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Abstract

This thesis is about aspects of specification and development of data warehouse tech-
nologies for complex web data. Today, large amounts of data exist in different web
resources and in different formats. But it is often hard to analyze and query the often
big and complex data or data about the data (i.e., metadata).It is therefore interesting
to apply Data Warehouse (DW) technology to the data. But to apply DW technology
to complex web data is not straightforward and the DW community faces new and
exciting challenges. This thesis considers some of these challenges.

The work leading to this thesis has primarily been done in relation to the project
European Internet Accessibility Observatory (EIAO) wherea data warehouse for ac-
cessibility data (roughly data about how usable web resources are for disabled users)
has been specified and developed. But the results of the thesis can also be applied to
other projects using business intelligence (BI) and/or complex web data. An interest-
ing perspective is that all the technologies used and developed in the presented work
are based on open source software.

The thesis presents several tools in a survey of the possibilities for using open
source software for BI purposes. Each category of products is evaluated against cri-
teria relevant to the use of BI in industry. After this, experiences from designing
and implementing a DW for accessibility data are presented.Further, the conceptual,
logical, and physical models for the DW are presented. This is believed to be the
first time a general and scalable DW is built for the accessibility field which is both
complex to model and to calculate aggregation results for.

The thesis then presents solutions to general interesting problems found during
the work on developing a DW and supporting DW technologies for the EIAO project.
A new and efficient way to store triples from an OWL ontology known from the
Semantic Web field is presented. In contrast to traditional triple stores where the data
is stored in few, but big, tables with few columns, the presented solution spreads the
data over more tables that may have many columns. This makes it efficient to insert
and extract data, in particular when using bulk loading where big amounts of data are
considered.

i



ii Abstract

A new and flexible way to exchange relational data via the XML format (which
is, e.g., used by web services) is also presented. This method saves labor to pro-
gram often complex solutions to handle correct exchange of data. With the presented
method, the user only has to specify what data to export and the structure of the gen-
erated XML. The data can then automatically be exported to XML and imported into
another database just like updates to the XML automaticallycan be migrated back to
the original database.

Regression test is widely accepted and used in traditional software development.
For Extract–Transform–Load (ETL) software, regression test is, however, tradition-
ally cumbersome and time-consuming. The thesis points out crucial differences be-
tween test of “normal” software and ETL software and on that background a new
semi-automatic framework for regression test of ETL software is introduced. The
framework makes it easy and fast to start doing regression test. It only takes minutes
to set up regression test with the framework.

Traditionally DWs have been bulk loaded with new data at regular time intervals,
e.g., monthly, weekly, or daily. But a new trend is to add new data as soon as it
becomes available from, e.g., a web log or another online resource. This is done
by means of SQL INSERT statements but these are slow comparedto bulk loading
techniques and the performance of the database systems drops. Therefore the thesis
presents a new and innovative method that combines the best of these worlds. Data
can be made available in the DW exactly when needed and the user gets bulk-load
speeds, but INSERT-like data availability.
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Chapter 1

Introduction

Today, the Web is the biggest available information source.The Web is used daily by
hundreds of millions of people and in many countries nearly all companies, authori-
ties, and organizations have web sites. Many things that used to be time consuming
and cumbersome such as finding and booking cheap flights, finding pictures of a spe-
cific Aboriginal painter, or obtaining statistics about thethe economic growth in each
of the EU countries can today be done in minutes or even less from a computer con-
nected to the Web. The popularity of the Web thus gives new possibilities, but it also
introduces new challenges.

Huge amounts of informations are available in a variety of different formats
on the Web. Much information is represented in the HyperTextMarkup Language
(HTML) format used for web pages, but the broad use of the Web has also led to
other formats such as Extensible Markup Language (XML) often used for web-based
exchange of data and Resource Description Framework (RDF) used to represent in-
formation about resources in the Web. Although these formats make it possible to
represent and exchange complex data, it is often difficult toquery and analyze the
data and data about the data (i.e., metadata).

In recent years many efforts have been put into developing data warehouse (DW)
and business intelligence (BI) technologies. DW and BI technologies are very well-
suited for storing and analyzing very large amounts of data.The data in a DW is
prepared and stored in a way that makes analysis of it easy andefficient. It is there-
fore a natural step to apply DW technologies to web data and web metadata. But to
apply DW technologies to complex web data is not straightforward and the DW com-
munity faces new challenges from the Web with its “always online paradigm” and
the large amounts of data that must be handled. For example, it is nowadays often
desired always to have fresh data, e.g., from a click-streamor from a Web-connected
sensor, available in the DW with a very little delay. But to load huge amounts of data
into a DW in (near-)real-time, instead of at regular intervals as traditionally done, is
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2 Introduction

challenging. Other challenges include to find solutions that allow easy and flexible
exchange of DW data via the Web using XML and efficient extraction of RDF-based
data to load into a DW.

The work that led to this thesis was mainly done in relation tothe European
Internet Accessibility Observatory (EIAO) project. The goal of the EIAO project
is to build an observatory that automatically evaluates theaccessibilityof 10,000
European web sites every month. In other words, the projectsconsiders how well
web resources can be used by users with special needs such as ablind user who uses a
screen reader. A web page that can also be used by such users issaid to beaccessible.
The World Wide Web Consortium has published guidelines about how to make web
resources accessible. For many of those guidelines, it can be automatically checked
if web resources follow them. This is exactly what is done by the EIAO project.
In the project, a crawler and tools and measures for evaluation of the accessibility
of web resources are built and used. These accessibility evaluations result in large
amounts of complex data. To make analysis of this data easy, fast, and reliable, it is
collected in a DW called EIAO DW. To specify and develop this DW and supporting
DW technologies for it has been the purpose of the Ph.D. project that led to this thesis.
The supporting DW technologies are, however, designed to begeneral and can thus
also be applied to DWs designed for other data than accessibility data.

To make it possible for everyone to use the developed solutions and to verify and
understand the results, all software in the EIAO project is open source. This holds
both for software used in the EIAO project and for software developed in the project.
Thus, all the software presented in the remainder of this thesis is available as open
source software.

Chapter 2 surveys the possibilities for using open source BIproducts as of End
2004 motivated by the fact that use of open source BI tools in industry is not com-
mon. First, the chapter presents some of the commonly used open source licenses.
Then three Extract-Transform-Load (ETL) tools, three On-Line Analytical Process-
ing (OLAP) servers, two OLAP clients, and four Database Management Systems
(DBMSs) are considered in the survey. All the tools are evaluated against criteria
relevant to the use of BI in industry. It is concluded that theDBMSs are the most
mature of the tools and applicable to real-world projects, while the ETL tools are the
least mature and in general not ready for use in industry.

Chapter 3 describes release 1 (from Mid 2006) of the EIAO DW used in the EIAO
project. The chapter gives a brief introduction to the field of accessibility and to the
entire architecture used in the EIAO project. The EIAO DW is aweb warehouse built
to make analysis of complex data about (in)accessibility ofweb resources easy, fast,
and reliable. To do this, a general DW schema must be used and complex aggregation
functions applied. It is believed that this work is the first to develop a general and
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scalable BI solution to the field of accessibility. The conceptual, logical, and physical
models are presented, as well as the RDF source data. The ETL procedure is also
briefly presented. Bad performance when extracting the RDF based source data is a
problem for the used solution.

Chapter 4 describes 3XL, a proposal for how to store very large Web Ontology
Language (OWL) graphs efficiently. Motivated by our previous experiences with
performance problems when storing and extracting large RDFdata sets in general
schemas, this chapter proposes a novel way to make a specialized schema for the
data to store. To do this, 3XL focuses on the subset of RDF graphs that are also
OWL graphs since they have some convenient characteristicsthat make it possible to
optimize the schema. 3XL generates the specialized schema once and for all based on
an OWL Lite ontology that describes the “structure” of the data to store. In contrast
to a generic schema with few but large and narrow tables, 3XL has many wide tables,
in particular at least one table for each OWL class. A theoretical analysis shows
that 3XL can insert much fewer rows than a generic solution. In the used DBMS
(PostgreSQL), the fewer rows result in much less storage overhead from rows. In the
shown example with data about107 instances, a specialized schema requires up to
8GB less storage than a generic schema. Further, the rows in the specialized schema
are spread over more tables so it is faster to locate data.

Chapter 5 investigates automatic and effective bidirectional transfer between rela-
tional and XML data. This is motivated by the increasing exchange of relational data
through XML based technologies such as web services. In sucha use-case, data is
exported from a relational database to XML from which the data must be importable
into another relational database. Further, the XML may be updated such that only
the resulting XML is present afterwards (and not a log of the changes). Based on
the updated XML, it must the be possible to update the original database to reflect
the changes to the XML. To set this up manually is cumbersome and a lot of hand-
coding is needed. As a remedy to this situation the chapter presents RELAXML.
With RELAXML the user must only specify what data to export and the structure
of the XML. RELAXML does then take care of the export/import of data such that
no custom-coding is needed. Before exporting, RELAXML automatically detects if
all needed data is included to make it possible to re-import the data set and solves
the problems or warns the user if any problems are detected. An implementation is
presented and performance studies show that the suggested solution has a reasonable
overhead compared to specialized, hand-coded solutions.

Chapter 6 considers regression test of ETL software. ETL software tends to be
complex and error prone and may often be changed to increase performance or to
handle changed data sources. Thus regression test is usefulfor ETL software. But
traditionally this requires large manual efforts to set up.The chapter points out crucial
differences between testing in “normal” software development and ETL development
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and, based on these, the tool ETLDiff is presented. ETLDiff analyzes the DW schema
and detects which parts of the data should not change betweenETL runs on the same
source data (some parts such as surrogate keys are allowed tochange). Based on
this analysis and optional user specification about what data to consider, ETLDiff
compares test results to previous test results or other reference results and points out
differences. When ETLDiff is used, a regression test can be set up in minutes instead
of in days as when manual coding is done. The chapter presentsa performance study
of a prototype of ETLDiff. The results show that the running time scales linearly in
the data size and that the solution is efficient enough to be used for regression testing
on a desktop PC.

Chapter 7 investigates how to insert data into so-called right-time DWs. Tradi-
tionally, data has been bulk-loaded into DWs at regular intervals but recently it has
become popular to insert new data as soon as it appears by using traditional SQL IN-
SERT statements. This makes data available quickly, but performance suffers when
the data amounts grow as when, e.g, click-streams are considered. There is thus a
need to be able to make data available quickly while still preserving a high insert
performance. The chapter presents the middleware system RiTE that provides such a
solution which works transparently to both consumers and the producer. When RiTE
is used, data can be inserted quickly by a producer and becomeavailable to con-
sumers exactly when needed. As a remedy to obtain this, RiTE includes a novel main-
memory based catalyst that provides fast storage. The movement of data between the
different parts of the system and the DBMS can be controlled by user-defined poli-
cies that take the user’s requirements for freshness, availability, and persistency into
consideration. The chapter presents experiments that showthat a prototype of RiTE
provides INSERT-like data availability, but up to 10 times faster, i.e., with bulk-load
speeds.

Appendix A presents the conceptual model for release 2.0 (from Mid 2007) of
the EIAO DW. Compared to the conceptual model presented in Chapter 3, several
changes have occurred to reflect the changed requirements and available data from
the entire EIAO project.

The thesis is organized as a collection of individual papers. The chapters are or-
ganized such that material that is used in or motivates the work in another chapter
appears first. But each chapter/appendix is self-containedand can be read in iso-
lation. The chapters have been slightly modified during the integration such that,
for example, their bibliographies have been combined to oneand references to “this
paper” have been changed to references to “this chapter”. There are some overlaps
between the descriptions of the conceptual model for EIAO DWreleases 1 and 2
given in Chapter 3 and Appendix A, respectively. ConcretelyAppendix A describes
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conceptual classes that are also described in Chapter 3 but Appendix A also describes
new classes from release 2.

The papers included in the thesis are listed below. Chapter 2is based on Paper 1,
Chapter 3 is based on Paper 2 and so on until Chapter 7 which is based on Paper 6.
Appendix A is a shortened version of Paper 7.

1. C. Thomsen and T. B. Pedersen. A Survey of Open Source Toolsfor Busi-
ness Intelligence. InProceedings of the 7th International Conference on Data
Warehousing and Knowledge Discovery, pp. 74–84, 2005.

2. C. Thomsen and T. B. Pedersen. Building a Web Warehouse forAccessibility
Data. InProceedings of the 9th ACM international workshop on Data ware-
housing and OLAP, pp. 43–50, 2006.

3. C. Thomsen and T. B. Pedersen. 3XL: Efficient Storage for Very Large OWL
Graphs.In preparation for submission, 18 pages, 2007.

4. S. U. Knudsen, T. B. Pedersen, C. Thomsen, and K. Torp. RELAXML: Bidi-
rectional Transfer between Relational and XML Data. InProceedings of the
9th International Database Engineering & Application Symposium, pp. 151–
162, 2005.

5. C. Thomsen and T. B. Pedersen. ETLDiff: A Semi-automatic Framework for
Regression Test of ETL Software. InProceedings of the 8th International
Conference on Data Warehousing and Knowledge Discovery, pp. 1–12, 2006.

6. C. Thomsen, T. B. Pedersen, and W. Lehner. RiTE: ProvidingOn-Demand
Data for Right-Time Data Warehousing. To appear inProceedings of the 24th
International Conference on Data Engineering, 10 pages, 2008.

7. T. B. Pedersen and C. Thomsen.EIAO Deliverable 6.1.1.1-2, Appendix A:
Conceptual Model for EIAO DW, R2, 27 pages, 2007.





Chapter 2

A Survey of Open Source Tools for
Business Intelligence

The industrial use of open source Business Intelligence (BI) tools is not yet common.
It is therefore of interest to explore which possibilities are available for open source
BI and compare the tools.

In this survey chapter, we consider the capabilities of a number of open source
tools for BI. In the chapter, we consider three Extract-Transform-Load (ETL) tools,
three On-Line Analytical Processing (OLAP) servers, two OLAP clients, and four
database management systems (DBMSs). Further, we describethe licenses that the
products are released under.

It is argued that the ETL tools are still not very mature for use in industry while
the DBMSs are mature and applicable to real-world projects.The OLAP servers
and clients are not as powerful as commercial solutions but may be useful in less
demanding projects.

2.1 Introduction

The use of Business Intelligence tools is popular in industry [76, 85, 86]. However,
the use of open source tools seems to be limited. The dominating tools are closed
source and commercial (see for example [76] for different vendors’ market shares
for OLAP servers). Only for database management systems (DBMSs), there seems
to be a market where open source products are used in industry, including business-
critical systems such as online travel booking, managementof subscriber inventories
for tele communications, etc. [72]. Thus, the situation is quite different from, for
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8 A Survey of Open Source Tools for Business Intelligence

example, the web server market where open source tools as Linux and Apache are
very popular [114].

To understand the limited use of open source BI tools better,it is of interest to
consider which tools are available and what they are capableof. This is the purpose
of this chapter. In the European Internet Accessibility Observatory (EIAO) project,
where accesibility data is collected, it is intended to build a BI solution based on open
source software. It is therefore of relevance for this project to investigate the available
products.

In the survey we will consider products for making a completesolution with
an Extract-Transform-Load (ETL) tool that loads data into adatabase managed by
a DBMS. On top of the DBMS, an On-Line Analytical Processing (OLAP) server
providing for fast aggregate queries will be running. The user will be communicating
with the OLAP server by means of an OLAP client. We limit ourselves to these kinds
of tools and do not consider, for example, data mining tools or Enterprise Application
Integration (EAI) tools. Use of data mining tools would alsobe of relevance in many
BI settings, but data mining is a more advanced feature whichshould be considered
in future work. EAI tools may have some similarities with ETLtools, but are more
often used in online transactional processing (OLTP) systems.

The rest of the chapter is structured as follows. Section 2.2gives a primer on open
source licenses. Section 2.3 presents the criteria used in the evaluation of the different
tools. Section 2.4 considers ETL tools. Section 2.5 deals with OLAP servers, while
Section 2.6 deals with OLAP clients. Finally, we consider DBMSs in Section 2.7
before concluding and pointing to future work in Section 2.8.

2.2 Open Source Licenses

To make the findings on licenses more comprehensible, we include a description
of the open source licenses that will be referred to later in the chapter. TheGNU
General Public License (GPL)[43] is a classic, often used open source license. Any
user is free to make changes to the source code. If the changedversion is only used
privately, it is not a requirement that its source code is released. If it, however, is
distributed in some way, then the source code must be made available under the
GPL (i.e. also released as open source that any user is free tochange and copy). It
should be noted that a library released under the GPL will require any program that
uses it to be licensed under the GPL. This is not the case when using GNU Library
General Public License (LGPL)[44] which apart from that is much like the GPL.
TheCommon Public License (CPL)[27] was developed by IBM as an open source
license. Like the GPL, the CPL requires that the source code for a modified version
of a program is made publicly available if the new version is distributed to anyone.
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Programs and libraries released under the CPL may be used from and integrated with
software released under other (also closed source) licenses.

TheMozilla Public License[70] is also an open source license that requires the
code for any distributed modified works to be made publicly available. It is allowed to
use a library under the Mozilla Public License from a closed source application. Thus
the license has some similarities with the LGPL. TheApache License[6,7] allows the
code to be used both in open source, free programs and in commercial programs. It is
also possible to modify the code and redistribute it under another license under certain
conditions (e.g. the use of the original code should be acknowledged). Version 1.0
and 1.1 of the Apache License [6] included requirements about the use of the name
“Apache” in documentation and advertising materials. Thatmeant that the license
should be modified for use in non-Apache projects. This was changed with version
2.0 [7]. TheBSD License[19] is a very liberal open source license. It is permitted
to use source code from a BSD licensed program in a commercial, closed source
application. As long as any copyright notices remain in the modified code, there are
no requirements saying that modifications of the code shouldbe BSD licensed or
open source.

2.3 Conduct of the Survey

In this section, we present the criteria used for the evaluation of the considered prod-
ucts. The criteria with a technical nature have been inspired by the functionality
offered by the leading commercial BI tools. Other criteria,such as the type of li-
cense, are interesting when looking at open source tools. Based on the criteria given
below, we collected data about the products (all found on theInternet) by examin-
ing their source code, available manuals, and homepages including any forums. The
findings were collected in November-December 2004.

Criteria for All Categories When deciding between different products, a potential
user would most often prefer a product that is compatible with his1 existing operating
system and hardware. Thus, for all the products, it is of interest to investigate which
hardware and software platforms the tools are available for. In this survey we will
only look at open source products. As described in Section 2.2 there are, however,
many different open source licenses that have different permissions and restrictions.
Therefore, the license used by a product is also of great interest.

Criteria for ETL Tools When comparing ETL tools, there are several criteria to
consider. First, it should be considered which data sourcesand targets a given tool

1We use “his” as short for “his/her”.
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supports. Here, it should be considered whether the tool is for loading data into RO-
LAP or MOLAP systems, i.e. into relational tables or multidimensional cubes [86].
In many practical applications, it should be possible to extract data from different
sources and combine the data in different ways. Further, it should be possible to load
the data into different tables/cubes. Therefore support for these issues should be con-
sidered. It should also be considered which types of data sources an ETL tool can
extract data from and whether it supports incremental load in an automatic fashion
(not requiring two separate flows to be specified). It is also of interest how the ETL
process is specified by the user, i.e whether a graphical userinterface (GUI) exists and
if the user can specify the process directly by means of some specification language.
Another important issue for ETL tools is their capabilitiesfor data cleansing. Here
it should be considered how data cleansing is supported, i.e. if predefined methods
exist and how the user can specify his own rules for data cleansing.

Criteria for OLAP Servers For an OLAP server it is of interest to know how it
handles data. It should thus be considered whether the tool is ROLAP, MOLAP,
or HOLAP oriented, where HOLAP is short for Hybrid OLAP [86].Further, it is
of interest if the product is capable of handling large data sets (for example, data
sets greater than 10 gigabytes). It should also be taken intoaccount whether an
OLAP server has to be used with a specific DBMS or if it is independent of the
underlying DBMS. Precomputed aggregates can in many situations lead to significant
performance gains. It is therefore relevant to see whether an OLAP server can use
aggregates and if so, whether the user can specify which aggregates to use. Finally,
it is of relevance to investigate which application programming interfaces (APIs) and
query languages an OLAP server supports. A product that usesstandards or de-facto
standards is much more useful with other tools than a productusing a non-standard
API or query language.

Criteria for OLAP Clients For an OLAP client it should be considered which
OLAP server(s) the OLAP client can be used with. As for OLAP servers, it should
also be taken into account which API(s) and query language(s) the OLAP client sup-
ports. With respect to reports, it is interesting to see if the OLAP client supports
prescheduled reports, perhaps through a server component.If so, the user could, for
example, make the OLAP client generate a sales report every Friday afternoon. When
a report has been generated (manually or as prescheduled report), it is often useful to
be able to export the report to some common format that could be emailed to some-
one else. Therefore, it should be investigated which exportfacilities an OLAP client
offers. In generated reports, different types of graphs areoften used. It should thus
also be considered how well an OLAP clients supports different kinds of graphs.
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Criteria for DBMSs There are many possible criteria to consider for DBMSs. In
this survey we will, however, only look at criteria directlyrelevant for BI purposes.
First of all, a DBMS should be capable of handling large data sets if the DBMS is
to be used in BI applications. Thus this is an issue to investigate. When choosing
a DBMS for BI, it is also of relevance which performance improving features the
DBMS offers. In this survey we will look into the support for materialized views that
can yield significant performance gains for precomputed aggregates. Many commer-
cial ROLAP systems use bitmap indices to achieve good performance [86]. It is also
of interest to find out whether these are supported in the considered products. Further,
in a typical schema for a data warehouse, star joins may be a faster to use and, thus,
the support for these is an issue. Finally, we will consider partitioning which can
yield performance improvements and replication which may improve performance
and reliability.

2.4 ETL Tools

In this section, we will consider the three ETL tools Bee, CloverETL, and Octopus.
These were all the available tools we found. We found many other open source
ETL projects that were not carrying any implementation, butmore or less only stated
objectives. Examples of such projects are OpenSrcETL [80] and OpenETL [77].
Another disregarded project, was cplusql [28] which had some source code availble,
but for which we did not find any other information.

Bee Bee version 1.1.0 [8] is a package consisting of an ETL tool, an OLAP server,
and an OLAP client web interface. The ETL tool and the OLAP server of Bee are
ROLAP oriented. Bee is available under both an open source GPL license and a
commercial license. Bee is implemented mainly in Perl with parts implemented in
C. Therefore, the access to data is provided by the Perl module DBI. Bee comes with
its own driver for comma-separated files. To extract data, Bee needs a small server
application (included) to be running on the host holding thedata. Bee is primarily
written for Linux, but is also running on Windows platforms.The mentioned server
application needed for extracting data runs on different varieties of UNIX and Win-
dows. The ETL process can be specified by means of a GUI. The GUIwill create an
XML file defining the process. It is thus also possible for the user to use Bee with-
out using the GUI by creating the XML file manually. It is possible to have several
flows and combine them. It is also possible to insert into morethan one table in the
database. There seems to be no support for automatic incremental loading. The pos-
sibility for data cleansing is introduced by means of allowing the user to write custom
transformations in Perl. A standard library of transformations is not included. Thus
the user needs to program any needed transformation.
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CloverETL CloverETL version 1.1.2 [24] is also a ROLAP oriented ETL tool.
Parts of it are distributed under the GPL license whereas other parts are distributed
under the LGPL license. CloverETL is implemented in Java anduses JDBC to trans-
fer data. The ETL process is specified in an XML file. In this XMLfile, a directed
graph representing the flow must be described. Currently, CloverETL does not in-
clude a GUI, but work is in progress with respect to this. CloverETL supports combi-
nation of several flows as well as import to several tables in the database. There is no
support for automatic incremental load. With respect to cleansing, CloverETL sup-
ports insertion of a default value, but apart from this, the user will have to implement
his own transformations in Java.

Octopus Octopus version 3.0.1 [34] is a ROLAP oriented ETL tool underthe LGPL
license. It is implemented in Java and is capable of transferring data between JDBC
sources. Octopus is bundled with JDBC drivers for XML and comma-separated files.
Further, it is possible to make Octopus create SQL files with insert and DDL state-
ments that can be used for creating a database holding the considered data. Like Bee,
Octopus is shipped with a GUI that creates an XML file specifying the ETL process.
Octopus can also be used without the GUI and as a library. Octopus is created for
transferring data between one JDBC source and another. It isapparently not possible
to combine data from one database with data extracted from another. It is possible
to extract data from more than one table in the same database as well as insert into
more than one table in the target database. There is no directsupport for automatic
incremental loading. Basic data cleansing functionality is provided. It is possible to
make Octopus insert a default value, shorten too long strings, replace invalid foreign
key values, find and replace values, do numeric conversions,and change date for-
mats. These cleansings are done by predefined transformations. The user can also
implement transformations on his own in Java and JavaScript.

General Comments The considered open source ETL tools are still not as pow-
erful as one could wish. For example, most of the data cleansing to be done must
be coded by the user (with the exception of Octopus which provides some default
transformations for very basic data cleansing). Further, the products do not support
automatic incremental load which would be very useful for everyday use of the prod-
ucts. In general, the quality of the documentation for the described products is not
very good or comprehensive. Further, not much documentation is available. An ex-
ception is again Octopus for which a manual of more than 120 pages is available.
However, also this manual is not complete. For example, it explains how to set up
which logger to use but does not tell about the differences between the available log-
gers. Thus the quality of the open source ETL products is still not as high as the
quality of many commercially available products. Indeed itwould probably be diffi-
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cult to use one of the open source ETL tools for a demanding load job in an enterprise
data warehouse environment.

2.5 OLAP Servers

In this section, we will consider the three OLAP servers Bee,Lemur, and Mondrian.
Another possible candidate for consideration would be pocOLAP [93] which, how-
ever, in the documentation is said not to be an OLAP server. Itprovides access to
data from a DBMS through a web-interface but is not intended to provide advanced
OLAP functionality or real-time data analysis. OpenRolap [81] is a related tool which
generates aggregate tables for a given database. Apart fromthese tools we did not
find any candidates. As for the ETL tool category, there existother projects that
currently carry no code, but only state objectives. An example of such a project is
gnuOLAP [45].

Bee The OLAP server of the Bee package is, as previously stated, aROLAP ori-
ented server. It uses a MySQL system to manage the underlyingdatabase and aims
to be able to handle up to 50GB of data efficiently [9]. Despitethis, it does not seem
to be possible to choose which precomputed aggregates to use. From the documen-
tation, it is not clear which query language(s) and API(s) Bee supports. In general,
there is not much English documentation available for Bee, neither from the home-
page [8], nor in the downloadables.

Lemur Unlike the other OLAP servers considered in this chapter, Lemur [62] is a
HOLAP oriented OLAP server. It is released under the GPL license and is written
in C++ for Linux platforms, but is portable. Lemur is a product under development
and still has no version number. The homepage for the Lemur project [62] states
that for now, the primary goal is to support the developers research interests and that
their goals are believed to be too ambitous to deliver usablecode now. This is also
reflected in the fact that the API is still being designed and in reality is not available
for use from outside the Lemur package. Further the user would need to implement
methods to load data from a database on his own. It is also not possible to specify
the aggregates to be used. No information on how well Lemur scales when applied
to large data sets has been found. In summary, the Lemur project is not of much
practical use for industry projects so far. However, the goal of eventually producing
a HOLAP oriented server outperforming Mondrian (see below)is interesting.

Mondrian Mondrian 1.0.1 [67] is an OLAP server implemented in Java. Itis RO-
LAP oriented and can, unlike Bee, be used with any DBMS for which a JDBC driver
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exists. Mondrian is released under the CPL license [27]. Thecurrent version of Mon-
drian has an API that is similar to ADO MD from Microsoft [68].Support for the
standard APIs JOLAP [51] and XMLA [124] is planned. Further,the MDX query
language [106], known from Microsoft’s products, is supported by Mondrian. By
default Mondrian will use some main memory for caching results of aggregation
queries. It is, however, neither possible for the user to specify what should be cached
nor which aggregates should exist in the database. The documentation states that
Mondrian will be able to handle large data sets if the underlying DBMS is, since all
aggregation is done by the DBMS.

General Comments The Mondrian OLAP server seems to be the best of the de-
scribed products. Lemur is for the time being not usable for real world applications
while it is difficult to judge Bee because of its lack of English documentation. Mon-
drian is, however, a usable product which works with JDBC-enabled DBMSs. For
none of the products, it seems possible to choose which aggregates to use. In most
environments this feature would result in significant performance improvements.

2.6 OLAP Clients

In this section, we will describe the OLAP clients Bee and JPivot. These were the
found open source OLAP clients that are actually implemented.

Bee The Bee project also provides an OLAP client. The client is web-based and is
used with the Bee OLAP server. Currently, Microsoft Internet Explorer and Mozilla
browsers are explicitly supported in the downloadable code. Again, it has not been
possible to determine which API(s) and query language(s) Bee supports. The Bee
OLAP client can interactively present multidimensional data by means of Virtual
Reality Modeling Language (VRML) technology [112]. Bee cangenerate different
types of graphs (pie, bar, chart, etc.) in both 2D and 3D. It ispossible to export data
from Bee to Excel, Portable Document Format (PDF), PortableNetworks Graphics
(PNG), PowerPoint, text, and Extensible Markup Language (XML) formats. Con-
nection with the statistical package R [95] is also evaluated. It does not seem to be
possible to preschedule reports.

JPivot JPivot version 1.2.0 [54] is a web-based OLAP client for use with the Mon-
drian OLAP server. However, the architecture should allow for later development of
a layer for XMLA [124]. As Mondrian, JPivot uses MDX as its query language. It is
written in Java and JSP. JPivot generates graphs by means of JFreeChart [53] which
provides different kinds of 2D and 3D graphs. With respect toexport of reports,
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JPivot is limited to Portable Document Format (PDF) and Excel format. Support for
prescheduled reports has not been found. JPivot is releasedunder a license much
like the Apache Software License Version 1.1 [6] (but without restrictions regarding
the use of the name “Apache”). However, other software packages are distributed
with JPivot and have other software licenses, e.g. JFreeChart which uses the LGPL
license.

General Comments Both the considered OLAP clients are to be used with specific
OLAP servers, namely Bee with Bee and JPivot with Mondrian. Both of them are
web-based such that specific software does not have to be installed at client machines
already equipped with a browser. Both products are capable of exporting generated
reports to other commonly used file formats such as PDF, but neither of them supports
prescheduled reports.

2.7 DBMSs

In this section we consider four open source DBMSs: MonetDB,MySQL, MaxDB,
and PostgreSQL. Other open source DBMSs are available, but these four were chosen
as they are the most visible, well-known high-performance DBMSs.

MonetDB MonetDB, currently in version 4.4.2, is developed as a research project
at CWI. MonetDB is “designed to provide high performance on complex queries
against large databases, e.g. combining tables with hundreds of columns and multi-
million rows” [69]. To be efficient, MonetDB is, among other techniques, exploiting
CPU caches and full vertical fragmentation (however, the fragments must be placed
on the same disk). It thus uses very modern and often hardware-near approaches to be
fast. MonetDB is mainly implemented in C with some parts in C++. It is available for
32- and 64-bit versions of Linux, Windows, MacOS X, Sun Solaris, IBM AIX, and
SGI IRIX. MonetDB comes with a license like the Mozilla Public License (references
to “Mozilla” are replaced by references to “MonetDB”) [69].With respect to features
often usable in a BI context, it is interesting to notice thatMonetDB does not support
bitmap indices, materialized views (normal views are supported), replication, or star
joins. However, this does not mean that MonetDB is not usablefor BI purposes. On
the contrary, MonetDB has been successfully applied in different BI contexts [69].
Currently, the developers are working on improving the scalability for OLAP and
data mining in the 64-bit versions of MonetDB.

MySQL MySQL is a very popular open source database with more than five mil-
lions installations [73]. The latest production release isversion 4.1, and version 5.0
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is in the alpha stage. MySQL is implemented in C and C++ and is available for a
large variety of 32- and 64-bits platforms. Users of MySQL can choose between
an open source GPL license and a commercial license that gives permissions not
given by the GPL license. For BI purposes, MySQL lacks support of materialized
views (even ordinary views are not available until version 5.0), bitmap indices and
star joins. However, one-way replication (i.e. one master,several slaves) is supported
and partitioning is to some degree supported by theNDB Cluster(NDB is a name,
not an acronym) on some of the supported platforms. Further,MySQL is capable
of handling data sets with terabytes of data as documented incase studies available
from [73].

MaxDB MaxDB [64] version 7.5 is another RDBMS distributed by the company
MySQL AB which also develops MySQL. Formerly, MaxDB was known as SAP
DB (developed by SAP AG). MaxDB is developed to be used for OLTP and OLAP
in demanding environments with thousands of simultanous users. It is implemented
in C and C++ and is available for most major hardware platforms and operating sys-
tem environments. As MySQL, it is licensed under two licenses such that users can
choose between an open source license (GPL) or a commercial.MaxDB is designed
to scale to databases in the terabyte sizes, but there is no user controlled partitioning.
It is, however, possible to specify several physical locations for storage of data, and
MaxDB will then automatically divide table data between these partitions. There is
no support for materialized views (ordinary views are supported), bitmap indexes, or
star joins. MaxDB supports one-way replication, also with MySQL such that either
of them can be the master.

PostgreSQL PostgreSQL [94] is also a very popular open source DBMS. At the
time of this writing, version 8.0 is just about to be released. PostgreSQL is imple-
mented in C and has traditionally only been available for UNIX platforms. From
version 8.0, Windows is, however, natively supported. Originally, PostgreSQL is
based on the POSTGRES system [107] from Berkeley and has keptusing a BSD
license. PostgreSQL supports large data sets (installations larger than 32 terabytes
exist) and one-way replication. A multiway solution for replication is planned. There
is no support for partitioning, bitmap indices or materialized views (ordinary non-
materialized views are supported). However, materializations of views may be done
in PostgreSQL by using handcoded triggers and procedures [42]. Further, in a re-
search project at North Carolina State University, materialized views are integrated
into a derived version of PostgreSQL [101]. Bitmap indices are planned to be sup-
ported in a future release.
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General Comments The considered DBMSs have different strengths and weak-
nesses, and so there is not a single of them to be chosen asthe best. In general, these
open source products support more advanced features such aspartitioning and repli-
cation. Further, the DBMSs are capable of handling very large data sets, are available
for a number of platforms, and are very reliable. The category of DBMSs is thus the
mostmatureof the considered categories.

2.8 Conclusion and Future Work

Of the considered categories of open source tools (ETL tools, OLAP clients, OLAP
servers, and DBMSs), DBMSs are the most mature. They offer advanced features
and are applicable to real-world situations where large data sets must be handled
with good performance. The ETL tools are the least mature. They do still not of-
fer nearly the same functionality as proprietary products.With respect to the OLAP
servers, there is a great difference in their maturity. A product like Lemur is still
very immature, while a product like Mondrian is usable in real-world settings. How-
ever, important features, such as the opportunity to specify which aggregates to use,
are still missing. The OLAP clients are also usable in practical applications. How-
ever, they are not very general and can only be used with specific OLAP servers. In
general, one of the largest problems for many of the tools is the lack of proper doc-
umentation, often making it very difficult to decide how a specific task is performed
in a given product.

If one were to create a complete BI installation with open source tools, it would
probably be created with JPivot and Mondrian as OLAP client and server, respec-
tively. Which one of the DBMSs should be used would depend on the situation. The
ETL tool would then probably be CloverETL, if one did not handcode a specialized
tool for the installation. In many BI installations, data mining solutions would also
be interesting to apply. The available open source data mining applications should
therefore be explored in future work.





Chapter 3

Building a Web Warehouse for
Accessibility Data

As more and more information is available on the Web, it is a problem that many
web resources are notaccessible, i.e., are not usable for users with special needs. For
example, for a web page to be accessible, it should give text alternatives (i.e., ex-
planatory texts) for images such that blind users that have the web pages read aloud
automatically also can obtain information about the images. In theEuropean Internet
Accessibility Observatory(EIAO) project, a crawler that will evaluate the accessibil-
ity of thousands of European web sites is built. The crawler frequently performs
many tests of the web sites and thus very large amounts of accessibility data are gen-
erated. Based on open-source software, a data warehouse (DW) calledEIAO DW is
built to make analysis of the complex accessibility data easy, reliable and fast. The
EIAO DW is, thus, a data warehouse which measuresproperties of the Webor, in
other words, aweb warehouse. It is believed that this work is the first to address the
application of business intelligence (BI) techniques to the complex field of accessi-
bility in a general and scalable way. This chapter describeshow the EIAO DW is
designed and built. The chapter introduces accessibility and the EIAO project to give
a background for the design of EIAO DW. Then, the conceptual,logical and physical
models are presented. The chapter also gives descriptions of the complex Resource
Description Framework (RDF) source data and complex accessibility aggregation
functions supported by EIAO DW.

