BPM, SOA and WOA:
Where are these technologies heading?

Authors:
Kim Christensen

Lone Leth Thomsen

Bent Thomsen
Technical Report 07-001

Department of Computer Science

Aalborg University

Created November 28th, 2007

BPM, SOA and WOA:
Where are these technologies heading?

Kim Christensen, Lone Leth Thomsen, Bent Thomsen
Department of Computer Science
Aalborg University

Denmark
{kcdc,lone,bt}@cs.aau.dk

Abstract
This paper surveys the state-of-the art in BPM, SOA and WOA anno 2007. We argue that the vision of inter company BPM based on agile business process creation and dynamic lookup of services based on WSDL and UDDI has not materialised. Instead formalised BPM, based on BPMN and BPEL-WS, has become the preserve of fortune 500 companies. In such companies the technologies are used to break down silo applications and perform internal business process integration, often based on ESB. However, nifty inter company business process integration is also taking place, but mainly based on WOA, where simple access to corporate services is based on XML documents supplied by the REST protocol, and integration is done via mash-ups and Web 2.0 scripting technologies.

We argue that both technology sets have their justification and can co-exist - formalised BPM based on SOA, especially ESB, on the inside of company firewalls, and WOA based on XML, REST and mash-ups on the outside.
1 Introduction
In the late nineteen nineties the ideas of Web Services (WS) and Service Oriented Architectures (SOA) were launched and soon took the IT industry by storm. Soon thereafter visions of Business Process Management (BPM) based on WS and SOA started to emerge. Especially the vision that formally described BPM based on WS with defined interfaces in Web Service Definition Language (WSDL) and placed in Universal Description, Discovery and Integration (UDDI) repositories would lead to a world, where small-and-medium sized enterprises (SMEs) could join together their internal business processes and form dynamic business processes to deliver products or services that could compete with fortune 500 companies, the latter being less nifty or agile in their response to market demands because of internal bureaucracy. A number of UDDI servers were initiated with a few toy services, such as adding two numbers or getting the current weather in Chicago. It was the belief that these UDDI servers would grow to offer real business services and trigger the process of turning the vision into reality.

However, today we can observe that most of these UDDI servers are either taken out of service or contain out-of-date information. The vision is far from being realised and especially SMEs have not started to formalise their business processes in any noticeable degree. So what happened?

The vision of formalising BPM and integrating business processes (BPs) based on SOA is alive and well, but mainly inside fortune 500 companies who have used the technology for internal business integration, to break down silos and perform horizontal business integration.

SMEs have also started to offer programmable services on the internet and integrate such services to form larger business offerings. However, this trend is not based on SOAP, WSDL, UDDI and formalized BPM, but rather on ad-hoc business process integration based on Representational State Transfer (REST), mash-ups, the so called Web 2.0 technologies, also known as Web Oriented Architecture (WOA).

In this paper we survey the state of the art and give our view on where WS, SOA and BPM are heading. It is our belief that both the rigid formalization of BPM and the use of nifty BP integration via mash-ups have their justification, and understanding which technology is applicable where is key to success in using SOA and WOA.
1.1 Overview of old integration technologies

Applying IT in support of business process integration is not a new phenomenon, in fact most business IT has been introduced to either support mechanising certain BP tasks or to assist the flow of information between such tasks. Clearly in the early days of computing such integration was done ad-hoc and with bespoke hardware and software, but the idea of creating generic middleware that could assist in building integrated networked based IT systems quickly emerged. Technologies such as IBM CICS [21], CORBA [23] and Microsoft DCOM [24] are all examples of pre-WS technologies serving similar purposes. These technologies also share the commonality with WS of allowing discovery of services and dynamic connections, albeit usually only in company internal systems. There are also pre-WS/SOA examples of Business Process (modelling) languages, such as PML, and business process execution engines such as ICL’s ProcessWise [22].

The main difference between all the above mentioned systems and the trend towards WS/SOA based BPM is that the latter is based on open standards and vendor neutral interfaces, whereas the historic systems typically have been proprietary, or vendor specific. One exception is Electronic Data Interchange (EDI) [26]:

“Despite being relatively unheralded, in this era of technologies such as XML services, the Internet and the World Wide Web, EDI is still the data format used by the vast majority of electronic commerce transactions in the world”
However, BPM based on EDI is not simple. The EDI message in Listing 1 shows that it is neither easily readable nor easily extendible.

[image: image1]
Listing 1: EDI message example
Imagine that the number 009030305 in line 1 of the EDI message represents the address of a customer. This means that some delivery service will produce this kind of address (represented by name, street, city, state and postal code). To elaborate on the problem it might be the case that another service, which is in charge of billing customers, needs a billing address for the customer. However the billing service needs the address in another format. For instance the billing service might need only the name and address (street and city). This is not easily extracted from the EDI message.

Nowadays proprietary standards like EDI are no longer necessary. Data can be transferred to XML and later on parsed for use by other systems, furthermore data in XML is made more humanly readable. XML, with its extensibility, has the ability of constructing the message in an intuitive hierarchical manner, where the address can include entries for street, city, state and postal code.

