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Abstract: Four recent financial econometric models are discussed. The first aims to 
capture the volatility created by “chartists”; the second intends to model 
bounded random walks; the third involves a mechanism where the stationarity 
is volatility-induced, and the last one accommodates nonstationary diffusion 
integrated stochastic processes that can be made stationary by differencing.   
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1. INTRODUCTION

1.1 The objective and scope of this work 

This paper reflects some of our recent contributions to the state-of-the-art 
on our financial econometrics. We have selected four main contributions in 
the this field. Also, we briefly refer to some contributions to the estimation 
of stochastic differential equations, although the emphasis of this chapter is 
on specification of financial econometric models. We give the motivation 
behind the models, and the more technical details will be referred to the 
original papers. The structure of this chapter is as follows. In section 1.2 we 
refer some general properties of returns and prices. In section 2 we mention 
a model that aims to capture the volatility created by “chartists”. This is done 
in a discrete-time setting in the context of ARCH models; also a continuous-
time version is provided. In section 3 we present three diffusion processes, 
with different purposes. The first one intends to model bounded random 
walks; the idea is to model stationarity processes with random walk 
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behaviour. In the second one we discuss processes where the stationarity is 
volatility-induced. This is applicable to every time series where reversion 
effects occur mainly in periods of high volatility. In the last one, we focus on 
a second order stochastic differential equation. This process accommodates 
nonstationary integrated stochastic processes that can be made stationary by 
differencing. Also, the model suggests directly modelling the (instantaneous) 
returns, contrary  to usual continuous-time models in finance, which model 
the prices directly.  

1.2 Prices, returns and stylized facts  

An important step in forming an econometric model consists in studying the 
main features of the data. In financial econometrics two of the most 
important variables are prices and returns (volatility is also fundamental and 
we shall go back to it later). Prices include, for example, stock prices, stock 
indices, exchange rates and interest rates. If we collect daily data, the price is 
usually some type of closing price. It may be a bid price, an ask price or an 
average. It may be either the final transaction price of the day or the final 
quotation. In discrete time analysis, researchers usually prefer working with 
returns, which can be defined by changes in the logarithms of prices (with 
appropriate adjustments for any dividend payments). Let tP  be a 
representative price for a stock (or stock indices, exchange rate, etc.). The 
return tr  at time t  is defined as 1ttt PlogPlogr .

General properties (stylized facts) are well known for daily returns 
observed over a few years of prices. The most significant are: 

The (unconditional) distribution of tr  is leptokurtic and in some 
cases (for stock prices and indices)  asymmetric; 
The correlation between returns is absent or very weak; 
The correlations between the magnitudes of returns on nearby days 
are positive and statistically significant. 

These features can be explained by changes through time in volatility. 
Volatility clustering is a typical phenomenon in financial time series. As 
noted by Mandelbrot [19], “large changes tend to be followed by large 
changes, of either sign, and small changes tend to be followed by small 
changes.” A measurement of this fact is that, while returns themselves are 
uncorrelated, absolute returns tr  or their squares display a positive, 
significant and slowly decaying autocorrelation function: 0r,rCorr tt
for ranging from a few minutes to  several weeks. Periods of high volatility 
lead to extreme values (and thus to a leptokurtic distribution). Figure 1 
shows a typical time series of returns. Any econometric model for returns 
should capture these general features of financial time series data.  
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The statistical features of prices are not so obvious. In general, most of 
the series contain a clear trend (e.g. stock prices when observed over several 
years), others shows no particular tendency to increase or decrease (e.g. 
exchange rates). Shocks to a series tend to display  a high degree of 
persistence. For example, the Federal Funds Rate experienced a strong 
upwards surge in 1973 and remained at the high level for nearly two years. 
Also, the volatility of interest rates seems to be persistent. We will resume 
some of these features in section 3. 
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Figure 1. Microsoft daily returns from 1986 to 2006 