19
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3.1 Introduction

To be able to use and access the Web is getting increasingly important. In Denmark,
all people employed by the state have access to their payslips only via the Web. In
many countries, it is the case that nearly all authorities, companies, and organizations
have web sites. For some of these, such as web shops, the web site is their primary
means for communication with the customers or users. For many web sites it is,
however, a problem that they are notaccessible, i.e., are not usable, for users with
special needs, for example a blind user using a so-calledscreen readerwhich is a
program that reads text aloud. Consider as an example a web page with images that
are used as links. The images contain arrows and the texts “Continue” and “Go back”,
respectively. For a blind user, it is necessary that text alternatives (i.e., explanatory
texts) are available for the images such that the text alternatives can be read aloud by
the screen reader. If text alternatives are not present, theblind user cannot obtain the
information needed to navigate on the page (or will, at the best, have to guess how to
do this based on file names etc.)

It is possible to do automatic testing for some of the constructs that make web
pages inaccessible. To do such testing systematically and store the results for thou-
sands of web sites generates very large amounts of data. In this chapter, we de-
scribe the web warehouseEIAO DWwhich is a data warehouse (DW) that measures
the web with respect to accessibility. The EIAO DW will hold detailed data about
(in)accessibility of thousands of web sites and offers convenient, flexible and reliable
online access to the collected accessibility data. Both historical and current data is
available in the EIAO DW in order to facilitate trend analysis, mining of interesting
patterns, etc. Further, all components in the EIAO DW are based on open-source
technology. This introduces some challenges compared to ifcommercial solutions
were used.

Previously, other studies on evaluating web accessibilityhave been done. A
thorough treatment is given in [125]. A survey of accessibility studies with focus
on online resources for higher education is available from [100]. Watchfire Web-
XACT [113] is an example of an online accessibility evaluation service. For this
service, the user, however, gives a URL and gets informationabout what to consider,
i.e., the service is primarily for web developers. In the EIAO project, sites are moni-
tored on a monthly basis and the data is put in a DW such that historical data is also
available. The EIAO project can provide (aggregated) information to end users about
accessibility of (groups of) web sites.

To the best of our knowledge, this work is the first to develop ageneral and
scalable business intelligence (BI) solution to the field ofaccessibility. A very limited
prototype for a crawler evaluating accessibility and storing the data in a simple DW
has previously been described [105]. This prototype was implemented such that only
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one specific issue regarding accessibility was measured and theDW schema was
designed to store data only for this issue. The EIAO DW described in the current
chapter is much more general. It measures dozens of different accessibility issues
and more can be added without changes to the DW schema. Further, it handles much
more complex data and aggregation functions. Thus, the EIAODW is believed to be
the first DW to deal with accessibility data in a truly generaland scalable manner.

The field of accessibility is a complex field and makes it challenging to make data
models for the DW. Recently, much work has gone into bringingthe Web and data
warehousing together. Pérezet al. [90] give a survey of the most relevant techniques.
A prominent example on using DWs to treat data from web logs isgiven by Kimball
and Merz [56]. In the WHOWEDA project, a data warehouse that holds web data is
built. A so-calledweb schemathat holds information on structure, metadata, content,
link structure is automatically generated [11]. The WHOWEDA project stores data
from the Web (e.g., the content of a web page) in a warehouse. In contrast, what
we describe in the current chapter, is a DW that stores (accessibility) dataaboutweb
resources, but not the web resources themselves.

The rest of the chapter is organized as follows. In the next section, we give a
short introduction to accessibility and a description of the European Internet Acces-
sibility Observatory (EIAO) project for which the EIAO DW isbuilt. The conceptual
model for EIAO DW is described in Section 3.3. Section 3.4 describes the logical
model while Section 3.5 describes the physical model. In Section 3.6, the source data
and Extract–Transform–Load (ETL) process are described. The accessibility aggre-
gation functions implemented by EIAO DW are described in Section 3.7. Section 3.8
concludes and points to future work.

3.2 Web Accessibility

3.2.1 Accessibility of Web Resources

To give everybody equal opportunities it is important to make web resourcesacces-
sible. For a web resource to be accessible means that people with disabilities can
also use the web resource. Thus, accessibility can considered from many different
contexts. For example, a web page should be understandable for a blind user using
a screen reader or a so-calledBraille display that raises small pins physically such
that the user can feel the letters with his finger. Another example is that it should be
possible to use a web resource without using a pointing device such that a physically
disabled user can also use the resource.

As part of the Web Accessibility Initiative (WAI) [121], some guidelines called
Web Content Accessibility Guidelines (WCAG) have been defined [122,123] by the
World Wide Web Consortium (W3C). If followed, the WCAG guidelines will in-
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crease accessibility; both for disabled users and for otherusers such as people using
a hand-held device with a small screen. The guidelines, for example, state that a web
page should provide text alternatives for all non-text content. If text alternatives are
available for all non-text content, a blind user will also beable to use an image for
navigation purposes and a deaf user will also be able to use a web page which uses
sound. The current version of WCAG is version 1.0 [122], but soon version 2.0 [123]
will be available as a W3C Recommendation.

Many of the WCAG recommendations may be checked automatically. For exam-
ple, it is easy to check if an XHTMLimage element has analt attribute with a text
alternative. It is, however, not clear how to test if the textis meaningful and indeed is
an alternative.

To have an accessible design is not only advantageous for theend user. For a
commercial web site, it is important to make sure that the website’s visitors actually
can and will use the site. If, for example, text alternativesare not present for im-
ages used for navigation, a blind user may not be able to navigate the web site and
may give up and instead go to a competitor’s (accessible) website. Also for gov-
ernmental sites it is important. Both to give everybody equal opportunities but also
to make e-government and self-service a success. To do this,it is a necessity that
the offered web resources are accessible such that everybody can use them. Today,
accessibility is recognized as an important field and publicinstitutions have policies
about accessibility and work actively on improving the level of accessibility on the
web. For example, the European Union has aneInclusionprogram and has adopted
the WCAG guidelines [35,36].

3.2.2 The EIAO Project

The European Internet Accessibility Observatory (EIAO) project [37], will develop
large-scale accessibility benchmarking. In the EIAO project, the accessibility of
10,000 European web sites will be monitored automatically.The found accessibility
data will be stored in the data warehouse EIAO DW. The accessibility data will be
frequently updated and will be available online. In this section, we describe release 1
of the software developed by the EIAO project. This release is currently being tested
with monitoring of about 150 sites. Release 2 which will be used for monitoring
10,000 sites is currently being developed. Release 2 will handle around 200 million
new facts each month.

Note that all software products used and developed by the EIAO project are open
source. This introduces some challenges compared to if commercial products were
used. For example, the used open source database managementsystem (DBMS) does
not support materialized views as market-leading commercial DBMSs do.

The entire architecture for the observatory is outlined in Figure 3.1. A central
URL repository holds a list of domains to collect data from. Acrawler fetches URLs
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Figure 3.1: The architecture for the EIAO observatory

from the repository and starts sampling pages from each of the web sites. To save
time, storage, and bandwidth, the crawler only samples a part of a given web site. The
crawler downloads a number of pages from the site by following links in a random
manner. This is done by simulating a use scenario such that there is a probabilityp for
following a link to read on another page and a probability1− p for not following the
link and continue reading on the current page. Note that the entire HTML documents
are downloaded by the crawler under all circumstances. The downloaded pages are
stored in a cache and then evaluated by the so-calledbarrier computationsexplained
below.

To evaluate the accessibility of a web page, a number ofWeb Accessibility Metrics
(WAMs) have been defined [91]. These are rules that specify how to make statements
about accessibility barriers of web resources. Different kinds of WAMs exist: An-
alytic WAMs (A-WAMs) analyze specific page elements (e.g.,image elements in
an HTML document to see if analt attribute is present). The results from the A-
WAMs are used bybarrier computations. A barrier computation is a single function
that uses data from the basic A-WAMs to detect if a barrier maybe present. ABarrier
reporting WAM(B-WAM) is a group of related barrier computations. Finally, Com-
posing WAMs(C-WAMs) are functions that calculate the probability thata barrier is
present. The result of a C-WAM is calculated by considering the results of the barrier
computations for tested elements within the areas that the simulated user read.
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The barrier computations deliver their results in the Evaluation and Report Lan-
guage (EARL) [120] which is a Resource Description Framework (RDF) langu-
age [119]. Also, certain data from the crawler, such as information from the HTTP
header, is in RDF. The RDF data is stored in a 3store [48] triplestore as it is being
generated.

The relevant parts of the data from the triplestore is periodically loaded into the
EIAO DW data warehouse by an ETL application. The data warehouse is imple-
mented as a relational database in PostgreSQL 8.1 [94]. A graphical user interface
(GUI) is implemented on top of the DW. The GUI is available viathe Web and can
present different reports. A user can choose to see aggregated results for a specific
web site, for geographical regions and for sectors (e.g., “Radio stations” or “Banks”).

Preliminary results indicate that on average 76 pages are downloaded from each
considered web site. These pages on average have 247 different test results about
accessibility of the elements on the page. Thus, if 10,000 sites are evaluated on a
monthly basis, 187.7 millions test results will be generated each month. Clearly, it is
a challenge to handle such data amounts efficiently.

3.3 Conceptual Model

In this section, we describe the conceptual model for EIAO DW. The notation is in
UML [78]. Thus classes are represented as boxes with the class name on the top row.
Below the class name follow the attributes of the class. Associations are represented
by a line between the involved classes. In the conceptual model for EIAO DW, we
have 42 classes with a total of 113 attributes. All the classes have ID attributes that
are surrogate keys. Foreign keys referencing other classeshave not been added as
attributes, but are represented as associations. Some of the 42 classes will in the log-
ical model be combined into nine different dimension tables. The classes for the fact
table and association classes (which become so-calledbridge tablesin the dimen-
sional design of the logical model) will not be in a dimension. Here we describe the
classes grouped by the dimension they belong to in the logical model. The purpose
and important characteristics of each class are described but due to space limitations
each of the 113 attributes is not described individually. A thorough description of
each class and attribute can be found in [89].

Result Dimension In the Result dimension, shown in Figure 3.2(a), there are two
classes: TheResult class and theResultTypeclass. TheResult class is used to
represent the outcomes of the barrier computations. Each barrier computation has a
unique fail description that describes failing tests, but all barrier computations share
the result “Test passed” for passed tests and “Unknown result” for cases where a
barrier computation for some reason could not provide an answer. This also reveals
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Figure 3.2: The (a) Result and (b) UWEMTest dimensions

that there are different types of results, namelypassresults,fail results andunknown
results. These are represented byResultType. A result is associated with exactly
one result type, but many results are associated with the fail result type. Note that
ResultTypeonly has an ID attribute and an attribute named ResultType. The purpose
of having such a class without further attributes is to modelthe hierarchy, i.e., what
levelsare present.

DisabilityGroup Dimension In the DisabilityGroup dimension there is one class:
DisabilityGroup. This class is used to represent different disability groups, e.g., peo-
ple with functional blindness or people with physical disabilities. In this way it is
possible only to consider the accessibility problems related to a specific group. There
is also a general group for which all accessibility issues are considered. Apart from
the ID attribute, there is only one attribute, DisabilityGroup, which holds the name
of the represented group.

UWEMTest Dimension In the UWEMTest dimension, see Figure 3.2(b), there
are two classes:UWEMTest and UWEMTestType. The classUWEMTest rep-
resents tests that have been defined by the Unified Web Evaluation Methodology
(UWEM) [39] which the EIAO project has also been involved in.Currently, there
are UWEM test types that deal with Cascading Style Sheets (CSS) and UWEM test
types that deal with HTML. The types are represented by theUWEMTestTypeclass.

BarrierComputationVersion Dimension In the BarrierComputationVersion di-
mension, shown in Figure 3.3, there are six classes:BarrierComputationVersion, Bar-
rierComputation, WAM , WCAGMinor, WCAGMajor, andWCAGType. Different
versions of the barrier computations may be implemented, e.g., if bugs are found and
fixed and thus it should be possible to represent the versions. In case of a bug, it
is easy to find the results that cannot be trusted and have to beupdated, when it is
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Figure 3.3: The BarrierComputationVersion dimension

known which version computed a given result. Thus versions are represented by the
BarrierComputationVersionclass. It should also be possible to represent the differ-
ent generic barrier computations, i.e., the specification part of a barrier computation
that does not change between different implementations. This is the purpose of the
BarrierComputationclass. Obviously, a barrier computation version is a version of
exactly one barrier computation. On the other hand there might be many versions
of one barrier computation. Thus, there is a many-to-one association fromBarrier-
ComputationVersionto BarrierComputation. A barrier computation is, as previously
described, a single function out of possibly many in one B-WAM. B-WAMs are rep-
resented by the classWAM and there is a many-to-one association fromBarrier-
Computationto WAM . A (B-)WAM is considering exactly one WCAG checkpoint,
represented byWCAGMinor, and there is a many-to-one association fromWAM to
WCAGMinor. A WCAG checkpoint belongs to a WCAG guideline. The WCAG



3.3 Conceptual Model 27

guidelines are represented byWCAGMajor and there is a many-to-one association
from WCAGMinor to WCAGMajor. Currently, all the used WCAG checkpoints and
guidelines are from WCAG 1.0. To prepare for future use of WCAG 2.0, there is also
a classWCAGType to represent the different WCAG versions.

The classBarrierComputationis also associated with the classDisabilityGroupin
the DisabilityGroup dimension and with the classUWEMTest in the UWEMTest di-
mension. The association withDisabilityGrouphas an association class,Disability-
GroupRelevanceFcui, with one attribute, BarrierProbability. This attribute holds the
probability for that a failed outcome of the represented barrier computation means
that there is an accessibility barrier for the represented disability group. In this way it
is possible to use different probabilities for different disability groups, such as blind
and deaf people. For example, a missing text alternative foran image introduces a
barrier probability for a blind user, but not for a deaf user.Conversely, a missing text
alternative for a sound resource introduces a barrier probability for the deaf user, but
not for the blind user.

The association fromBarrierComputationto UWEMTest represents which UW-
EM tests cover what a barrier computation evaluates. This association also has an
association class,UWEMCoverage, with the attribute UWEMTestWeight. This at-
tribute is introduced to avoid “double counting” when aggregating. That means that
UWEMTestWeight holds the percentage of a test result that should be assigned to
a specific UWEM test. If a barrier computation is involved inn UWEM tests, this
value is currently set to1/n.

Time Dimension In the Time dimension there are two classes:Minute andHour,
where a minute belongs to a specific hour. Apart from the IDs, there are only the
obvious attributes for holding the minute and hour values.

Date Dimension In the Date dimension there are five classes:Date, Week, Month,
Quarter, andYear. The Date class is used to represent specific dates (i.e., days).
There is a many-to-one association fromDateto Month. Similarly there are many-to-
one associations betweenMonth andQuarterand betweenQuarterandYear. There
are also a many-to-one associations betweenDateandWeekand betweenWeekand
Year. Week is not associated withMonth or Quartersince a week can cross bound-
aries between months or quarters. Later, domain specific knowledge may be added
to the Date dimension, e.g., most current HTML version or number of days since a
new WCAG version was released.

Category Dimension In the Category dimension, shown in Figure 3.4(a), there are
two classes:CategoryandSector. TheCategoryclass is used to represent different
categories of web site providers. Currently, there are 13 predetermined categories
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Figure 3.4: The (a) Category and (b) Scenario dimensions

such as “Banks”, “Radio stations”, and “Federal organisations”. TheSectorclass
is used to represent the public and commercial sectors (these are currently the only
considered sectors). A category belongs to one sector (and thus the category of public
radio stations is different from the category of commercialradio stations).

Scenario Dimension In the Scenario dimension, shown in Figure 3.4(b), there are
two classes:Scenarioand ScenarioType. The Scenarioclass represents different
simulated scenarios in the crawling. A scenariocovers(i.e., includes) parts of, or
entire, web pages that are evaluated. Apart fromScenario’s ID attribute, it has no
attributes since only information about a scenario’s existence and associations needs
to be stored in the DW.Scenariohas a many-to-one association toScenarioType
which is used to represent different types of scenarios. Twodifferent kinds of types
exist: Page scenarioswhich cover entire web pages from the top to the bottom and
key use scenariosthat only cover parts of web pages. Thus, the key use scenarios are
used for simulating a human user. A scenario is either a key use scenario or a page
scenario.

Subject Dimension The subject Dimension, shown in Figure 3.5, is the largest and
most complex. It has 16 classes:Subject, PageVersion, TestRun, Server, Operating-
SystemFamily, Language, LanguageFamily, Page, Site, Domain, SecondLevelDo-
main, TopLevelDomain, NutsLevel3, NutsLevel2, NutsLevel1, andCountry. A sub-
ject is a specific, tested element on a tested web page, e.g., animage element starting
on line 3, column 4. Subjects are represented by theSubjectclass. Its attributes are
Line and Col to represent the exact start position of the represented subject. Web
pages are represented by the classPage. However, as some web pages are frequently
updated, it is also necessary to consider versions of web pages. These are represented
by the classPageVersion. A subject is considered to belong to a certain version of a
web page. ThusSubjecthas a many-to-one association toPageVersionwhich itself
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has a many-to-one association toPage. Subjectalso has amany-to-manyassociation
to Scenarioin the Scenario dimension (not shown as each figure only showsone di-
mension). This is to represent which scenarios cover the subject. A subject is always
covered by at least one scenario, namely the page scenario for the page version the
subject belongs to. Note that this association between classes in different dimensions
thus adds complexity compared to traditional DW models.

PageVersionhas many-to-one associations toMinute andDate in the Time and
Date dimensions. This is to represent the last modification date of the page version.
PageVersionalso has a many-to-one association to the classTestRunto represent
from what test a represented page version was fetched from the Web.TestRunis used
to represent the differenttest runs. A test run is the process of performing a crawl,
i.e., downloading pages, and evaluating the accessibilityof the pages by means of the
barrier computations. When to start a new test run and when tocontinue using an
existing is decided by the crawler; typically a new test run is started when the crawler
is started with a list of web sites to consider.

PageVersionalso has a many-to-one association to the classServer. This class
is used to represent different identified web server products, such as “Apache/1.3.27
(Unix)”, from the crawl. The servers are identified by considering the HTTP headers.
Both the complete server string, including version information etc., and a generic
server name (e.g., “Apache”) are stored.Serverhas a many-to-one association to
OperatingSystemFamilythat represents different families of operating systems such
as “Windows”.

Finally, PageVersionhas an association toLanguagewhich represents different
languages such as “Swedish as spoken in Finland”. To also represent the more generic
languages,Languagehas a many-to-one association toLanguageFamilywhich in the
previous example would represent “Swedish”.

Pageis associated toSite which represents web sites. As attributes it has a title
describing the site and information about who added the siteto the observatory. As
previously mentioned, a web site belongs to one or more categories. ThereforeSite
has a many-to-many association toCategoryin the Category dimension. This associ-
ation has an association class,SiteCategorisation, with the attribute CategoryWeight.
This shows the percentage of a site’s results that should be counted as belonging to
the associated category.

Site also has an association to the classNutsLevel3. This class represents level 3
NUTS codes. A NUTS code [38] is a code representing a well-defined geographical
area. (NUTS is short for Nomenclature des unités territoriales statistiques). The
level of detail can be varied from 1 to 3. For example, Falkirkwith NUTS level 3
code “UKM26” is located in Eastern Scotland with NUTS level 2code “UKM2” in
Scotland with NUTS level 1 code “UKM” in United Kingdom with country code
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“UK”. As motivated by the previous example,NutsLevel3 is associated toNuts-
Level2 which is associated toNutsLevel1which finally is associated toCountry.

Site also has an association toDomain that represents Internet domains, such
asbbc.co.uk. Domain is associated toSecondLevelDomainthat in the previous
example is used to representco.uk and which is associated toTopLevelDomainthat
represents top-level domains such asuk.

Remaining Classes As already described, there are three association classes,Dis-
abilityGroupRelevanceFcui, UWEMCoverage, andSiteCategorisation, that are not
part of any dimension. Apart from these, there is only the classTestResultthat is not
in a dimension.TestResultis a class without attributes. It is associated to the classes
BarrierComputationVersion, Result, Subject, Minute, andDate. Thus it is used to
represent that a specific subject at a specific point in time was evaluated by a specific
barrier computation version with a specific result. This, ofcourse, means that the
TestResultclass in dimensional terms represents thefact table.

In the presented conceptual model, it is thus possible to represent information
about web related issues such as (versions of) web pages, domains etc. It is also
possible to represent information about results of the accessibility tests as well as
information about the used tests. The model needs constructs with associations be-
tween classes in different dimensions and is thus more complex than traditional DW
models.

3.4 Logical Model

The logical model for EIAO DW, shown in Figure 3.6, is a dimensional model based
on astar schema[58]. There are 11 dimensions in the logical model, but two ofthese
(the Date and Time dimensions) are duplicated, and thus if the duplicates are ignored,
there are nine dimensions, as in the conceptual model.

The dimensions are formed by “merging” the classes that weredescribed to be-
long together in Section 3.3. Thus, the hierarchy levels in the logical model’s di-
mensions correspond to the classes in the conceptual model.Consider, for example,
the classesLanguageandLanguageFamily. When pages with a specific language
are considered, it is possible toroll up and look at language families instead (e.g.,
consider pages in “Swedish” instead of considering pages in“Swedish as spoken in
Sweden” and pages in “Swedish as spoken in Finland” separately). The lowest level
in the hierarchy for a dimension corresponds to the class that is closest to the class
TestResultin the conceptual model.

In the logical model, primary keys have been declared. For the dimensions, the
primary keys are the ID attributes at the lowest levels. Further, foreign keys have been
added in the logical model for associations that cross dimensions in the conceptual
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Subject
 SubjectID: int4 (PK)

 Line: int4 

 Col: int4 

 PageVersionID: int4

 ContentLength: int4

 ContentType: varchar(64)

 Encoding: varchar(20)

 CopyLocation: varchar(1024)

 HTMLVersion: varchar(256)

 TestRunID: int2

 TestRunNumber: int2

 ServerID: int2

 Server: varchar(40)

 ServerVersion: varchar(10)

 CompleteServerName: varchar(256)

 OperatingSystemFamilyID: int2

 OperatingSystemFamily: varchar(20)

 LanguageID: int2

 Language: varchar(30)

 LanguageAbbreviation: varchar(5)

 LanguageFamilyID: int2

 LanguageFamily: varchar(20)

 LanguageFamilyAbbreviation: char(2)

 PageID: int2

 URL: varchar(1024)

 SiteID: int2

 SiteTitle: varchar(1024)

 AddedBy: varchar(256)
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 Domain: varchar(255)
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 CountryAbbreviation: char(2)

 EUMember: varchar(17)

 LastModifiedTime: int2 (FK)

 LastModifiedDate: int2 (FK)

TestResult Fact Table
 SubjectID: int4 (PK, FK) 

 MinuteID: int2 (PK, FK)

 DateID: int2 (PK, FK)

 BarrierComputationVersionID: int2 (PK, FK)

 ResultID: int2 (PK, FK)

Result
 ResultID: int2 (PK)

 TextualDescription: varchar(1024)

 ShortDescription: varchar(128)

 ResultTypeID: int2

 ResultType: varchar(10)

TestTime
 MinuteID: int2 (PK)

 Minute: char(2)

 HourID: int2

 Hour: char(2)

ModificationDate
 DateID: int2 (PK)

 DayNumberInMonth: int2

 DayNumberInWeek: int2

 DayName: varchar(9)

 Date: date

 MonthID: int2

 MonthNumberInYear: int2

 MonthName: varchar(9)

 DaysInMonth: int2

 MonthNumberAfterEIAOStart: int2

 QuarterID: int2

 QuarterName: varchar(14)

 QuaterNumberInYear: int2

 YearID: int2

 Year: int2

 WeekID: int2

 WeekNumberInYear: int2

 WeekYearID: int2

 WeekYear: int2

ModificationTime
 MinuteID: int2 (PK)

 Minute: char(2)

 HourID: int2

 Hour: char(2)

TestDate
 DateID: int2 (PK)

 DayNumberInMonth: int2

 DayNumberInWeek: int2

 DayName: varchar(9)

 Date: date

 MonthID: int2

 MonthNumberInYear: int2

 MonthName: varchar(9)

 DaysInMonth: int2

 MonthNumberAfterEIAOStart: int2

 QuarterID: int2

 QuarterName: varchar(14)

 QuaterNumberInYear: int2

 YearID: int2

 Year: int2

 WeekID: int2

 WeekNumberInYear: int2

 WeekYearID: int2

 WeekYear: int2

Category
 CategoryID: int2 (PK)

 Category: varchar(256)

 NaceCode: varchar(5)

 SectorID: int2

 Sector: varchar(20)

SiteCategorisation
 SiteID: int2 (PK, FK)

 CategoryID: int2 (PK, FK)

 CategoryWeight: real

BarrierComputationVersion
 BarrierComputationVersionID: int2 (PK)

 BarrierComputationVersionName: varchar(256)

 Version: int2

 BarrierComputationID: int2

 BarrierComputationName(252)

 BarrierComputationNumber: int2

 WAMID: int2

 Producer: varchar(64)

 Iterator: int2

 WAMName: varchar(128)

 ObservatoryRelease: varchar(40)

 ObservatoryReleaseNumber: float

 WCAGMinorID: int2

 WCAGMinor: int2

 Priority: int2

 Checkpoint: varchar(2048)

 CheckpointURL: varchar(256)

 WCAGMajorID: int2

 WCAGMajor: int2

 Guideline: varchar(1024)

 WCAGTypeID: int2

 WCAGType: char(3)

 GuidelineURL: varchar(256)

DisabilityGroup
 DisabilityGroupID: int2 (PK)

 DisabilityGroup: varchar(128)

Scenario
 ScenarioID: int4 (PK)

 ScenrioTypeID: int2

 ScenarioType: varchar(64)

ScenarioCoverage
 SubjectID: int4 (PK, FK)

 ScenarioID: int4 (PK, FK)

DisabilityGroupRelevance_Fcui
 DisabilityGroupID: int2 (PK, FK)

 BarrierComputationID: int2 (PK, FK)

 BarrierProbability: real

UWEMCoverage
 BarrierComputationID: int (PK, FK)

 UWEMTestID: int2 (PK, FK)

 UWEMTestWeight: float

UWEMTest
 UWEMTestID: int2 (PK)

 UWEMTestName: varchar(64)

 UWMTestTypeID: int2

 UWEMTestType: varchar(64)

Figure 3.6: The logical model for EIAO DW

model (the associations that do not cross dimensions are represented by the internal
dimension hierarchies). For the one-to-many associations, this is done by adding
a foreign key to the “many side”. For many-to-many associations, this is done by
adding abridge table[58] with two foreign keys that reference the two dimensions.
If the association has an association class in the conceptual model, the attribute from
this will also be added to the bridge table. Consider, for example, again the many-to-
many association betweenSiteandCategorywith the association classSiteCategori-
sationwith the attribute CategoryWeight. The schema for the resulting bridge table
becomesCategoryWeight(SiteID, CategoryID, CategoryWeight)
where SiteID and CategoryID are foreign keys. Note that these foreign keys are not
declared in the database since the ID attributes they reference are not primary keys.

Thus, there are four bridge tables in the logical model: ScenarioCoverage (that
relates subjects and scenarios) and DisabilityGroupRelevanceFcui, UWEMCover-
age, and SiteCategorisation that apart from the foreign keys have attributes as the
similarly named association classes in the conceptual model.

There is a single fact table, TestResult. This fact table hasno measures and is
thus a so-calledfact-lessfact table [58]. It is used to track events, namely results
of accessibility evaluations. It has a primary key consisting of the combined for-
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eign keys (referencing Result, BarrierComputationVersion, Time, Date and Subject
dimensions, respectively). The dimensions that are not referenced from the fact table
areoutriggers[58] that are referenced from other dimensions or from bridge tables.
This is, for example, the case for the Category dimension that is referenced from the
bridge table SiteCategorisation and in that way connected to the Subject dimension.

The dimensions for representing times and dates are duplicated since they are
both used as ordinary dimensions referenced from the fact table (to track when an
evaluation took place) and as outriggers referenced from the Subject dimension (to
track when the page holding the subject was modified). Thus there are the duplicated
dimensions TestDate and ModificationDate as well as TestTime and Modification-
Time. Note that in the implementation, the duplicated dimensions are just declared
as views over the same base table such that the data is not physically duplicated. In
fact, all dimensions and the fact table are made available through views to allow for
later redefinitions.

3.5 Physical Model

In the physical model for EIAO DW, tables are declared for thedifferent dimensions
(recall that some dimensions are duplicates of others) and bridge tables in the logical
model. Further, more than 30 indexes have been declared to speed up queries. Some
summary tables that hold answers to the most needed queries have also been defined.
These will be described in Section 3.7 where the aggregationfunctions for the EIAO
DW are also described.

When the EIAO project is being scaled up to monitor 10,000 sites, the data sizes
to handle in the EIAO DW will be very large, as previously mentioned. To be able to
handle these data sets efficiently, partitioning of the datawill be used. In the logical
model, the by far largest tables are the fact table and the dimension tables Subject
and Scenario and the bridge table ScenarioCoverage. These tables are therefore the
obvious candidates for partitioning. The rest of the tablesare not expected to grow
so large that partitioning is necessary.

The reporting engine queries for aggregate results (see also Section 3.7) for groups
of versions of web pages that were evaluated in aspecific test run. Thus, it makes
sense to use the test runs for partitioning the data. To make this easy, the TestRunID
attribute can be used to decide which partition to place somegiven data in. This,
however, requires that the primary key of the Subject dimension is changed into
(SubjectID, TestRunID). The fact table should then, of course, also have a TestRunID
attribute as part of its foreign key to the Subject dimension. Further, the TestRunID
attribute should be added to the Scenario dimension and should be part of the pri-
mary key. Thus when a new scenario is being represented there, the TestRunID for
the current test run is also inserted. Also, the ScenarioCoverage bridge table should
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then reference the TestRunID attribute. When querying for results for a specific test
run, it is then easy to find the partition to look into and thus avoid millions of tuples
irrelevant for the query in other partitions. The use of the partitions can be handled by
the stored procedures that implement the aggregation functions used by the reporting
engine.

3.6 Source Data

As previously mentioned, the results of the accessibility evaluations are stored as
EARL [120] which is an RDF [119] format. The EARL format is designed to de-
scribe results of tests such as these carried out by the EIAO project. Also data about
the web sites is stored as RDF data. RDF is based on triples of the form (subject,
predicate, object). It is possible for an object to be the subject of another triple and
thus RDF can form a graph. The source data for EIAO DW is thus very different from
the normal case for DWs. The ETL tool has to navigate in the graph, extract data as
triples and transform it into relational data to load into the database. The triples are
stored in a 3store triplestore [48]. Note that the RDF graphseasily get very large with
many millions of nodes.

To load the DW, the ETL tool queries the triplestore by means of triples where
one or more of the components can have the special valueNone which matches
anything. The matching triples from the triplestore are then returned. Consider for
example the query(x, y, z). If all of x, y, z are different fromNone, this query will
return one triple (the same as the query) if it exists in the triplestore or an empty result
if the triple (x, y, z) does not exist in the triplestore. If, on the other hand,z is None,
the result of the query will be all triples in the triplestorewith subjectx and predicate
y.

Somewhat simplified, the ETL first fetches information abouttest runs. For each
of the test runs to load data for, the ETL then fetches information about which sites
have been surveyed in the test run. For each site, it finds information on scenarios
for that site and for each scenario it fetches information about tests and their out-
comes. Although conceptually simple, this process is currently performing poorly
when large data sets are loaded. When the triplestore holds 75 millions triples from
different test runs, between 90 and 99 percent of the time is spent on waiting for
the triplestore to extract triples. A faster solution is therefore needed to handle the
scalability requirements for the project.

In the triplestore, both results from the tests developed bythe EIAO project and
from another accessibility project, calledimergo [66], are stored. Both kinds of re-
sults are loaded into the DW.
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3.7 Aggregation Functions

From the graphical user interface to the EIAO DW a number of predefined reports are
available. These reports can both give an overall accessibility score and give detailed
scores for tests that are relevant for a number of important UWEM tests. In both
cases, the score is the result of a C-WAM [91]. The reports areeither considering a
single domain or groups of domains. Domains can be grouped according to country
of the provider, EU membership of the country of the provider, and category of the
provider. Note that the reports thus always perform some kind of aggregation. The
reports will show the current score and a score for the changecompared to last test
run. Note that the GUI thus currently only provides these reports and does not provide
access to all the data available in the EIAO DW.

For a report that considers groups of domains, the score is defined as the av-
erage of the scores for the included domains. This means thatif a provider is in-
volved in many categories, his domain will be counted in all of them. However,
there is not a problem with double-counting results since wedo not use already
aggregated results (holding partially overlapping results) for further aggregations.
Similar explanations hold for the other many-to-many relations. For a single do-
main, the score is calculated based on results for each of thekey use scenarios
as defined in [91]. Somewhat simplified, the (non-detailed) C-WAM value for a
domaind, test runt (for which the key use scenariosk1, . . . , km exist), and dis-
ability groupg is given asC(d, t, g) =

∑m
i=1C

′(ki, g)/m. HereC ′ of a key use
scenariok (with the failed results{r1, . . . , rn}) and disability groupg is given by
C ′(k, g) = 1−

∏n
i=1 (1− Pb(ri, g)) wherePb(r, g) is a number giving the probabil-

ity for that the failed test resultr introduces an accessibility barrier for the disability
groupg. This aggregation function is very different from the aggregation functions
normally used in DWs. Thus it needs special functions to be written. To make these
calculations efficient and to make future changes possible without changing the re-
porting engine, the scores are calculated by stored procedures in the DW. The main
part of the work is done by the procedures that calculate the score for a scenario and
domain, respectively. The other stored procedures just usethem and calculate an
average. To avoid problems with precision, SQL’s NUMERIC data type with up to
1000 decimal points is used in the calculation of C-WAMs for domains. The detailed
C-WAMs are defined to be the ratio between failed tests for thespecific UWEM tests
divided by the possible number of failed tests, i.e., if two out of four tests fail, the
detailed C-WAM value is 0.5. Thus significant rounding errors is not a problem for
those and FLOATs can be used instead of NUMERICs.

To make the use of the stored procedures faster,summary tables(or persistent
caches) have been defined for those stored procedures that calculate values for a do-
main. The first time a value is calculated by a stored procedure, the result is inserted
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in a summary table together with the parameters to the storedprocedure. Thus, the
summary table for the functionC defined above has columns DomainID, TestRunID,
DisabilityGroupID and Result. Subsequent calls with identical parameters can then
be looked up and answered immediately. To avoid that an end user faces a long
response time if he is the first to calculate a given result, the stored procedures for
domains are invoked for each domain during the ETL process.

3.8 Conclusion and Future Work

In this work, a data warehouse for large amounts of accessibility data has been de-
signed and implemented. It is believed that this work is the first to develop a general
and scalable business intelligence solution to the field of accessibility. By doing this,
we can facilitate easy, efficient and reliable analysis of the data. To be able to do
this, a simple star schema was not enough as we also had to represent many-to-many
relationships. During the development, the schema was changed many times due to
changes in the source data. It has thus – again – been experienced that it is difficult
to develop a DW concurrently with the development of the source systems.

The solution is entirely based on open source software wherethe PostgreSQL
DBMS has been both reliable and well-suited. However, support for materialized
views is a missing feature in PostgreSQL. Built-in support for materialized views
and explicitly declared bitmap indexes could have improvedthe performance of some
slow queries.

For the implementation of aggregating accessibility scorefunctions (C-WAMs),
the stored procedure support in PostgreSQL has been valuable. This has made it
possible to isolate the GUI and schema allowing for tuning ofthe schema. Currently,
all C-WAM values are calculated in the DW by means of stored procedures but it
seems more efficient to calculatesomeof these in the ETL.

In the current solution, RDF is used to represent the source data. When the ETL
is running, most of the time is spent on extracting RDF data from the used general-
purpose triplestore. Based on our (admittedly limited) experiences, RDF seems to be
heavy to use for bulk-loading. The performance drops as moreand more triples are
present in the triplestore. In the future, it could be interesting to investigate how the
RDF could be stored and extracted in a more efficient way.