2 BPM, SOA and ESB
In this section we first look at the origins of business process management, which has its roots in scientific management developed by Taylor and today is manifested in management techniques such as sigma six. Then we look at the relationship between BPM and SOA. We look at how to formalise BPM via notations such as BPMN and WS-BPEL. We discuss approaches to composing web services into larger services via orchestration or choreography. To illustrate BPM we discuss an example and finally we discuss enterprise service bus (ESB) as a main driver of data delivery in SOA.
2.1 Everything is still about optimization
One of the pioneers within the optimization of work processes was Frederick W. Taylor [1]. His ideas were the corner stones of scientific management, which was an attempt to improve labour productivity. His thoughts on productivity improvement were based on a belief that studying a single task eventually would provide a more optimal way of performing the task. The idea was to make this way of performing a task a standard method and select the workers who had appropriate skills for performing this task. Additionally Taylor had the idea that work should be planned ahead of time and interruptions should be avoided [1]. Other methods have evolved from scientific management, among these is six sigma.
Six sigma is a term which has different meanings within various enterprises. In some organizations the meaning of six sigma is confined to a management philosophy and within others it is merely a matter of process improvement. In this paper the understanding of six sigma is defined as the latter. When six sigma is maintained in an enterprise it means that there exists a structured and disciplined approach to handling and improving business processes. This is done in an attempt to make them as flawless and perfect as possible.

The idea of optimizing sub-processes is based on reducing the mathematical defects in products produced by an overall business process. If a business process maintains the six sigma principles it is guarantied that the process will only produce 3.4 errors out of 1 million products [2]. The symbol sigma is defined as the standard deviation. This deviation is the goal of conformance of the process.

The following factors are important to maintain six sigma [2]:

1. Focus on the demands of the customer

2. Management based upon facts and data

3. Focus on business processes

4. Proactive management

5. Collaboration across departments

6. Aim for perfection but accept defects

The demand of the customer is of utter most importance in six sigma. Even though many enterprises claim to know the demand of their customers it is often the case that this information is not collected and processed systematically. It is thereby important to measure the improvements of the business process by the satisfaction of the customer. Managerial decisions should be taken only on the basis of facts and data collected beforehand. The enterprise should focus on the business processes that add value to it and its customers. The management of the enterprise should also set ambitious goals, make clear priorities and challenge the execution cycle of current business processes. The methodology of six sigma contains tools for risk assessment and thereby changes in business processes can be tested before implementation [2].
As business processes have become larger, it has become more difficult to measure their performance. Furthermore it has also become difficult to formalize business processes. This is due to the fact that modern consumers have created a demand for timeliness in delivery, stepwise information within the chain of an order etc. It may be possible to meet these demands with the web technologies available today, however many enterprises are not yet ready to embrace the thoughts of BPM and SOA [19].
2.2 Relationship between SOA and BPM
Business processes are basically a set of logical tasks which are related to fulfil some greater purpose. These tasks must be performed in sequence according to the business rules. A BP can be long-lived or short-lived depending on its function [19].
If a company strives to maximize profit it can be beneficial to combine SOA and BPM. If these are merged successfully an enormous potential can be unleashed within a company [17]. SOA can be the foundation for constructing BPs which are decoupled from the rest of the system.
The general idea in SOA is to expose services for others to use. This is achieved by applying loose coupling and platform neutral interfaces which allow the configuration of the services to be flexible and dynamic. A service is expected to be coarse grained and reusable which makes it ideal for use with BPM. BPM needs services to fulfil the process flow and in the case of combined SOA and BPM these services are conveniently exposed by the SOA. However SOA and BPM do not only exist in symbiosis, SOA can exist without BPM and vice versa. There exist numerous examples of BPM initiatives where SOA has not been directly deployed [17]. In spite of this Behara [17] states that the combination will deliver better results in the longer term. It is also stated that SOA is the driver for minimizing the gap between business analysis and IT development.
The BPs should not have any knowledge of the underlying technology or architecture, they should only be able to use the interfaces provided by the underlying SOA layer. This layer should provide the means for dynamic lookup and access to services by a service repository. The main argument for implementing the SOA layer is to make it possible to fulfil the wish for loose coupling between BPs and technology. In this way it is possible to change the underlying technology without affecting the BPs. As seen in Figure 1 the BPM layer is responsible for modelling, deployment and measurement of processes. The underlying SOA layer supplies the BPs with services and acts as a mediator between services which could have their origin in different departments or companies.
[image: image2.png]Business Process Layer