2. DISCRETE-TIME MODELS 

2.1 The ARCH family 

In a seminal paper Engle [13] introduced the so called autoregressive 
conditional heteroskedasticity model. These models have proven to be 
extremely useful in modelling financial time series. Also, they have been 
used in several applications (forecasting volatility, CAPM, VaR, etc.). The  
ARCH(1) is the simplest example of an ARCH process. One assumes that 
the distribution of the return for period t , given past information, is  

                       
2
tt1tt ,Fr D~  (1) 

where  D  is the conditional distribution, t  is the conditional mean and 

                       
2

1t1t
2
t r ,  ( 0,0 ) (2) 
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is the conditional variance. A large error in period 1t  (that is a high value 
for   2

1t1tr ) implies a high value for the conditional variance in the 
next period. Generally,  1t  is a weak component of the model since it is 
difficult to predict the return 1tr  based on a 2tF -mensurable stochastic 
process 1t . In many cases it is a positive constant. Thus, either a large 
positive or a large negative return in period 1t  implies higher than 
average volatility in the next period; conversely, returns close to the mean 
imply lower than average volatility. The term autoregressive (from ARCH) 
comes from the fact that the squared errors follow an autoregressive process. 
In fact, from 2

1t
2
t u  where 1t1t1t ru  we have 

                       
2
t

2
ttt

2
1t

2
t

2
t

2
1t

2
t

2
t

uv,vuu

uuu
 (3) 

and since tv  is a martingale difference (by construction, assuming 
tvE ) one concludes that 2

tu  is an autoregressive process of order 
one. There are a great number of ARCH specifications and many of them 
have their own acronyms, such GARCH, EGARCH, MARCH, AARCH, etc.  

2.2 One more ARCH model – the Trend-GARCH 

2.2.1 Motivation 

In recent literature a number of heterogeneous agent models have been 
developed based on the new paradigm of behavioural economics, 
behavioural finance and bounded rationality (see [17] for a survey on this 
subject). Basically, most models in finance distinguish between sophisticated 
traders and technical traders or chartists. Sophisticated traders, such as 
fundamentalists or rational arbitrageurs tend to push prices in the directions 
of the rational expectation fundamental value and thus act as a stabilising 
force. Chartists base their decisions mainly on statistics generated by market 
activity such as past prices and volume. Technical analysts do not attempt to 
measure the intrinsic value of a security; instead they look for patterns and 
indicators on stock charts that will determine a stock's future performance. 
Thus, there is the belief that securities move in very predictable trends and 
patterns. 

As De Long et al. [11] recognise, this activity can limit the willingness of 
fundamentalists to take positions against noise traders (chartists). In fact, if 
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noise traders today are pessimists and the price is low, a fundamentalist with 
a short time horizon buying this asset can suffer a loss if noise traders 
become even more pessimistic. Conversely, a fundamentalist selling an asset 
short when the price is high can lose money if noise traders become more 
bullish in the near future. "Noise traders thus create their own space. [...] 
Arbitrage does not eliminate the effect of noise because noise itself creates 
risk" (De Long et al., [11]). As a consequence, technical traders or chartists, 
such as feedback traders and trend extrapolators tend to push prices away 
from the fundamental and thus act as a destabilising force, creating volatility. 

Based on these ideas, Nicolau [26]  proposed an econometric model, in  a 
discrete and continuous-time setting, based on a technical trading rule to 
measure and capture the increase of volatility created by chartists. 

2.2.2 The Trend-GARCH 

In order to derive the model we now focus more closely on a buy-sell 
rule used by chartists. One of the most widely used technical rules is based 
on the moving average rule. According to this rule, buy and sell signals are 
generated by two moving averages of the price level: a long-period average 
and a short-period average. A typical moving average trading rule prescribes 
a buy (sell) when the short-period moving average crosses the long-period 
moving average from below (above) (i.e. when the original time series is 
rising (falling) relatively fast). As can be seen, the moving average rule is 
essentially a trend following system because when prices are rising (falling), 
the short-period average tends to have larger (lower) values than the long-
period average, signalling a long (short) position. 