The implemented solution is currently used with data for around 150 web sites.
However, the EIAO project is intended to scale to 10,000 web sites being monitored
on a monthly basis. The future work therefore includes to implement partitioning to
handle the large data sizes (187.8 millions results each month) and possibly distri-
bution of the DW on many machines. Also, data mining solutions should be imple-
mented and used on the data. It will then be possible to find interesting patterns that
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can improve the accessibility of web resources. These issues will be addressed in the
upcoming release 2 of the entire EIAO system.

Please note that the complete EIAO system is the result of a team effort with
substantial contributions from 10 organizations, seeeiao.net [37] for details. The
EIAO DW, except for the GUI, is developed by the authors. The GUI is designed and
developed by a team at Agder University College, Norway.





Chapter 4

3XL: Efficient Storage for Very
Large OWL Graphs

With the emergence of Semantic Web technologies like RDF andOWL, so-called
triplestores that store triples of the form(subject, predicate, object)have become im-
portant. To store this kind of data, different kinds of data organizations have been
proposed. Many of these previously proposed solutions use underlying relational
databases. The data is then stored in generic schemas that can store any kind of RDF
triples. This offers flexibility with respect to the data that can be stored, but the per-
formance for data sets (“graphs”) that are large suffers since most of the data is stored
in a few but large tables and it becomes expensive to use thosetables when searching
for specific data or joining the tables. In this chapter, we describe another solution
targeted towards storing data expressed in (a subset of) theOWL Lite language. The
proposed triplestore called 3XL generates a specialized database schema based on
information about the data to store. This is done to gain better performance for large
graphs containing many millions of triples.

4.1 Introduction

It is often said that the Semantic Web has the potential to revolutionize the Web
and how we use it. The content of the Semantic Web will be understandable by
machines and we can thus use and access the huge amount of information on the
Web in completely different ways from what we know today. To make the content
available to machines, we need ways to describe meaning or semantics of data.

39
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In the Resource Description Framework (RDF) data model usedfor the Semantic
Web, so-calledstatementshave three parts: a subject, a predicate, and an object.
For example, a statement could be “Course CS123 Object-Oriented Programming
is taught by John Smith”. Here “Course CS123 Object-Oriented Programming” is
the subject, “is taught by” is the predicate and “John Smith”is the object. To store
this kind of statements, so-calledtriplestoresthat store triples of the form(subject,
predicate, object)have become popular. Many such triplestores also offer further
functionality such as inference where additional statements can be inferred from the
stored statements. However, these triplestores may sometimes have to store many
million triples and performance becomes an issue.

In this chapter, we propose the triplestore 3XL (named such to show that this
triplestore can store large datasets) that scales better for the large data sets. 3XL
automatically generates a specialized schema for the data based on OWL descrip-
tions of classes and their properties. The solution uses theobject-relational features
of PostgreSQL [94] (in particular inheritance for tables).The use of a specialized
schema instead of a general schema that stores any kind of data offers good perfor-
mance, both when inserting and extracting triples. In projects where the structure of
the data to store is fixed or changing rarely, the improved performance obtained with
a fixed schema is a desirable and the flexibility of a general schema is not needed.
And in case of changes to the structure of the data should occur, a new specialized
schema can be generated with 3XL.

When generating a specialized database schema for an OWL ontology, 3XL cre-
ates a table for each OWL class. This table is then used to holddata about instances
of that class. Further, 3XL may create a table for each property that does not have
a maximal cardinality specified. To get good performance, 3XL inserts data into a
data buffer in main memory. Only when needed due to too high memory usage or the
user committing, the data is being moved into the underlyingPostgreSQL database.
When this happens, bulkloading techniques are used. Thus, 3XL is very well-suited
for use scenarios where large amounts of triples are inserted in bulks.

The 3XL triplestore is at this stage targeted towards the basic schematic concepts
such as classes (including subclasses) and properties (including domains, ranges and
cardinalities). This will be enough for many projects and can be handled efficiently.
However, the solution is made in a general way such that it also can be applied to
different kinds of data and can be extended with other features such as inference for
which only some needed type inference currently is considered.

The rest of this chapter is structured as follows. The requirements for 3XL are
described in Section 4.2. In Section 4.3, an overview of 3XL’s schema generation
procedure is given. This is followed in Section 4.4 by more detailed descriptions of
the schema generation, addition of triples, and query handling. The rows inserted
into the underlying database by the proposed solution are compared to those inserted
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into a generic schema similar to the one used by 3store in Section 4.5. In Section 4.6,
related work is described. Section 4.7 concludes and pointsto future work.

4.2 Requirements

The requirements for the 3XL system are inspired by our experiences from the Eu-
ropean Internet Accessibility (EIAO) project [37]. In the EIAO project data about
the accessibility1 of web resources is collected. Results of the accessibilityevalu-
ations are first stored as RDF [119] and EARL [120] in a triplestore and then later
loaded into a multidimensional data warehouse (DW) called EIAO DW. Originally
3store [48] was used as the triplestore and data for more thanone site kept together.

When around 100 web sites were considered by the EIAO project, more than 75
millions triples existed in the triplestore. Since one of the underlying MySQL tables
in 3store has a row for each triple, this table is getting verybig and performance suf-
fers. When the extract–transform–load (ETL) tool was used to load the data into the
EIAO DW, between 90% and 99% of the used time was spent on extracting data from
the triplestore. The problem got worse as more triples were written to the triplestore.

So based on our experiences from this project, we have designed the 3XL system.
3XL is not specialized for EIAO, but instead a general tool focused on efficient stor-
age of OWL data. More precisely, a subset of the OWL Lite constructs are supported
as described below.

To generate a specialized database schema, 3XL requires information about the
structure of the data to store. For these specifications, there are different options. One
possibility is to use RDF Schema (RDFS) [118] which is a W3C Recommendation.
However, RDFS has some drawbacks. For example, RDFS does notallow cardinali-
ties to be specified. Further, RDFS has some rather complex aspects such as classes
of classes. Another possibility is OWL [117] which is also a W3C Recommendation.
OWL consists of three increasingly expressive subparts: OWL Lite, OWL DL and
OWL Full. For the basic storage of data about instances, onlya subset of the least
expressive sublanguage, OWL Lite, is needed. OWL Lite offers some nice features
such as distinction between properties that relate to otherindividuals (objects) and
properties that relate to datatype values, and disjointness between classes, properties,
individuals and data values [117]. For these reasons, OWL Lite is used to describe
the data to store in 3XL. The OWL Lite constructs supported in3XL are:

• owl:Class
1For a web page to be accessible, it must be be usable for peoplewith disabilities. For example, a

blind user using a screen reader should also be able to retrieve the information on the page so a page
only containing graphic objects is not accessible. To make web resources accessible there are some
guidelines to follow [122,123].
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• rdfs:subClassOf

• owl:ObjectProperty

• owl:DataProperty

• rdfs:domain

• rdfs:range

• owl:Restriction

• owl:onProperty

• owl:maxCardinality

Support for other of the left-out OWL Lite constructs can be added to 3XL later
(see also Section 4.7).

Theopen worldassumption from OWL is, however, not retained. In OWL, a class
defined in some ontology may be extended later on in time in another ontology. For
3XL it is assumed that there exists an ontology that defines the classes once and for
all at the build time for the specialized database schema. After the database schema
has been built, only data about individuals (i.e., object instances) can be added and
only data that fits into the schema. It is also assumed that each individuali is not both
an instance of classA and classB unless one of the following conditions hold:

• A is a subclass ofB.

• B is a subclass ofA.

• i is also an instance of classC andC is declared to be a subclass of bothA and
B.

The first two conditions are needed to allow subclass relationships where it due to
transitivity always holds that if a classA is a subclass ofB then all instances ofA
are also instances ofB.

The last condition says that an individual cannot be said to be an instance of both
classesA andB unless a classC that is a subclass of both of these has been declared2.
This is not a serious limitation since ifi should be an instance of the classesA andB
where none of them is a subclass of the other, then a classC which is a subclass ofA
andB just has to be created.i should then be an instance of classC which of course
implies thati is also an instance of classesA andB.

The PostgreSQL DBMS [94] is an advanced open-source DBMS [109] with
proven scalability and reliability. PostgreSQL also supports object-relational features

2Note that theequivalentClass construct from OWL Lite is not supported in 3XL.
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(table inheritance) which are very useful for 3XL. For thesereasons it is decided to
let 3XL work on top of a PostgreSQL database.

In 3XL, a query is a triple of the form(s, p, o) where any ofs, p, ando may have
the special value denoted by∗. The result of such a query, is a set of triples that have
identical values for the three parts of the given triple. Note that∗ matches anything
in this context. Thus the query(∗, ∗, ∗) gives all triples in the triplestore. This kind
of queries consisting of triples can be handled efficiently and it is easy to start using.
For a start, this is the only way to query the triplestore, butlater support for RDF
query languages can be added.

4.3 Overview of 3XL

In this section, we informally describe the general idea about generating a specialized
database schema for an OWL ontology. The descriptions should give an intuition
about how 3XL works before this is more precisely described in the next section.

To build the database to store the data in, an OWL ontology is read. This on-
tology should once and for all define all classes, their parent-child relationships and
their properties (including domains and ranges for all properties). In the database, a
class tableis created for each class. The class table representing the classC directly
inherits from any class tables representing the parent classes ofC. This means that
if the class table forC ’s parentP has the attributesa, b, c then the class table forC
also at least has the attributesa, b, c.

Two attributes are needed for each instance of any class: An ID and a URI. To
have these available in all tables, all class tables, directly or indirectly, inherit from a
single root class table that represents the OWL classowl:Thing that all other OWL
classes inherit from. The class table forowl:Thing has the columns ID and URI.
All the ID values are for convenience unique integers drawn from the same database
sequence (this will be explained later).

If the classC has aDataProperty d with maxCardinality 1, the ta-
ble for C has a columnd with a proper datatype. For amultiproperty without a
maxCardinality3 there is a specialmultiproperty table. This multiproperty table
has a column for holding the attribute values and a column that holds the IDs for the
instances the property values apply to. The ID attribute acts like a foreign key, but it
is not declared (this is explained below). We here denote this as aloose foreign key.
Note that a multiproperty table does not inherit from the class table forowl:Thing
since multiproperty tables are not intended to represent instances, but rather values
for certain instances. Note also that a given multipropertyfor a classC has only one
multiproperty table. There will not be a multiproperty table for each subclass ofC.

3OWL Lite only allowsmaxCardinality 0 or 1.
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An owl:ObjectProperty is handled similarly to how anowl:DataProp-
erty is handled. If the object property hasowl:maxCardinality 1, a column
for the property is created in the appropriate class table. This column holds IDs for
the referenced objects. If the property is a multiproperty,the value column in the
multiproperty table holds ID values.

Note that instead of using multiproperty tables, the class tables can have columns
that hold arrays. In that way it is possible to represent several property values for an
instance in the single row that represents the instance in question.

Example 4.3.1 We now introduce a simple example that will be used as a running
example throughout the chapter. To save space we do not use URIs as names for
classes and properties introduced in the example but just short, intuitive names.

Assume that there are three classes:Document, HTMLVersion, and HTML-
Document, whereHTMLDocument is a subclass ofDocument. Document has
the propertiestitle and keyword. The propertykeyword is the only multiprop-
erty in this example.HTMLVersion has the propertiesversion andapprovalDate.
Apart from the inherited properties,HTMLDocument has the propertyusedVer-
sion. The propertyusedVersion is anowl:ObjectPropertywithowl:range
HTMLVersion. The remaining properties are all of kindowl:DataProperty.

This results in the database schema drawn in Figure 4.1. Inheritance is shown
with arrows as in UML. A loose foreign key is shown as a dotted arrow. Note that
names of the shown classes and attributes here for convenience are as given in the
example. In the actual database schema shorter, synthetic names are used. For now,
please ignore themap table which is explained later.

Figure 4.1: A database schema generated by 3XL

When triples are being inserted into the schema from Example4.3.1, 3XL has
to find out which class the instance in question (i.e., the subject) belongs to. This
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decides which class table to insert the data into. If the property name of the triple is
unique among classes, it is easy to decide. But in any case, 3XL can deduce the most
specific class that the instance for sure belongs to. This most specific class might
in one extreme beowl:Thing, but nevertheless it is then possible to represent the
instance in the class table forowl:Thing then.

To be efficient, 3XL does not insert data from a triple into theunderlying data-
base as soon the triple is added. Instead data is held in main memory until larger
amounts of data can be inserted quickly into the underlying database using bulk load
mechanisms. To keep data in main memory for a while also has the advantage that
the type detection described above can make a more precise guess. Note that it is a
requirement in OWL Lite (and OWL DL) that there is a triple giving therdf:type
for each individual. Thus, a triple revealing the type should appear sooner or later
and will thus often have appeared when the actual insertion into the database takes
place.

In Example 4.3.1 it may, however, happen that an instancei of the classDocu-
ment that has been written to the class table forDocument later turns out to actually
be an instance of the classHTMLDocument. But in that case it is easy to move the
row representingi from the class table forDocument to the class table forHTML-
Document. Here it is convenient only to have one multiproperty table for keyword
since no rows have to moved from the multiproperty table. This also shows why the
foreign key from multiproperty tables has to be loose. It is unknown which class table
the referenced ID value is located in. However, when querying for a specific ID value
for an instance ofDocument in Example 4.3.1, it is enough to use the SQL expres-
sionSELECT ID FROM Document WHERE . . .. PostgreSQL then automatically
also looks in descendant tables. This also shows why all IDs should be unique across
tables and therefore are drawn from the same sequence.

A drawback of the approach where a row representing an instance is moved from
one class tableT to a class table for a subclassS, is that the subclass may put a
maxCardinality 1 restriction on a propertyp that in the superclass is a multi-
property. In this case, the multiproperty table forp is not needed to represent data for
S instances. It is then possible to letp be represented by a column inS and not by
the multiproperty table that has a loose foreign key toT . However, for simplicity we
keep using the multiproperty table forp if it already exists and do not add an extra
column forp to the class table forS. This makes it possible to erroneously insert too
manyp values for anS instance, but the purpose of 3XL is to serialize the triples it is
given; not to provide validation. Instead, a general OWL validator could be used in
front of 3XL.

When the triplestore is queried (remember that this is done by means of a(subject,
property, object)triple which may hold∗ values), a similar approach can be used. If
a property is given, this can reveal which class table(s) to look into. If only a subject
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or object is given, it is possible to look up the URI in theowl:Thing class table.
This is, however, potentially very expensive. For that reason, 3XL in addition to the
previously mentioned class tables also has a tablemap that maps from a URI to the
class table that holds the instance with that URI.

In summary, the idea compared to a table structure as the one in 3store is to have
the data spread out over many tables (with potentially many columns). This makes
is easier to find certain data when the table to look in can be identified easily. The
tables also have a very good potential for being indexed. Indexes may be added to
those attributes that are often used in queries.

4.4 The 3XL System

In this section, we first give a detailed description of how the specialized database
schema of 3XL is generated. After that we describe how additions to the triplestore
are handled. This is followed by a description of how queriesare handled.

4.4.1 Schema Generation

In the following, we describe the handling of each of the supported OWL constructs
when the specialized database schema is generated. To generate the database schema,
3XL reads an ontology and builds a model of the classes including their properties
and information about subclass relationships. During the construction of this model, a
mapping from property names to the most general class in the domain of the property
is also built.

Based on the built model, SQL DDL statements that create the needed tables are
generated and executed. Note that this SQL is not conformingto the SQL standard
since it uses PostgreSQL’s object-oriented extensions (see more below). The model
is built first, since a property may be declared to have the domain d before the class
d is described in the OWL ontology. Thus the model is only a meanto generate the
final SQL, and we do therefore not describe the model in details. Instead we focus
on the resulting database schema.

Note that a database schema generated by 3XL always has the tablemap(uri,
id, ct). As explained later, this table is used to make it fast to find the table that
represents a given instance and the ID of the instance.

We are now ready to describe how each of the supported constructs listed in Sec-
tion 4.2 are handled in the specialized database schema. Throughout the description,
we assume that a database schemaD is being generated for the OWL ontologyO.

owl:Class An owl:Class inO results in a table, called aclass table, inD. In the
following text, we denote byCX the class table inD for the classX in O. CX is used
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such that for each instance ofX that is not also an instance of a subclass ofX and
for which data must be stored in the triplestore, there is exactly one row inX. Each
represented instance has a URI and is given a unique ID by 3XL.

A special class table,Cowl:Thing, for owl:Thing is always created inD. This
special class table does not inherit from any other table andhas two columns named
ID (of type INTEGER) andURI (of type VARCHAR). Any other class table cre-
ated inD will always inherit from one or more other class tables (see below) and
will always – directly or indirectly – inherit fromCowl:Thing. This implies that the
columnsID andURI are available in any class table.

For other class tables thanCowl:Thing, other columns may also be present: A
class table for a class that is in therdfs:domain of some propertyP and is a
subclass of a restriction saying theowl:maxCardinality of the property is1,
also has a column forP . This column is only explicitly declared in the class table for
the most general class that is the domain of the property. Butclass tables inheriting
from that class table then automatically also have the column. For an example of
this, refer to Example 4.3.1 where a column fortitle is declared in the class table for
Document.

rdfs:subClassOf For classesX andY in O whereY is a subclass ofX (i.e., the
triple (Y, rdfs:subClassOf, X) exists inO), there exist class tablesCX and
CY in D as explained above. ButCY is declared to inherit fromCX and thus has at
least the same columns asCX . This resembles the fact that any instance ofY is also
an instance ofX. So when rows are read fromCX to find data aboutX instances,
PostgreSQL will also read data fromCY since the rows there represent data aboutY
instances (and thus alsoX instances). In Example 4.3.1CHTMLDocument inherits from
CDocument sinceHTMLDocument is a subclass ofDocument.

Any classX defined inO that is not a subclass of another class implicitly be-
comes a subclass ofowl:Thing. Thus, if no other parent is specified forX, CX
inherits fromCowl:Thing as doCDocument andCHTMLVersion in the running example.

owl:ObjectProperty and owl:DataProperty A property (no matter if it is anowl:
ObjectPropertyorowl:DataProperty) results in a column in a table. If the
property is anowl:ObjectProperty, the column is of type INTEGER such that
it can hold theID for the referenced instance. If the property on the other hand is an
owl:DataProperty, the column is of a type that can represent the range of the
property, e.g., VARCHAR or INTEGER.

If the owl:maxCardinality is 1, the column is placed in the class table for
the most general class in therdfs:domain of the property. Since there is at most
one value for each instance this makes it efficient to find the data since no joining is
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needed and one look-up in the relevant class table can find many property values for
one instance.

If no owl:maxCardinality is specified, there may be an unknown number
of property values to store for each instance, though. Therefore the idea about storing
one property value for an instance in a column in the class table breaks. Instead, a
column with an array type can be used. This is efficient if manyvalues should be
stored and all extracted at the same time. But an array is expensive to search for a
specific value in. Another solution is to create amultiproperty table. Each row in the
multiproperty table represents one value for the property for a specific instance. In
a multiproperty table there are two columns: One to hold the ID of the instance that
the represented property value applies to and one for the property value itself. This
is the most efficient solution if it is common to search for a specific property value.
This approach is illustrated for thekeyword property in Example 4.3.1.

It can be left as a configuration choice if multiproperty tables or array columns
should be used for properties with no explicit maximum cardinality.

rdfs:domain Therdfs:domain for a property is used to decide which class table
to place the column for the property in in case it has aowl:maxCardinality of
1 or in case that array columns are used instead of multiproperty tables. In either of
these cases, the column to hold the property values is placedin CT whereT is the
domain.

If multiproperty tables are used and noowl:maxCardinality is given, the
rdfs:domain is used to decide which class table holds (directly or indirectly in a
descendant table) the instances for which the property values are given. So in other
words, this decides where one of the IDs referenced by the multiproperty table exists.
Note that no foreign key is declared inD. To understand this, recall that since there
is only one multiproperty table for the given property, the most specific type of an
instance that has this property may be different from the most general. So although
the property has domainX, another classY may be a subclass ofX, andY instances
can then also be legally referenced by a property with rangeX. An example of
this is seen in the running example, wherekeyword is defined to have the domain
Document, but anHTMLDocument can also havekeyword values. So in general
there is not only one class table representing the range. Therefore we use aloose
foreign key. A loose foreign keyLFKℓ from CX to CY is a columnℓX in CX and
a columnℓY in CY with the constraint that if a row inCX has the valuev for ℓX ,
then at least one row inCY or a descendant table ofCY has the valuev in the column
ℓY . The crucial point here compared to a “normal” foreign key, is that the referenced
value does not have to be inCY , but can instead be in one ofCY ’s descendants. Note
that a loose foreign key is not enforced by the DBMS; this is left to 3XL to do.
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If no domain is given inO for the property, it is implicitly assumed to beowl:
Thing.

rdfs:range Therdfs:range is used to decide where to find referenced instances
for anowl:ObjectProperty and to decide the data type of the column holding
values for anowl:DataProperty. So, similarly to the case explained above,
the range decides which table the other ID of a multipropertytable for an object
property references by a loose foreign key. Further, when the range of a property
p is known, the object of a triple where the predicate isp, can have itsrdf:type
inferred (although it in OWL Lite also has to be given explicitly).

owl:Restriction (including owl:onProperty and owl:maxCardinality) In OWL,
the way to say that a classC satisfies certain conditions, is to say thatC is a sub-
class ofC ′ whereC ′ is the class of all objects that satisfy the conditions [5]. The
C ′ class can be an anonymous class. To construct an anonymous class for which
conditions can be specified, theowl:Restriction construct is used. For an
owl:Restriction, a number of things such asowl:maxCardinality can
be specified.

Following the previous explanations about classes and subclasses this would lead
to generating class tables for anonymous restrictions when3XL generates the data-
base schema. But since all instances ofC ′ (which is actually anonymous) would also
be instances of the non-anonymous classC andCC′ would thus be empty, this is more
complex than needed. Instead, when 3XL generates the database schema, supported
restrictions are “pulled down” to the non-anonymous subclass. So if the restriction
C ′ of whichC is a subclass, defines theowl:maxCardinality to be1 for the
propertyP by means ofowl:onProperty, this means thatP can be represented
by a column inCC and that no class table is generated forC ′.

Currently, 3XL’s restriction support is limited as only cardinality constraints are
handled. As previously described, anowl:maxCardinality of 1 results in a
column in a class table. Thus we assume that a property withmax:Cardinality
1 only occurs once for a given subject. This is deviation fromthe OWL semantics
where it for a propertyp with owl:maxCardinality 1 can be deduced thato1
ando2 are equivalent if the both the triples(s, p, o1) and(s, p, o2) are present.

The following table summarizes how OWL constructs from the ontologyO are
mapped into the database schemaD.
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The OWL construct ... results in ...
owl:Class a class table
rdfs:subClass the class table for the subclass inherits from the class table

for the superclass
owl:ObjectProperty or
owl:DataProperty

a column, in a class table if the max. cardinality is 1 and in
a multiproperty table otherwise

rdfs:domain a column for the property in the class table for the domain if
the max. cardinality is 1
a loose foreign key from a multiproperty table to class
table otherwise.

rdfs:range a type for the column representing the property.

4.4.2 Triple Addition

We now describe how 3XL handles triples that are inserted into a specificmodelM
which is a database.M has the database schemaD which has been generated as de-
scribed above from the ontologyOS with schematic data. We assume that the triples
to insert are taken from an ontologyOI which only contains data about instances,
and not schematic data about classes etc. Note thatOI can be split up into several
smaller sets such thatOI = OI1 ∪ · · · ∪ OIn where eachOIi

, i = 1, . . . , n, is added
at a different time. In other words, unlike the schema generation which happens only
once, the addition of triples can happen many times.

First, we focus on the state forM after the addition of the triples inOI to give
an intuition for the algorithms that handle this. Then, we present pseudocode in
Algorithms 4.1–4.3 and explain the handling of triple additions in more details.

When a triple(s, p, o) is added toM , 3XL has to decide in which class table
and/or multiproperty table to put the data from the triple. Typically, the data in a
triple becomes part of a row to be inserted intoM . For each differents for which
a triple (s,rdf:type, t) exists4 in OI and no triple(s,rdf:type, t′) wheret′ is
more specific thant exists inOI , a rowRs is inserted intoCt.

We now consider the effects of adding a triple(s, p, o) wherep is a property
defined inOS . First, assume thatp is declared to haveowl:maxCardinality 1.
ThenRs’s column forp in Ct gets the valueν(p, o) whereν(p, o) equalso if p is an
owl:dataProperty andν(p, o) equals the value of theID attribute inRo if p is
anowl:ObjectProperty. In other words, the value of a data property is stored
directly whereas an the value of an object property is not stored as a URI, but as the
(more efficient) integer ID of the referenced object.

Now assume that noowl:maxCardinality is given for p. As previously
mentioned, such properties can be handled in two ways. If array columns are used,
the situation resembles that of a property with a maximal cardinality of 1. The only
difference is that the column forp in Rs does not get its value set toν(p, o). Instead

4Recall that the type must be explicitly given.
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the value ofν(p, o) is added to the array in the column forp inRs (but the array may
also hold other values). If multiproperty tables are used, the row

(
ι, ν(p, o)

)
where

ι is the value of theID attribute inRs is added to the multiproperty table forp. In
other words, the row that is inserted into the multipropertytable has a reference (by
means of a loose foreign key) to the rowRs. Further, it has a reference to the row for
the referenced object ifp is anowl:ObjectProperty and otherwise the value of
the property.

So this means that for properties defined inOS the values they take inOI are
stored explicitly in columns in class tables and multiproperty tables. For other triples,
information is not stored explicitly by adding a row. If the predicatep of a triple
(s, p, o) is rdf:type, this information is stored implicitly since this triple does not
result in a row being added toM , but decides in which class tableRs is put.

The pseudocode listed in Algorithm 4.1 (and Algorithms 4.2 and 4.3 used by
Algorithm 4.1) shows how addition of triples is handled. Fora so-calledvalue holder
vh, we denote byvh[x] the value thatvh holds forx. We let the value holders hold
lists for multiproperties and denote by◦ the concatenation operator for a list.

Algorithm 4.1 AddTriple
Input: A triple (s, p, o)

1: vh← GetValueHolder(s)
2: if p is defined inOS then
3: if domain(p) is more specific thanvh[rdf:type] then
4: vh[rdf:type]← domain(p)
5: if maxCardinality(p) = 1 then
6: vh[p]← Value(p, o)
7: else
8: vh[p]← vh[p] ◦ Value(p, o)
9: else ifp = rdf:type and o is more specific thanvh[rdf:type] then

10: vh[rdf:type]← o

When triples are being added toM , 3XL may not immediately be able to figure
out which table to place the data of the triple in. For this reason, but also to exploit the
speed of bulk loading, data to add is temporarily held in adata buffer. Data from the
data buffer is then, when needed, flushed into the database inbulks. This is illustrated
in Figure 4.2.

The data buffer does not hold triples. Instead it holdsvalue holders(see Algo-
rithm 4.1, line 1 and Algorithm 4.2). So for each subjects of triples that have data
in the data buffer, there is a value holder associated with it. In this value holder, an
associative array maps between property names and values for these properties. In
other words, the associative array fors reflects the mappingp 7→ ν(p, o). Note that
if the predicatep of a triple (s, p, o) is rdf:type, p 7→ o is also inserted into the
associative array in the value holder fors unless the associative array already maps



52 3XL: Efficient Storage for Very Large OWL Graphs

Algorithm 4.2 GetValueHolder
Input: A URI u for an instance

1: if the data buffer holds a value holdervh for u then
2: return vh
3: else
4: table← ExecuteDBQuery(SELECT ct FROM map WHERE uri =u)
5: if table is not NULL then
6: /* Read values from the database */
7: vh← new ValueHolder()
8: Read all values foru from table and assign them tovh.
9: Delete the row with URIu from table

10: for all multiproperty tablesmp referencingtable do
11: Read all property values in rows referencing the row foru in table and assign

these values tovh
12: Delete frommp the rows referencing the row with URIu in table
13: Add vh to the data buffer
14: return vh
15: else
16: /* Create a new value holder */
17: vh← new ValueHolder()
18: vh[URI]← u
19: vh[ID]← a unique ID
20: return vh

Algorithm 4.3 Value
Input: A propertyp and an objecto

1: if p is anowl:ObjectProperty then
2: res← ExecuteDBQuery(SELECT id FROM map WHERE uri =o)
3: if res is NULL then
4: res← (GetValueHolder(o))[ID]
5: return res
6: else
7: /* It is an owl:DataProperty */
8: return o

rdf:type to a more specific type thano. Actually, 3XL infers triples of the form
(s,rdf:type, o) based on predicate names, but only the most specialized typeis
stored (Algorithm 4.1 lines 3–4). This type information is later used to determine
where to place the values held by the value holder. For a multipropertyp, the asso-
ciative array will mapp to a list of values (Algorithm 4.1, line 8) but for a propertyq
with a maximal cardinality of 1, the associative array will mapq to a scalar value (Al-
gorithm 4.1, line 6). Further, 3XL assigns a unique ID to eachsubject which is also
held by the value holder (Algorithm 4.2, line 19 when the value holder is created).
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Figure 4.2: Flow of data in 3XL

Example 4.4.1 (Data buffer) Assume the following triples are added to an empty
3XL modelM for the running example:

(http://example.org/HTML-4.0, version, ”4.0”)

(http://example.org/HTML-4.0, approvalDate, ”1997-12-18”)

(http://example.org/programming.html, title, ”How to Code?”)

(http://example.org/programming.html, keyword, ”Java”)

(http://example.org/programming.html, keyword, ”programming”)

Before the triples are inserted into the underlying database by 3XL, the data
buffer has the following state.

http://example.org/HTML-4.0
ID 7→ 1
rdf:type 7→ HTMLVersion
version 7→ 4.0
approvalDate 7→ 1997-12-18

http://example.org/programming.html
ID 7→ 2
rdf:type 7→ Document
title 7→ How to Code?
keyword 7→ [programming, Java]

Here the top row of a table shows which subject, the value holder holds values
for. The following rows show the associative array (which for simplicity is shown to
hold the ID as well as the property values). Note that the typefor http://example.org/
programming.html is assumed to beDocument since this is the most general class
in the domains oftitle andkeyword.

Now assume that the triple (http://example.org/programming.html, usedVersion,
http://example.org/HTML-4.0) is added toM . Then the type detection finds that
http://example.org/programming.html must be of typeHTMLDocument, so its value
holder gets the following state.

http://example.org/programming.html
ID 7→ 2
rdf:type 7→ HTMLDocument
title 7→ How to Code?
keyword 7→ [programming, Java]
usedVersion 7→ 1
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Note how the value holder mapsusedVersion to the ID value for http://example.
org/HTML-4.0, not to the URI directly. If the requiredrdf:type triples now are
inserted, this does not change anything since the type detection has already deduced
the types.

Due to the definition ofν described above, the value holders and eventually the
columns in the database hold IDs of the referenced instancesfor object properties.
But when triples are added, the instances are referred to by URIs. So on the addition
of the triple(s, p, o) wherep is an object property, 3XL has to find an ID foro, i.e.,
ν(p, o). If o is not already represented inM , a new value holder foro is created
and it is assigned a new unique ID (Algorithm 4.3, line 4). Depending on the range
of p, type information abouto may be inferred. Ifo on the other hand is already
represented inM , its existing ID should of course be used. It is possible to search
for the ID by using the querySELECT id FROM Cowl:Thing WHERE uri = o.
However, for a large model with many class tables and many rows (i.e., data about
many instances) this can be an expensive query. To make this faster, 3XL maintains
a tablemap(uri, id, ct) whereuri andid are self-descriptive andct is a
reference to the class table where the instance is represented. Whenever an instance
is inserted into a class tableCx, the instance’s URI and ID and a reference toCx are
inserted intomap5. By searching the data buffer which is held in memory and the
map table (which is indexed), it is fast to look up if an instance is already represented
and to get its ID if it is.

Similarly, 3XL also needs to determine if the instances is already represented
when adding a triple(s, p, o). Again themap table is used. Ifs is not already repre-
sented, a new value holder is created and added to the data buffer. If s on the other
hand is represented, a value holder is created in the data buffer and given the values
that can be read from the class table referenced frommap and thenRs and all rows
referencing it from multiproperty tables are deleted. In this way, it is easy to get the
new and old data fors written to the database as data fors is just written as if it was
all newly inserted (see below). This also helps, if it due to newly added data becomes
evident thats has a more specialized type than known before.

When the data buffer gets full or when the user issues a commitcommand, the
data in the data buffer is inserted into the underlying database. This is done in a bulk
operation where PostgreSQL’s very efficient COPY mechanismis used instead of
INSERT SQL statements. So the data gets dumped from the data buffer to temporary
files in comma-separated values (CSV) format and the temporary files are then read
by PostgreSQL. Therdf:types that are read from the value holders are used to
decide which tables to insert the data into. In case, no type is known,owl:Thing
is assumed. For unknown property values, NULL is inserted. If multiproperty tables

5Thusmap corresponds to a materialized view. However, PostgreSQL does currently not support
materialized views and thus 3XL has to maintain themap table itself.
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are used, values from a multiproperty are inserted into these instead of a class table.
The details of this COPY operation are not discussed here.

4.4.3 Querying for Triples

In this section, we describe how 3XL handles queries for triples in a modelM . We
assume that the query itself is a tripleQ = (s, p, o). However, any of the elements in
the query triple can take the special value∗. Since the schematic information given
in OS (for which the specialized schema was generated) is fixed, wedo not consider
queries for schematic information here. Instead we focus onqueries for instance data
inserted intoM , i.e., queries for data inOI . The result of a query consists of those
triples inM where all elementsmatch their corresponding elements in the query
triple. The special∗ value matches anything, but for all elements in the query triple
different from∗, all corresponding elements in a tripleT in M have to be identical
for T to be included in the result.

Example 4.4.2 (Queries)Consider again the triples that were inserted in Exam-
ple 4.4.1 and assume that only those (and the required triples explicitly giving the
rdf:type) were inserted intoM . The result of the query(∗, keyword, ∗) is the set
holding the following triples:

(http://example.org/programming.html, keyword, Java)

(http://example.org/programming.html, keyword, programming).

The result of the query(http://example.org/HTML-4.0, ∗, ∗) is the set holding the
following triples:

(http://example.org/HTML-4.0, rdf:type, owl:Thing)

(http://example.org/HTML-4.0, rdf:type, HTMLVersion)

(http://example.org/HTML-4.0, approvalDate, 1997-12-18)

(http://example.org/HTML-4.0, version, 4.0),

i.e., the set containing all the knowledge about http://example.org/HTML-4.0,
including all its known types.

As there are three elements in the query tripleQ and each of these can take an
ordinary value or the special value∗, there are23 = 8 generic cases to consider. We
go through each of them in the following.s, p, ando are all values different from∗.
When we for a subjects say that the class table that holdss is found, it is implicitly
assumed that some class table actually holdss. If this is not the case, the result is
of course just the empty set. Further, we assume that all datais in the underlying
database. The solution could be extended to also consider data in the data buffer, but
for simplicity we here assume that the data is inserted into the database before the
queries are executed.
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Case(s, p, o) In this case, the query is for the query triple itself, i.e., the result set
is either empty or consists exactly of the query triple. Ifp equalsrdf:type, the
result is found by looking in themap table to see if the class table holdings is Co
or a descendant ofCo. This is done by using the single SQL querySELECT ct
FROM map WHERE uri = s which can be performed fast if there is an index
on map(uri, ct). If s is held byCo or a descendant ofCo, Q is returned and
otherwise an empty result is returned.

If p is different fromrdf:type, the result is found by finding the ID fors (from
now calledsid) and the class table wheres is inserted (by means ofmap). If that class
table has a column or a multiproperty table forp, it is determined if the propertyp
takes the valueo for s. To determine this, it is necessary to look forν(p, o) in the da-
tabase as an ID is stored instead of a URI for anowl:ObjectProperty. If p takes
the valueo for s,Q is returned, otherwise the empty result is returned. So thisrequires
an SQL query selecting the class table (ifp is represented by a column) or the ID (if
p is represented by a multiproperty table) frommap and either the querySELECT
true FROM classtable WHERE id = sid AND pcolumn = ν(p, o) (if
p is not a multiproperty), the querySELECT true FROM classtable where
id = sid AND ν(p, o) = ANY(pcolumn) (if p is a multiproperty represented
by an array column), or the querySELECT true FROM ptable WHERE id =
sid AND value = ν(p, o) (if p is a multiproperty represented by a multiproperty
table). In any case, only 2 SQL SELECT queries are needed and –except for the sit-
uation wherep is represented by an array column – indexes on the ID andp columns
can help to speed up these queries.