° °
\ Service\Layer /
Senice 1 Serin 2 Senice Sonica d Services

‘Sarvica Oriented Archieciura

Application Lays

Mailsystem Calendar Legacy Planning

Technology Layer

Programming Distributed

Databasss os
Languages computing

Figure 1: The BPM and SOA layers
2.2.1 Applications in silos
When new applications are needed to conform to the changing demands of customers, it is often a tedious task to integrate with old applications. This section draws a picture of this kind of unwanted development.
The goal of most large sized companies, which suffer from development in silos, is to achieve an architecture which allows them to exchange data and information seamlessly with different partners and between different departments within their own organization. SMEs do usually not suffer from the silo problem, because such companies are likely to have only a single silo containing all information. However, this is not the optimal situation either, as components of such systems will have to operate across company boundaries.
As mentioned in section 1.1 numerous methods of implementing distributed systems have been put forward. Companies have embraced these methods, however the result is that many different protocols have been used and hardly any of the systems are inter-corporately connected. According to Krafzig et. al. [18] less than 10% of companies have inter-corporately connected systems. Furthermore, out of those 10% which are connected only 15% use some formal integration middleware, the rest use batch jobs which transform the transferred data to some neutral data format before transmission (e.g. a comma separated file). The remaining 85% have adopted the so called accidental architecture, which is a result of treating the different departments like silos of information. Within and between each of these silos data has for years been treated without any overall knowledge of what was going on. By default this develops into an inflexible and intangible integration infrastructure, which can not adapt to changes in business requirements.

A common feature of the accidental architecture is that when attempting to integrate a new application in the existing system, the developers attempt to apply a deliberate (but not common within the company) design philosophy. Over time however this design philosophy often tends to slip, and patches are augmented to the existing applications instead. Among other problems this results in an architecture where the impact of changes in one application is almost impossible to predict in connected applications.
To break down these silos of information in the accidental architectures the first step would be to pick a business area of interest. The following step is to begin service enabling this area by creating a SOA layer above the specific silos. This layer should contain all the needed functionality of the underlying silo and should have no business logic embedded. This layer corresponds to the service layer depicted in Figure 1.
2.3 The Use of Business Process Management
BPM promises time and cost saving. As mentioned this can be reached by streamlining BPs. To achieve this benefit a strong development environment is needed. This environment, a so called process laboratory will provide tools for analysing, designing, implementing, and simulating the BPs. This process laboratory should make it possible for business analysts to perform all the above activities. In summary, it is generally understood that the art of BPM boils down to conquering four challenges [25].
These four challenges are discovery, design, development, and deployment of BPs. These challenges can be compared to the traditional software development model, which contains the phases of analysis, design, implementation and evaluation.

Most companies do not know their end-to-end BPs. In fact, even if the BPs are known, the knowledge is often decentralised and tacit. To overcome this, companies around the globe use different approaches to discover their BPs. These approaches range from top-down to bottom-up methods. The organisational structures of companies are never exactly alike and therefore one method can be more appropriate than another.

When a company eventually has gained knowledge of its BPs, it is essential that these are represented formally, often visually, to ensure a consistent understanding of the different BPs. Furthermore Verner [25] states that it is equally important that the BPs are represented unambiguously.

To be able to automate and thereby optimise the BPs within a company, the BPs must be designed to run on a Business Process Management System (BPMS). Such a system interprets and executes BPs that are fit to be automated and described in one of the formal languages like WS-BPEL. WS-BPEL has a visual notation called Business Process Modelling Notation (BPMN), this notation is used to describe BPs [25].
In short, the challenge of the design is to describe the BPs in a standard process language which can be used by business analysts, and not just developers. As in other fields of software development there is a gap between the implementers and the users/customers in their understanding of the system. This is also the case with the development of automated BPs. The business analysts and the developers often use different terminologies, which often leads to automated BPs that do not execute as the original requirements state. Therefore it is recommended that the business analysts use a notation like BPMN and convert this to a process language like WS-BPEL.
Finally, the deployment of a BP can be monitored to ensure that it over time continually conforms to the specification and performs as expected. If this is not the case it is possible to iterate through the four challenges again and determine whether the BP is implemented optimally or it needs to be changed entirely.

2.4 Composition of web services
The idea of Business Processes based on web services stem from the thought that a BP can be composed from one or more web services [11]. There exist two major perspectives of composing web services from one or more service providers as one BP. One is called orchestration and the other choreography.

A single service in a SOA often only represents limited functional capability, therefore service compositions are often required when large scale business processes are executed.
2.4.1 Orchestration

Orchestration refers to the understanding of how different web services are combined. Furthermore control is always represented from one perspective when referring to orchestration, either from the perspective of the provider or the consumer. An overall process maintains an overview of the entire BP, knowing which messages are exchanged between the involved parties and the business logic behind these exchanges. The business logic depicts the flow of a process; more precisely it depicts which services are invoked and the order of invocation [12]. Orchestrated BPs can be deployed as web services themselves. Hence they offer the possibility of being used as services in even larger systems.
Service orchestration should be flexible and adaptable to meet changing BPs requirements. Separating the business process logic from the service components promotes flexibility. For instance if an organization wants to change the internal details of a service component this should be possible as long as the service's interface remains unchanged, also this should not affect the BPs specified in the organization. By applying this pattern of loose coupling it is possible to swap individual services without introducing system-wide changes in the SOA. Even though changes do not occur often in a company's BPs, the changes that do happen only have to be made in one place, which is in the defining process specification document of the BP [12].
The logic behind orchestration is based on rules, conditions, and events. The details of the encapsulated BP logic in an orchestration are thereby contained in a formal definition. Within this definition, a number of participating services are listed. Furthermore the BP logic is represented within the process definition; this is accomplished by use of a BP specification language like WS-BPEL.
A number of different WS-BPEL engines exist. These handle and execute the formally defined specification of a BP. The engine functions as an intelligent intermediary between services. It is responsible for interpreting and executing the composite web-services. There are many vendors within this area, e.g.: IBM (WebSphere Process Server), Microsoft (Biztalk Server), Oracle (BPEL Process Manager) and Active Endpoints (Active BPEL Server).