Hence, the higher the difference between these two moving averages, the 
stronger the signal to buy or sell would be and, at the same time, the more 
chartists detect the buy or sell signals. As a consequence, a movement in the 
price and in the volatility must, in principle, be expected, whenever a trend is 
supposed to be initiated. How to incorporate this information in the 
specification of the conditional variance is explained below. To simplify, we 
assume (as others) that the short-period moving average is just the current 
(or latest) market price and the long-period one is an exponentially weighted 
moving average (EWMA), which is also an adaptive expectation of the 
market price. In this formulation, the excess demand function of noise 
traders can be given as a function of  tt mSlog    

                       0xf,mSlogfq ttt  (4) 

where  tS   denotes the market price and  tm   is the long-period moving 
average, represented here as an EWMA, 
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                       10,Slog1mm 1t1tt . (5) 

The derivative of  f   (see equation (1)) is positive as, the higher the 
quantity  0mSlog tt ,  the stronger the signal to buy would be. 
Conversely, the lower the quantity  0mSlog tt ,  the stronger the signal 
to sell would be. 

Based on these ideas and in Bauer [7], Nicolau [26] proposes the 
following model, inspired by the GARCH(1,1) specification:  

10,Slog1mm
0,0,0,mSlogu

u
,ur

1t1tt

2
1t1t

2
1t

2
1t

2
t

ttt

ttt

 (6) 

where,  tr   is the log return,  t   is the conditional mean,  t   is assumed 
to be a sequence of i.i.d. random variables with  0E t   and  1Var t .
The conditional variance 2

t  incorporates a measure of chartists trading 
activity, through the term  2

1t1t mSlog .
We present some properties of this model. Suppose that  1S0 .  Thus,  

                       i

t

1i
0tt rSlogSlogSlog  (7) 

On the other hand, the EWMA process has the following solution 

                       1k

t

1k

t
0t Slog1mm  (8) 

Combining equations (7) and (8), and assuming  ,0m0   we have, after 
some simplifications, 

                 i
it

t

1i
1k

kt
t

1k
i

t

1i
tt rSlog1rmSlog  (9) 

If the sequence  ir   displays very weak dependence, one can assume  
,0t   that is  .ur tt   In this case, we have 
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 (10) 

The model involves explicitly the idea of the moving average rule, which 
we incorporate using equation 1t1tt Slog1mm . This moving 
average representation greatly facilitates the estimation of the model and the 
study of the stationary conditions. The expression  i

itt
1i r   can be 

understood as a trend component, which approximately measures trend 
estimates in technical trading models. When the most recent returns have the 
same signal, that is, when  

2
i

itt
1i

2
1t1t rmSlog   is high, chartists 

see a general direction of the price (that is, a trend) which is generally 
classified as an uptrend or downtrend. In these cases, chartists increase their 
activity in the market, buying and selling and thus increasing volatility. On 
the other hand, when the trend is classified as rangebound, price swings 
back and forth for some periods, and as consequence, the quantity  

2
i

itt
1i r   is low (the positive returns tend to compensate the negative 

ones). In this case, there is much less trade activity by chartists, and the 
volatility associated with them is low. 

It can be proved under the conditions,  0 , 0 ,   0 , 10
and  t   is a sequence of i.i.d. random variables with  0E t   and  and 

1Var t  that the process  tu   is covariance-stationary if and only if 
11 2 .  Conditions for the existence of a unique strict 

stationarity solution are also studied in Nicolau [26]. The stationarity makes 
sense because uptrends or downtrends cannot persist over time.  