Example 4.4.3 (Finding a specific triple)Assume thatQ = (http://example.org/
programming.html, keyword, programming) is a query given in the running exam-
ple. To answer this query, 3XL executes the following SQL queries sincekeyword is
represented by a multiproperty table.

SELECT id FROM map
WHERE uri = ’http://example.org/programming.html’

SELECT true FROM keywordTable
WHERE id = foundID AND value = ’programming’

The result from the database istrue so the triple exists in the model and 3XL
returnsQ itself as the result.

Case(s, p, ∗) Also in this case, there is special handling of the situationwhere
p = rdf:type. Then, themap table is used to determine the class tableCX where
s is located. The result set consists of all triples(s, p, C) whereC is the classX
or an ancestor class ofX. So the only needed SQL query isSELECT ct FROM
map WHERE uri = s. Based on the result of this and its knowledge about class
inheritance, 3XL generates the triples for the result.
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If p is anowl:DataProperty, the class table holdings is found. From this,
the row representings is found and each value forp is read. Note that ifp is a
multiproperty and multiproperty tables are used, the values for p are found in the
multiproperty table instead by using the ID fors as a search criterion. The result
set consists of all triples(s, p, V ) whereV is a p value fors. Again, only 2 SQL
SELECTs are needed: One queryingmap and one querying for the value(s) forp
from either the class table or the multiproperty table forp. Indexes on(uri, ct)
and(uri, id) in map and on theids in the classtable/multiproperty table will
help to speed up these queries.

If p is anowl:ObjectProperty, special care has to be taken as the URIs
of the referenced objects should be found, not just their IDs. The first step is to
find the class tableCX holding s and the ID ofs by means of single SELECT on
themap table. Assume WLOG that the range ofp is R. If p is represented by the
column pcolumn in CX , the querySELECT CR.uri FROM CX, CR WHERE
CX.pcolumn = CR.id AND CX.id = sid is used. Ifp is represented by a
multiproperty tablemp, CR is joined withmp instead ofCX . If p is a multiproperty
represented by an array column,CX andCR are still joined, but the condition to use
is WHERE CR.id = ANY(CX.pcolumn) AND CX.id = sid. The result set
consists of all triples(s, p, U) whereU ranges over the selected URIs.

Case(s, ∗, o) In this case, the class table holdings is found. Then all property
values (including values in multiproperty tables) are searched. The result set con-
sists of all triples(s, P, o) whereP is a property that takes the valueo for s. So
by iterating over the properties defined for the class thats belongs to, the previous
(s, p, o) case can be used to find the triples to include. Note that also the special
case(s,rdf:type, o) should also be considered for inclusion in the result set.
So for this query type, an SQL query selecting the class tableand the ID from
map is needed. Further, the SQL querySELECT true FROM mp WHERE ID
= sid AND value = ν(p, o) is needed for each multiproperty tablemp repre-
senting a propertyp defined fors’s class as is the SQL querySELECT true FROM
classtable WHERE id = sid AND pc = ν(p, o) for each columnpc rep-
resenting a propertyp for s in the class table holdings.

Case(s, ∗, ∗) In this case, the class table holdings is found by usingmap. For each
propertyP defined inOS (including properties represented by multiproperty tables)
each of its valuesV for s is found. The result set then consists of all triples(s, P, V )
unioned with the triples in the result set of the query(s,rdf:type, ∗) (found as
previously described).

In this case the following SQL queries are needed: One selecting the class table
and ID frommap, the querySELECT p1column, ... , pncolumn FROM
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classtable WHERE id = sid if there are columns representing data proper-
tiesp1, . . . , pn in the class table holdings, and a querySELECT value FROM mp
WHERE id = sid for each multiproperty tablemp representing a data property de-
fined fors’s class. Again, indexes on theid attributes in the class tables and multi-
property tables speed up the queries. Further, SQL to find theURIs for the values of
object properties is needed. So for each object propertyq defined for the class thats
belongs to and which is not represented by an array column, the following query is
used:SELECT CR.uri FROM CR, Φ WHERE CR.id = Φ.qcolumn AND
Φ.id = sid. HereΦ is a multiproperty table forq or the class table holdings and
R is the range ofq. Indexes on theid attributes will again speed up the queries.
If q is represented by an array column,CR.id = ANY(Φ.qcolumn) should hold
instead ofCR.id = Φ.qcolumn.

Case(∗, p, o) If p equalsrdf:type, the class tableCo is found and all URIs are
selected from it (including those in descendant tables). The result set then consists
of all triples (U, p, o) whereU ranges over the found URIs. This requires only 1
SQL query: SELECT uri FROM Co which will do a scan of the entireCo table
(including descendants) since it has to fetch every row.

If p is different fromrdf:type, 3XL must find the most general classG for
which p is defined. Ifp is represented by a multiproperty tableX, the tablesX
andCG are joined and restricted to consider the rows where the column for p takes
the valueν(p, o) and the URIs for these rows are selected by the querySELECT
uri FROM X, CG WHERE X.id = CG.id AND value = ν(p, o). If p is
represented in a column inCG, all URIs for rows that have the valueν(p, o) in the
column forp (either as an element in casep is a multiproperty represented by an array
column or as the only value in casep is not a multiproperty) are selected. This is done
by using either the querySELECT uri FROM CG WHERE pcolumn = ν(p, o)
or the querySELECT uri FROM CG WHERE ν(p, o) = ANY(pcolumn). The
result set consists of all triples(U, p, o) whereU ranges over the selected URIs. The
first of these queries benefits from an index on the column holding data forp, but
for the latter a scan is needed as we are only looking for a particular value inside an
array.

Example 4.4.4 (Find subjects having a specific value for a property) Consider the
running example and assume that 3XL is given the queryQ = (∗, keyword, pro-
gramming). The most general class for whichkeyword is specified isDocument
so the SQL querySELECT uri FROM keywordTable, CDocument WHERE
keywordTable.id = CDocument.id AND value = ’programming’ is ex-
ecuted. One URI is found by this query, so the triple (http://example.org/programming
.html, keyword, programming) is returned by 3XL.
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Case(∗, p, ∗) If p in this case equalsrdf:type, the result set contains all triples
describing types for all subjects in the model. So for each class tableCX , all its URIs
(including those in subtables) are found with the SQL querySELECT uri FROM
CX which performs a scan ofCx and its descendants. The result set then consists of
all triples(U, p,X) whereU ranges over the URIs selected fromCX .

If p is a data property, 3XL handles this similarly to the(∗, p, o) case described
above with the exception that no restrictions are made for the object (i.e., the parts
concerningν(p, o) are not included in the SQL) and the values in the column repre-
sentingp are also selected. But again special care has to be taken ifp is an object
property. It is then needed to join the class table or multiproperty table holdingp
values to the class table for the rangeR of p. Further, the columnCR.uri should
then be selected instead of the column representingp (this is similar to the already
described(s, p, ∗) case). For each row(U,O) in the SQL query’s result, a triple
(U, p,O) is included in 3XL’s result set toQ.

Case(∗, ∗, o) In this case, all triples with the giveno as object should be returned.
This can be found by reusing some of the previously describedcases. Consider that
o could be the name of a class in which case type information must be returned (note
that we can ignore the possibility thato is, e.g.,owl:ObjectPropertyas we have
assumed that there are no queries for schematic data given inOS). But o could also
be any other kind of value that some property defined inOS takes for some instance.
In any of these cases, we can reuse the(∗, p, o) query handling described above.
Formally, the result set is given by the following where we let Ω(a, b, c) denote the
result set for the query(a, b, c) andP is the set of properties defined inOS :

Ω(∗,rdf:type, o)
⋃




⋃

p∈P

Ω(∗, p, o)





Case(∗, ∗, ∗) In this case, all triples inM should be returned. This can also be
done by reusing some of the previously described cases. Moreconcretely the result
set for this query consists of a union of all type informationtriples and the union of
all result sets for the queries(∗, p, ∗) wherep is a property defined inOS . Formally,
the result set is given by the following whereΩ andP are defined as above.

Ω(∗,rdf:type, ∗)
⋃




⋃

p∈P

Ω(∗, p, ∗)





In other words, this is handled in similar way to how the(∗, ∗, o) case is handled.
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4.5 Performance Discussion

In this section, we calculate the number of rows inserted by 3XL into a specialized
database schema and the amount of storage used for this. The found numbers are
compared to the similar numbers for a generic schema similarto the one used by the
3store system [48]. Such a generic schema can store any kind of RDF graph but does
not exploit OWL specific knowledge. But since an OWL Lite graph is also a valid
RDF graph, the generic schema can also store an OWL Lite graph.

We consider addition of a set of triples. The commit operation occurs as the
last operation and there are no commit operations in-between the additions of triples.
By A we denote all the triples given from the client application except those with
rdf:type as their predicate. The full set, including the triples giving the types
explicitly, is denotedĀ. About A we assume that its triples describeI instances
in total and that the instanceson averagehaveS single properties(a property for
which an instance only can have one value, i.e., the oppositeof a multiproperty). The
instances on average haveM multiproperties. A multiproperty on average hasV
different values for an instance that belongs to a class in the domain of the property.
Out of all objects in the triples, we assume thatL are literals. The variables are
summarized in Table 4.1.

Variable Description

A
The triples to add, excluding the required triples with the predi-
caterdf:type.

Ā
The triples to add, including the required triples with the predi-
caterdf:type.

I The number of unique instances inA.
S The average number of single properties of an instance inA.
M The average number of multiproperties of an instance inA.
V The average number of values a multiproperty takes.
L The number of literal values inA.

Table 4.1: Summary of variables

Using the variables from above, an average instance hasS+MV property values.
In total there are thusI(S +MV ) triples inA and, assuming that̄A only gives the
most specific type explicitly,I(S + MV + 1) triples in Ā. Addition of the triples
in A thus results in the following number of rows in the underlying database when
using 3XL.
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Description Rows
Rows inmap I
Rows in class tables I

Rows in multiproperty tables

{
0

IMV
If array columns are used
Otherwise

So in summary, 3XL inserts2I rows if array columns are used andI(MV + 2) rows
if multiproperty tables are used.

We now consider how many rows are inserted ifĀ is stored in a generic schema
similar to the one used in the 3store system. The generic schema uses three tables6:
resources(hash,uri)which has a row for each resource,literals(hash,
literal)which has a row for each literal, andtriples(subject, object,
predicate, literal). So to store the triple(s, p, o), boths andp have to be
represented by a row in theresources table, whileo must be represented by a
row in either theresources or theliterals table. A row referencing the other
tables is then inserted intotriples. In thehash attributes, 8-byte hash codes are
stored.

So considering the data from above, a row is inserted for eachtriple in Ā, i.e.,
I(S+MV +1) plusI+S+M rows to hold the URIs of the instances and properties
andL rows to represent literal values. In total this results inI(S +MV + 2) + S +
M + L rows.

When using the current version 8.2 of the PostgreSQL DBMS, there is for each
row inserted into the tablet an overhead of27+

⌈
Nt

8

⌉
bytes (whereNt is the number

of columns int) in the files holding data fort. Now assume that there is data about
10,000,000 instances inA and that these instances on average have 10 single proper-
ties and 5 multiproperties that on average take 5 values each. In other words, assume
the following values:

I = 107 S = 10 M = 5 V = 5

With 3XL’s specialized schema for this, the overhead from row headers is thus
(
27+

⌈
15
8

⌉ )
· 2 · 107 = 553MB when not using multiproperty tables and

(
27 +

⌈
10
8

⌉)
· 2 ·

107 +
(
27 +

⌈
2
8

⌉ )
· 107 · 5 · 5 = 7.06GB when using multiproperty tables. If the

generic schema is used and there are 3 unique literal values for each instance (i.e.,
L = 3I = 3·107), the overhead is(27+1) ·

(
107 ·(10+5·5+2)+10+5+3 ·107

)
=

10.43GB. This overhead is 1.5 times bigger than the overhead from 3XL’s schema

6Compared to the generic schema used by 3store we do not have amodel table since we only
consider data for one model in one database. Further, we do not have aninferred attribute for the
triples as 3XL does not do inference. To make the comparisonsfair we do not include these items in
the generic schema.
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when multiproperty tables are used and it is 19 times bigger than the overhead from
3XL’s schema when multiproperty tables are not used.

We now give estimates for the size of the data that is stored inthe different
schemas. We do not only consider the size of the raw data inĀ. Instead we consider
the size of all the data that must be stored in the schemas and thus we also include,
e.g, the size of IDs for 3XL’s schemas and the size of hash values for the generic
schema. To give the estimates we continue to use the assumptions from above about
the data. Further, we assume the following. Three of the single properties are of
a numeric type. The values for these on average consist of 6 characters (i.e., digits
and possibly a decimal symbol) when they are represented as astring. Two of the
single properties are dates, four are strings with 15 as their average length, and one
is an object reference. We assume all the multiproperties are object references. An
average URI is assumed to contain 40 characters.

When we calculate the needed amount of bytes to store the data, we assume that
a 4-byte length field is added in front of data with variable length (this reflects how
these data types are stored in PostgreSQL). We do not consider space wasted to obtain
correct alignment in the files managed by the DBMS.

First we consider 3XL when not using multiproperty tables. For each of theI
instances there will be a row inmap. This row consists of a URI which has variable
length with 40 as the average and an ID which is represented asa 4-byte integer and a
4-byte reference to a class table. In total, each instance requires 4 + 40 + 4 + 4 bytes
in map. Considering data in class tables, an average instance has three integer values
(each requiring 4 bytes), two dates (each requiring 4 bytes to store), four strings of
average length 15 (and thus requiring 4 + 15 bytes to store), and an object reference
(stored as an integer requiring 4 bytes). Each multiproperty is an object reference and
takes 5 values. Thus all the multiproperties of an instance require5 · 5 · 4 bytes. In
total an average instance requires

4 + 40 + 4 + 4
︸ ︷︷ ︸

map

+ 3 · 4 + 2 · 4 + 4 · (4 + 15) + 4 + 5 · 5 · 4
︸ ︷︷ ︸

class tables

= 252 bytes.

With I = 107 this means that 2.35GB storage is required.
We now consider 3XL when multiproperty tables are used. The same amount

of storage is needed in themap table. For the class tables, the calculations are very
similar to the previous ones except that the bytes spent on storing multiproperty val-
ues should not be counted. Instead each multiproperty valueis now stored with two
integers, one to hold the ID of the instance that “owns” the value and one to store the
ID of the referenced object. So in total an average instance requires

4 + 40 + 4 + 4
︸ ︷︷ ︸

map

+ 3 · 4 + 2 · 4 + 4 · (4 + 15) + 4
︸ ︷︷ ︸

class tables

+ 5 · 5 · (4 + 4)
︸ ︷︷ ︸

multiprop. tables

= 352 bytes.
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ForI = 107 this means that 3.28GB storage is required.
Lastly we consider the generic schema. As before, we assume that there are three

unique literals for each instance, i.e.,L = 3I. But these have different lengths: As
already said, we assume that numeric values are 6 characterslong in string format,
and a date must now be represented by a string of the form ’yyyy-mm-dd’ which is
10 characters long. Further, all strings must have their length encoded in a 4 byte
field. So we calculate the weighted average of a literal to be

λ =
3

9
· (4 + 6) +

2

9
· (4 + 10) +

4

9
· (4 + 15) = 14.9 bytes.

In the triples table each instance takes three 8-byte integers to hold the hash
values and further there is a 1-byte boolean value to indicate if the triple holds a
literal or not. Inresources the URIs are represented (requiring 40 bytes for the
string itself and 4 bytes to hold the length) together with a hash value (requiring 8
bytes). Inliterals there are three rows for each instance. Each of these rows
holds a value (requiringλ bytes) and a hash value for this (requiring 8 bytes). Thus
an average instance requires

8 + 8 + 8 + 1
︸ ︷︷ ︸

triples

+ 4 + 40 + 8
︸ ︷︷ ︸

resources

+ 3(λ+ 8)
︸ ︷︷ ︸

literals

= 145.7 bytes.

ForI = 107 this means that 1.36GB storage is required.
Table 4.2 summarizes the findings. It is clear that although the generic schema

with its high degree of normalization is advantageous with respect to the size of
the data to store, the schema compared to 3XL’s without multiproperty tables has a
significant overhead due to its high number of rows. Also whenmultiproperty tables
are used, 3XL’s schema requires less space than the generic but the difference is in
this case much smaller.

Schema Size of
stored data

Row header
overhead

Total

3XL without multiproperty tables 2.34GB 0.54GB 2.89GB
3XL with multiproperty tables 3.28GB 7.06GB 10.34GB
Generic 1.36GB 10.43GB 11.79GB

Table 4.2: Summary of storage requirements

The width of the rows inserted into 3XL’s specialized schemaand the generic
schema differ. More concretely, 3XL will typically insert wider rows than if the
generic schema was used since 3XL keeps single property values, and possibly also
multiproperty values, in the row that represents the instance. So while the generic
schema has many narrow rows in few tables (in particular a rowfor each triple in
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one of its tables), 3XL’s approach results in fewer, but wider, rows in many tables.
If we assume that theI instances from above are fromC classes and are evenly
distributed, each of theC class tables will holdI

C rows. If multiproperties are also
evenly distributed, a multiproperty table will holdV I

C rows. To use these tables with
fewer rows is advantageous in many cases. If, for example, all triples describing a
specific subject should be found, it is, as previously explained, enough to read one
row from the class table andV rows from each relevant multiproperty table. Much
fewer joins of large tables are needed. For data properties,no joins are needed and for
object properties the tables to join have significantly fewer rows than in the generic
schema. For a project like the previously mentioned EIAO project it is believed that
it will be faster to use 3XL than the used 3store solution where many large joins have
to take place. In the future 3XL will be implemented and its performance studied
empirically.

4.6 Related Work

Many different RDF stores have been described before. In this section we describe
the products that are most relevant to the current work. It should be noted that termi-
nology may be used with different meanings in different solutions. For example, the
term “class table” is not meaning the same inRDFSuitedescribed below and 3XL.

An early example of an RDF store can be found inRDFSuite[2, 3] which is a
suite of tools for validating, storing, and querying RDF data. In the querying part
of the work, the language RQL is defined. In the part of the workthat focuses on
storing RDF data, two different representations are considered: GenReprwhich is
a generic representation that uses the same database schemafor all RDF schemas
andSpecReprwhich creates a specialized database schema for each RDF schema.
In [2, 3] it is concluded that the specialized representation performs better than the
generic representation.

In the generic representation, two tables are used. One for resources and one for
triples. In a specialized representation, RDFSuite represents the core RDFS model
by means of the four tablesClass, Property, SubClass, andSubProperty.
Further, a specialized representation has a so-calledclass tablefor each class defined
in the RDFS. In contrast to the class tables used by 3XL which also may store at-
tribute values, RDFSuite’s class tables only store the URIsof individuals belonging
to the represented class. Both RDFSuite and 3XL use the tableinheritance features
of PostgreSQL for class tables. RDFSuite’s specialized representation also has a so-
calledproperty tablefor each property. This is different from 3XL’s approach where
multiproperty tables only are used if the cardinality for the represented property is
greater than 1. In RDFSuite, property tables store URIs for the source and target of
each represented property value. Alexakiet al. [3] also suggest (but do not imple-
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ment) a representation where single-valued properties with range a literal type are
represented as attributes in the relevant class tables. This is similar to the approach
taken by 3XL. In 3XL this is taken a step further and also done for attributes with
object values.

In Broekstraet al.’s solution for storing RDF and RDFS,Sesame[18], different
schemas can be used. Sesame is implemented in a way where all code that does
specific data handling is isolated in a so-calledStorage and Inference Layer(SAIL).
It is then possible to provide new SAILs that can be plugged into a Sesame system.
Such a SAIL can, for example, use main memory or a DBMS. Three SAILs that use
a DBMS are described in [18]: 1) A generic SAIL for SQL92 compatible DBMSs,
2) a SAIL for PostgreSQL, and 3) a SAIL for MySQL.

The generic SAIL for SQL92 compatible DBMSs only uses a single table with
columns for the subjects, predicates and objects. In the SAIL for PostgreSQL, the
schema is inspired by the schema for RDFSuite, described above, and is dynamically
generated. The RDF Schema is stored by six tables that hold information on classes,
subclasses, properties, subproperties, domains, and ranges, respectively. Again, a
table is created for each class to represent. Such a table hasone column for the
URI. A table created for a class inherits from the tables created for the parents of the
class. Likewise, a table with two columns (for source and target) is created for each
property. Such a table for a property inherits from the tables that represent the parents
of the property if it is a subproperty. This SAIL is reported [18] to have a good query
performance but disappointing insert performance when tables are created.

The SAIL for MySQL does not specialize the database schema tothe RDF Sche-
ma. Instead 13 tables are always used. These tables are used to represent literals,
comments, labels, properties, subproperties, resources,types, classes, subclasses,
namespaces, domains, ranges, and triples, respectively. This SAIL is reported [18]
to perform better than the PostgreSQL SAIL. The schema used by the PostgreSQL
SAIL is closest to the schema used by 3XL. An important difference is, however, how
property values are stored. In 3XL, single-valued properties are stored in the class
tables and only multi-valued properties are stored in othertables.

Wilkinson et al. [115] suggest yet another database schema for storing RDF data.
In their tool, Jena2, all statements can be stored in a single table with the columns
Subject,Predicate, andObject (and a column to store a graph identifier since
different graphs may be stored in the same table). In the statement table, both URIs
and literal values are stored directly. Only literals and URIs that exceed a thresh-
old need to be stored in separate tables and referenced from the statement table (to
distinguish between URIs/literals and references, all stored values have a prefix that
reveals the value’s type). Further, Jena2 allows so-calledproperty tablesthat store
pairs of subjects and values. It is possible to cluster multiple properties that have
maximum cardinality 1 together in one property table such that a given row in the
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table stores many property values for a single subject. In essence these can, thus, be
compared to 3XL’s class tables. An important difference is,however, 3XL’s use of
table inheritance to reflect the class hierarchy. In Jena2, multi-valued properties may
be stored in separate tables (with a column for the source anda column for the target)
or in a property table as described above but with NULL valuesinserted. Property
tables can also have columns of specific types to make the underlying storage per-
form better. The database schema (e.g. use of property tables) is specified at creation
time and is then fixed. In 3XL, the schema is also specified onceand for all, but
this is done automatically based on an OWL specification of the classes. Jena2 uses
the query language RDQL. Queries are transformed into sets of find operations that
match patterns of the form (subject, predicate, object). This is the only kind of query-
ing 3XL currently supports but in future work, a query language like RDQL may also
be specified and implemented for 3XL.

Harris and Gibbins [48] suggest a schema with fixed tables fortheir RDF triple-
store, 3store which is designed with a focus on performance and for that reason is un-
likely to be given support for OWL [82]. One table holds all triples and has columns
for subject, predicate and object. Further, this table has columns to hold the model
(to be able to store different independent graphs), to represent if the object is a literal
or not, and to represent if the triple is inferred or not. To normalize the schema, there
are also tables for representing models, resources, and literals. Each of these three
tables has two columns: One for holding an integer hash valueand one for holding
a text string. The triples table then reference the integer values in these three tables.
This approach where all triples are stored in one table is very different from the ap-
proach taken by 3XL where the data to store is held in many different tables, namely
one for each class. In fact, 3XL does not store data as triplesbut merges triples into
n-tuples wheren ≥ 2 and regenerates the triples at query time. The purpose of this
is exactly to avoid huge tables that have rows for each inserted triple. This results in
good performance, but less flexibility compared to a solution like 3store which can
store any kind of RDF data.

Pan and Heflin [84] suggest the toolDLDB. The schema for DLDB’s underlying
database is similar to the schema for RDFSuite. There is a table for each class with
one column to represent its ID. Further, there is a table withtwo columns for each
property. DLDB also defines views over classes. A class’s view contains data from
the class’s table as well as data from the views of any subclasses. Instead of using
such views, 3XL uses the table-inheritance properties of PostgreSQL. Note that a
DLDB version for OWL also exists.

Storage of RDF data has also found its way into commercial database products.
Oracle 10g manages storage of RDF in a central, fixed schema [4]. This schema has
a number of tables. Most prominently, it has a table that has an entry for each part of
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a triple (i.e., up to three entries are made for one triple) and a table with one entry for
each triple to link between the parts in the mentioned table.

Other repositories designed for OWL (like 3XL) also exist. An example isOWLIM
by Kirykov et al. [59]. OWLIM is implemented as a SAIL for Sesame. For querying
and reasoning, OWLIM loads the full content of the repository into main memory.
This is very different from 3XL that has its data in an underlying PostgreSQL data-
base. A more scalable file-based version of OWLIM calledBigOWLIM is also being
developed [79]. That solution is file-based, and not based ona DBMS as 3XL is.
BigOWLIM obtains some very good performance results [79]. However, we still be-
lieve in using an underlying DBMS to handle the data and thus exploit the results of
decades of research and development in the database community such as atomicity,
concurrency control, and abstraction.

4.7 Conclusion and Future Work

Motivated by our previous experiences with performance problems for large triple-
stores we have in this chapter proposed the 3XL system. 3XL isdesigned to provide
fast storage and retrieval of OWL Lite data instances. The chapter suggests a sub-
set of OWL Lite to support. OWL Lite was chosen since it offerssome desirable
properties such as cardinalities for properties and disjointness between classes and
properties.

Unlike general triplestores that use a generic schema with few tables that grow
very big for large graphs, 3XL creates a specialized database schema for the type of
data to store. This specialized schema has a table for each OWL class of instances
and a table for each property that does not have 1 as its maximal cardinality. In this
way data is spread out over more tables and columns and it becomes faster to insert
and extract data.

3XL is in particular making insertion of large amounts of triples fast by using
bulk load technologies to insert data into the underlying database. So data is held in
main memory until the user commits or memory needs to be freed. Big bulks of data
are then inserted into the database. Currently, 3XL is not implemented, but it is clear
that 3XL inserts fewer rows in more tables than a classical approach as 3store does.
It is therefore believed that extraction of data in many use cases can be done more
efficiently. Further, it is believed that 3XL’s use of the data buffer and bulk loading
techniques makes addition of triples fast.

There are a number of interesting directions for future work. First of all, an im-
plementation of 3XL should be done and evaluated to collect empirical data about the
performance. In the implementation focus could also be put on different details such
as which indexes to create and how partitioning can be used toimprove performance
further.
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Further, 3XL can be extended to cover a larger subset or all ofthe OWL Lite
constructs. It seems that for a number of these constructs, support could be added by
letting 3XL know them and their meaning and then “translate”queries using this
information. For example, theowl:inverseOf construct could be handled in
this way. Then if the schema ontology contains the triple(p1,inverseOf, p2),
3XL would keep track of this but only store one of them, sayp1, in the under-
lying database. A queryQ = (s, p2, o) could then automatically be rewritten to
Q′ = (o, p1, s) and processed as now but with a translation “back” such that each
result triple(t, p1, u) for Q′ becomes(u, p2, t) in the result set forQ. Similarly, the
owl:SymmetricProperty, owl:equivalentClass, andowl:equiva-
lentProperty could be supported by letting 3XL rewrite queries and/or extend-
ing result sets but without storing more data in the database. For therdfs:sub-
PropertyOf construct, a column would have to be added to the generated database
schema as for any other property. But 3XL could then also consider data this column
when the “parent property” was considered in queries.

Adding support for a query language would also be beneficial.Instead of travers-
ing a path of triples to find the needed data, the end user couldwrite a single query
that finds the correct result. To find the result for such a query might require a num-
ber of joins etc. and it would be desirable to optimize the queries before executing
them. A number of query languages for the semantic web already exist and it should
be investigated how to support one or more of these efficiently.



Chapter 5

RELA XML: Bidirectional
Transfer between Relational and
XML Data

In modern enterprises, almost all data is stored in relational databases. Addition-
ally, most enterprises increasingly collaborate with other enterprises in long-running
read-write workflows, primarily through XML-based data exchange technologies
such as web services. However, bidirectional XML data exchange is cumbersome
and must often be hand-coded, at considerable expense. Thischapter remedies the
situation by proposing RELAXML, an automatic and effective approach to bidirec-
tional XML-based exchange of relational data. RELAXML supports re-use through
multiple inheritance, and handles both export of relational data to XML documents
and (re-)import of XML documents with a large degree of flexibility in terms of the
SQL statements and XML document structures supported. Import and export are for-
mally defined so as to avoid semantic problems, and algorithms to implement both
are given. A performance study shows that the approach has a reasonable overhead
compared to hand-coded programs.

5.1 Introduction

Most enterprises store almost all data in relational databases. Additionally, most en-
terprises increasingly collaborate with other enterprises in long-running read-write
workflows. This primarily takes place through XML-based data exchange technolo-
gies such as web services, which ensures openness and flexibility.

69
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<Orders concept="B.rxc" structure="B.rxs">
<Customer CID="1">Mini Market</Customer>
<Order OID="1">

<OrderLines>
<Product PID="1" Qty="200" Date="04/03/05">Cola</Product>
<Product PID="3" Qty="50" Date="03/01/05">Bread</Product>

</OrderLines>
</Order>
<Order OID="3">

<OrderLines>
<Product PID="2" Qty="75" Date="05/01/05">Candy</Product>

</OrderLines>
</Order>

</Orders>

Figure 5.1: Example of an XML document

As an example, consider a database for a fictitious grocery supplier. The database
has the relations Products(PID, PName), Customers(CID, CName), Orders(OID,
CID), and OrderLines(OID, PID, Qty, Date) where Orders.CID references Customers.
CID and OID and PID in OrderLines references OID of Orders andPID of Products,
respectively. The data is as shown in the tables below.

PID PName
1 Cola
2 Candy
3 Bread

Products

CID CName
1 Mini Market
2 Smith’s
3 Kiosk24

Customers

OID CID
1 1
2 3
3 1

Orders

OID PID Qty Date
1 1 200 04/03/05
1 3 50 03/01/05
2 2 100 04/05/05
3 2 75 05/01/05

OrderLines

Using a web-service call, a customer, e.g., Mini Market, requests an XML doc-
ument with information on all their orders and the ordered products, see Figure 5.1
(for now, please ignore the concept and structure attributes in the root element). To
save space, we use attributes in the shown XML, but in RELAXML the user can
choose freely between elements and attributes. This document can easily be created
by RELAXML. After receiving the document, the customer updates it to change the
quantity of the bread ordered and the delivery date for the candy, and sends it back to
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the supplier using another web-service call. The database can then be automatically
updated by RELAXML to reflect the changes made to the XML document. Using
traditional approaches, significant hand-coding would be necessary.

This chapter presents RELAXML, a flexible approach to bidirectional data trans-
fer between relational databases and XML documents. Figure5.2 shows the proce-
dure when RELAXML exports relational data to an XML document. An export is
specified using aconcept(a view-like construct), and astructure definition, which
specify the data to export and the structure of the exported XML document, respec-
tively. From the concept, SQL that extracts the data, is generated, resulting in a
derived tablethat can be changed by user-specifiedtransformations. The resulting
data is exported to an XML document with an XML Schema specified by the struc-
ture definition. Using both concepts and structure definitions separates data from
structure, i.e., a single concept can be associated with multiple structure definitions.
The import procedure is basically the reverse of the procedure shown in Figure 5.2
and allows for insert, update, and delete of data from the database.

Database

P R R S T
... ... ... ... ... ...

... ... ... ... ... ...

Q

Derived Table
Transformed

<X  A="xyz">
  <Q>xyz</Q>
</X>
<Y  B="xyz">
   <R>xyz</R>
   <S>xyz</S>
</Y>

Definition
Structure

XML Document
and Schema

TransformationsSQL

Derived Table

Concept

A B Q S
... ... ... ... ...

... ... ... ... ...

R

Figure 5.2: The export procedure

The SQL statement used for an export can include inner and outer joins plus fil-
ters. The structure of the XML documents is very flexible and supports, e.g.,group-
ing (or nesting) of XML elements, data as XML elements or attributes, and addi-
tional container XML elements. Export and import are formally defined, including
definitions of concepts, structure definitions, and transformations. In addition, it is
specified how to determine at export time if an XML document may be imported into
the database again and how an XML document must be self-contained if the data is
to be imported into an empty database, so that integrity constraints are not violated.
Algorithms for export and import are given. Performance studies of the DBMS inde-
pendent prototype show that the algorithms are efficient, have a reasonable overhead
compared to hand-coded programs, and can handle large documents (> 200 MB)
with a small main memory usage.

The mapping of XML data to new (specialized) relational schemas has been
widely studied [12, 102]. The mapping of the result of an SQL query to an XML
document (termed anexport) has also been widely studied [20,40,102–104], and re-
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cently SQL/XML [50] has been proposed as a standard for this mapping. However,
unlike RELAXML, none of this work supports theimportof XML documents into an
existingdatabase. Only few papers [13,16,17] have studied how to do abidirectional
(both export and import) mapping betweenexistingdatabases and XML documents.
Again, note that SQL/XML only maps from databases to XML documents. Fur-
ther, some of the bidirectional approaches have limited capabilities, i.e., can only
map an XML document to a single table [13]. A number of so-calledXML-enabled
databaseswith extensions for transferring data between XML documents and them-
selves exist [15,21]. However, the solutions in these products are vendor specific and
do not provide full support for transferring data into existing databases with given
schemas.

There exist manymiddleware products(such as RELAXML) for transferring data
between databases and XML documents [13], including products that can either ex-
port, import, or both. Examples are JDBC2XML [49], DataDesk[74] and XML-
DBMS [14]. Of these, XML-DBMS is the most interesting since it can perform both
import and export. It uses a mapping language to provide flexible mappings between
XML elements and database columns and mappings can be automatically generated
from a DTD or database schema. However, compared to RELAXML, XML-DBMS
is not as scalable as it uses DOM instead of SAX, does not support inheritance or
transformations, and gives no guarantee for import at export time. In [17], bidirec-
tional transfer of data is also considered. The main differences are that [17] creates
new views in the underlying database and updates through these views. Each query
(tree) may need multiple new views. In contrast, we update the underlying database
tables directly and do not need to modify the database schemaat all. Additionally,
we considerθ-joins (instead of only inner joins), we provide a performance study
of an open-source prototype, and we support multiple inheritance. Compared to ex-
isting work on updating relational databases through views[30, 31], the RELAXML
approach differs as 1) the SQL update statements are not known, but instead deduced
from the XML document by RELAXML and 2) the needed execution order of the
update statements (due to integrity constraints), is deduced from the underlying data-
base schema by RELAXML.

The remainder of the chapter is structured as follows. Sections 5.2 and 5.3 pro-
vide definitions of basic constructs, and export and import,respectively. Sections 5.4
and 5.5 present the design of export and import, respectively. Experimental results
are presented in Section 5.6. Finally, Section 5.7 concludes the chapter and points to
directions of future research.
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5.2 Basic Definitions

We now formally define the used constructs. When transferring relational data to
an XML document, the user may want totransformthe data in some way, e.g., by
converting a price to another currency. This transformation multiplies the price byc
when exporting to XML, and divides the price byc when importing from the XML.

In the following, we considerrowsas relational tuples, i.e., a row has a number
of unique attribute names (also denoted columns) and for each attribute name, an
attribute value exists. For a rowr and an attribute namea, r[a] denotes the attribute
value fora in r. Further,N (r) denotes the set of attribute names inr. The set of all
rows is denotedR. With this, we can define transformations formally.

Definition 5.2.1 (Transformation) A transformationt is a functiont : R → R that
fulfills N

(
t(r)

)
= N

(
t(s)

)
for all r, s ∈ dom(t) wheredom(t) is the domain oft.

The set of attribute names added by a transformationt is denotedα(t), and the set
of names deleted by a transformationt is denotedδ(t). Formally,α(t) = N (t(r)) \
N (r) andδ(t) = N (r)\N (t(r)) for all r ∈ dom(t). Note that for efficiency reasons,
transformations are pipe-lined in the RELAXML implementation.

We now definejoin tuples, which are used for defining concepts formally. In-
tuitively, a join tuple defines a relation derived by joiningexisting relations like an
SQL query, i.e., the relations to join, the join operator(s), and the join predicate(s)
should be specified. For example, the join tuple for the example in Section 5.1 says
that Orders and OrderLines are inner joined on the OIDs, the resulting relation is
inner joined with Customers on the CIDs, and finally, this result is inner joined with
Products on the PIDs.