2.4.2 Choreography

Choreography deals with the requirements for enterprises to interoperate by use of collaborating services to reach a common goal. This goal is achieved by utilizing a protocol-centric approach to collaboration.
The purpose of using several choreographies simultaneously is to establish a cross-enterprise organized way of collaborating with services. Service choreographies concern the interactions of services with the collaborating users. When a transaction takes place between services it must be defined at the time of execution. Such transactions may consist of multiple separate interactions between the collaborating parties. This means that a single choreography describes the peer to peer interaction in a global, or top down manner. The composition of web services, the message protocols, interfaces, sequencing, and logic associated with the transaction at hand, are considered to be parts of one choreography [14].
Each party describes its part in the interaction in terms of the public message exchange patterns occurring between the multiple parties' services. This is unlike orchestration where specific BPs are described and executed from the view of a single party.
Within choreography it is important to notice that no single enterprise necessarily controls the collaboration logic. The logic can instead be controlled by a number of collaborating enterprises, each having participated in defining the choreography protocol [15].
This provides the potential for creating interoperability patterns expressing common collaborative business processes. When services communicate in a single choreography they each assume a predefined role, which can be specified in the service's interface description. The description of the role defines what kind and in what order messages must be exchanged to perform a given BP. This means that the interaction between the participating services is captured in the formal description. Every single action performed within the choreography is made by a number of message exchanges transmitted on a channel between two services both having assumed an appropriate role in the choreography [15]. Every exchange constitutes a relationship between two services, yielding a choreography between them. Choreographies are described using a choreography description language, e.g. WS-CDL.
Orchestration and choreography overlap in some areas. Orchestration is though generally applied to express the business processes within a single enterprise. Choreographies on the other hand are generally applied to express collaboration between different enterprises or organizations [19]. Choreographies differ from orchestrations, instead of describing business processes as executable processes they are described by protocols defining the public message exchanges between collaborating parties.

2.4.3 Mapping from BPMN to WS-BPEL
Converting a BP modelled in BPMN to an executable process modelled in WS-BPEL is done by applying a set of rules to the objects in the model of the BP. This is a tedious process, but fortunately there exist a number of tools to automate the conversion.

IBM has developed a plug-in for Eclipse called UML2BPEL that takes as input an XML Meta-data Interchange (XMI) file containing the process modelled in BPMN. XMI is an industry standard file format for exchange of UML models. Additionally a UML Profile for Automated BPs must be provided. The BPMN process must meet this profile. As output, the Eclipse plug-in generates WS-BPEL code, WSDL documents, and XSD files.
Generally, a UML Profile defines a set of extensions to the base UML. This UML profile is process independent and supports modelling with a set of semantic constructs which correspond to those in WS-BPEL.
The WS-BPEL language, initially named the Business Process Execution Language for Web Services (BPEL4WS), was conceived in July 2002, and first formally specified as BPEL4WS 1.0. This specification was the result of a joint effort by IBM, Microsoft, and BEA. The specification proposed an orchestration language influenced by previous variations, e.g. Microsoft's XLANG specification and IBM's Web Services Flow Language (WSFL).
In May 2003 SAP and Siebel Systems joined the project and as a result the BPEL4WS 1.1 specification was released less than a year later. This specification received more attention and vendor support, leading to the release of a number of commercially available BPEL4WS 1.1 compliant orchestration engines. This specification was submitted to the OASIS technical committee, thereby ensuring that the specification could be developed openly and into an official standard [16]. Currently the OASIS committee is in the process of finalizing the release of WS-BPEL 2.0 specification. (As of this version the BPEL4WS name has become obsolete).
WS-BPEL structures the workflow of a business process as a series of activities. Activities are divided into two categories; basic activities, which are basic activity steps, and structured activities, used to prescribe the order and flow of basic activities. A list of these activities is shown below.

· Basic activities:
· receive,
· invoke,
· reply,
· throw,
· wait,
· assign,
· empty,
· extension activity,
· exit,
· rethrow

These activities correspond to the constructs of BPMN. The UML2BPEL tool makes this mapping possible. Some difficulties still need to be resolved, however the majority of the mappings are performed straightforward.
2.5 Example

The best way of understanding how modelling is used is by an example. The BP example called LoanApproval given in the following takes place in a bank and has the following participants:
· Loan assessor (bank employee)

· Loan approver (financial adviser)

· Customer

The example is well known and simple. However, it serves a good purpose in the process of describing the different parts of BPs, both with regard to modelling and execution.

