasL pathways and 
apoptosis cell death are up-regulated during this adaptive CMC 
response. Altogether, our data clearly suggest that the CMC observed is 
mediated by CTLs. However, further and deeper studies are needed to 
clarify the nature of this CMC, the leucocytes involved, and the mech
anisms elicited for the elimination of NNV-infected cells. 

CRediT authorship contribution statement 
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