Let θ be a theta join, and LOJ/ROJ/FOJ be a left/right/full outer join. Ω = I ∪O
whereI = {θ} andO = {LOJ,ROJ,FOJ} is the set of RELAXML join opera-
tions (the operators inO are neither commutative nor associative).

Definition 5.2.2 (Join tuple) A join tuple is a three-tuple of the form((r1, . . . , rm),
(ω1, . . . , ωm−1), (p1, . . . , pm−1)) for m ≥ 1 and where

1) ri is a relation or another join tuple for1 ≤ i ≤ m

2) ωi ∈ Ω for 1 ≤ i ≤ m− 1

3) pi is a predicate for1 ≤ i ≤ m− 1.

Further, we require that ifωi ∈ O thenωj ∈ I for j < i.
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For anω ∈ Ω and a predicatep, A ωp B denotes the join (of typeω) where the
predicatep must be fulfilled. For a given join tuple, it is then possible to compute a
relation by means of theeval function where

eval(r)=







eval(r1) ω
p1

1 eval(r2) ω
p2

2 · · · ω
pm−1

m−1 eval(rm) if r = ((r1, . . . , rm),
(ω1, . . . , ωm−1),
(p1, . . . , pm−1))

r if r is a relation.

To avoid ambiguity, only one join operator fromO can be used in a join tuple
since they are neither commutative nor associative. If moreare needed, several join
tuples are used (similar to requiring parentheses in an expression).

A conceptis used for defining which data to transfer, and thus includesa join tu-
ple, along with a list of columns used in a projection of the relation resulting from the
join tuple, a predicate to restrict the considered row set, and a list of transformations
to apply. Further, as concepts support inheritance, a concept also lists its ancestors (if
any). An example of concept inheritance appears in Example 5.2.1.

Definition 5.2.3 (Concept) A conceptis a 6-tuple(n,A, J, C, f, T ) wheren is the
concept’s caption,A is a possibly empty sequence of unique parent concepts to in-
herit from,J is a join tuple,C is a set of included columns from the base relations of
J , f is a row filter predicate, andT is a possibly empty sequence of transformations
to be applied.

For a concept with join tupleJ and parentsa1, . . . , an, we require that the relations
D(a1), . . . ,D(an) (defined below) are included byJ .

The relation valued functionD computes the base (not yet transformed) data for
a concept. For a conceptk = (n, (a1, . . . , am), J, C, f, T ), D is defined as follows,
whereν(c) denotes the name of the table from which a columnc originates and
cols(x) gives all columns in a relationx.

D(k) =
,

c∈C
ρ[〈k〉#ν(c)$c/c](πC∪{c̃ | c̃∈cols(D(ai)), i=1,...,n}(σf (eval(J)))) (5.1)

First,eval computes the relation that holds the data from the base relations, followed
by performing a selection and then a projection of all columns included byk or any
of its ancestors. Finally, a renaming schema of the columns included byk is used
by means of the rename operator where# and$ represent separator characters. This
3-part naming schema (concept name, table name, column name) is necessary in
order have a one-to-one mapping from the columns ofD(k) to the columns of the
database. With the renaming schema, both table and concept names are part of the
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column names ofD(k), which is necessary in order to separate the scopes of different
concepts.

As shown above,D(k) denotes a relation with the data of the conceptk before
transformations are applied. For a conceptk with parent list(a1, . . . , au) and trans-
formation listT = (t1, . . . , tp), the resulting data is given by the relation valued
functionR defined as follows.

R(k) =
⋃

d∈D(k)

(
γ(k)

)(
d
)
, (5.2)

where

γ(k) =
(

,

n∈((∪t∈T α(t))\(∪t∈T δ(t)))
ρ[〈k〉#n/n]

(
tp ◦ · · · ◦ t1

))

◦ γ(au) ◦ · · · ◦ γ(a1).

When a concept inherits from parent concepts, parent transformations are evaluated
before child transformations. When all the transformations have been evaluated, all
the attribute names they have added are prefixed with an encoding of the concept, so it
is possible to distinguish between identically named attributes added by transforma-
tions from different concepts. With the definition in (5.2),a problem may emerge if a
concept is inherited from twice, namely that, when transformed, an attribute included
by a common ancestor could have an unexpected value, set by a transformation in-
cluded by another concept. To avoid problems, we require fora concept’s parent list
L thatψ(L) does not contain duplicates, whereψ is recursively defined asψ(()) = ()
andψ(l1 :: · · · :: ln) = l1 :: · · · :: ln :: ψ

(
p(l1)

)
:: · · · :: ψ

(
p(ln)

)
wherep(x) is

conceptx’s list of parents.

Example 5.2.1 Consider again the data in Section 5.1. We now define a conceptA
which extracts information on which customers have placed orders, and another con-
cept, B, which inherits from A and adds details on the orderedproducts. B restricts
the data to the customer with CID = 1. Thus, B extracts the datashown in Figure 5.1.
We use C for Customers, O for Orders, OL for OrderLines, and P for Products.

A =(CustomersWithOrders, (),

((C,O), (θ), (C.CID = O.CID)),

{C.CID,C.CName,O.OID}, (true), ())

B =(Orders, (A),

((P,OL,D(A)), (θ, θ), ((OL.PID = P.PID),

(OL.OID = A#O$OID))), {P.PID,

P.PName, P.Qty, P.Date}, A#C$CID = 1, ())
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Figure 5.3: Structure definition example

Concept A has the caption CustomersWithOrders and does not inherit from other
concepts. The join tuple of A states that C and O must be joinedby aθ-join on the
CIDs. The columns C.CID, C.CName, and O.OID are included by A. Each row from
the join tuple should be included by A (each row fulfills the condition “true”). A does
not use any transformations. Concept B has the caption Orders and inherits from A.
The join tuple specifies how to join the relations P and OL to the relation found by A,
D(A). B adds three columns to those considered by A and adds a row filter such that
only rows regarding a specific customer are considered.

A structure definitionis used to define the structure (i.e., the schema) of the XML
containing the data. The structure is described by means of atree where a node
represents an XML element or attribute. The structure definition for the example in
Figure 5.1 is shown in Figure 5.3. A structure definition has two kinds of elements:
elements that hold data but not elements, and elements that only hold other elements.
A node in the structure definition can be a node that wegroup by, i.e., in the XML,
elements represented by that node are coalesced into one if they have the same data
values. The resulting element then holds the children of allthe coalesced elements,
e.g., informations on a customer and each distinct order only appear once in the
XML in Figure 5.1. This is achieved by using group by nodes (marked with a +) in
the structure definition in Figure 5.3. The names shown are the names used in the
XML, not the relational attribute names. Below is the formaldefinition of structure
definitions. Here, anordered tree with vertex setV means that an injective order
functiono : V → N ∪ {0} exists.

Definition 5.2.4 (Structure definition) A structure definitionS = (Vd, Vs, E) is an
ordered rooted tree whereVs ∩ Vd = ∅ and V = Vs ∪ Vd is the set of vertices
and E is the set of edges. Members ofVs and Vd are denoted asstructuraland
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datanodes, respectively. A vertexv ∈ V is a tuple (c, t, g) wherec is a name,
t ∈ {element, attribute} is the type andg ∈ {true, false} shows if the XML
data is grouped by the vertex. The rootρ = (c, element, true) ∈ Vs and for every
v = (c, t, g) ∈ Vs it holds thatt = element. For v = (c, t, g) ∈ Vd it holds that
if t = attribute thenv has no children whereas ift = element then for each child
(d, u, h) of v we haveu = attribute.

We say that a structure definitionS = (Vd, Vs, E) complieswith a conceptk iff
for each column ofR(k) there exists exactly one node inVd with identical name and
the name of the root ofS equals the caption of the conceptk. For a conceptk, a
vertexv ∈ Vd represents a column ofR(k) and gives rise to elements that holddata,
while a vertex inVs does not represent a column and gives rise tostructuralelements
holding other elements. We let the functionκ be a mapping between the vertices and
XML tag names. Thus, the XML elements represented byv in the structure definition
will be namedκ(v).

In order to represent a meaningful XML structure, a structure definition must be
valid. For a vertexv, letDe(v) denote the set of descendants ofv andCh(v) the set
of children ofv.

Definition 5.2.5 (Valid structure definition) A structure definitionS = (Vd, Vs, E)
with rootρ and ordero is valid iff

S1) o(ρ) = 0

S2) For allv ∈ (Vd ∪ Vs) we have for allc ∈ De(v) that o(c) > o(v)

S3) For alla, b ∈ (Vd ∪ Vs), b 6∈ De(a), we have for allca ∈ De(a) that o(a) <
o(b)⇒ o(ca) < o(b)

S4) For all v ∈ (Vd ∪ Vs) there do not existc, d ∈ Ch(v) such thatc 6= d and
κ(c) = κ(d)

S5) For all(c, t, g) ∈ Ch(ρ) we havet = element.

Requirements S1, S2 and S3 intuitively correspond to sayingthat the order numbers
are assigned in a depth-first fashion (this is automaticallydone by the RELAXML
implementation and is thus of no concern for the user). Requirements S4 and S5 say
that siblings should be distinguishable by having non-identical names and that the
root should have only element children. Figure 5.4(a) showsan example of a valid
structure definition. A node of typeelement is represented as a circle and a node of
typeattribute is represented as a square. A letter represents the name and anumber
the order. The structure definition shown in Figure 5.4(b), is not valid since the A
element has two children with the name B, and the B with order 3has children with
lower order than itself.
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Figure 5.4: Structure definitions

For a verticesv, f, p, we say thatf is a following relativeto v if f has higher
order thanv, andp is a preceeding relativeto v if p has lower order thanv. It is
not possible to group by an arbitrary node in the tree, so we define avalid grouping
below. Note that any valid structure definition that does notgroup by any nodes (the
root node is trivially grouped by), is automatically a validgrouping.

Definition 5.2.6 (Valid grouping) A valid grouping is a valid structure definition
S = (Vd, Vs, E) where forv = (n, t, g) ∈ (Vd ∪ Vs) whereg = true the following
holds.

G1) For all preceding relatives(a, b, c) of v, c = true.

G2) A following relative(a, b, c) of v exists withc = false.

G3) If a following relative that is not a descendant ofv exists, then for all descen-
dants(a, b, c) of v, it holds thatc = true.

G4) For all children(a, b, c) of v whereb = attribute, it also holds thatc = true.

Requirement G1 says that when we group by a node, we have to group by its ancestors
as well. Otherwise there would be no elements of the same typeto coalesce in the
XML. Further, the requirement ensures efficiency at import time. Without it, we
risk that to regenerate a single row, many rows have to be readpartly, e.g., if we in
Figure 5.4(a) only grouped by E, we could have to read many B elements before the
first E element, leading to a significant memory usage. Requirement G2 ensures that
for each row exported, at least one element is written to the XML, ensuring that each
exported row can be recreated at import time such that a grouping is not lossy. To
understand requirement G3, consider Figure 5.4(a). If we group by B, we should
also group by C and D. Then, an entire element, including children, represented by B
can be written when the data in one row has been seen. Without G3, this would not
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hold, and the writing of the element represented by E would have to be postponed.
Requirement G4 ensures that a specific element’s attributesonly appear once in that
element.

Consider again Figure 5.4(a). Now assume that we group by E. Then to have a
valid grouping we must also group by A, B, C, and D, but not by F.

5.3 Export and Import

5.3.1 Export

We now define the functionXML that computes XML containing the data fromR.
The functionXML uses two auxiliary functions:Element, which adds an element
tag, andContent, which adds the content of an element. These two functions depend
on the structure definition used (given by the subscript). Inthe following, we consider
the conceptc with captionn and the valid groupingλ = (Vd, Vs, E) that has the root
ρ, complies withc and has ordero. A string and a white space added to the XML is
written inanother font and as an underscore, respectively.

XML(c, λ) =

<n concept="〈c〉" structure="〈λ〉">Contentλ(ρ,R(c))</n> (5.3)

The functionXML adds the root element of the XML which is named after the
caption of the conceptc. Further, informations about the concept and structure def-
inition are always added. The content (i.e., children) of the root element is added
by Content. In the following, for a vertexv = (x, y, z) in the structure definition,
we let v1 = x. Further, we letAtt(v) denote the ordered (possibly empty) list of
attribute children ofv. Then forv = (N, t, g) with Att(v) = (a1, . . . , an) and
Ch(v) \ Att(v) = {e1, . . . , em}, we definēv as

v̄ =







(v1, a1
1, . . . , a

1
n) if v ∈ Vd

(a1
1, . . . , a

1
n, ē1, . . . , ēm) if v ∈ Vs, g = true andv has a following relative

f 6∈ De(v)
(a1

1, . . . , a
1
n) otherwise.

(5.4)
v̄ is used in the following to find lists of columns that should beused in projections
when data to be put in the XML should be found. The functionElementλ is defined
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as

Elementλ(v, P ) =

,

∀r∈πv̄(P )

(
<κ(v) κ(a1)="r[a1]" . . . κ(an)="r[an]">

Contentλ(v, σv̄=r(P ))</κ(v)>
)

(5.5)

for a relationP and a vertexv with v̄ 6= () and with attribute children{a1, . . . , an}
whereai has lower order thanaj for i < j. If v̄ = (), Elementλ(v, P ) = <κ(v)>
Contentλ(v, P )</κ(v)>.

In (5.6), whereCh(v) = {e1, . . . , em}, o(ei) < o(ej) for i < j, (x, y, z) ∈
{e1, . . . , eh} implies thatz = true and (x, y, z) ∈ {eh+1, . . . , em} implies that
z = false, we define the functionContentλ for a structure node we group by.

Contentλ(v, P ) =
,

∀w1:w1∈πē1
(P )

(

Elementλ
(
e1, σē1=w1

(P )
)

,

∀w2:(w1::w2)∈πē1,ē2
(P )

(

Elementλ
(
e2, σē1=w1,ē2=w2

(P )
)

· · ·

,

∀wh:(w1::···::wh)∈πē1,...,ēh
(P )

(

Elementλ
(
eh, σē1=w1,...,ēh=wh

(P )
)

,

∀r∈σē1=w1,...,ēh=wh
(P )

(
Elementλ(eh+1, {r}) · · ·Elementλ(em, {r})

)
)

· · ·

))

if v ∈ Vs andg = true (5.6)

Equation (5.6) shows that when we group by the childrene1, . . . , eh, for each distinct
value of the attributes inP that are represented bye1 and its children, we create an
XML element inside which data or other elements are added recursively by means of
Elementλ which itself usesContentλ. After each of these elements fore1, other
elements are added for those attributes that are represented by e2 and its children.
Here we have to ensure that the values fore1 match such that we correctly group by
e1. After the elements fore2, elements fore3 follow and so on until elements for all
group-by nodes have been added. Then elements for non-group-by nodes are added.
For these nodes exactly one tuple is used for each application ofElementλ.

When usingContentλ on non-group-by nodes, it is only given one tuple at a
time. The definition ofContentλ is

Contentλ(v, {r}) =

Elementλ(e1, {r}) · · ·Elementλ(em, {r}) if v ∈ Vs andg = false, (5.7)
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whereCh(v) \ Att(v) = {e1, . . . , em} and fori < j : o(ei) < o(ej). That is, when
not grouping byv ∈ Vs, we simply add one element for each element child ofv.

Now we defineContentλ for nodes inVd. But from (5.5) we have that whenever
Contentλ is given a nodev ∈ Vd, the given data has exactly one value for the
attribute thatv represents. Thus, all thatContentλ should do is to add this value:
ThereforeContentλ(v, P ) = Contentλ

(
v, πv(P )

)
if |P | > 1 and v ∈ Vd and

Contentλ
(
v, {r}

)
= r[v] if v ∈ Vd.

For an example, consider again the data in Section 5.1 and thestructure definition
in Figure 5.3 where the order of nodes is increasing from top to bottom, left to right.

5.3.2 Import

In the following, we refer to different states of the database. The value of the function
D from (5.1) depends on the state of the database and we therefore refer to the value
of D(c) in the specific states asDs(c). Now consider an XML document

X = <n concept="〈c〉" structure="〈s〉">

· · ·</n>, (5.8)

created by means of the conceptc. By DXML(X) we denote a table with column
names asD(c) that holds exactly the values resulting when the inverse transforma-
tions fromc have been applied to the data inX. It is a requirement for importing
Xthat the transformations ofc are invertible. This is, in the general case, undecid-
able and, thus, it is left to the user to ensure this. In the following, we do not consider
the possible impacts of triggers and assume that foreign keys can only reference pri-
mary keys.

We now give definitions of inserting and updating from the XML. The definitions
give the states of the database before and after the modifications, not the individual
operations performed on the database. When inserting, the data from the XML file
should be inserted into tables in the database, e.g., it should be possible to insert the
data in the XML in Figure 5.1 into a database with a schema similar to that described
in Section 5.1.

Definition 5.3.1 (Inserting from XML) For a given database,inserting from the
XML documentX in (5.8) is to bring the database that holds the relations used byc
from a valid statea to a valid stateb whereDb(c) = Da(c) ∪D

XML(X) such that
the only difference betweena and b is that tuples may have been added to relations
used byc.

The data inDXML or some of it can be in the database before the insertion but only
in such a way that no updates are necessary, i.e., data is onlyinserted. We now define
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updatingfrom the XML. If an exported XML document is changed and the changes
should be propagated to the database, updating is used. For example, the quantity
Cola in line 5 in Figure 5.1 can be changed to 300. In that case,updating results in
the database with the value 300 for Qty in the corresponding row (where OID = 1 and
PID = 1) in the OrderLines table shown in Section 5.1.

Definition 5.3.2 (Updating from XML) Consider the XML documentX in (5.8)
and assume thatk is the set of renamed primary keys in the relations used by the
conceptc.

For a given database that holds the relations used byc and tuples such that
πk(D

XML(X)) ⊆ πk(Da(c)), updatingfrom the XML documentX is then, by only
updating tuples in base relations used byc, to bring the database from a valid state
a to a valid stateb where for any tuplet

t ∈ DXML(X)⇒ t ∈ Db(c),

(
t ∈ Da(c) ∧ πk({t}) * πk

(
DXML(X)

))
⇒ t ∈ Db(c)

t 6∈ DXML(X) ∧ t 6∈ Da(c)⇒ t 6∈ Db(c).

Informally, the first requirement says that a tuple read fromthe XML will be in the
database after the updating. The second says that a tuple which is in the database
before the updating, but not in the XML, is left untouched in the database. The third
says that new tuples, that are neither in the database or XML,are not introduced in
the database. It is also possible to combine inserting and updating, such that tuples
are updated if possible and otherwise inserted. This is calledmerging.

Definition 5.3.3 (Merging from XML) Consider the XML documentX in (5.8)and
assume thatk is the set of renamed primary keys in the relations used by theconcept
c.

For a given database that holds the relations used byc, mergingfrom the XML
documentX is then, by only adding tuples to or updating tuples in base relations
used byc, to bring the database from a valid statea to a valid stateb where for any
tuplet

t ∈ DXML(X)⇒ t ∈ Db(c),
(
t ∈ Da(c) ∧ πk({t}) * πk

(
DXML(X)

))
⇒ t ∈ Db(c)

t 6∈ DXML(X) ∧ t 6∈ Da(c)⇒ t 6∈ Db(c).

Notice that the requirementπk(D
XML(X)) ⊆ πk(Da(c)) from Definition 5.3.2

is not present in Definition 5.3.3. In Definition 5.3.3 it is implied byt ∈ DXML(X)
⇒ t ∈ Db(c) that a tuple in the database in statea, for which a tuplet with matching
values for the primary keys exists inDXML(X), is replaced in the stateb by t.
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Further,deletionvia XML is supported under some circumstances. To delete, we
use adelete documentwhich has the same structure as XML documents generated by
RELAXML. As many as possible of the tuples in the database with data present in the
delete document will be deleted. The reason that everythingis not always removed,
is that foreign key constraints may inhibit this.

Since delete documents must have the same structure as the XML documents
being exported/imported by RELAXML, DXML can be computed for identification
of the data to delete from the base relations.

Definition 5.3.4 (Deleting via XML) For a given databasedeletingbase data by
means of the XML documentX in (5.8), is to bring the database that holds the rela-
tions used by the conceptc from a valid statea to a valid stateb. This should be done
by deleting the tuples contributing toDXML(c) from the base relations used byc but
without violating the integrity constraints of the database.

It should hold thatt ∈ DXML(c) ⇒ t 6∈ Db(c) unless some value int is refer-
enced by a foreign key not included byc and in a relation that has not been declared
to set the foreign keys to a null or default value or delete referencing tuples ift is
deleted.

The deletion of tuples from relations used byc may lead to updates or deletion of
tuples of other relations in the database according to the integrity constraints defined
on the database. Apart from this, only tuples in relations used byc will be deleted.

5.4 Design of Export

We now focus on the design and implementation of RELAXML. When exporting, an
SQL statement for retrieval of the data is created based on the concept. Figure 5.5
shows the RELAXML flow when exporting. A JDBC [96]ResultSet is decorated
with an iterator and a number of transformations. If the XML should be grouped by
one or more elements, a database sort is required, since we donot want to hold all
data in main memory when writing. Finally, the data rows are handed to an XML
writer.

5.4.1 SQL Statements

The SQL statement to extract data from the database is generated from the concept
of the export. SQL statements for parent concepts appear as nested SQL statements
in the FROM clause. Note that due to inheritance the actual columns and row filter
of the concept consist of the columns and row filters of parentconcepts together with
included columns and row filter defined in the concept itself.
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<A>
  <B>xyz</B>
</A>
<C>
   <D>xyz</D>
   <E>xyz</E>
</C>

Relational database

Data

Data

Data row

Data row

ResultSet iterator

Concept

ResultSet

Data row

XML writer

Sorting iterator Database

Data row

Data row

XML elements

Structure definition

XML Document

and Schema

Transformation1

Transformationn

Figure 5.5: The flow of data in an export

Example 5.4.1 Canonically, the SQL for the retrieval of the data of conceptsA and
B from Example 5.2.1 is as follows. Note how the three-part naming schema is
imposed and how the SQL code of parent concepts appears as nested sub-queries.
Modern DBMSs will, when optimizing, flatten this expressionout to a regular four-
way join.

-- Concept A --
SELECT C.CID AS A#C$CID, C.CName AS A#C$CName,
O.OID AS A#O$OID FROM C JOIN O ON (C.CID = O.CID)

-- Concept B --
SELECT A#C$CID, A#C$CName, A#O$OID, P.PID AS B#P$PID,
P.PName AS B#P$PName, OL.Qty AS B#OL$Qty,
OL.Date AS B#OL$Date FROM
OL JOIN P ON (OL.PID = P.PID) JOIN
(SELECT C.CID AS A#C$CID, C.CName AS A#C$CName,
O.OID AS A#O$OID FROM C JOIN O ON (C.CID = O.CID)) RXTMP0
ON (OL.OID = A#O$OID) WHERE (A#C$CID = 1)

The code generation shown above generalizes to situations with multiple inheritance.
In the implementation, the generated SQL does not contain the long names with #’s
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X Y Z
1 A null
2 B 1
3 C 1

Figure 5.6: Data where dead links can arise

and $’s. Instead COL0, COL1, . . . are used to avoid problems with DBMSs that do
not support special characters and long names. RELAXML automatically handles
this mapping.

5.4.2 Dead Links

When exporting a part of the database, we may risk that the data is not self-contained.
If an element represents a foreign key it may reference data not included in the XML
document. We refer to such a situation as the referencing element having adead
link. Figure 5.6 shows an example where dead links can arise. In the example, Z is
a foreign key referencing X. The data in the figure has no dead links but if the tuple
with X = 1 is removed (this happens if the used concept only considers rows with
X ≥ 2), the data set contains two dead links sinceX = 1 is referenced by the other
tuples.

A dead link does not limit the possibility of updates during import assuming that
the element referenced in the dead link still exists in the database. Insertion into a
new database is limited by a dead link because of integrity constraints.

In order todetect dead linkswe use Algorithm 5.1. Here, we iterate through
each table used in the derived table. We find the foreign keys and the corresponding
referenced keys. In line 5 we find the dead links of the derivedtable.

Whenresolving dead links, the goal is to expand the selection criteria such that
the missing tuples are added. This may be done by adding OR clauses. Note that the
SQL statement consists of possibly many nested SELECT statements in the FROM
clause and that because of the scope rules, specialized concepts may include a WHE-
RE clause on the columns of ancestor concepts. For this reason, an expansion of
the condition must in some cases be added several places in the SQL. This means,
that instead of the SQL statement described in Section 5.4.1, we move the WHERE
clauses of the nested queries to the outermost query where they are AND’ed together.
The dead link resolution algorithm shown in Algorithm 5.2 invokes Algorithm 5.1 to
find dead links, manipulating the WHERE clause such that the referenced tuples are
included. When a fix point is reached, all the dead links are resolved.
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Algorithm 5.1 Detect dead links
1: for each tableT part of the derived tableDT do
2: find the sequenceA = (a1, . . . , an) of foreign keys inT also included inDT
3: find the corresponding sequenceB = ((b1,1, . . . , b1,m1

), . . . , (bn,1, . . . ,
bn,mn)) of candidate keys that are referenced by the foreign keys inA where
B is also inDT

4: for eachai ∈ A do
5: M ← SELECT DISTINCTai FROMDT AS DT1 WHERE NOT EXISTS

(SELECTbi,1, . . . , bi,mi
FROMDT AS DT2 WHERE DT1.ai = DT2.bi,1

OR . . . OR DT1.ai = DT2.bi,mi
) AND ai IS NOT NULL

6: result[T ][ai]←M
7: return result

Algorithm 5.2 Resolve dead links
1: determine the derived tableDT which may have dead links
2: deadlinks = find dead links inDT by means of Algorithm 5.1
3: for eachdeadlinks[t] do
4: // Consider tables contributing toDT
5: for eachdeadlinks[t][a] do
6: // Consider columns
7: for each valuev in deadlinks[t][a] do
8: // Consider rows (i.e., cells)
9: expandDT ’s SQL expression with “ORa = v”

10: if DT ’s SQL has been expandedthen
11: Invoke recursive call and find newDT to resolve dead links in
12: else
13: return DT

5.4.3 XML Writing

A desirable characteristic is not to rely on having all data stored in memory at one
time. Thus, the algorithm for writing the XML works such thatwhenever it gets a
new data row, it writes out some of the data to the XML. If grouping is not used, all
the data represented in a data row is written to the XML when a data row is received.
If grouping is used, some of the data might already be presentin the current context
in the XML and should not be repeated. To ensure this, the write algorithm compares
the new row to write out and the previous row that was written.When grouping is
used, it is a precondition that the data rows are sorted by thecolumns corresponding to
the nodes that we group by. This is ensured by a DBMS-based sorting iterator. When
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grouping by more than one node, the sort order is determined by the order of the
structure definition. The procedure for writing the XML is outlined in Algorithm 5.3.

Algorithm 5.3 Write the XML

• Write the root element including information about conceptand structure def-
inition.

• For each data row do:

– Find a node we do not group by or a mismatching node (considering this
and the previous row). The node should have the lowest order possible.
If no rows have been seen before, we let this be the node with the lowest
order apart from the root. Denote this nodex.

– If we at this point have any unmatched opening tags forx and/or nodes
with higher order thanx, print closing tags for them.

– Print opening tags for ancestor nodes ofx that are not already open.

– For x and each of its siblings of type element and container and with
higher order do:

∗ Print a< followed by the tag name for the node

∗ Print each tag name for the node’s attribute children followed by=",
the data for the attribute node and a".

∗ Print a>.

∗ If the node is an element, print its data. Else if the node is a con-
tainer, perform the inner most steps recursively for all itselement
and container children.

∗ If the node is an element or a container that we do not group by or
that has a sibling with higher order, print a closing tag for the node.

• Print closing tags for any unmatched opening tags (this at least includes the
root tag).

To support type checking and validation on the XML document structure, RELA-
XML can generate an XML Schema based on the concept and structure definition.
The user chooses at export time if a Schema should be generated or if he wants to use
an existing Schema.

In order to generate the XML Schema for an export, we need information on the
available columns, their types and the structure of the XML document. AConcept
object reveals the columns and their SQL types (the types arefrom java.sql.
Types) when thegetDataRowTemplate() method is invoked, and the struc-
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ture of the XML document is given in the structure definition.For each column in
the data row template, a data type is generated in the XML Schema. The generated
type is asimpleTypewhich is restricted to the XML Schema type that the columns
SQL type is mapped to. It is, however, necessary to take special considerations if the
column can hold the value null, i.e., if the column isnullable. When exporting,
RELAXML will write the null value as a string chosen by the user. But if, for exam-
ple, a column of type integer is nullable, then the type generated in the XML Schema
should allow both integers and the string used to represent the null value. Therefore,
the generated type should be aunion between integers and strings restricted to one
string (the one chosen by the user).

TheStructureDefinition holds a tree of structure nodes representing the
tree structure of the XML document. The Schema is generated by traversing this tree.
Three types of nodes exist: container nodes, element nodes and attribute nodes. The
container nodes have no associated data type since their only content is elements.
Elements and attributes on the other hand have associated data types since they have
text-only content. These associated data types are those generated as described above.

When container nodes are treated, the Schema constructsequence is used. For
a container that we do not group by, all its children (which bydefinition also are
not grouped by) are declared inside onesequence. This ensures that in the XML
instances of the considered element type each has exactly one instance of each of its
children element types.

For a container that we do group by there are more considerations to take. If we
consider a nodexwhich we group by and which has at least one descendant which we
do not group by, then, for each child we group by, we start a newnestedsequence
with maxOccurs=’unbounded’. Thesesequences are not ended until all chil-
dren ofx have been dealt with. All children ofx that we do not group by are declared
inside onesequencewhich has the attributemaxOccurs=’unbounded’. For a
structure definition as the one shown in Figure 5.7 where we assume that we group by
A, B and C, these rules ensure that in the XML an instance of B isalways followed
by one instance of C which is followed by one or more instancesof D. It is, however,
possible for an instance of C to follow an instance of D as longas the C instance is
followed by at least one other instance of D.

0

A

1

B

3

D

2 

C

+

+ +

Figure 5.7: Example of a structure definition
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If we consider a containerx where we group byx and all its descendants, then
all element types for children ofx are declared inside one singlesequence.

5.5 Design of Import

The flow of the import operation is the reverse of the flow in Figure 5.5, except that
no sorting iterator is needed. Thus, the XML data is converted to data rows as the
XML document is read. These data rows are sent through the inverse transformations
and finally animporter takes appropriate action based on the data rows. We now
discuss insertion, update, and deletion via XML documents.

The user may specify a commit interval such that the importercommits for every
n data rows. Ifn = ∞ we may take advantage of deferrable constraints and may
do a complete roll-back in case of problems such as violated integrity constraints. If
n 6= ∞ we cannot defer the deferrable constraints and cannot do a complete roll-
back.

We extend the description of concepts given in Section 5.2 byallowing a column
to be marked “not updateable”. If this is the case, the data inthe database for that
column will not be modified by RELAXML.

5.5.1 Requirements for Importing

For a concept to beinsertable, updateable, or deleteable, it must fulfill the following
requirements.

Thecommon requirements for insert, update, and deleteare:

c1) all transformations have an inverse;

c2) all columns used in joins occur in the derived table.

Requirement c1) is obvious. Requirement c2) is needed to support θ-joins. If we do
not have values for all join columns, we cannot insert/update rows in the underlying
tables. If only equijoins were supported, values for half the join columns could be
derived.

Therequirements for insert are:

i1) all non-nullable columns without default values from included tables are in the
export;

i2) if a foreign key column is included, then the referenced column is also in-
cluded;

i3) the exported data contains no dead links;
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i4) if all deferrable and nullable foreign keys are ignored,there are no cycles in
the part of the database schema used in the export.

Requirement i1) corresponds to Date’s rule for insert on a view with projection [30].
Requirements i2) and i3) ensure that inserts do not cause foreign key constraint vi-
olations due to foreign keys pointing to non-existing rows.Requirement i4) ensures
that it is possible to insert rows into the underlying tablesin an order that avoids
immediate foreign key constraint violations.

Therequirements for updateare:

u1) each included table has a primary key which is fully included in the export;

u2) primary key values are not updated.

Requirement u1) is a restriction on Date’s rule for updatinga view with projec-
tion [30]. Requirement u2) ensures that primary keys can be used to identify the
tuples to update. To ensure that primary keys are not updated, a checksum trans-
formation may be used to include a primary key checksum in theXML file. The
requirements for deleteare the same as for update.

If a concept A uses inheritance, all A’s ancestors must be insertable or updateable
for A to be insertable or updateable, as we want to ensure thatthe requirements
described above are fulfilled for each row in the export. Otherwise, we would risk
that for a conceptc, one parentp1 included some, but not all, columns from a table
t required forc to be importable, while another parentp2 included the remaining
columns fromt required forc to be importable. But ifp1 only includes the rows where
the predicateb is fulfilled whereasp2 includes those rows whereb is not fulfilled, we
cannot combine the resulting row parts to insertable rows.

In summary, concepts are much more flexible than modificationthrough SQL
views [30], e.g., multiple tables may be updated and consistency is guaranteed. Com-
pared to Date’s general specification of modification through views [30] we have
stricter requirements on projection for insert and update and do not consider SQL
statements with union, intersect, and difference. Concepts involving only joins of
tables are insertable and updateable in the same way as viewsin Date’s general spec-
ification. Compared to Date we support inheritance and guarantee that updates are
consistent as discussed next.

5.5.2 Avoiding Inconsistency

Since the XML document may hold redundant data originating from the same cell
in the database, it is a risk that the user makes aninconsistent update, e.g., if the
same column from a table is selected twice. When the user is editing the XML, he
is indirectly making updates to the transformed derived table. But since the derived
table can contain redundant data, it is only in 1NF in the general case.
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To detect inconsistent updates, we capture which values in the database are read
from the XML, as further updates on these would be inconsistent. Thus, for all up-
dated or accepted values (those that were identical in the database and the XML) we
capture the table, row and column using a temporaryTouchedtable (in the database
or main memory). The Touched table has three columns; TableName, PrimaryKey-
Value (the composite primary key), and ColumnName. When an update takes place,
we check if the value has been updated/accepted before. If so, an exception is raised.
If not, the update takes place and information about it is added to the Touched table.

5.5.3 Inferring a Plan for the Import

5.5.3.1 Insert and Update

We now consider how to do the actual work when inserting or updating from XML.
Later we consider how to delete by means of an XML document. Inorder to reason
on importability of the data of a concept, we build adatabase model, used for infer-
ring database properties, and decide whether there is enough information to import
the data and to infer an insertion order. A specific order may be required because of
integrity constraints on the database. The database model holds information on the
included tables and columns and their types. Furthermore, the model holds informa-
tion on the primary keys of the included tables and links (foreign key constraints) be-
tween the tables of the concept. We have three types of links in the database model.
Hard links represent foreign key constraints which are neither deferrable nor nul-
lable; semi-hard linksrepresent foreign key constraints which are not deferrablebut
nullable;soft linksrepresent deferrable foreign key constraints.

A concept is viewed as an undirectedconcept graph, where nodes represent ta-
bles and edges represent the joins of the concept. Each edge is either an equijoin
edge which follows the constraints of the database (represented as a solid line) or a
non-equijoin edge or an equijoin edge which does not follow the constraints of the
database (both represented as a dotted line). Figure 5.8 gives examples.

The execution plandetermines the insertion order. Based on a concept and its
database model, it is possible to build an execution plan to be used when importing.

The join types used in the concept, the columns joined and thestructure of the
database schema influence how to handle an insert or update. The data of a concept
may be extracted from the database in many ways, some of whichdo not reflect the
database constraints. For example, a concept may join on twocolumns not related by
a database foreign key and may neglect another foreign key. Thus, data for a single
data row may not always be consistent with the foreign key constraints, i.e., these are
not fulfilled for the row.

For the import, we construct an insertion order which is a list of table lists. A
table list shows tables which may be handled in the same run (parsing) through the
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XML document, as the data rows are consistent with the database constraints. Thus,
the length of the outer insertion order list is the required number of runs through the
XML document.
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Figure 5.8: (a) Database model (b)-(e) Concept graphs

The database model in Figure 5.8(a) shows that tableA has foreign keys to tables
B andC, tableC has foreign keys to tablesD andE, and tableE has a foreign key
to tableF . Figures 5.8(b)-(e) show the concept graphs for four different concepts
using the database modeled in Figure 5.8(a).