The customer wants to borrow some money from the bank and this scenario is handled as illustrated in Figure 2. The BP is modelled in BPMN with use of activities, sequence and gateway entities. See [13] for an exhaustive explanation on the entities within BPMN.

[image: image3.jpg]Receive loanAmount

amount < $10000, amount >= §10000

Invoke
Approver

Invoke
Assessor

approvers answer

Assign loan
accept = yes

Reply

Figure 2: The Loan Approver Example
Normally the two roles of loan approver and loan assessor are enacted by employees as mentioned above. This example thus illustrates how simple human tasks within a BP can be exchanged by an external service and thereby automated. Note also that for simplicity, the invocation of the assessor and approver web services are not modelled.
If the amount is below $10,000, the loan request is answered by the assessor, the assessor will quickly grant the loan if the risk of issuing the loan is predicted to be low. Otherwise the more complex service (the approver) has to be invoked. If this is the case other more detailed aspects regarding the customer are considered. E.g. this could be other accounts or the credit rating of the customer.

2.6 Enterprise Service Bus
The Enterprise Service Bus (ESB) has become the main driver of data delivery in SOA. This means that the ESB makes use of the techniques and technologies provided by the SOA. Furthermore the ESB also handles the transformation of data as the services should not be concerned with such details of other data formats beyond their own. The ESB thereby makes sure that the data transferred to it will be delivered in the correct format at the consumer.

2.6.1 Canonical data

According to [20] it is necessary to make use of canonical data if an ESB should be utilized efficiently. In practice, this means that a common understanding of the format in which data must be transferred must be created. This data format enables different departments (silos) to share data in spite of their multiple different internal formats (e.g. EDI). When data needs to be exchanged between the individual departments, the ESB ensures that each department or application receives data in a format that suits that particular application. Thereby the ESB must handle the transformation and persistence of messages that are exchanged over it. This is handled by implementing a transformation service and a persistence service. These two services are not shown in Figure 3. This figure shows an example of how the ESB manages the conversion of data when a message propagates through different applications of an enterprise.
[image: image4.png]The Enterprise

boundaries
App 1
3
w, o
W | App2
5)|
" 0 M

0 2 [)

External Partner

Oe Enterprise Service Bus.

3

Figure 3: Transformation of messages within an ESB
1. An external partner sends a message (M) in the format (x) as XML to the enterprise. The message in its format is denoted Mx in the following. A business process (not shown) handles the necessary updates in the needed applications of the enterprise (App 1 and App 2).
2. The ESB makes sure that Mx is transformed to the canonical format of the enterprise (Mc). Furthermore the message is made persistent. The message is now represented by Mc.
3. When applications connect to the ESB they must register what format they expect to receive messages in. Thereby the ESB has knowledge of what format to transform a given message into, in this case My.
4. The message is passed on to the next application (App 2) which needs to operate on the message. This application understands the canonical format and thereby needs the message to be formatted accordingly.

5. The output from App 2 is formatted in the canonical format, as App 2 internally handles this format.
6. However, before returning a message back to the external partner the ESB must format the message to fulfil the Mx format.

All in all the above example shows how the individual applications do not need to be concerned with which protocol and format they implement. The ESB must carry this knowledge and provide the applications with the protocol and format they need.
2.6.2 Routing

Beside the actual format and representation of data and protocols it is also highly important that messages are routed correctly. By correct is meant that a message is routed through a number of applications in the order which is given by an overall business process, e.g. the process shown in Figure 3. In [20] it is argued that a problem exists with a web service oriented approach to SOA. In this type of approach it is necessary to implement the routing flow into the applications that are connected. This is not optimal as this can develop into an accidental architecture. To overcome this problem, it is the task of the ESB to deliver the functionality of routing messages between applications attached to it. One possible solution is to use an itinerary as role model for the messages. This itinerary should be augmented to the message itself as metadata. When a message enters the ESB (as in Figure 3) a message itinerary (example shown in Figure 4) is created and attached to the message.
[image: image5.png]XML