The concept graph in Figure 5.8(b) shows that the data of eachdata row is guar-
anteed to be consistent with the database constraints, as the joins used in the export
reflect these constraints and because each join is an equijoin. This is also the case
for the Mini Market example in Figure 5.1. Figure 5.8(b) gives the insertion order
((F,B,D,E,C,A)). The data fromF is inserted before the data fromE because the
database model shows that the foreign key inE referencesF . In Figure 5.8(c), only
equijoins are present, but the foreign key constraint from tableC to E is not repre-
sented in the concept. Compared to the database model there is also an extra equijoin
between the tablesD andE. The missing equijoin between tablesC andE means
that in general we cannot insert the data rows at one time but must break the insertion
into multiple phases. A possible insertion order is therefore ((B,F,D,E), (C,A)).
In Figure 5.8(d), all the constraints of the database model are fulfilled, except that
there is a non-equijoin between tablesC andE. This leads to the same situation as
in Figure 5.8(c). In Figure 5.8(e), we get the insertion order ((B,F,D), (E,C,A)),
sinceD has an equijoin toE. We cannot continue withE in the first run since the
D-E join might include a tuple ofE, which does not fulfill the foreign key constraint
betweenE andF .

So far, the database models have had no cycles. If cycles are present, we may
break a cycle if it has at least one soft link or semi-hard link. A soft link may be
deferred and a semi-hard link may be set to null first and updated to the correct
value as the final step in the import. We refer to columns having pending updates as
postponed columns.
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Now, the execution plan holds an insertion order (the tablesof the concept in a list
of table lists) and a list of postponed columns. In the following, let anindependent
tablebe a table which is guaranteed to fulfill the constraints, i.e., does not have any
outgoing links in the current database model. Algorithm 5.4takes as input a concept
c. In line 1, we build the database model and in line 2 we initialize the set of post-
poned columns to the empty set. Lines 3-4 remove all soft-links from the database
model, i.e., edges representing deferrable constraints. In lines 5-6, we remove all
semi-hard links from the database model, i.e., the deferrable and nullable constraints.
The columns involved are added to the set of postponed columns. In lines 7-8, we
check that there are no cycles in the database model. In this highly unlikely situation
we are not able to continue, because there is a cycle of hard links. In line 9, we build
the concept graph and in line 10 we initialize the insertion order list to the empty list.
The while loop in lines 11-20 builds the insertion order listthat consists of table lists.
In line 12, the table list that can be inserted in one pass is initialized to the empty
list. Lines 13-15 add to the table list, all tables that are joined by equijoins. These
tables are removed from the database model. Lines 16-19 do the same for all inde-
pendent tables. In line 20 the table list is prefixed to the insertion order list. Finally,
in line 21 we reverse the insertion list and line 22 returns this list along with the set
of postponed columns.

The importer uses the insertion order and handles one data row at a time. The
insertion order shows how the importer should progress in the current run through
the XML file.

5.5.3.2 Delete

We now describe an algorithm that handles deletion in database schemas which may
be represented as directed acyclic graphs (DAGs) and schemas that hold cycles with
cascade actions on all constraints in the cycle (termedcascade cycles). In addition,
we consider modifications to the delete operation such that alarger set of database
schemas can be handled.

As described in Definition 5.3.4, we delete a tuple from the database if there
is a match on all values in the corresponding data in the XML document. When
deleting, tuples that are referencing one or more of the tuples to be deleted may block
the deletion. Even though a foreign key constraint is fulfilled in the data row, other
tuples in the database may also reference a tupled we want to delete. Thus,d cannot
be deleted until all tuples that reference it are gone. This cannot happen before we
see the last row in the derived table thatd constitutes a part of. However, the derived
table is denormalized and we do not know on beforehand which data row is the last
to hold data fromd. For this reason, we delete rows from lists of tables which are
independent with regards to delete and foreign key constraints.
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Algorithm 5.4 Building an execution plan
1: dbm← a database model for the conceptc
2: ppCols← ∅
3: if commitInterval =∞ then
4: remove soft links fromdbm
5: if cycles are present indbm then
6: break the cycles by postponing a number of semi-hard foreignkey columns,

add them toppCols
7: if cycles are still present indbm then
8: Error - not importable (cycle of hard links exists)
9: conceptGraph← a concept graph of the concept

10: iOrder ← ()
11: while dbm has more nodesdo
12: tableList← ()
13: while dbm has an independent noden referenced bym wheren andm are

joined using an equijoin inconceptGraph andn is not joined with other tables
do

14: tableList← n :: tableList
15: dbm← dbm withoutn
16: indep← independent nodes indbm
17: for each nodenode in indep do
18: tableList← node :: tableList
19: dbm← dbm withoutnode
20: iOrder ← reverse(tableList) :: iOrder
21: iOrder ← reverse(iOrder)
22: return (iOrder, ppCols)

It is possible that the user has specified delete actions on foreign key constraints,
such that a deletion causes a side effect. Delete actions canbe defined on foreign key
constraints and resolve constraint violations in case referenced tuples are deleted.
Possible delete actions areset null (the foreign keys are set to null),set default
(the foreign keys are set to a default value) andcascade(the referencing tuples are
deleted).

The deletion order is very important. Consider a database schema where table
A references tableB. A tuple fromB may only be deleted when no tuples inA
reference the tuple inB. For efficiency reasons we do not want to query the database
for referencing tuples for all tuples to delete. Instead we run through the XML twice.
First deleting the data fromA and then the data fromB. Because of the definition
of delete we may get a situation where tuples inA are updated as a side effect to
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deletion inB such that we cannot delete them. This is the case if a set null or set
default action is defined in the database such that deletion of a tuple inB has a side
effect on tuples inA. If the action is cascading delete, the side effect does the job and
one run suffices.

We use the database model for inferring a deletion order. Thedeletion order is a
list of lists of tables. The inner lists show tables it is safeto delete from in the same
run.

As when inserting, it is possible to specify a commit interval. If the commit
interval is set to∞ we may defer deferrable constraints. In this way, we may break
some of the cycles in the database model.

In the following, we assume that the database schema can be represented as a
DAG. When inferring a deletion order, actions have an impacton the deletion order.

In Figure 5.9(a), no actions are defined. We can use the order((A), (B,C), (D,E,
F,G)).If the action is a cascading delete action in Figure 5.9(b),we may delete from
A andC in the same run since the action solves constraint violations. An order is
therefore((A,C), (B,F,G), (D,E)). If the action is a set null action we cannot
delete fromC in the same run asA since a deletion inC may update tuples inA.
This can have an impact on the tuples inA which are then not equal to the tuples read
from the XML.

Assume that the database schema contains cascade cycles. Wemay delete data
from such a cycle if all incoming links also have cascading delete actions. In such
a situation we may still perform the delete operation. [61] provides an algorithm for
inferring a deletion order in schemas without cycles or where the only cycles present
are cascade cycles.

ED

B

GF

C

A

B

GF

C

ACTION

A

ED

A

C

D

B

SET NULL

(a) (b) (c)

Figure 5.9: Schemas (a) DAG, no action (b) DAG, action (c) Cycle, action

As argued earlier, other delete actions invalidates the delete operation because
of side effects that influence if a row should be deleted. Consider the cycle in Fig-
ure 5.9(c) where a schema with a cycle with a set null action isshown. We can break
such a cycle if we delete fromA and then proceed on the remaining graph(B,C,D).
However, the side effect on the tuples ofD and the definition of delete may cause a
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Name Range Description
ID 0, . . . , r − 1 Primary key for the table.
ParentID 0, . . . , r − 1, Foreign key to ID.

null For each row, the value is ID− 1 if ID mod 5 6= 0
Otherwise null.

GroupID 0, . . . , ⌈ r
5⌉ − 1 For each row, the value is⌈(ID + 1)/5⌉ − 1

DLLevel 0, . . . , 4 For each row, the value is ID mod5
Random 0, . . . , 9 Each row holds a random value
Fixed c For each row, the value isc

Table 5.1: Description of data in performance study

situation where we cannot delete tuples inD. If we change the delete operation to
only consider equality of the primary keys, the cycle in Figure 5.9(c) may be broken
such that the deletion can be performed correctly. The alternative solution can handle
schemas with non-overlapping cycles (cascade cycles or at least one set null or set
default action) but updates to the database are not retainedwhich may be surprising
to the user.

5.6 Performance Study

An implementation with approximately 15,000 lines of Java is done. The imple-
mentation is open source and is available from www.cs.aau.dk/∼chr/relaxml/ and
www.relaxml.com. Performance tests have been carried out on a 2.6 GHz Pentium 4
with 1GB RAM, running SuSE Linux 9.1, PostgreSQL 8.0, and Java 1.4.2 SE. Every
measurement is performed 5 times. The highest and lowest values are discarded and
an average is computed using the middle three. The used test data and the test suites
can be downloaded from the same places as the implementation.

The data is placed in a table with five integer columns and one varchar column:
(ID, ParentID, GroupID, DLLevel, Random, Fixed). The values of the rows are as
described in Table 5.1. Forr = 10 this could result in the data in Table 5.2.

Export test 1 - Scalability in the number of rows This test exports all six columns.
The data is exported to an XML structure as the following (butwithout unecessary
spaces) where no grouping is used.

<Data>
<GroupID value="[GroupID]">

<Fixed value="[Fixed]">
<ID>[ID]</ID>
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ID ParentID GroupID DLLevel Random Fixed
0 null 0 0 3 c

1 0 0 1 8 c

2 1 0 2 2 c

3 2 0 3 7 c

4 3 0 4 1 c

5 null 1 0 4 c

6 5 1 1 0 c

7 6 1 2 5 c

8 7 1 3 9 c

9 8 1 4 6 c

Table 5.2: Example data

<ParentID>[ParentID]</ParentID>
<DLLevel>[DLLevel]</DLLevel>
<Random>[Random]</Random>

</Fixed>
</GroupID>
<GroupID ...>

...
</GroupID>
...

</Data>

Figure 5.10(a) compares the running time of RELAXML with that of a special-
ized JDBC application that executes the SQL query corresponding to the used RELA-
XML concept. Both write the result set to an XML file, the structure of which has
been hard-coded into the JDBC application. The results showthat both RELAXML
and the JDBC application scale linearly in the number of rowsto export. From the
slopes, it is seen that RELAXML handles on average 10.4 rows each millisecond (ms)
whereas the JDBC application handles 37.5 rows each ms, i.e., the RELAXML over-
head is 260%. This is a reasonable overhead given the flexibility and labor-savings
of using RELAXML, especially taking into account that the XML documents used in
web services are usually not very large.

Export test 2 - Scalability when grouping Here, the same data as in Export test
1 is exported, but now grouping is used. The data is grouped byone (GroupID) and
two (GroupID and Fixed) nodes. The running time for no grouping, is the same for
RELAXML in Export test 1. The results, in Figure 5.10(b), show that RELAXML
also scales linearly in the number of rows when grouping. Theperformance suffers
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Figure 5.10: Performance tests

when grouping is used, as one row takes approximately 3.3 times longer to export.
This is as expected, since the use of grouping requires all the rows to be inserted
into a temporary table in the database before they are sortedand then retrieved by
the XML writer. The performance is the same when we are grouping by one and
two nodes even though there is more sorting to do when grouping by two nodes.
However, more data (30%) has to be written when we group by onenode, as more
tags are written since fewer elements are coalesced.

Export test 3 - Scalability in the number of dead links This test selects the rows
where DLLevel = 4. Here, each selected row leads to four dead links which are
resolved by RELAXML. The results are shown in Figure 5.11.

The running time of RELAXML does not scale linearly in the number of dead
links resolved. This is expected since each time Algorithm 5.1 is invoked there will
be more rows to search for dead links (leading to an approximately quadratic com-
plexity). Further, the query gets more complicated to process as more OR clauses are
added. Note that typical data sets will not contain so many dead links.
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Figure 5.11: Performance test of resolving of dead links

Import test 1 - Scalability in the number rows to insert We now compare the
time used by RELAXML for inserting with the time used for parsing the XML file
with a SAX parser and inserting the data through JDBC prepared statements, check-
ing that this will not lead to a primary key violation. Further, we consider the time
used by RELAXML when the inconsistency checks are done in main memory or dis-
abled. The data to insert originates from Export test 1. The table is emptied before
the test is executed. The times used for inserting differentnumbers of rows are shown
in Figure 5.10(c). The results show that both RELAXML and the JDBC application
scale linearly. The average time to import a row using RELAXML is 2.38 ms. When
checks for inconsistencies are performed entirely in main memory, RELAXML han-
dles a row in 0.75 ms. If RELAXML does not check for inconsistencies, it handles a
row in 0.67 ms, compared to 0.49 ms for using JDBC directly, i.e., the overhead from
using RELAXML is only 37%.

Import test 2 - Scalability in the number rows to update We now focus on
the scalability in the number of updates. We consider the impacts of updates to one
column in rows from the table, varying the number of updated rows. When the XML
document is processed, all the included rows have been updated. Only the column
Fixed is updated, but the test has been performed with 2, 4, and 6 columns in the
used concept. The results, in Figure 5.10(d), show that the running times are growing
linearly in the number of rows after the data sets reach a certain size. The checks
for inconsistencies are performed in main memory. More timeis used when more
columns are included, since more data has to be read from the XML document and
more comparisons have to be performed. When 10,000 rows with6 columns are
included, it takes 1.8 ms to read a row and update it in the database. When 4 and 2
columns are included, it takes 1.7 ms and 1.6 ms, respectively.
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In summary, we find that the overhead of RELAXML is very reasonable consid-
ering the flexibility, simplicity, and labor-savings of RELAXML compared to hard-
coded applications. Further, to the best of our knowledge this is the first work to
present a performance study of a general framework for bidirectional transfer of data
between relations and XML documents.

5.7 Conclusion and Future Work

Motivated by the increasing exchange of relational data through XML based tech-
nologies such as web services, this chapter investigated automatic and effective bidi-
rectional transfer between relational and XML data.

As the foundation, we proposed the notion ofconcepts, which are view-like
mechanisms, for specifying the subset of data to export froma database to XML
documents. Concepts support multiple inheritance and are therefore flexible to use.
In addition, this allows specializations to be specified in an incremental fashion. The
separation of concept fromstructure definitionallows multiple XML representations
of the same data. Further, the user-defined transformationsallow changes to data
that can be difficult to implement in SQL, e.g., ensure that parts of an export XML
document are not altered. The specification of import and export ensured that data
sets are self-contained such that they can be imported into an empty database without
violating integrity constraints. Performance studies showed a reasonable overhead
when exporting and importing compared to the equivalent hand-coded programs.
This overhead is easily offset by the offered flexibility, simplicity, and labor-savings
of RELAXML compared to hand-coded programs, e.g., in web-service applications.

There are a number of interesting directions of future research. Currently only
inheritance between concepts is allowed. It would be interesting to allow aggregation
such that the data from one concept can be included as a singleelement in another
concept. It could also be investigated how to extend the approach to support XML
documents with more freely defined structures, e.g, mixed content and irregular nest-
ing structures. Another topic is the dead-link detection algorithm that possibly can
be tuned by using SQL IN or BETWEEN statements instead of ORing as it is done
now. Finally, it would be interesting to investigate whether the overhead compared
to hand-coded applications can be avoided altogether by using the concept specifica-
tion to auto-generate concept-specific Java code which is then just-in-time compiled
before the execution.



Chapter 6

ETLDiff: A Semi-Automatic
Framework for Regression Test of
ETL Software

Modern software development methods such as Extreme Programming (XP) favor
the use of frequently repeated tests, so-called regressiontests, to catch new errors
when software is updated or tuned, by checking that the software still produces the
right results for a reference input. Regression testing is also very valuable for Extract–
Transform–Load (ETL) software, as ETL software tends to be very complex and
error-prone. However, regression testing of ETL software is currently cumbersome
and requires large manual efforts. In this chapter, we describe a novel, easy–to–
use, and efficient semi–automatic test framework for regression test of ETL software.
By automatically analyzing the schema, the tool detects howtables are related, and
uses this knowledge, along with optional user specifications, to determine exactly
what data warehouse (DW) data should be identical across test ETL runs, leaving out
change-prone values such as surrogate keys. The framework also provides tools for
quickly detecting and displaying differences between the current ETL results and the
reference results. In summary, manual work for test setup isreduced to a minimum,
while still ensuring an efficient testing procedure.

6.1 Introduction

When software is changed, new errors may easily be introduced. To find introduced
errors or new behaviors, modern software development methods like Extreme Pro-

101



102 ETLDiff: A Semi-Automatic Framework for Regression Test of ETL ...

gramming (XP) [10] favor so-called regression tests which are repeated for every
change. After a change in the software, the tests can be used again and the actual
results can be compared to the expected results.

A unit-testing tool like JUnit [55] is well-suited to use as aframework for such
tests. In JUnit, the programmer can specify assertions thatshould be true at a specific
point. If an assertion does not hold, the programmer will be informed about the
failed assertion. In a framework like JUnit it is also very easy to re-run tests and
automatically have the actual results compared to the expected results.

As is well-known in the data warehouse (DW) community, Extract–Transform–
Load (ETL) software is both complex and error prone. For example, it is esti-
mated that 80% of the development time for a DW project is spent on ETL develop-
ment [57]. Further, ETL software may often be changed to increase performance, to
handle changed or added data sources, and/or to use new software products. For these
reasons, regression testing is essential to use. However, to the best of our knowledge,
no prior work has dealt with regression testing for ETL software.

As a use case consider an enterprise with an ETL application that has been used
for some time but that does not scale well enough to handle thedata anymore. The
enterprise’s IT department therefore establishes a developer team to tune the ETL.
The team tries out many different ideas to select the best options. Thus many different
test versions of the ETL application are being produced and tested. For each of these
versions, it is of course essential that it produces the sameresults in the DW as the
old solution. To test for this criterion, the team does regression testing such that each
new test version is being run and the results of the load are compared to thereference
resultsproduced by the old ETL application.

A general framework like JUnit is not suited for regression testing of the entire
ETL process. Normally, JUnit and similar tools are used for small, well-defined
parts or functions in the code. Further, it is more or less explicitly assumed that
there is functional behavior, i.e., no side-effects, such that a function returns the same
result each time it is given the same arguments. On the contrary, what should be
tested for ETL software is the result of the entire ETL run or,in other words, the
obtained side effects, not just individual function values. Although it is possible
to test for side effects in JUnit, it is very difficult to specify the test cases since
the database state, as argued in [22], should be regarded as apart of the input and
output space. But even when the data is fixed in the input sources for the ETL,
some things may change. For example, the order of fetched data rows may vary
in the relational model. Additionally, attributes obtained from sequencesmay have
different values in different runs. However, actual valuesfor surrogate keys assigned
values from sequences are not interesting, whereas it indeed is interesting how rows
are “connected” with respect to primary key/foreign key pairs. More concretely, it
is not interesting if an ID attributeA has been assigned the value 1 or the value 25
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Part

 PartKey: int (PK)

 Name: varchar(55)

 MFGR: char(25)

 Brand: char(10)

 Type: varchar(25)

 Size: int

 Container: char(10)

 RetailPrice: decimal

 Comment: varchar(23)

Supplier

 SuppKey: int (PK)

 Name: char(25)

 Address: varchar(40)

 NationKey: int

 Phone: char(15)

 AcctBal: decimal

 Comment: varchar(101)

Customer

 CustKey: int (PK)

 Name: varchar(25)

 Address: varchar(40)

 NationKey: int

 Phone: char(15)

 AcctBal: decimal

 MktSegment: char(10)

 Comment: vachar(117)

Nation

 NationKey: int (PK)

 Name: char(25)

 Comment: varchar(152)

 RegionKey: int

 RegionName: char(25)

 RegionComment: varchar(152)

LineItem

 DateKey: int (PK)

 PartKey: int (PK)

 SuppKey: int (PK)

 CustKey: int (PK)

 OrderKey: int (PK)

 Quantity: int

Date

 DateKey: int (PK)

 DayNr: int

 MonthNr: int

 Year: int

Figure 6.1: An example schema

from a sequence. What is important, is that any other attribute that is supposed to
referenceA has the correct value. Further, the results to compare from an ETL run
have a highly complex structure as data in several tables hasto be compared. This
makes it very hard to specify the test manually in JUnit.

In this chapter, we presentETLDiff which is a semi-automatic framework for
regression testing ETL software. This framework will, based on information obtained
from the schema, suggest what data to compare between ETL runs. Optionally the
user may also specify joins, tables, and columns to include/ignore in the comparison.
ETLDiff can then generate the so-calledreference results, an off-line copy of the DW
content. Whenever the ETL software has been changed, the reference results can be
compared with the current results, called thetest results, and any differences will be
pointed out. In the use case described above, the tuning teamcan thus use ETLDiff
as a labor-saving regression testing tool.

Consider the example in Figure 6.1 which will be used as a running example in
the rest of the chapter. The schema is for a DW based on source data taken from
TPC-H [110].

Here we have a fact table,LineItem, and four dimension tables,Date, Part, Sup-
plier, Customer, and an outrigger,Nation. The fact table has a degenerate dimension
(OrderKey) and one measure. ETLDiff can automatically detect the six joins to per-
form and which columns to disregard in the comparison. ETLDiff will here make a
join for each foreign key and then disregard the actual values of the columns involved
in the joins.

To use the framework the user only has to specify A1) how to start the ETL
software and A2) how to connect to the data warehouse, as shown in Figure 6.2. Apart
from this, the framework can do the rest. Thus, the user can start to do regression
testing in 5 minutes. Setting this up manually would requiremuch more time. For



104 ETLDiff: A Semi-Automatic Framework for Regression Test of ETL ...

etlcmd=’loaddw -f -x’
dbuser=’tiger’
dbdriver=’org.postgresql.Driver’
dburl=’jdbc:postgresql://localhost/tpch’

Figure 6.2: Example configuration file for ETLDiff

each schema, the user would have to go through the following tasks: M1) write an
SQL expression that joins the relevant tables and selects the columns to compare,
M2) verify that the query is correct and includes everythingneeded in comparisons,
M3) execute the query and write the result to a file, M4) write an application that can
compare results and point out differences. Further, the user would have to go through
the following tasks for each ETL version: M5) Run the new ETL software, M6) run
the query from M1 again, M7) start the application from M4 to compare the results
from M6 to the file from M3. Even though much of this could be automated, it would
take even more work to set this up. Thus, to set up regression testing manually takes
days instead of minutes.

The rest of this chapter is structured as follows. Section 6.2 describes the design
and implementation of the ETLDiff framework. A performancestudy is presented in
Section 6.3. Section 6.4 presents related work. Section 6.5concludes and points to
future work.

6.2 The Test Framework

In this section we present, how ETLDiff is designed and implemented. There are two
basic parts of ETLDiff. Atest designerand atest executer.

A test consists of all rows in the considered tables which areequi-joined accord-
ingly to foreign keys. Thus the fact table is joined to each ofthe dimension tables.
However, only some of the columns are used in the comparison.In the following it
is explained how to select the data to compare.

6.2.1 Process Overview

ETLDiff’s test designer makes a proposal about which data toinclude in a test. It
does so by exploring the DW schema and building adatabase modelof the schema
(task 1). This model is used to build the so-calledjoin tree (task 2a) which defines
how to join the DW tables used in the test. When this is done, special care has to be
taken when handling so-calledbridge tables(task 2b). Since ETLDiff uses the tool
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RELAXML [60] to export DW data to off-line XML files, certain files that define
this process have to be generated as the last part of proposing a test (task 3). When
executing a test, ETLDiff exports test results to a file (task4). This file, with the
newest content from the DW, is then compared to a file holding the reference results
and differences are pointed out (task 5). In the following subsections, these tasks are
explained.

6.2.2 Task 1: Exploring the DW Schema and Building a DatabaseModel

To find the data to compare, ETLDiff builds adatabase modelof the database schema.
A database model represents tables and their columns, including foreign key rela-
tionships. The model is simply built based on metadata obtained through JDBC. By
default, all tables and all their columns are included in themodel. However, the user
may specify a table name or just a prefix or suffix of names not toinclude. The user
may also specify foreign keys that should be added to the model even though they
are not declared in the database schema or may conversely specify specific foreign
keys declared in the schema that should not be included in themodel. For the DW
example from Section 6.1, the built model would be similar tothe schema shown in
Figure 6.1 unless the user specified something else, e.g., toignore the foreign key
betweenLineItemandDate.

Next, ETLDiff has to find the columns to compare. In a DW, it is good practice
to use surrogate keys not carrying any operational meaning [57, 58]. As previously
argued, it is not important whether a surrogate key has the value 1 or the value 25
as long as attributes supposed to reference it have the correct value. For that reason,
ETLDiff uses a heuristic where all foreign keys and the referenced keys in the model
are left out from the data comparison unless the user has specified that they should be
included. In the example from Section 6.1, this would mean that OrderKey, PartKey,
SuppKey, CustKey, andNationKeywould not be included in the comparison. The rest
of the columns in the example would be used in the comparison.Also columns the
user has explicitly chosen not to include will be disregarded. For example, it could
be specified thatRegionKeyshould not be compared in the running example.

6.2.3 Task 2a: Building a Join Tree

Consider again the running example. Since bothSupplierandCustomerreference
theNationoutrigger, an instance ofNationshould be joined toCustomerand another
instance ofNationshould be joined toSupplier.

In more general terms, there must be an equi-join with an instance of a table for
each foreign key referencing the table in the database model. This means the database
model is converted into a tree, here called ajoin tree. Note that the database model
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already can be seen as a directed graph where the nodes are thetables and the edges
are the foreign keys between tables.

In the join tree, nodes represent table instances and edges represent foreign keys
(technically, the edges are marked with the names of the key columns). For a star
schema, the root of the tree represents the fact table and thenodes at level 1 represent
the dimension tables. Outriggers are represented at level 2as children of the nodes
representing the referencing dimension tables. For a snowflake schema, the join tree
will have a level for each level in the dimension hierarchy. The join tree for the
running example is shown in Figure 6.3 (not showing the markson the edges).

CustomerSupplier

LineItem

Date Part

Nation Nation

Figure 6.3: A join tree for the running example

To convert the database model into a join tree, we use Algorithm 6.1, BuildJoin-
Tree, which is explained in the following. To avoid infinite recursion when AddTree-
NodesDF is called, we require that the database model does not contain any cycles,
i.e., we require that the database model when viewed as graphis a directed acyclic
graph (DAG). This is checked in l 1–2 of the algorithm. Note that this requirement
holds for both star and snow-flake schemas.

In l 3 the arrayvisited is initialized. In l 4, the algorithm tries to guess the fact
table unless the user explicitly has specified the fact table. To do this, the algorithm
considers nodes in the database model with in-degree 0. Suchnodes usually represent
fact tables. However, they may also represent the special case ofbridge tables[57,58]
which will be explained later. To find the fact table, the algorithm looks among the
found nodes for the node with maximal out-degree. If there are more such nodes, the
first of them is chosen, and the user is warned about the ambiguity. Another heuristic
would be to consider the number of rows in the represented tables. The one with the
largest number of rows is more likely to be the fact table. We let f denote the node
in the database model that represents the fact table. In the join tree, the root is rep-
resenting the fact table (l 5). The recursive algorithm AddTreeNodesDF (not shown)
visits nodes in a depth-first order in the database model fromthe node representing
the fact table (l 7–8). When a node representing tablet in the database model is vis-
ited from noden, a new node representingt is added in the join tree as a child of
the latest added node representingn. This will also setvisited[t] to true. Note that
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Algorithm 6.1 BuildJoinTree
1: if database model has cyclesthen
2: raise an error
3: setvisited[t] = false for each nodet in the database model
4: f ← GuessFactTable()
5: root← TreeNode(f)
6: visited[f ]← true
7: for each nodet adjacent tof in the database modeldo
8: AddTreeNodesDF (root, t)
9: // Find bridge tables and what is reachable from them

10: changed← true
11: while changed do
12: changed← false
13: for each table nodet in the database model wherevisited[t] = falsedo
14: oldV isited← visited
15: for each nodes adjacent tot in the database modeldo
16: if oldV isited[s] then
17: // Before this part,t had not been visited, buts which is referenced
18: // by t had, sot should be included as if there were an edge(s, t)
19: for each join tree nodex representing tables do
20: Remove edge(t, s) from database model// Don’t come back tos
21: AddTreeNodesDF (x, t) // Modifiesvisited
22: Add edge(t, s) to database model again
23: changed← true

AddTreeNodesDFwill visit an adjacent node even though that node has been visited
before. This for example happens forNation in the running example.

For the running example, the nodes in the database model are visited in the or-
derLineItem, Date, Part, Supplier, Nation, Customer, Nation. Only the already ex-
plained part of the algorithm is needed for that. For some database models this part
is, however, not enough, as explained next.

6.2.4 Task 2b: Handling Bridge Tables

In the depth-first search only those nodes reachable fromf will be found. In fact
we are only interested in finding the nodes that are connectedto f when we ignore
the direction of edges. Other nodes that are unvisited afterthe algorithm terminates
represent tables that hold data that is not related to the data in the fact table. How-
ever, nodes may be connected tof when we ignore directions of edges but not when
directions are taken into consideration. Imagine that the example DW should be able
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Part

 PartKey: int (PK)

 Name: varchar(55)

 MFGR: char(25)

 Brand: char(10)

 Type: varchar(25)

 Size: int

 Container: char(10)

 RetailPrice: decimal

 Comment: varchar(23)

Supplier

 SuppKey: int (PK)

 Name: char(25)

 Address: varchar(40)

 Phone: char(15)

 AcctBal: decimal

 Comment: varchar(101)

Customer

 CustKey: int (PK)

 Name: varchar(25)

 Address: varchar(40)

 NationKey: int

 Phone: char(15)

 AcctBal: decimal

 MktSegment: char(10)

 Comment: vachar(117)

Nation

 NationKey: int (PK)

 Name: char(25)

 Comment: varchar(152)

 RegionKey: int

 RegionName: char(25)

 RegionComment: varchar(152)

LineItem

 DateKey: int (PK)

 PartKey: int (PK)

 SuppKey: int (PK)

 CustKey: int (PK)

 OrderKey: int (PK)

 Quantity: int

Date

 DateKey: int (PK)

 DayNr: int

 MonthNr: int

 Year: int

Bridge

 SuppKey: int (PK)

 NationKey: int (PK)

 Weight: float

Figure 6.4: The example schema extended with a bridge table between Supplier and
Nation

to represent that a supplier is located in many nations. To dothis we would use a
bridge table [57,58] as shown in Figure 6.4. A bridge table and nodes reachable from
the bridge table should also be visited when the join tree is being built. Before ter-
minating, the algorithm therefore has to look for unvisitednodes that have an edge to
a visited node (l 13 and 15–16). If such an edge is found, it is “turned around” tem-
porarily such that the depth-first visit will go to the unvisited, but connected node.
To do this, the edge is removed from the database model (l 20),and a call to Add-
TreeNodesDF is then made (l 21) as if the edge had the oppositedirection. Since the
edge is removed from the model, this call will not come back tothe already visited
node. After the call, the edge is recreated (l 22). Before theedge is turned around,
it is necessary to make a copy of thevisited array. The reason is that the algorithm
otherwise could risk to find an unvisited nodeu where the visited nodev and the
unvisited nodew are adjacent tou. The edge(u, v) could then be turned around and
the depth-first visit could visitu andw, before(u, v) was recreated. But whenw
(which is adjacent tou) then was considered, it would be visited and the edge(u,w)
would be turned around and too many nodes would be added. Thissituation does not
occur when an unmodified copy (oldV isited) of visited is used.

6.2.5 Task 3: Generating Data-Defining Files

ETLDiff uses RELAXML [60] for writing XML files. Proposing a test thus includes
generating a so-calledconceptwhich defines what data RELAXML should export
and a so-calledstructure definitionwhich defines the structure of the XML. A concept
can inherit from other concepts.

When the join tree has been built, the data-defining concept can be built. In
RELAXML a table can only be used once in a single concept. However,it might be
necessary to include data from a table several times as explained above. When this is
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the case, ETLDiff can exploit RELAXML’s concept inheritance. A simple concept
is made for each node in the join tree. The concept simply selects all data in the table
represented by the node. An enclosing concept that inherits(i.e., “uses the data”)
from all these simple concepts is then defined. The results ofthe different concepts
are joined as dictated by the join tree. The enclosing concept will also disregard the
columns that should not be considered, e.g, dummy keys. In the running example,
the final data corresponds to all the columns except those participating in foreign key
pairs. The raw data is computed by the DBMS.

After the concepts have been created, a structure definitionis created. ETLDiff
uses sorting andgrouping such that similar XML elements are coalesced to make
the resulting XML smaller (see [60]). If a supplier for example supplies many parts,
it is enough to list the information about supplier once and then below that list the
information about the different parts. Without grouping, the information on the sup-
plier would be repeated for each different part it supplies.The use of grouping and
sorting means that the order of the XML is known such that it iseasy and efficient to
compare the two XML documents.

6.2.6 Task 4: Exporting DW Data to Files

The concepts and the structure definition are then used by RELAXML when it gener-
ates the files holding the reference results and the test results. Based on the concept,
RELAXML generates SQL to extract data from the DW and based on the structure
definition, this data is written to an XML file. Since the data sets potentially can be
very large, it is possible to specify that the output should be compressed using gzip
while it is written.

6.2.7 Task 5: Comparing Data

When comparing data, there should be two data sets to consider. The desired result
of an ETL run (thereference results) and the current result (thetest results). ETLDiff
thus performs two tasks when running a test: 1) Export data from the DW, and 2)
compare the test results to the reference results and point out any differences found.
ETLDiff can output information about differences to the console or to tables in a
window as shown in Figure 6.5. The window has two tabs. In the first tab there is a
table showing all the rows missing in the test results and in the second tab there is a
table showing all the extra rows in the test results.

When comparing test results to reference results, two data sets are read from two
XML files. These XML files are read using SAX [99]. Each of the SAX parsers is
running as a separate thread. Each thread reads XML and regenerates rows as they
were in the join result that was written to XML. In this way it is possible to compare
the files part by part with a very small main-memory usage. Only two rows from each
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Figure 6.5: Window presenting differences between test results and reference results

of the join results have to be in memory at a given time (each thread may, however,
cache a number of rows). So for most use cases, the size of the data in main-memory
is measured in kilobytes. Since sorting is used before the XML is written, it is easy
to compare data from the XML files row by row.

6.3 Performance Results

A prototype1 of ETLDiff has been implemented in Java 5.0. Further, RELAXML
has been ported to Java 5.0, given new functionality, and performance-improved in a
way that has speeded up the XML writing significantly. In thissection, we present a
performance study of the implemented prototype. The test machine is a 2.6 GHz Pen-
tium 4 with 1GB RAM running openSuse 10.0, PostgreSQL 8.1, and Java 1.5.0 SE.

In the performance study, the DW from the running example hasbeen used. ETL-
Diff has automatically proposed the test (this took 1.5 seconds). The data used origi-
nates from TPC-H’s dbgen tool. Data sets with different sizes (10MB, 25MB, 50MB,
75MB, 100MB) have been loaded and a data set (which either could be test results
or reference results) has been generated by ETLDiff. The resulting running times are
plotted in Figure 6.6(a). The shown numbers indicate the total amount of time spent,
including the time used by the DBMS to compute the join result. Notice that the data
sets generated by ETLDiff contain redundancy and thus are much bigger than the raw
data (10MB in the DW results in 129MB XML before compression and 10MB after
compression).

1The source is publicly available fromrelaxml.com/etldiff/.
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Figure 6.6: Running times

Further, the created test results have been compared to identical reference results.
This is the worst case for equally sized data sets since it requires all data to be com-
pared. The running times for the comparisons are plotted in Figure 6.6(b).

As is seen from the graphs, ETLDiff scales linearly in the size of the data, both
when generating and comparing results. When generating, 19.7 seconds are used for
each MB of base data and when comparing 9.5 seconds are used. This is efficient
enough to be used for regression tests. In typical uses, one would have a data set for
testing that is relatively small (i.e., often less than 100MB). The purpose of ETLDiff
is to do regression testing to find newly introduced errors, not to do performance
testing where much larger data sets are used. When regression testing, it is typically
the case, that a single test case should be relatively fast toexecute or that many test
cases can be executed during a night. Thus, a test case shouldbe small enough to be
easy to work with but represent all special and normal cases that the ETL software
should be able to handle.

6.4 Related Work

As previously mentioned, we believe that this work is the first framework for re-
gression testing ETL tools. Daouet al. [29] describe regression testing of Oracle
applications written in PL/SQL. The test cases to re-run aresupposed to be automati-
cally found by the described solution. The method used may, however, omit test cases
that could reveal bugs [116]. In a recent paper [116], Willmor and Embury propose
two new methods for regression test selection. The regression test selection solu-
tions [29, 116] are closer to traditional combined unit and regression testing where
there exist many manually specified tests that cover different parts of the code. In
the present chapter, the result of the entire ETL run is beingtested, but in a way that
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ignores values in surrogate keys that can change between different runs without this
indicates an error. Further, the test is designed automatically.

JUnit [55] is the de-facto standard for unit testing and has inspired many other
unit-testing tools. In JUnit, it is assumed that the individual test cases are indepen-
dent. Christensenet al. [23] argue why this should not hold for software that stores
data in a database. They also propose a unit-test framework that allows and exploits
structural dependencies to reduce coding efforts and execution times. The work is
taking side-effects into consideration (such that a test can depend on the side-effect
of another) but is still considering the individual functions of the tested program, not
the entire result as the present chapter does. The main difference is that the solution
in the present chapter automatically designs the test and isspecialized for DWs.

DbUnit [32] is an interesting test framework extending JUnit for database appli-
cations. DbUnit can put the database in a known start state before any test run. Fur-
ther, DbUnit can export database data to XML and import data from XML into the
database. With respect to that, DbUnit has some similarities with RELAXML [60]
used to write ETLDiff’s XML. DbUnit can also compare if two tables or XML data
sets are identical, also if specific columns are ignored. In that, it is related to the core
functionality of ETLDiff. However, ETLDiff is automatic whereas DbUnit due to its
unit test purposes requires some programming. Like in JUnit, the programmer has to
program the test case and define the pass criterion for the test. This involves inheriting
from a predefined class and defining the test methods. When using ETLDiff, the test
case is automatically inferred. Another difference is thatETLDiff automatically will
perform correct joins – also when disregarding the join columns in the value com-
parisons. Columns to ignore must be specified in DbUnit whereas in ETLDiff they
are found automatically. A key feature of ETLDiff is that it uses the DW semantic to
automate the tests.

One paper [52] considers the problem of discovering dimensional DW schemas
(fact tables, measures, dimensions with hierarchies) in non-DW schemas. This is
somewhat related to our problem of building a join tree, but as we can assume a DW
schema and do not want to find hierarchies or measures, but only join connections,
the algorithm in the present chapter is much more efficient. Addtionally, the solution
in [52] does not handle bridge tables.

Industrial ETL tools like Informatica Powercenter, IBM Datastage, and Microsoft
SQL Server Integration Services (SSIS) offer nice facilities for debugging ETL flows
and allow ETL developers to use the testing facilities in Visual Studio, but have no
specific support for ETL regression testing, and do not generate the test automatically,
as we do.

In the implementation of ETLDiff, the data to compare is written to XML files
in a way that allows for memory-efficient and fast processing. This means that when
ETLDiff is comparing data sets, it actually compares data read from XML docu-
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ments. Much work has been done in this area, see [25, 92] for surveys. Since the
XML structure allows for a fast and memory-efficient comparison, ETLDiff uses its
own comparison algorithm to be more efficient than general purpose tools.

6.5 Conclusion and Future Work

Motivated by the complexity of ETL software, this chapter considered how to do
regression testing of ETL software. It was proposed to consider the result of the
entire ETL run and not just the different functions of the ETLsoftware. The semi-
automatic framework ETLDiff proposed in the chapter can explore a data warehouse
schema and detect how tables are connected. Based on this, itproposes how to join
tables and what data to consider when comparingtest resultsfrom a new ETL run to
the reference results. It only takes 5 minutes to start using ETLDiff. The user only
has to specify how to start the ETL and how to connect to the DW before he can start
using ETLDiff. To setup such regression testing manually isa cumbersome task to
code and requires a lot of time.

Performance studies of ETLDiff showed a good performance, both when extract-
ing data to compare from the DW and when performing the actualcomparison be-
tween the data in the DW and the so-called reference results.In typical uses, less
than 100MB data will be used for testing purposes, and this can be handled in less
than an hour on a typical desktop PC.

There are many interesting directions for future work. The structure definitions
could be optimized with respect to group by such that the resulting XML gets as
small as possible. The framework could also be extended to cover other test types,
for example audit tests where the source data sets and the loaded DW data set are
compared.





Chapter 7

RiTE: Providing On-Demand
Data for Right-Time Data
Warehousing

Data warehouses (DWs) have traditionally been loaded with data at regular time in-
tervals, e.g., monthly, weekly, or daily, using fastbulk loadingtechniques. Recently,
the trend is to insert all (or only some) new source data very quickly into DWs,
called near-realtimeDWs (right-time DWs). This is done using regular INSERT
statements, resulting in too low insert speeds. There is thus a great need for a solu-
tion that makes inserted data available quickly, while still providing bulk-load insert
speeds. This chapter presentsRiTE (“Right-Time ETL”), a middleware system that
provides exactly that. A data producer (ETL) can insert datathat becomes available
to data consumerson demand. RiTE includes an innovative main-memory basedcat-
alyst that provides fast storage and offers concurrency control.A number of policies
controlling the bulk movement of data based on user requirements for persistency,
availability, freshness, etc. are supported. The system works transparently to both
producer and consumers. The system is integrated with an open source DBMS, and
experiments show that it provides “the best of both worlds”,i.e., INSERT-like data
availability, but with bulk-load speeds (up to 10 times faster).

7.1 Introduction

Data warehouses (DWs) [58] have traditionally been loaded with data at regular time
intervals, e.g., monthly, weekly, or daily. Here, fastbulk loading techniques have
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typically been used in order to obtain sufficiently high insert speeds for the huge data
volumes. In recent years, there has been an increasing demand for having very fresh
data in DWs. Thus, new or updated data from the operational source systems has been
inserted very quickly (within seconds or minutes) into the DWs, which are commonly
referred to as “near-realtime DWs”. A more sophisticated approach acknowledges
that some data needs to be very fresh, while other data may be less fresh, and thus,
based on the freshness needs, inserts data at the “right time” into the DWs, referred to
as “right-time DWs”. Bulk-loading techniques are only efficient for relatively large
batches of data, and are thus not feasible for the single/fewrow “trickle feeds” used
in the latter types of DWs. Thus, these have had to revert to classical OLTP-style
inserts, using regular INSERT statements executed in smalltransactions. But here
the unavoidable problem is that the insert speed is not high enough (often an order of
magnitude lower than bulk loading).

There is thus a great need for a solution that makes inserted data available quickly,
while still providing bulk-load insert speeds. A lot of workhas been done on sup-
porting read-optimizedDWs, e.g. special multidimensional index structures, OLAP
servers, etc. It is, however, equally necessary to havewrite-optimized system“before”
the DW. Thus, we need a solution to asynchronously propagatedata from sources to
the DW (under some consistency constraints). Such a solution should strike the right
batch size between the two extreme forms (bulk versus singlerow) and find the right
time to move “micro batches” of data within the system. We note that data must be
inserted at the latestwhen, but not necessarilybefore, it is needed, i.e., data should be
available only on-demand. There is also a need to decouple source systems and the
DW.

This chapter presentsRiTE (“Right-Time ETL”), a middleware system that pro-
vides exactly such a solution. RiTE allows a data producer tocontinuously insert data
into a DW at bulk-load speed, but such that dataconsumers(DW clients executing
queries) get access to fresh data. To do this, RiTE takes advantage of a number of spe-
cial characteristics of DW systems. RiTE is thus targeted atsupporting oneproducer
(the ETL program) doing many INSERTs with low persistency requirements (per-
sistency can be guaranteed if needed). RiTE includes an innovative main-memory
basedcatalyst that, like a chemical catalyst, enables the insert process to be per-
formed faster and with less effort. RiTE supports a number ofpolicies controlling
the bulk movement of data based on user requirements for persistency, availability,
freshness, as well as elapsed time and CPU load. Using RiTE istransparent and re-
quires only very few changes to producer and consumer code, in most cases only the
few lines establishing database connections have to be changed.

Figure 7.1(a) shows a classical DW system with source systems, a producer, a
DW, and consumers. The black boxes show database drivers, e.g., JDBC [108]. Fig-
ure 7.1(b) shows the architecture for the same system using RiTE, with the catalyst
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Figure 7.1: Architectures for (a) a classical system and (b)a system using RiTE

and specialized database drivers. The catalyst holds data in main memory but ensures
that data is transparently available to the consumers. Datafrom the producer can then
float to the DW either via the catalyst or directly.

Performance studies of the PostgreSQL-based prototype shows that RiTE im-
proves insert time by up to an order of magnitude. Rows are transparently read from
the RiTE catalyst with only a small overhead. Thus, RiTE provides INSERT-like data
availability, but with bulk-load speeds.

The remainder of the chapter is structured as follows. Section 7.2 describes
RiTE from a user perspective. Section 7.3 describes the producer database driver.
Section 7.4 describes the catalyst. Section 7.5 describes the table function and the
consumer database drivers. Section 7.6 presents experimental results. Section 7.7
presents related work and Section 7.8 concludes and points to future work.

7.2 User-Oriented Operations

We now give short, informal introductions to the operationsthat are treated specially
by the RiTE package. These operations and other operations used internally by RiTE
are all exemplified and described in details in the followingsections. Note that other
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classical database operations that are not handled specially by RiTE can still be per-
formed.

Producer Operations The two producer operationsinsertandcommitare handled
specially by RiTE. From the user’s point of view,insert operations work as normal
inserts but are faster. Behind the scenes, RiTE temporarilykeeps the inserted values
locally at the producer side and later moves them towards theDW in bulk. The strat-
egy about when to move data in bulk is based on different policies that are explained
later. It is, however, done such that the data always is available from the DW when it
is needed for querying.

The commitoperation makes inserted data available for consumers. Butwhen
using RiTE, the user decides if committed data is written to the DW’s tables. If
this is done, the commit is called amaterialization. If the user does not have strict
persistency requirements (e.g., if the data can be re-extracted from the sources), it is
also possible to commit the data without doing a materialization which then can be
done later. This is faster, but still makes the data available for consumers. Such a
commit can be done in different ways that affect when the bulkmoving of data takes
place.

Consumer Operations For a consumer, there are also two operations that are han-
dled specially:read andensure accuracy. From the user’s point of view, aread is
done by using SELECT. Behind the scenes, transparently to the user, the read is not
necessarily just a read from tables in the DW.

The only new operation introduced by RiTE isensure accuracy. This is relevant
for a consumer that does not necessarily need data that is as fresh as possible and thus
can help the system to get a better performance. For example,it may be acceptable
for a daily status report to consider all sales data that existed 10 minutes ago but not
newer data. By using the ensure accuracy operation, the consumer is guaranteed that
it at least sees the data that existed 10 minutes ago.

7.3 Producer Side

In this section, the specialized database driver for the producer is described.

Setup The RiTE producer driver is defined by an extension of the standard Java
JDBC Connection interface. That means that to start using itfrom an existing Java
application, only the lines where the connection to the database is made must be
changed. The driver must be told which of the DW’s tables the catalyst provides
intermediate storage for (so-calledmemory tables). Inserts to these tables are then
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handled by the driver. Statements not handled specially by the RiTE driver are exe-
cuted via a traditional JDBC Connection implementation.

Insert When a prepared statement is made, the driver detects if the statement inserts
scalar values into a memory table. If so, the driver takes thevalues to insert from the
statement when this is executed and stores them in a local buffer.

Example 7.3.1 (Insert) Consider an example where the DW has two (empty) tables,
X(A,B) andY (C,D). RiTE is used such that a memory table is made forX. (This
setup is used as a running example in the chapter.) Now, assume that the producer
code with prepared statements inserts the rows(1, 1) and (2, 2) into X and (3, 3)
into Y. Before these inserts, the system has the following state where the local buffer
for X is shown to the left, the catalyst’s memory table forX in the middle and the
DW’s tables (from now on referred to as theDW tables) to the right. A double line in
the bottom of a table shows that the table is empty.
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After the inserts, the system has the state shown below wherethe two newX rows
are held in the local buffer and the newY row is in the DW tableY .
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Flush The new rows from the prepared statement remain in the producer driver’s
buffer until a commit operation is done by the producer or optionally until the pro-
ducer executes a query that should consider (uncommitted) data inserted by the pro-
ducer itself. The held rows are thenflushedto the catalyst (not the DW) in a bulk
operation.

Example 7.3.2 (Flush)Consider again the state obtained in Example 7.3.1 and as-
sume that the producer commits the data such that a flush is initiated. This results in
a state where theX rows have migrated to the catalyst.
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Lazy Commit It is also possible for the producer driver to keep rows locally after
a commit whenever apolicy defines to do so. When committed data is not flushed
immediately, we have alazy commit. When a lazy commit appears, the producer
driver records thecommit timeat which commit operation was invoked and places all
rows in the buffer in anarchivewhich holds committed, but not flushed, rows. The
archive is flushed later as explained below.

Example 7.3.3 (Lazy commit) Consider again the state obtained in Example 7.3.1.
If the producer performs a lazy commit, we get the following state whereXarch is an
archive.
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Compare this to the state obtained in Example 7.3.2. In the current example, theX
rows are not migrating to the catalyst but remain on the producer side. After a flush
is performed, the state resembles the situation of Example 7.3.2.

Requests for Data It is possible for the producer driver at the same time to have
several archives with different commit times. These archives hold committed data
that eventually should be flushed. At the latest, the flush is done when the connection
to the DW is closed, but it may also happen before. When one or more archives exist,
the producer driver sets up a background thread that listensfor requests for data from
the catalyst. As will be explained later, such a request occurs because a consumer has
a demand for fresh data. The catalyst might ask only for partsof the archived data in
which case only the requested parts are flushed. The recordedcommit times are used
to decide which parts to flush.

Example 7.3.4 (Request for data)Consider again the running example and assume
that lazy commits are used for the following sequence of events. The numbers shown
to the left are (abstract) time stamps. Before the shown events, nothing has happened.

1. The rowr = (1, 1) is inserted intoX by the producer.

2. The producer commits, resulting in the archiveXT=2
arch for X. This archive

holds the rowr.

3. The rows = (2, 2) is inserted intoX by the producer.

4. The producer commits. This results in that the archiveXT=4
arch is made forX.

This archive holds the rows.
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5. The consumer requests the catalyst to hold data forX that is maximally 2 time
units old. This means that the catalyst should at least hold the data committed
at time5 − 2 = 3. To fulfill this, the catalyst sends a request for data to the
producer. The producer then flushes the data inXT=2

arch (the only archive with
data committed at time 3). Rowr (committed at time 2) is then available from
the catalyst, whereas rows (committed at time 4) is not. This gives the state
shown below.
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Materialize Data from the archives is also flushed when the producer wishes toma-
terialize the rows such that they are written to the DW tables. This is done to make
the rows reach their final target (the DW table), to make spacefor other rows in the
catalyst, and to guarantee persistency. Persistency is notguaranteed when rows are
stored by the catalyst. In case of a crash, the rows in the catalyst will be lost. Recall
that in typical DW environments this is not a problem since the data can be reloaded
from the operational systems. When rows on the other hand have been materialized,
the usual persistency guarantees given by the DW DBMS apply.Note that the pro-
ducer thus controls the persistency guarantee since the catalyst does not do “implicit”
materializations. To make materialization possible, the RiTE producer driver extends
JDBC’s Connection class with the methodcommit(boolean) which performs a
commit operation and where the argument decides whether therows should be ma-
terialized to the DW tables before the commit operation is performed in the DW. To
make the rows ready for materialization, the producer driver first has to transfer them
to the catalyst. Note that since a materialization only happens together with a commit
operation, data held in the producer driver’s local buffer is flushed at the same time.

Example 7.3.5 (Materialization) Assume that the state is as obtained in Example
7.3.2. A materialization then gives the following state where theX rows are inserted
into the DW.
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Note that the rows are still present in the catalyst after thematerialization. However,
it is automatically ensured that a consumer only sees each row instance once (this
is explained in Section 7.5). When space is needed, the now materialized rows will
eventually be deleted from the catalyst.
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Policies Finally, data in archives is flushed when apolicy has defined that it is time
to do so. A policy is simply a function that returns a Boolean value. When the
return value of the policy istrue, the rows are flushed and vice versa. The producer
invokes the policy and checks the return value at regular user-definable intervals. By
using policies, it is for example possible to make the producer less intrusive on busy
systems by considering the load average. A possible policy is thus only to flush if the
load average for the last minute has been below 80% or if 10 minutes have passed
since the last flush.

The RiTE package includes policies 1) for flushing immediately after a commit
(this is the default), 2) for waiting as long as possible, i.e, only flush on-demand, and
3) for load-aware policy-based flushing when the load average is below some per-
centage or a certain time interval has passed since the last flush. Further, an interface
that the user can implement to define her own policies is included. The interface has
two functions: One for the policy itself, i.e., a function returning a Boolean value,
and one used to inform the implementation that the data has been flushed for another
reason, e.g., a request for data from the catalyst.

To start using lazy commit with a given policy, the user only has to define which
policy to use. Thus, it only requires one line of code to startusing a policy. The rest
is handled transparently by the RiTE drivers.

The minmax Table When rows are flushed to the catalyst, the catalyst implicitly
assignsrow IDs to the rows and returns the maximal assigned row ID to the producer
driver. The producer driver then updates a special metadatatable, called theminmax
table, in the DW. The minmax table holds data about the minimal and maximal row
ID for rows that a consumer should get from the catalyst. Notethat these row IDs
are handled completely transparently by the RiTE software and are never seen by the
producer or consumer code. So after a flush, rows with new row IDs are available and
the information about the maximal available row ID is updated. As explained later,
this only affects later consumer queries. Already running queries are unaffected and
will not see the new rows that were committed after they started.

After a materialization, the producer driver similarly updates the information
about the minimal row ID of rows that a new consumer query should get from the
catalyst. The reason is that rows with lower row IDs now, after the materialization,
have migrated to the tables in the DW.

Example 7.3.6 (The minmax table)Consider again Example 7.3.2 where data was
flushed. Assume that the row(1, 1) is assigned row ID 1 and the row(2, 2) is assigned
row ID 2. After the flush, the minmax table has the content shown to the left below.
After the materialization in Example 7.3.5, it has the content shown to the right.
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min max
1 2

After Ex. 7.3.2

min max
3 2

After Ex. 7.3.5

Note that after the materialization, the minmax table tellsthat consumers should get
the empty set of rows from the catalyst since no row has an ID such that both ID≤ 2
and ID≥ 3 hold. The consumers should now get the rows from the DW table instead.

7.4 Catalyst Side

We now describe the catalyst. The purpose of the catalyst is to provide fast, inter-
mediate storage for data. It does so by storing rows in main memory. It can serve
one producer driver and many consumer drivers and their table functions at the same
time. Note that the consumer driver itself does not fetch rows. Instead it (trans-
parently to the user) informs the catalyst about which rows should be readable by a
table function. A table function is the remedy that makes rows accessible in the DW.
The catalyst is independent of the used DBMS as its sole functions are to 1) store
rows for a producer, 2) deliver them to a table function, and 3) delete them when
they are marked as unused (i.e., no consumer currently uses them and they have been
materialized).

The Row Index The catalyst allocates a user-adjustable amount of memory for
each memory table and uses this to store the memory table’s rows. Whenever a
producer driver adds rows, the rows are implicitly assignedrow IDs by the catalyst.
All row IDs are taken from the same sequence such that there are no duplicates among
row IDs for different memory tables. The catalyst maintainsa row indexthat is used
to map between row IDs and start and end positions for the dataof the rows. The
row IDs are only stored in the row index, not together with thedata of the rows.

(1,1) (2,2)

ID=2ID=1

...

Example 7.4.1 (The row index)Consider again Example 7.3.2
and assume again that the row(1, 1) is assigned the row ID 1 and
the row(2, 2) the row ID 2. Then the row index will be as shown
to the right. (Note that although the row index here is shown as a
list, a tree-based index is used in the implementation.)

When a table function reads data, it gives the minimal and maximal needed
row IDs (recall that these were made available in the minmax table by the producer
driver). By using the row index, it is then very easy for the catalyst to find the chunk
of memory to transfer to the table function.
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The Time Index When a producer driver adds rows, it must tell the catalyst when
the rows were committed at the producer side. For each memorytable, the catalyst
maintains atime indexthat for a commit timet maps to the row ID of the last row
that was committed at timet. When a producer driver adds rows that are not yet
committed (this is an option for a producer that needs to query its own uncommitted
data), it gives them the special time stamp∞.

Example 7.4.2 (The time index)Consider again inserts into the memory tableX
in the running example and assume that the rowsr1 andr2 are committed at timet1
and the rowsr3 andr4 are committed at timet2. Assume that the rowrn gets the row
ID n. The time indexτ is then a partial function from time stamps to row IDs such
that τ(t1) = 2 andτ(t2) = 4.

A producer driver must transfer rows in a way where for a single memory table,
all rows that were committed at timet1 are flushed in one operation and before rows
committed at timet2 for t1 < t2. It therefore holds that when a producer driver adds
uncommitted rows, it must already have added all its committed rows since they have
commit times less than∞. On the other hand, when new rows with a time stamp
t 6= ∞ are added, all rows with the time stamp∞ can implicitly be assumed to also
be covered by this new commit and can have their time stamp updated tot. In case
of a rollback, the catalyst simply has to discard all rows with the time stamp∞. The
chunk of memory that holds these rows is easy to identify by using the time and row
indexes.
Ensuring accuracy. A consumer can tell the catalyst to ensure that it holds the data
with a certain accuracy (i.e., the data that was committed bythe producer a certain
time interval ago) for a subset of the memory tables. The default is that the catalyst
should have all data, but with a one-line change in the consumer code, the consumer
can ease the work of the producer and catalyst by only requiring data of a certain
freshness.

When the catalyst receives such a wish, it sees if this can be fulfilled with the
data it currently has. If the producer does not do lazy commits, this is trivially true.
The catalyst knows whether the producer driver has connected to listen for requests
for data. If it has not, it can be assumed that the producer driver does not do lazy
commits. If the producer on the other hand uses lazy commits and the catalyst is
instructed to ensure that it at least has data committed at timet for the set of memory
tablesM , it must ensure that it has the data or request the producer driver to flush that
data. This is the case in Example 7.3.4 where the producer is requested to flush data
committed at time 3. If the catalyst already has rows with thetime stampt′ where
t ≤ t′ 6= ∞ for all m ∈ M , it also has the committed data fort for m ∈ M due to
the flush order rule explained above. It can even be the case that for everym ∈ M ,
the catalyst has data committed at timet′ > t. This data can also be used as the
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operation is meant to ensure that the catalyst’s data is not older than the data that was
committed at the given time stamp.

It might, however, be the case that the catalyst has no data committed at or after
the wished time stampt for (some of) the memory tables inM for which accuracy
should be ensured. When this happens, the catalyst finds the tables that do not have
sufficiently accurate data and requests the producer driverto transfer data for these.
It might then be the case that for a memory tablem no rows are held in the producer
driver’s archives in which case the producer driver sends anempty updatefor m, i.e.
adds and commits zero rows. For the catalyst, this is still valuable information as the
time index can be updated and the accuracy ensured.

Example 7.4.3 (Empty update)Consider again Example 7.4.2 and assume that no
further rows are inserted intoX, but that there is a lazy commit at timet3. If the
catalyst sends a request for data committed at timet3, the producer driver will make
an empty update such that the time index maps the time stampt3 to the row ID 4:
τ(t3) = 4. Note that we then haveτ(t2) = τ(t3) since no rows were added toX
between the commits att2 andt3.

So if the catalyst is instructed to ensure that it at least hasall data committed at
time t for the memory tablesM , it goes through Algorithm 7.1 whereC(m, t) =
{t̃ | t̃ ∈ T (m) ∧ t̃ ≥ t} andT (m) is the set of commit times different from∞ in
the time index for memory tablem.

Algorithm 7.1 Find time stamp to consider
Input: A time stampt and a set of memory tablesM

1: for m ∈M do
2: if C(m, t) = ∅ then
3: Request from the producer driver all the unflushed data form that was com-

mitted before or at timet
4: Ωm ← {t}
5: else
6: Ωm ← C(m, t) ∪ {t}
7: return max

(⋂

m∈M Ωm

)

The return value of Algorithm 7.1 is the newest time stamp forwhich data can
be considered. That means that if the algorithm is invoked for a time stampt and a
set of of memory tablesM and returns̃t, it holds that̃t ≥ t and that the catalyst now
holds all data that was committed at timet̃ for all m ∈M . Line 2–3 of the algorithm
ensure that the catalyst at least has all the (possibly empty) data sets committed at (or
before) timet for eachm ∈M . So we know that data from timet can be considered.
But if all m ∈ M have newer committed data available, the algorithm picks the
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maximum time stamp that everym has data for. The found time stamp is returned
to the consumer driver which (transparently to the user) ensures that it is used when
data is read from the catalyst the next time.
Reads.When a table function reads data, it must also give the catalyst a time stamp
that decides what data to include in the result. The time stamp is needed to ensure
that data that is too new is not included in the result set as illustrated in the following
example.

Example 7.4.4 (Problems innot using the time stamp) Recall the setup for the run-
ning example but now assume that both tablesX andY have memory tables. Now
consider a scenario where the producer uses lazy commit and the following events
take place. (The numbers show how many minutes have passed since the system was
started).

1. The producer insertsX andY rows and commits.

2. Data forY is flushed.

3. The producer insertsX andY rows and commits.

4. Data forX is flushed.

5. A consumer wants 4 minutes accuracy forX andY .

The time stamp to use is then for the first commit (4 minutes ago). Note that
the last flush forX was 1 minute ago (so all committed data forX is available in
the catalyst) while the last flush forY was 3 minutes ago (so only data committed 4
minutes ago is available in the catalyst). If the catalyst did not use the time stamp and
naively returned all data, it would return possibly inconsistent data sinceX contains
data committed 1 minute ago butY does not.

So by using the time stamp, the catalyst ensures that a consistent snapshot of the
committed data is used when returning data to a table function. Based on the time
stamp and the time index, the last row to include is found. Thelast row returned
is the row with the biggest row ID that is less than or equal to the minimum of the
requested max row ID and the row ID found from the time stamp. Formally, if the
minimal requested row ID isimin, the maximal requested row ID isimax, the time
stamp ist, and τ̂(t) is a function giving the time index mapping from the biggest
time stamp smaller than or equal tot to a row ID or−1 if this is undefined, then all
returned rows have their row IDs in the set

∆ = {n | n ∈ N, imin ≤ n ≤ min(imax, τ̂(t))}
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Note that the number of returned rows may be different from|∆|. For a single mem-
ory table it is not given that it has all (or even any of) the rows with row IDs in
∆.

If the catalyst has not been instructed to ensure a certain accuracy, the table func-
tion will use a special time stamp that says that all committed data must be considered
(i.e., the catalyst must hold data committed at or before thecurrent time and the time
stamp is set to the current time).

Registering Rows as Being Used A consumer driver canregister rows with row
IDs in a given interval as being used to ensure that they are not deleted from the
catalyst while a consumer query should be able to read them there. To register rows
as used, corresponds to getting a shared lock. Rows that are registered as being used
cannot be deleted from the catalyst. Note that it is not enough to consider rows
currently being read as used. A single consumer query may need data from different
memory tables or from the same table more than once. In between two reads, the
catalyst should not have deleted rows that were within the desired interval of rows
in the first read. Therefore, rows should be registered as used before the query starts
and deregisteredafter it finishes (the consumer driver does this automatically and
transparently as will be explained in Section 7.5).

Only rows that are not already materialized can be registered as used by a con-
sumer. Already materialized rows, can be read from the DW tables and should not
block the catalyst from freeing memory. Rows can, on the other hand, be materi-
alized while they are still registered as used. When this happens, the rows will for
some time be available both in the DW and in the catalyst. But due to the consumer
driver’s use of the minmax table, a consumer will only see oneinstance of each row.
This is explained in Section 7.5.

When the producer has performed a materialization, the producer driver informs
the catalyst about this. The catalyst uses this to decide which rows it can delete.
Rows that are materialized and not registered as being used,can safely be deleted
such that the memory can be reused. Deletion is done automatically by the catalyst
when more space is needed. Since materialization happens together with commit,
it is the case that the rows to materialize have row IDs withina given interval. It
is therefore also the case, that the catalyst only has to freeone continuous block of
memory for each memory table and there is no need to use maps over free regions or
similar techniques.

7.5 Consumer Side

In this section, the consumer driver is described. Like the producer driver, the con-
sumer driver is defined by an extension of the JDBC Connectioninterface. This
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extension adds methods for defining how accurate data read from the catalyst has to
be. Further, the consumer driver (transparently to the user) ensures that rows are not
deleted from the catalyst while they are needed by a consumerquery.

From the consumer’s point of view, the consumer driver is executing queries
with the READ COMMITTED isolation level. To implement this such that it works
as expected for both data in the DW and in the catalyst, the driver actually executes
queries towards the DW in the REPEATABLE READ isolation level.

Registering Rows as Used Before a query is executed, the consumer driver has to
register row IDs as used. As explained in the previous section, this is done to ensure
that the rows that exist in the catalyst when the query starts, continue to exist while
the query is executed. The row IDs to register as used are those in the range defined
by the minmax table, i.e., from the first row that is not materialized when the query
starts to the last row that is committed when the query starts. To make sure that rows
will not disappear from the catalyst while a query is running, the consumer driver will
whenever a method executing a query is invoked, first read values from the minmax
table and try to register them with the catalyst. This might fail if a materialization
is done between the time the consumer driver reads the valuesand the time it gives
them to the catalyst (recall that the catalyst only allows row IDs of non-materialized
rows to be registered as used). In that case, the consumer driver ends the transaction,
starts a new transaction and reads values from the minmax table and tries to register
them. To avoid starvation problems, the catalyst gives priority to consumers retrying
to register values. When the values from the minmax table areregistered, the query
is executed. After the query is executed, the consumer driver deregisters the values.

Ensuring Accuracy of Read Data The consumer driver also provides the con-
sumer with methods that determine how old data from the catalyst is allowed to be.
This is relevant when the producer uses lazy commits. A consumer can then explicit-
ly tell the catalyst how accurate data it needs. If data of thegiven accuracy or newer
data already exist in the catalyst, the producer and the catalyst are released from the
burden of flushing data. If the catalyst, on the other hand, does not hold sufficiently
fresh data, it requests the producer to flush the needed data.But this happens on-
demand and only for the needed data. Note that if these methods are not used, the
default is that the catalyst holds all committed data.

Concretely, the JDBC Connection interface is extended withmethodsensure-
Accuracy(...) that take a time interval and memory table names as arguments.
When these are invoked, the consumer driver passes the wanted accuracy to the cata-
lyst that returns a time stamp for which it has the committed data and that is accurate
enough. The value is stored in the DW in a session variable such that it is available
for the table function.
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Reading Data with the Table Function The consumer driver itself does not read
rows from the catalyst. Instead the DW reads rows through a table function, i.e., a
stored procedure that returns a set of rows with a structure like rows in a table in the
DW. The table function takes as arguments the name of the memory table to read data
for and the minimal and maximal row ID of rows to read. When thetable function
wants to read rows from the catalyst, it also gives the catalyst a time stamp that
defines how fresh the data must be (as explained in Section 7.4). Although the row
ID arguments can be used to limit the result set in other ways,the normal usage of the
minimal row ID is to avoid that the catalyst returns rows thatare already materialized
when the query begins. This value is defined such that rows with lower row IDs have
already been materialized and should be read from the DW. Only from the found
value and up, the rows should be read from the catalyst. The normal usage of the
maximal row ID is to avoid that the catalyst returns rows thatare not committed
when the query begins. It is defined to mean that rows with a greater row ID are not
committed yet. If this value is read once and reused, it does not affect the query if
more rows are committed later.

Example 7.5.1 (Use of the minmax table)Consider again the state of the minmax
table after the materialization in Example 7.3.6 and assumethat the producer inserts
and commits two rows that get the row IDs 3 and 4, respectively. In the minmax table,
themin value is then 3 and themax value is 4.

A consumer driver now reads these values from the minmax table and success-
fully registers them. When the table function is given thesevalues, it reads the two
new rows from the catalyst. Rows with a row ID less than 3 should not be read since
they were already in the DW table when the query started. Now assume that the con-
sumer’s query is expensive and involves reading data from the memory table twice.
After the first time data is read, but before the second time, the producer inserts and
commits some new rows that get row IDs greater than 4. These rows did not exist
when the query started. To avoid that the query sees them, thetable function is still
given the previously read values (i.e.,min = 3 andmax = 4).

Finally, assume that while the consumer’s query is executing, the producer per-
forms a materialization such that all the new rows also become available in the DW
table. The consumer query is still able to read the rows from the catalyst (since they
are registered as used and thus cannot be deleted). The consumer query does not get
the same rows from the DW table (since it is running in REPEATABLE READ mode
and the rows were not in the DW when the query began). So the consumer sees every
row that existed when the query began exactly once. The rows that were committed
after the query began are not seen.

Transparency To make these things transparent to the end user, a view over aDW
table and its associated memory table can be defined. If the view definition uses
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the minmax table directly, we find the same rows in the view every time the view is
used within one query (recall that the consumer connection is put in REPEATABLE
READ mode). So for each DW table for which a memory table also exists, a view
should be defined as

CREATE VIEW v AS SELECT * FROM dwtable UNION ALL
SELECT * FROM tablefunction(’dwtable’, (SELECT

min FROM minmax), (SELECT max FROM minmax))

If the view v is used instead ofdwtable in queries, the end user does not have
to think about if rows are read from the tables in the DW or fromthe catalyst. Since
the consumer driver behind the scenes is using the REAPEATABLE READ isolation
level, a single query that uses the view many times sees the same values from the
minmax table and thus the same set of rows in the view. But the consumer driver
starts a new transaction for each query and some rows might have been updated when
a query is re-executed. In other words, non-repeatable reads are possible such that
the isolation level in effect is READ COMMITTED as promised by the driver.

7.6 Performance Study

Setup We now present a performance study of the RiTE prototype. Theprototype
(www.cs.aau.dk/∼chr/RiTE) consists of 1) Java JDBC database drivers for producers
and consumers, 2) the catalyst (Java), and 3) a C implementation of a PostgreSQL
table function. The prototype shows a working solution for aDW based on Post-
greSQL [94] version 8.1 running on a Linux x86 platform. However, the applied
principles are general and could be used for most DBMSs. The catalyst is completely
DBMS-independent while the JDBC drivers have few (marked) PostgreSQL depen-
dencies. The table function is, of course, highly dependenton the hosting DBMS
platform. The experiments have been carried out on a 3GHz Pentium 4 PC with
3.2GB RAM and four SATA disks of which one is used for DW data, one for Post-
greSQL’s write-ahead logs, one for source data and one for binary executables and
swap area. The PC is running Ubuntu Linux 6.10, Java 6SE, and PostgreSQL 8.1.4.
The PostgreSQL configuration can be found at www.cs.aau.dk/∼chr/RiTE. We sim-
ulate a producer filling a fact table. The source data originates from TPC-H [110],
with the schema modified to a star schema. Rows are inserted into the typical fact
table lineitemwith 6 integer columns (custkey, datekey, orderkey, partkey, suppkey,
andquantity).

Long Transactions We first consider the performance when inserting many rows
into one table with insert statements. We consider a producer application, both when
using RiTE and the traditional JDBC driver, and compare thisto applications that load
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Figure 7.2: Performance results

the same data set by doing multirow inserts with JDBCbatchesand bulk loading,
respectively. Prepared statements are used where applicable. The values to insert
are read from a text file. The producer runs in one long transaction and commits
after the last insert. The same producer application is usedthroughout, with only the
lines setting up the DW JDBC connection and doing the final commit changed. A
suitably modified JDBC application is used to test JDBC batches with a batch size of
10,000 rows. Bulk loading is done by letting a modified application write the data to
a comma separated file and then let the PostgreSQL server readthe file directly.

The graph shown in Figure 7.6(a) shows the results, which are9,646 rows/second
(traditional JDBC driver), 17,088 rows/second (JDBC batches), 49,878 rows/second
(RiTE with materialization), 56,846 rows/second (bulk loading), and 98,723 rows/sec-
ond (RiTE without materialization). As the systems scales linearly, the speeds are
based on the line slopes. The best throughput is obtained when using RiTE without
materialization. The throughput is then 74% higher than forbulk loading.