Message ltinerary

1) 2) 3)
> At > w2 »{ Consutant
Get Credit Rating Get Risk Schedule Appointment

Figure 4: An example itinerary for Figure 2
The message can now travel between applications (service endpoints) and will be routed by these using the message itinerary. The endpoints route messages using either a request-reply or a reply-forward pattern according to the message itinerary [20]. The message itinerary is created depending on the content of the message. When a message needs to change its format it needs to be routed to a converter service on the ESB (these steps are left out of Figure 3) before arriving at some service endpoint. This type of routing is in [20] denoted Content Based Routing (CBR). This service has knowledge of where a message should be directed to. When a message itinerary is created, the business process of a task is known in advance. However, the formats of the message and the routing between service endpoints are not known. Thereby the task of tailoring the itinerary is also the task of the CBR service. This can be done in numerous ways, but two are obvious. Either some control structures must be applied at the endpoints to determine whether the format is correct (if not it should direct the message towards some conversion service), or the itinerary must be fed to a CBR service that updates the itinerary and thereby decorates the itinerary with the needed conversion services. Of these two the latter seems most suitable, as it does not demand any unnecessary flow logic to be applied at the service endpoints. However the CBR service needs to lookup the rules of the flow logic in some directory. These rules should be cached at the CBR service(s) as the flow logic directory could temporarily be unavailable. The flow logic can be implemented in numerous ways, ranging from BPEL, XPATH or even some scripting language constructs.
3 Web Oriented Architecture
The recent trend within web technologies has taken a turn towards connecting enterprises by small and simple means. This trend has evolved into the so called Web Oriented Architecture also known as WOA. WOA presents a whole new set of possibilities for its users to create their very own web applications by reusing other web applications. In the same manor a newly created “mash-up” can be reused by others. Hence a new way of using SOA has made its entry. A mash-up is the concrete representation of two or more web services mashed up into one web application. WOA is the methodology behind this type of application design and is based on REST..
3.1 Representational State Transfer
Representational State Transfer (REST) was originally termed by Roy Fielding in 1992[9]. It describes an architectural style but is not meant as a standard. However, it makes use of other standards, as it uses the HTTP protocol extensively for transportation of resources and XML, HTML and JPEG etc. as standards for these resources. A classical example of a REST system is the Web with its offering of resources in links described by URLs. Many of these links point to actual services like dictionaries or maps. It is precisely these services that can be mashed up and used in composition to achieve greater functionality. A service is invoked by issuing a HTTP call to its designated URL. The HTTP PUT, GET, POST and DELETE verbs correspond well to the Create, Read, Update and Delete (CRUD) principle generally known in other areas of computer science. REST is based firmly on old, reliable and well tested technology which has shown to work with the existing demands from users all over the world.

The use of REST is illustrated by a simple example. The example takes its outset in a university setting in which a number of courses are held [5]. These courses are offered to the students of the university. The university has descriptions of each course available online among detailed information on syllabus, literature, time and place etc. A RESTful approach to this would offer a list of courses at a URL e.g. http://www.sampleuni.edu/courses which a client may access.
If a client were to access this URL with the GET verb it would get a courses.xml document back from the REST service provided by the university. Among the received information in this document is most likely a number of links to more detailed information on the specific courses like e.g. “Prog-Lang” shown in the top part of Figure 5. The reception of the representation of the resource (course.xml) places the client in a state, which changes every time the client traverses a new link. If the client is interested in the “Prog-Lang” course it could issue a POST of a registration document to the university web service. The web service would then return a URL where the client can locate and edit the document if needed. The registration document should conform to some predefined scheme. The resource (the registration document) is now shared between the service and the client. Although this example is simple it serves its purpose of showing how simple REST services can be deployed. No special transport protocol or automated stub generation is needed; everything is based on HTTP which means that REST has no problems with either firewalls or proxy servers.

[image: image6.emf]Web

service

Courses

HTTP GET request

http://www.sampleuni.edu/courses

HTTP response

courses.xml

Prog-

Lang

Client-

Reg

HTTP response

proglang.xml

HTTP response

http://www.sampleuni.edu/courses

/proglang/registration/clientreg.xml

HTTP GET request

http://www.sampleuni.edu/

courses/proglang

HTTP POST

http://www.sampleuni.edu/

courses/proglang/reg.xml

Client

Figure 5: The sample university scenario
As a style REST should not affect its clients if the implementation should be changed, thereby the URLs presented to the client should not be tied directly to the implementation. To achieve this, a number of patterns could be applied; however these are not discussed here, for further reading see [5].
Besides the wish for loose coupling the most significant characteristics of REST are:
· Client-server interactions The user interface is separated from the storage

· Statelessness Each request from client to server must contain all information needed to understand the request

· Caching Responses can be cached at the client side to improve network efficiency
· Uniform interface All resources are accessed via one generic interface
By separating the user interface from the storage both the portability of the user interface and the scalability of the server are improved as both are kept simple and independent. The statelessness of REST adds three properties to the style; namely visibility, reliability and scalability. By applying statelessness it is easier to monitor the states of a client-server system, hence visibility is strengthened. When a system enforces statelessness its reliability is increased as the recovery of failures becomes simpler to accomplish. Finally scalability is also improved in a stateless system. Each component in the system does not have to retain its state and thereby physical resources can be released quickly. One obvious downside to the requirement of statelessness is the overhead in network traffic. In order to rectify this downside the well known concept of caching data is applied. The uniformity of the interface gives implementations which are decoupled from the services they provide. This encourages independent development of services, yielding simpler and more transparent components.
Since the coming of web services, REST has been attempted utilized in that field. This has resulted in a number of frameworks that support the use of REST. Generally, the open source and Java communities support REST more than the Microsoft.NET community does. The reason for this fact might be that SOAP based web services have become so easy to implement in .NET that users of REST in .NET are few. Therefore the frameworks for REST, such as RestLet, Rest-art, The Cognitive Web and sqlREST, are primarily founded in the Java community. RestLet seems the most mature with its offering of REST-based resources, representations, connectors, filters and routers. Moreover it has well documented examples and a detailed tutorial [7]. This framework and a subset of the others could very well be the first step towards WOA on a larger scale.

3.2 WOA - a subset of SOA

Within the latest couple of years companies have struggled to build up SOA within their own boundaries. This has proved difficult and achieving a service oriented connection between companies has proved to be almost impossible adhering to the inter-enterprise-like view of SOA. Despite these discouraging facts a new way of creating a SOA has emerged. This type has become known as web oriented architecture or WOA for short. WOA is also frequently termed Web 2.0. Leading practitioners within SOA believe that WOA suffers from being light weight toys [6] and WOA practitioners accuse SOA of being bloated and incomprehensible. Even though these accusations flourish between the two camps it is a fact that WOA seems to be a subset of SOA. This is the case as WOA praises both loose coupling and coarse granularity [5]. Compared to SOA, WOA is not designed to function in a controlled environment; contrarily WOA tries to bring the widest number of usage scenarios together. This is one of the reasons why companies like Google and Amazon use the new pattern/style, where larger services are offered as mash-ups of smaller services. These mash-ups provide programmatic access to web resources. These resources are offered using a Google business model with a free of charge principle for basic use, and a pay per use principle for more advanced functionality. The services that compose the mash-ups are ad-hoc best effort resources which mostly adhere to REST [4, 5] as described in section 3.1 or REST-like styles, e.g. Amazon with their Query API for EC2.

It might seem like WOA is most widely used between humans and systems. However WOA is not just about interaction between humans and systems. It is important to notice that one of the reasons why WOA has emerged so quickly is that is enables interaction between systems. WOA combines well proved existing technologies and applies them for use in the world of web services for everyday web users. One of the principles WOA is based on, is avoiding auto generated stubs for web services, clearly understanding what happens on the network. This further strengthens REST as a good style for applying WOA due the strong base upon HTTP.

[image: image7.emf]SOA

WS-*

BPEL

WSDL

SOAP

REST

HTTP(S)

UDDI

JSON

WOA

Complexity

R

i

c

h

n

e

s

s

Figure 6: WOA is a subset of SOA, figure based on [8]
Today WOA is most widely used as parts of personal wikis, blogs and newsfeeds, but SOA architects might look at the possibilities in WOA as it could be a cornerstone in connecting the corporate SOA with the Global-SOA. The Global-SOA should be understood as the possibility of reaching the goal of achieving cooperation between enterprises across their organizational boundaries, but as stated earlier this is not an easy task.

The reasons why WOA can be considered as one of the cornerstones to achieving Global-SOA are twofold. Firstly it is a subset of SOA, as shown in Figure 6, and secondly it is far simpler than the SOAP alternative. With this latter fact comes the advantage that the Google business model can be (and has been) applied to it. Figure 6 shows how simple and rich WOA is compared to e.g. the SOAP alternative. The richness of WOA is not as high as other SOA elements; however this is a trade off between complexity and the number of potential users. In spite of these positive comparisons WOA still faces some difficulties. This is partly due to the fact that REST does not provide any security besides HTTPS.
According to [10] the number of mash-ups is climbing steadily. It is stated that within the last 6 months more than 600 mash-ups have been created and published. In [10] a mash-up is defined as:

 “A web page or application that combines data from two or more external online sources.”

The external sources are typically other web sites and the data provided online. This data is used by the mash-up to provide new functionality. An example is a mash-up which utilizes Google Maps, Wikipedia and Flickr to provide information on the highest skyscrapers in the world.
4 Conclusions
The visions of Business Process Management based on WS and SOA have not yet been implemented. Especially the vision that formally described BPM based on WS with defined interfaces in WSDL and placed in UDDI repositories would lead to a world, where SMEs could join together their internal business processes and form dynamic business processes to deliver products or services that could compete with fortune 500 companies, seems as far away today as when it first emerged.

BPM is today the preserve of large organisations. Much work is ongoing in large companies breaking down silo systems and integrating them using SOA, especially based on ESB. Some large companies have also begun formalisation of internal BPM using notions such as BPEL or visual notations such as BPMN or the UML profile for automated BPs. However, work is still ongoing regarding the SOA infrastructure. Furthermore, there is much ongoing standardisation work around WS-*, extensions of the WS protocol suite, e.g. regarding security, authentication and transactions. There is also a battle between BPM integration based on choreography or based on orchestration. Overall, this leaves the perception that BPM based on SOA is heavy duty and requires substantial investments.

Inter enterprise collaboration or integrated business processes are however taking place. Such integrations are based on the Web 2.0 concept of mash-ups, based on REST, sometimes referred to as WOA. In this area there are lots of grass root developments, with many services becoming available due to the simplicity of the approach and the sheer size of the community. In fact the development of REST based services and mash-ups confirms Metcalf’s law - the usefulness of the network is proportional to the square of the number of nodes.
Hybrids between SOA based BPM and WOA are starting to emerge, with large companies such as Amazon and Google providing externally available services based on WOA, but internally implemented as SOA. However, today such external services are usually only available as-is, best effort. Some have higher value services available based on formal Service Level Agreements (SLAs), but it is hard to tell how such SLAs are negotiated and monitored. The trend towards Global BPMs based on mash-ups clearly runs a risk of turning WOA into a huge mess, instead of the structured inter-enterprise BPM based on SOA.