Short Transactions The experiment is now repeated, but with commits for every
10,000 rows. As bulk loads do not commit during the load, theyare not used. The
results plotted in Figure 7.6(b) show that JDBC’s performance is not affected. For



132 RiTE: Providing On-Demand Data for Right-Time Data Warehousing

JDBC batches, the throughput drops slightly (to 16,841 rows/second). With RiTE,
the producer can now insert 47,686 rows/second with materialization and 90,356
rows/second without materialization. Similar results areobtained for commits for
every 100,000 rows.

Influence from a Consumer The 10,000 row commit experiment is repeated, but
this time a consumer application simultaneously performs the querySELECT SUM
(quantity) (reading all rows) on thelineitem table (which has a memory ta-
ble when using RiTE). The query is re-executed right after returning its results, so
the system is constantly loaded. The results plotted in Figure 7.6(c) show that the
JDBC application can insert 7,451 rows/second whereas JDBCwith batches can in-
sert 10,862 rows/second. For RiTE, the producer can insert 22,437 rows/second with
materialization and 54,111 rows/second without materialization. Thus, performance
is affected, but the relative advantage of RiTE remains.

Read Performance We now compare how fast data can be read from a DW table
and a memory table. The data sets used in the previous experiments are loaded once
(into a memory table or a DW table, depending on what is being tested). Then all rows
are read 6 times from PostgreSQL’s terminal and the time usages measured. The first
recorded time usage is not considered as this is used to let PostgreSQL buffer the data
to make fair comparisons. The performance results are plotted in the shown graph.
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From the slopes of the lines, we estimate that the
system reads 219,168 rows/second from a non-
memory (but buffered) table whereas it reads
182,786 rows/second from a memory table. The
difference is due to that when data is read from a
memory table, type conversions from Java types
to the host machine’s native types are performed
and data is transferred from the catalyst to the
DBMS. There is thus a small overhead for RiTE
reads.

Lazy Commit Delays We now consider a producer that constantly inserts rows
and commits once per second. The producer uses lazy commit and its flush pol-
icy is to flush when the system load is below 70% or 20 seconds have passed since
the last flush. While the producer runs, a load simulator generates randomness in
the CPU load. In the shown graph, the dotted line shows the CPUload (to be read
relatively to the leftY axis) at different times while a cross at(x, y) shows that
data committed at timex waits y seconds before it is flushed (wherey should be
read relatively to the rightY axis). The solid horizontal line shows where 70%
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is on the leftY axis and where 20 seconds is on the rightY axis, i.e. it shows
the “limits” for the policy. It is seen that at first, the CPU load is below 70% and
data is flushed with no delay after a commit. After appx. 12 seconds, the load gets
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higher than 70% and there are up to 20 sec-
ond delays between commit and flush. When
a flush is done, all committed data is flushed
(notice how the crosses lie on lines with a
negative slope). After appx. 82 seconds, the
CPU load gets below 70% and data is flushed
before 20 seconds have passed since the last
flush (see the short line of crosses around 80
seconds). Also when the producer terminates,
it flushes all data, so the delay is below 20 sec-
onds.

Summary From the experiments it is clear that RiTE provides a significant perfor-
mance increase: between 4 and 10 times for inserts and 2 to 6 times for inserts with
concurrent reads.

7.7 Related Work

The issue of moving data from one place to another has a long tradition in both re-
search and industry. The ETL process may be implemented in a materialized or vir-
tual way. Linking external data sources into a target systemis discussed in the context
of federations. Using wrapper-like technologies [97], DW systems gain access to the
underlying data. Selection and transformation routines are directly applied to the
external data; the result directly goes into the DW tables. Materialization implies
the physical movement of data into the target system. Techniques are ranging from
import of flat files to (a)synchronous replication [83]. While replication may con-
ceptually provide functionality somewhat similar to RiTE,current replication tech-
niques are (unlike RiTE) limited to simple transformationsand certain (cooperative)
source systems, and put additional overhead on the data sources. In comparison,
RiTE takes advantage of the special characteristics of right-time DWs, and can thus
provide quickly-available data at bulk-load insert speeds. This can be provided for
any type of source system and any type of transformation, as these parts are handled
by the ETL code. With RiTE, the producer decides when to make data available
to all consumers and when to move data around (by using the commit materialize
operations, respectively).

From a conceptual point of view, incorporating external data into a single DW
database requires a consistent global view. Starting with database snapshots [1], sig-
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nificant research was devoted to that problem in recent yearsunder the notion of
materialized views [47]. Initial work like [26, 126] investigated methods to establish
a consistent view over multiple sources or updating multiple views with data coming
from a single source [41]. All these mechanism are orthogonal to RiTE and may
be applied on top of our middleware. More closely related is research documented
in [98] rolling global DW states forward to certain points intime. However, this
approach requires an explicit trigger while our approach isfully demand-driven. A
similar approach with implicit instructions based on the notion of policies is outlined
in [46]; in contrast, we focus on the efficient implementation (catalyst) in combi-
nation with a transactionally consistent view on the data source and thus go much
further.

The state of the art of continuous loading is summarized in [63]. Compared to
that, RiTE gives the producer full control over the units of work to commit together
and is flexible with respect to persistency guarantees versus load speed. Further,
RiTE is more flexible with respect to freshness of data and offers lazy commit which
can make data available in the DW on demand.

The MySQL [71] DBMS offers a memory storage engine for fast, but non-
persistent, storage and access. Unlike MySQL, RiTE has functionality for migrating
rows from memory to the database (i.e., materialization). The MySQL main mem-
ory storage engine also obviously does not scale to DW data volumes. Additionally,
RiTE allows rows to be added by while other rows are read, whereas MySQL uses ta-
ble locking when rows are inserted into a memory table. MySQLalso offers INSERT
DELAYED syntax where many inserts can be bundled and writtenin one block when
the target table is not in use. This holds back INSERT data similarly to RiTE, but
in RiTE the producer controls when to make the rows available(at commit time).
INSERT DELAYED is slower than normal INSERT if the target is not in use and
should be used carefully. In contrast, RiTE provides a speed-up for the producer also
when no consumers exist.

7.8 Conclusion and Future Work

Motivated by the need for a solution that makes inserted dataavailable quickly, while
still providing bulk-load insert speeds, this chapter presented the middleware RiTE
(“Right-Time ETL”). A data producer (ETL) can insert data that becomes available
to data consumers on demand. To make this possible, RiTE introduces an innovative
main-memory based catalyst and supports a number of policies that control the bulk
movement of data based on user requirements for persistency, availability, freshness,
etc. RiTE works completely transparently to both producer and consumers. A pro-
totype has been integrated with an open-source DBMS, and experiments have shown
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that RiTE provides “the best of both worlds”, i.e., INSERT-like data availability, but
with bulk-load speeds (up to 10 times faster).

There are many interesting directions for future work. Logging could be added to
the catalyst such that persistency guarantees can also be given when materialization
is not done. Possibilities for letting rules provide transparent updating and deletion of
rows inserted into memory tables would also be relevant. Fast inserts could then be
performed on the fly and a data cleansing procedure could correct mistakes or delete
bad rows before materialization. The catalyst could also beimplemented as a module
in the underlying DBMS since an even better performance could be obtained when
no repetitive type conversions from Java types to the DBMS’ native types would have
to take place then. A related task is to allow indexes and constraints to be declared
on memory tables.





Chapter 8

Summary of Conclusions and
Future Research Directions

This chapter summarizes the conclusions and directions forfuture work presented in
Chapters 2–7 and Appendix A.

8.1 Summary of Results

This thesis is about aspects of specification and development of data warehouse tech-
nologies for complex web data. The work that led to this thesis was primarily done in
relation to the European Internet Accessibility Observatory (EIAO) project for which
a DW for accessibility data and supporting DW technologies were specified and de-
veloped. The thesis has thus among other things presented how (accessibility) data
about web resources can be modeled in a DW, how to handle OWL data efficiently,
and how to do flexible import and export of relational data viaXML. As the source
data and the way it is fetched may change frequently on the Web, regression test
of ETL software is very relevant in a web setting and the thesis also presented a
framework that makes regression test of ETL software easy tostart. The thesis also
proposed a solution for how to make data available in a DW on demand while pre-
serving the speeds from bulk loading at regular intervals. In a web setting where data
constantly becomes available from online resources, this makes it possible for DW
users access the newest data immediately instead of having to wait for a load to occur.
The developed technologies were all made in a general general way and although the
work was done in relation to the EIAO project, the developed technologies can thus
also be applied in other environments. In the following, we go through each of the
presented chapters and summarize the most important results.

Chapter 2 surveyed the possibilities for using open source BI products as of End
2004. Considering the fact that use of open source BI tools inindustry is not common
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while, e.g., open source web servers are used extensively inindustry, it was interest-
ing to investigate the possibilities for using open source BI products. Further, only
open source products were to be used in the EIAO project. The chapter presented
some of the commonly used open-source licenses. Then three Extract-Transform-
Load (ETL) ETL tools, three On-Line Analytical Processing (OLAP) servers, two
OLAP clients, and four Database Management Systems (DBMSs)were considered
and evaluated against criteria relevant to the use of BI in industry. The chapter con-
cluded that the DBMSs are the most mature of the tools and applicable to real-world
projects. On the other hand, it was concluded that the ETL tools were not mature and
in general not ready for use in industry.

Chapter 3 presented EIAO DW release 1 (from Mid 2006) which isa general and
scalable web warehouse built to make analysis of complex data about (in)accessibility
of web resources easy, fast, and reliable. This included to calculate complex aggre-
gation results giving a number describing the accessibility of web resources. EIAO
DW is believed to be the first general and scalable DW for accessibility data. The
chapter gave a brief introduction to the field of accessibility and to the entire archi-
tecture used in the EIAO project. Then the conceptual, logical, and physical models
were presented. These are made such that it is easy to add new accessibility test types
since no schema changes are required for this. The ETL procedure for EIAO DW ex-
tracts data to insert into the DW from RDF source data and was also presented. Bad
performance when extracting the RDF based source data is, however, a problem for
the used solution.

Chapter 4 presented 3XL, a proposal for how to store very large Web Ontology
Language (OWL) graphs efficiently by making a specialized database schema for the
data to store. This was motivated by the previous experiences with performance prob-
lems with large RDF data sets in general schemas. 3XL focuseson the subset of RDF
graphs that are also OWL Lite graphs since they have some convenient characteristics
that are used for the schema generation. The chapter presented how each of the sup-
ported OWL constructs is reflected in the specialized schema. In contrast to a generic
schema with few large and narrow tables, 3XL has many and widetables. Further, the
chapter presented how addition of data is handled in 3XL as well as how results for
queries in the form of triples are found by means of SQL queries. The chapter also
presented a theoretical analysis that showed that 3XL inserts much fewer rows than
a solution using a generic schema. This results in less storage overhead from rows.
In a presented example with data about107 instances, a specialized schema created
by 3XL required 2.89GB storage (or 10.34GB if so-called multiproperty tables were
used) whereas a generic schema required 11.79GB storage.

Chapter 5 investigated automatic and effective bidirectional transfer between re-
lational and XML data. This was motivated by the increasing exchange of relational
data through XML based technologies such as web services. Toset such exchange
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up manually is cumbersome and a lot of hand-coding is needed.As a remedy to
this situation, the chapter presented RELAXML where the user must only specify
the structure of the XML and what data to exchange. The chapter presented which
conditions must be fulfilled to make it possible to insert theexported data into a new
database or to be able to detect changes made to the XML (by only considering the
original database and the XML document) and update the database to reflect these
changes. Further, the chapter presented technical solutions for detecting problems
with the data (e.g., inconsistent updates and dead links referencing missing data) and
algorithms used in the implementation of RELAXML. A performance study showed
that the solution has a reasonable overhead compared to specialized, hand-coded so-
lutions.

Chapter 6 considered regression test of ETL software. ETL software tends to be
complex and error prone and may often be changed to increase performance or to
handle changed data sources. Regression test is thus very useful for ETL software
but traditionally it has required large manual efforts to set up. The chapter pointed
out crucial differences between testing in “normal” software development and ETL
development and, based on these, the tool ETLDiff was presented. The chapter pre-
sented how ETLDiff analyzes the DW schema and detects which parts of the data
should not change between ETL runs on the same source data. Based on the analysis
and optional user specification about what data to consider,ETLDiff compares test
results to previous test results or other reference resultsand points out differences.
When ETLDiff is used, a regression test can be set up in minutes instead of in days
as when manual coding is done. The chapter also presented a performance study of a
prototype of ETLDiff. The results showed that the running time scales linearly in the
data size and that the solution is efficient enough to be used for regression testing on
a desktop PC.

Chapter 7 investigated how to insert data into so-called right-time DWs. Tradi-
tionally, data has been bulk loaded into DWs at regular intervals but recently it has
become popular to insert new data as soon as it appears by using traditional SQL IN-
SERT statements. This makes data available quickly, but performance suffers when
the data amounts grow as when, e.g, click-streams are considered. There is thus a
need to be able to make data available quickly while still preserving a high insert
performance. The chapter presented the middleware system RiTE that provides such
a solution which works transparently to both consumers and the producer. When
RiTE is used, data can be inserted quickly by a producer and become available to
consumers exactly when needed. The chapter presented how RiTE does this by using
a local buffer at the producer side which is flushed when needed and by introducing a
novel main-memory based catalyst that it is fast to insert data into and which can be
accessed transparently to the user from the DW. Further, thechapter presented how
movement of data between the local buffer, the catalyst, andthe DW is supported
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in many different ways and how it is ensured that the client sees consistent data (i.e.,
how transactions are supported). The chapter also presented experiments that showed
that a prototype of RiTE provides INSERT-like data availability, but up to 10 times
faster, i.e., with bulk-load speeds.

Appendix A presented the conceptual model for release 2.0 (from Mid 2007) of
the EIAO DW. Compared to the conceptual model presented in Chapter 3, several
changes have occurred to reflect the changed requirements and available data from
the entire EIAO project.

The thesis has thus presented aspects of data warehouse technologies for complex
web data. The work has primarily been done in relation to the EIAO project for which
EIAO DW has been developed and only open source software has been used. But the
developed technologies are general and can also be applied in other DW projects.

8.2 Research Directions

Several directions for future work remain for the work presented in this thesis. To
monitor the development and progress for open source BI software seems to be as
relevant as ever. New products and projects are launched andexisting products ex-
tended. And although the price for buying commercial solutions may not be a prob-
lem for big enterprises, it matters for small companies. Butwith open source prod-
ucts, the path to start using BI may become easier (i.e., cheaper) to follow. So in the
future, complete open source BI solutions should be made available to organizations
starting to use BI.

The development of EIAO DW described in Chapter 3 continues for the upcom-
ing 2.1 and 2.2 releases. In these releases, the Observatory(and thus also the DW)
will among other things have support for results for PDF filesand JavaScript. Release
2.2 will be put into large-scale production and deliver monthly access to accessibility
evaluations of 10,000 European web sites.

Several interesting directions exist for the 3XL system presented in Chapter 4.
First of all it should be implemented and used such that practical experiences can be
gained. Further, the design could be extended to support more or all of the OWL Lite
constructs. It would also be very useful to add support for a query language in a way
that exploits the specialized schema.

For RELAXML described in Chapter 5 there are also interesting directions for
future work. It seems attractive to investigate how the concepts that define what data
to export/import and the structure definitions that define the structure of the XML
can be made even more flexible. For example, it could be considered to introduce
parameterized concepts that can then be used as a single element in another concept.
Further, the possibilities for generating and compiling specialized code on the fly for
a given concept and structure definition should be investigated. By doing that it may
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be possible to reduce or even get rid of the overhead from using a general tool as
RELAXML compared to a hand-coded specialized solution.

Also with respect to testing of ETL software there are interesting directions for
continuations of the work in Chapter 6. In general it is interesting to move agile
methods (including continuous testing) into the BI field andthe possibilities for this
should be investigated. With respect to ETLDiff, it would beinteresting to extend the
tool to support other kinds of tests such as audit tests wherethe source data set and
loaded data set are compared.

As the acceptable delays before insertion of new data into the DW get smaller
and smaller and data sizes bigger and bigger, there is an increased need for a tool like
RiTE presented in Chapter 7. This makes it interesting to make it perform even better,
for example by implementing it as a specialized module for the host DBMS instead
of as a general Java module as now. It could also be exciting toprovide traditional
DBMS features such as possibilities for updates and deletesof the databefore it
reaches the DW as well as provide indexes etc. Also logging seems very attractive.
Now RiTE does not give persistency guarantees before the data has beenmaterialized
to the underlying DW. But with RiTE support for logging, it would be possible to
provide such guarantees while still having an extremely good performance.

In the future more projects using data warehouses with web data or web metadata
will appear. It would be beneficial to have a common way to model web resources
in DWs such that data from different sources easily could be compared and shared.
It also seems very attractive to be able to integrate dynamicdata from the Web into
a DW by having virtual dimensions or fact tables over resources from the Web such
as RDF documents, XML documents, web services, etc. To make DW data available
in web format “views” such as RDF is also an interesting idea.In this way, the
Semantic Web vision may use the huge amounts of knowledge available in DWs and
do reasoning and automatically find new knowledge.
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Appendix A

Conceptual model for EIAO DW
Release 2

In this appendix, the conceptual model for the data warehouse EIAO DW release 2
is described. EIAO DW is a data warehouse that holds results from the European
Internet Accessibility Observatory (EIAO) project. Theseresults are mainly about
the accessibility to disabled users of web resources that are automatically crawled and
evaluated by other parts of the EIAO Observatory. However, the results also include
statistics about technologies used by and linked to from thetested web resources.

A.1 Introduction

A.1.1 Brief Project Description

The overall objective of the project is to contribute to better eAccessibility for all
citizens and to increase use of standards for on-line resources. The project will be
carried out as part of the Web Accessibility Benchmarking cluster (WAB) together
with the projects SupportEAM and BenToWeb.

The project will establish the technical basis for a possible European Internet
Accessibility Observatory (EIAO) consisting of:

• A set of web accessibility metrics.

• An Internet robot for automatically and frequent collecting data on web acces-
sibility and deviations from web standards (the WAI guidelines)

• A data warehouse providing on-line access to collected accessibility data.
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A.1.2 Scope of this Appendix

This appendix covers the conceptual model for release 2.0 ofthe data warehouse
in the EIAO project, the EIAO DW. The entire schema design follows the classic
approach with conceptual, logical, and physical models.

A.1.3 Related Work and Readers’ Instructions

This appendix is related to the following documents:

• EIAO Deliverable 6.1.1.1-2 [87] is the functional specification for the EIAO
DW release 2.

• EIAO Deliverable 5.1.1.1-2 [111] is the functional specification for the EIAO
crawler and describes (together with [75]) what data and howthat data is col-
lected.

• EIAO Deliverable 3.2.1 [75] describes the Web Accessibility Metrics (WAMs)
that generate the data to store in the data warehouse.

A.2 Conceptual Model for EIAO DW

The conceptual model is shown in Figure A.1. The notation is based on UML 2.0 (see
www.uml.org). The model illustrates classes for which information is to be stored in
EIAO DW. In the model, attributes of the classes are shown as well as associations
between different kinds of classes.

The dotted ellipses are strictly speaking not part of the conceptual model, but are
included for ease. They show how the classes are grouped together as dimensions
in the logical model. In ellipses, the hierarchy within eachdimension is represented
such that higher levels in the hierarchy are drawn above lower levels in the hierarchy.
For example, in the Date dimension it is seen that dates roll up into months.

In the following, we describe each of the shown classes and its associations to
other classes. For a detailed description of attributes, please refer to [88]. When-
ever we refer to a class, its name will be capitalized. When werefer to an entity
represented by an instance of a class, the entity name will not be capitalized.

TestResult Fact Table This is the class used to represent a single test of single
subject with a single version of a specific barrier computation being used. For exam-
ple, there will be an instance of TestResult for each time a specific img element on a
given web page is tested with a version of a barrier computation that deals with img
elements. The TestResult is associated with other classes.Specifically, TestResult is
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Figure A.1: The conceptual model
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associated with the classes Subject, Result, and BarrierComputationVersion, describ-
ing what was tested, what the result was and what barrier computation version was
used, respectively. TestResult is also associated with Minute and Date such that it can
be represented when the test took place. Finally, TestResult is associated to ETLRun
such that it can be represented in which ETL run a specific testresult was created.

Subject The Subject class represents the tested subjects. The term subject is here
used in the same sense as in [75]. Thus, a subject is a CSS or (X)HTML element that
is relevant for a specific test.

Subject is associated to PageVersion. The association shows that a specific sub-
ject belongs to a specific version of a specific page. Other page versions may very
well have identical subjects as well as a page version may (and probably will) have
many subjects. However, one subject belongs to one and only one page version.

ResourceVersion The ResourceVersion class represents specific versions of web
resources (such as HTML and CSS resources). For example, a page like the front
page of http://news.bbc.co.uk/ is often updated and therefore different versions of
this page will be considered in different surveys. Thus, ResourceVersion models
the dynamic aspects of web resources (the static aspects aremodeled by Resource
described later).

A resource version is associated to a date and a timestamp. These represent when
the resource version was last modified. A resource version has exactly one associated
resource. A resource version also has exactly one associated test run. Thus, each time
a resource is assessed, we consider a new version of the resource (which may or may
not be identical to the previous version assessed). A resource version is associated
to a number of media types that represent which media types the resource version
contains explicit CSS rules for. A resource version is also associated with a number
of scenarios. This is to represent in which scenarios the resource version was used. It
is possible for, for example, a CSS file to be used in many different scenarios. Further,
a resource version has exactly one server which represents the server hosting the
resource. A resource version can have many associated subjects. A resource version
is also associated with a number of languages to represent the natural languages used
in the resource.

TestRun The TestRun class represents the surveys performed by the EIAO project.
One test run can consider many web sites with many page versions. A test run can
consider many resource versions and many scenarios. This isrepresented by associ-
ations with the ResourceVersion and Scenario classes.
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Server This class represents the different kinds of server software (like Apache,
IIS, etc.) used to host the web resources. One server productcan host many page
versions. A server product is associated with the operatingsystem it runs on such
that Apache for Windows is different from Apache for Linux. Thus, the Server class
is associated to the OperatingSystemFamily class.

OperatingSystemFamily The OperatingSystemFamily class represents the differ-
ent generic families of operating systems that the server products are running on.
For example the Windows family covers both Windows XP and Windows 2000 as
members. The Unix family covers all the different flavors of Unix, including Linux,
FreeBSD, MacOS X etc.

Resource The Resource class represents web resources. However, the changing
parts (such as the size of the content) of resources are represented by ResourceVer-
sion. Resource only represents the static parts. Thus a resource can have several
associated resource versions. A resource is considered as belonging to one site.

Site The Site class represents different web sites including their web addresses. A
site is associated with a second level domain, a NUTS code (level 3) and a NACE
category.

NUTSLevel3 The NUTSLevel3 class represents NUTS codes [38] at level 3, i.e.,
the lowest level. The class is associated with the class NUTSLevel2 for representing
NUTS codes at the next level.

NUTSLevel2 The NUTSLevel2 class represents NUTS codes at level 2, i.e.,the
middle level. The class is associated with the class NUTSLevel1 for representing
NUTS codes at the next level and with NUTSLevel3 for representing NUTS codes at
the lower level.

NUTSLevel1 The NUTSLevel2 class represents NUTS codes at level 2, i.e.,the
highest level. The class is associated with the class NUTSLevel2 for representing
NUTS codes at the middle level. Also, the NUTSLevel1 class isassociated to the
Country class.

Country The class Country is used to represent countries.
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SecondLevelDomain The class SecondLevelDomain represents second level do-
mains. A second-level domain can have several associated sites, but only one top
level domain. Note that for “short” addresses such as relaxml.com, both the Sec-
ondLevelDomain and Site instances represent the entire domain name. For www.
relaxml.com, the Site class represents everything of this address (including the www
part) whereas the SecondLevelDomain class only representsthe relaxml.com part.

TopLevelDomain Top level domains are represented by the class TopLevelDo-
main. A top level domain can have several second level domains.

Nace The class Nace is used to represent a NACE category that the owner of a site
belongs to. The Nace class is associated with the Site class.

Language The Language class represents the different languages usedon assessed
web pages. A language may be spoken differently in differentcountries. For exam-
ple, a language could be “German as spoken in Germany” and another “German as
spoken in Austria”. Therefore, the Language class is associated with the Language-
Family class that represent the “generic” languages, i.e. “German” in the previous
example. A language belongs to exactly one language family.Note that sometimes it
is only possible to detect that a resource version uses “German” as language and not
if this is “German as in Austria”. For that reason, Language can also represent the
generic language without any country information.

LanguageFamily The LanguageFamily class represents the language used when
the “sub language” is ignored. For example for “enUS” which means “English as
spoken in the US”, the language family is “English”. A language family has at least
one member, but can have many.

Date The class Date is used for representing the day part of a specific date. The
values will be added to the data warehouse on an on demand basis. The class Date is
participating to the Date dimension in the logical model. Classes to represent dates
(or a date dimension in the logical model) are used instead ofusing attributes of SQL
type DATE. This is beneficial for many reasons. Since this class is the first of these
classes, the advantages will be briefly described here. One reason is that it is possible
to represent the value “Unknown”. The integer IDs are also useful when precomputed
aggregates are to be handled (e.g., the results for a specificyear). Further, the use of
classes (a dimension in the logical model) gives the possibility to represent domain
specific knowledge that otherwise would have to be handled inthe reporting layer. An
example of the latter is the attribute MonthNumberAfterEIAOStart that for a given
month gives the month number relatively to when the Observatory was launched.
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Instead of using calender logic in the reporting layer, it isthen immediately possible
to see this. However, to provide a much flexibility as possible, an attribute of type
DATE is also added to the Date class.

Date is associated with Month and Week. It is also associatedwith TestResult
such that the date for an assessment can be tracked. Further it has an association to
ResourceVersion representing that a resource version has been modified at a specific
date. Thus the Date dimension is used as an outrigger from theSubject dimension in
the logical dimensional model. In the same way Date is associated with the ETLRun
class (to represent when a specific ETL run was started) and the Date dimension is,
thus, also used as an outrigger from the ETLRun dimension in the dimensional model.
Finally, Date is associated with TechnologyFinding. This is to represent when the use
of a specific technology was found by the EIAO crawler.

Month The class Month represents months. A month belongs to exactly one quar-
ter and has between 28 and 31 days. The values will be added to the data warehouse
on an on demand basis.

Quarter The Quarter class represents calendar quarters. A quarter has 3 months,
but belongs to exactly one year. The values will be added to the data warehouse on
an on demand basis.

Year The class Year represents a calendar year. The values will beadded to the
data warehouse on an on demand basis. A year has four quartersand a number of
weeks.

Week Calendar weeks are represented by the class Week. A week has aweek
number which is relative to exactly one year (even though a week may start in one
year and end in another). The values will be added to the data warehouse on an on
demand basis.

Minute The class Minute represents minutes. Minute is associated with Hour and
ResourceVersion (the latter to represent the last modification time for a page version).
Minute is also associated with the ETLRun class to representwhen an ETL run was
started. Thus, the Time dimension is also used as an outrigger from the Subject
and ETLRun dimensions in the dimensional model. Further, the Minute class is
associated with TestResult to be able to represent the time where an assessment took
place and with TechnologyFinding to represent the time where a specific technology
was found by the EIAO crawler. Note that all represented times are to be interpreted
as UTC times.
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Hour Hour represents hours. Note that all represented times are to be interpreted
as UTC times.

ETLRun The ETLRun class represents specific runs of the ETL software. Each
time the ETL is started for a given DW, an instance of ETLRun iscreated. This
makes it easier to track the origin of data and to do statics about the amount of added
data and time usage in each ETL run. The ETL program used has a version and
exactly one ETL version is used by a specific ETL run. This means that ETLRun is
associated with the ETLVersion class.

ETLVersion ETLVersion represents different versions of the ETL tool. This is
useful if, for example, a bug is found in a specific version andall possible affected
data should be located.

BarrierComputationVersion The BarrierComputationVersion class is used to rep-
resent a specific version of an implementation of a barrier computation (represented
by the BarrierComputation class described below) as definedin [75]. BarrierCompu-
tationVersion is associated with BarrierComputation.

BarrierComputation The BarrierComputation class is used to represent a barrier
computation as described in [75] (but disregarding the specific implementation ver-
sion). The BarrierComputation class is associated to the UWEMTest class. This as-
sociation represents which UWEM test the represented barrier computation is dealing
with. BarrierComputation is also associated to the WCAGMinor class to represent
which WCAG 1.0 checkpoint it is checking for. Further, it hasassociations to the
TestMode and Technique classes to represent the mode of the barrier computation
and what (CSS or HTML) it considers.

The BarrierComputation class is also associated to the DisabilityGroup class.
This is to be able to represent how disability groups are influenced if a given barrier
computation test does not pass. Therefore there is an association class for this asso-
ciation. This association class has the attribute BarrierProbability. That attribute is
used to represent UWEMFpu values (i.e., values that show how severe a failed test
is for a disability group).

Technique The Technique class represents techniques covered by barrier computa-
tion versions.

TestMode The TestMode class represents test modes used by barrier computation
versions.
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WCAGMinor The WCAGMinor class represents a WCAG 1.0 checkpoint. A
checkpoint is associated with (i.e. belongs to) a guideline(represented by the WCAG-
Major class).

WCAGMajor The WCAGMajor class represents a WCAG 1.0 guideline. A guide-
line has a number of associated checkpoints (represented bythe WCAGMinor class).
WCAGMajor is associated with WCAGType to represent which type the WCAG
checkpoint has (currently WCAG 1.0 or “None”).

WCAGType WCAGVersion represents the version of the WCAG guidelines that a
checkpoint belongs to.

DisabilityGroup The DisabilityGroup class represents disability groups (e.g., blind
people, deaf people, and people with dyslexia) for the EIAO observatory. Disabili-
tyGroup is associated with the BarrierComputation class. This association has an
association class with the attribute BarrierProbability.This attribute holds the prob-
ability for that a subject introduces a barrier for the relevant disability group if the
barrier computation fails when testing the subject. This will be used when comput-
ing aggregates by means of C-WAMs (see [75]).

UWEMTest The UWEMTest class represents UWEM tests. The class is associated
with UWEMTestType that represents which types of documentsthe test handles. Fur-
ther, UWEMTest is associated with the BarrierComputation class to represent which
barrier computation that incorporates the represented UWEM test. UWEMTest only
has one attribute apart from the ID.

UWEMTestType The UWEMTestType class represents types of UWEM tests rep-
resented by the UWEMTest class.

Result The Result class is used to represent the results of an EIAO assessment. A
result belongs to a specific type of results (see below). There are many results de-
scribing the fails that resulted in negative outcomes of theapplication of the barrier
computation versions, but only one pass result which is usedfor all positive out-
comes.

ResultType The ResultType class is used to represent general types of results (tests
can be passed or failed).
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MediaType The class MediaType is used to represent the medias that can be sup-
ported explicitly by CSS. Thus the MediaType class is used torepresent those media
types and is associated with the Scenario class to representwhich media types a spe-
cific page scenario found explicit support for. Similarly, MediaType is associated
with ResourceVersion to represent which media types a specific resource versions
supports explicitly. This is a many-to-many association asone media type may be
supported in many page scenarios and one page scenario may support many media
types.

Scenario The Scenario class is used to represent a scenario. It participates in a
many-many relationship with the ResourceVersion class (aspreviously described this
association represents which media types are supported within a single resource ver-
sion). It is also associated with the TestRun class to represent which test run a specific
scenario is used in. Finally, the Scenario class is associated with the MediaType class.
This association is used to represent which media types are explicitly supported in a
specific scenario (i.e. in the (X)HTML and the possible CSS files).

TechnologyFinding Fact Table This is the class used to represent the finding of a
single subject that uses (i.e., holds or links to) an object using a specific technology.
For example, there will be an instance of TechnologyFindingfor each time a specific
img element for a JPEG image is found on a given web page.

The TechnologyFinding class is associated with Subject (torepresent the where
the technology finding was done), MimeType (to represent theused technology),
InclusionType (to represent how the technology is used.), Minute, and Date (the two
latter to represent when a specific technology was found by the EIAO crawler).

Since TechnologyFinding has no measures, it is a so-called factless fact table
used to track events.

MimeType The MimeType class represents the different MIME types found in re-
source versions.

InclusionType The InclusionType class is used to represent how a given techno-
logy/object is included in a resource.



Appendix B

Summary in Danish / Dansk
resumé

Denne afhandling omhandler aspekter af specifikation og udvikling af data ware-
house-teknologi til komplekse webdata. Store mængder datafindes i dag i diverse
webressourcer i forskellige formater. Men det er ofte sværtat analysere og forespørge
på de ofte store og komplekse data eller data om dataene (dvs. metadata). Det er
derfor interessant at anvende data warehouse (DW) teknologi til disse data. Men at
anvende DW-teknologi til at håndtere komplekse webdata erikke trivielt og DW-
forskningsmiljøet møder i den forbindelse nye, spændende udfordringer. Denne af-
handling beskæftiger sig med nogen af disse udfordringer.

Arbejdet, der har ledt til denne afhandling, er primært sketi forbindelse med
projektet European Internet Accessibility Observatory (EIAO), hvor et data ware-
house tiltilgængelighedsdata(enkelt sagt data om, hvor brugbare webressourcer er
for handicappede brugere) er blevet specificeret og implementeret. Men også for
andre projekter, der benytter business intelligence (BI) og/eller komplekse webdata,
kan denne afhandlings resultater være relevante. En interessant vinkel på arbejdet
dokumenteret i afhandlingen er, at både den benyttede og den udviklede teknologi er
baseret på open source software.

I afhandlingen præsenteres flere væktøjer i en undersøgelseaf mulighederne for
at benytte open source software til BI-formål. Hver kategori af produkter evalueres i
forhold til kriterier, som er relevante for brug af BI-produkter i industrien. Herefter
beskrives erfaringer med at designe og implementere et DW til tilgængelighedsdata.
Desuden præsenteres de konceptuelle, logiske og fysiske modeller for DW’et. Dette
er så vidt vides første gang et generelt og skalerbart DW laves til tilgængeligheds-
området, som både er komplekst at modellere og at beregne aggregeringsresultater
for.
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Afhandlingen præsenterer også generelle interessante problemområder og løs-
ninger dertil, som er fundet under arbejdet med at udvikle etDW og understøttende
DW-teknologier til EIAO projektet. En ny og effektiv metodetil at gemme tripler fra
en OWL ontologi kendt fra Semantic Web-feltet beskrives. I modsætning til klassiske
triplestores, hvor data gemmes i få, men store tabeller medfå kolonner, spreder den
præsenterede løsning data ud over mange tabeller, som kan have mange kolonner.
Dette gør det effektivt at indsætte og udtrække data, i særlig grad i forbindelse med
bulkload, hvor der er store mængder data.

En ny, nem og fleksibel metode til udveksling af relationelledata via XML-
formatet (som f.eks. bruges af webservices) præsenteres også. Med denne metode
spares arbejde med at programmere ofte komplekse løsningertil at håndtere udveks-
ling af data korrekt. Med den præsenterede løsning skal brugeren kun angive, hvilke
data der skal eksporteres og strukturen af den genererede XML. Dataene kan så auto-
matisk eksporteres til XML og derefter importeres ind i en anden database, ligesom
opdateringer af XML’en automatisk kan migreres tilbage tilden oprindelige database.

Regressionstest er anerkendt og udbredt i forbindelse med softwareudvikling.
I forbindelse med Extract–Transform–Load (ETL) software er regressionstest dog
traditionelt en besværlig og tidskrævende proces. Afhandlingen udpeger specifikke
forskelle mellem testning af “normal” software og ETL software, og på den baggrund
introduceres et nyt semiautomatisk system til ETL test, dergør det nemt og hurtigt at
iværksætte regressionstestning. Men den løsning kan regressionstest af ETL software
begyndes på få minuter.

Traditionelt er DWs blevet bulkloaded med nye data på foruddefinerede tids-
punkter f.eks. månedligt, ugentligt eller dagligt. Men enny trend er at loade nye
data, så snart de er til rådighed f.eks. i en web-log eller fra en anden webforbundet
ressource. Dette gøres vha. SQL INSERT kommandoer, men disse er langsomme i
sammenligning med bulkloadteknikker og databasesystemetbegynder at yde dårligt.
Afhandlingen præsenterer derfor en ny, innovativ metode, der kombinerer det bed-
ste fra disse verdener. Data indsættes via INSERT kommandoer, men gøres først til
rådighed i DW’et præcist når der er brug for det. Man opnårpå den måde ydelse,
som når bulkloading benyttes, men INSERT-agtig adgang tilnye data.