5 References

[1] W. Richard Scott: Organizations – Rational, Natural and Open Systems, Fourth Edition, 2001.
[2] Payroll Manager’s Report, Business Intelligence at Work (IOMA), issue 07-10, October 2007, http://proquest.umi.com/pqdweb?index=0&sid=1&srchmode=1&vinst=PROD&fmt=6&startpage=-1&clientid=11561&vname=PQD&RQT=309&did=1339743911&scaling=FULL&ts=1190800957&vtype=PQD&rqt=309&TS=1190800974&clientId=11561
[3] Fredrik W. Johansen: Det virtuelle skrivebord. Landscentret, 2006.
[4] Roger L. Costello: Building Web Services the REST Way, http://www.xfront.com/REST-Web-Services.html
[5] Munindar P. Singh and Michael N. Huhns: Service Oriented Computing – Semantics, Processes, Agents, Wiley.
[6] Joe McKendrick: Web 2.0 or SOA? Web 2.0 and SOA? Let the Debate Begin!,

http://www.webservices.org/weblog/joe_mckendrick/web_2_0_or_soa_web_2_0_and_soa_let_the_debate_begin_part_1
[7] Dion Hinchcliffe: Pragmatic Service-Oriented Architecture: Introducing the WOA/Client,
 http://hinchcliffe.org/archive/2006/08/05/8489.aspx
[8] Dion Hinchcliffe: The SOA with reach: Web-Oriented Architecture,

http://blogs.zdnet.com/Hinchcliffe/?p=27
[9] Roy Thomas Fielding: Architectural Styles and Design of Network-based Software Architectures, http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
[10] The Programmable Web, http://www.programmableweb.com/faq
[11] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda: Decentralized orchestration of composite web services. In WWW Alt. '04: Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters, pages 134 - 143, New York, NY, USA, 2004. ACM Press. 109
[12] C. Peltz: Web services orchestration and choreography. IEEE Computer, 36(10):46-52, October 2003.
[13] Stephen A. White: Introduction to BPMN,
http://www.bpmi.org/downloads/Introduction_to_BPMN89.pdf, 2004

[14] W3C. Web services choreography requirements 1.0., http://www.w3.org/TR/2003/WD-ws-chor-reqs-20030812/#What_is_Web_Services_Choreography
[15] Nitin Bharti: Dancing with Web services: W3C chair talks choreography,
 http://searchwebservices.techtarget.com/qna/0,289202,sid26_gci1066118,00.html, 2005

[image: image8.png]

[16] Thomas Erl: Service-Oriented Architecture: Concepts, Technology, and Design, Prentice Hall PTR, August 2005.
[17] Gopala Krishna Behara: BPM and SOA: A Strategic Alliance,
http://www.bptrends.com/publicationfiles/05%2D06%2DWP%2DBPM%2DSOA%2DBehara%2Epdf
[18] Dirk Krafzig, Karl Banke & Dirk Slama: Enterprise SOA: Service Oriented Architecture Best Practices, Prentice hall, 2005.
[19] Eric Newcomer, Greg Lomow: Understanding SOA with Web Services, Addison Wesley, 2005.
[20] David A. Chappell: Enterprise Service Bus - Theory in Practice. O'Reilly, 2004.

[21] http://www-306.ibm.com/software/htp/cics/
[22] R. A. Snowdon: PROCESSWISE: TECHNOLOGY FOR DEVELOPING SYSTEMS FOR ORGANISATIONS, The institute of Electrical Engineers, 1995.
http://ieeexplore.ieee.org/iel4/5546/14863/00675562.pdf?isnumber=&arnumber=675562
[23] http://www.corba.org/
[24] http://msdn2.microsoft.com/en-us/library/ms809340.aspx
[25] Laury Verner: BPM: The Promise and the Challenge, ACM Queue, v.2 n.1, March 2004.
[26] http://en.wikipedia.org/wiki/Electronic_Data_Interchange
Structured activities:

sequence,

switch,

while,

flow, pick,

if,

repeat until,

foreach

LOC+147+009030305: :5 '

MEA+WT++KGM:22500 '

LOC+9+NLRTM'

LOC+11+SGSIN '

RFF+BM+933 '

. . .

PAGE
19

_1239538156.vsd
Web service

Courses

HTTP GET request
http://www.sampleuni.edu/courses

HTTP response
courses.xml

Prog-Lang

Client-Reg

HTTP response
proglang.xml

HTTP response
http://www.sampleuni.edu/courses
/proglang/registration/clientreg.xml

HTTP GET request
http://www.sampleuni.edu/
courses/proglang

HTTP POST
http://www.sampleuni.edu/
courses/proglang/reg.xml

Client

_1239624571.vsd
SOA

WS-*

BPEL

WSDL

SOAP

REST

HTTP(S)

UDDI

JSON

WOA

Complexity

Richness