To assess the mean duration of a trend component, it could be interesting 
to calculate the speed of adjustment around zero. The higher the parameter  

1  the lower the speed of reversion. A useful indicator of the speed of 
adjustment is the so-called half-live indicator, which, in our case, is given by 
the expression  .log/2/1log

Estimation of model (5) is straightforward. One can use the pseudo 
maximum likelihood based on the normal distribution (for example). A null 
hypothesis of interest is whether the term  2

1t1t mSlog   enters in the 
specification of the conditional variance, that is, H0:  .0   Under this 
hypothesis,    is not identified, that is, the likelihood function does not 
depend on    and the asymptotic information matrix is singular. One simple 
approach consists of considering Davies's bound when  q   parameters are 
identified only under alternative hypothesis (see Nicolau, [26]). An empirical 
illustration is provided in Nicolau [26]. Also, when the length of the 
discrete-time intervals between observations goes to zero, it is shown that, in 
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some conditions, the discrete-time process converges in distribution to the 
solution of the diffusion process 

       
.0,0,dWdtXd

0,0,dWXdtXcdX

t,2ttt

t,1
2

tttt  (11) 

3. CONTINUOUS-TIME MODELS 

3.1 A bounded random walk process 

3.1.1 Motivation 

Some economic and financial time series can behave just like a random 
walk (RW) (with some volatility patterns) but due to economic reasons they 
are bounded processes (in probability, for instance) and even stationary 
processes. As discussed in Nicolau [21] (and references therein) this can be 
the case, for example, of interest rates, real exchange rates, some nominal 
exchange rates and unemployment rates among others series. To build a 
model with such features it is necessary to allow RW behaviour during most 
of the time but force mean reversions whenever the processes try to escape  
from some interval. The aim is to design a model that can generate paths 
with the following features: as long as the process is in the interval of 
moderate values, the process basically looks like a RW but there are 
reversion effects towards the interval of moderate values whenever the 
process reaches some high or low values. As we will see, these processes can 
admit - relying on the parameters - stationary distributions, so we come to an 
interesting conclusion: processes that are almost indistinguishable from the 
RW process can be, in effect, stationary with stationary distributions. 

3.1.2 The model 

If a process is a random walk, the function  xXXE 1tt   (where  
1ttt XXX ) must be zero (for all  x ). On the other hand, if a process is 

bounded (in probability) and mean-reverting to   (say), the function  
xXXE 1tt   must be positive if  x   is below    and negative if  x   is 

above .
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Now consider a process that is bounded but behaves like a RW. What 
kind of function should  xXXE 1tt   be? As the process behaves like a 
RW, (i) it must be zero in some interval and, since the process is bounded, 
(ii) it must be positive (negative) when  x   is ''low'' (''high''). Moreover we 
expect that: (iii)  xXXE 1tt   is a monotonic function which, associated 
with (ii), means that the reversion effect should be strong if  x   is far from 
the interval of reversion and should be weak in the opposite case; (iv)  

xXXE 1tt   is differentiable (on the state space of  X ) in order to 
assure a smooth effect of reversion. To satisfy (i)-(iv) we assume  

xxk
1tt

21 eeexXXE  with 01 , ,02    0k . Let 
us fix xxk 21 eeexa . With our assumption about  

xXXE 1tt   we have the bounded random walk process (BRW) in 
discrete-time:  

       cX,eeeXX 0t
XXk

tt i

1it21it1

1ii
 (12) 

where it   are the instances at which the process is observed, 
( T...tt0 10 ),   is the interval between observations,  ,1ii tt
k   and    are parameters depending on    and  ,...2,1i,

it   is a 
sequence of i.i.d. random variables with  0E

it   and  1Var
it . It can 

be proved (see [21]) that the sequence  tX   formed as a step function from  
itX , that is  

itt XX   if  1ii ttt , converges weakly (i.e. in distribution) 
as 0   to the solution to the stochastic differential equations (SDE) :  

      cX,dWdteeedX
0

t2t1
tt

XXk
t  (13) 

where c   is a constant and  W   is a standard Wiener process ( 0tt ). The 
case 0xa  (for all  x ) leads to the Wiener process (which can be 
understood as the random walk process in continuous-time). It is still 
obvious that 0a , so tX    must behave just like a Wiener process when  

tX   crosses   . However, it is possible, by selecting adequate values for k ,
1   and  2   to have a Wiener process behaviour over a large interval 

centred on    (that is, such that  0xa   over a large interval centred on  
). Nevertheless, whenever  tX   escapes from some levels there will always 

be reversion effects towards the . A possible drawback of model (12) is 
that the diffusion coefficient is constant. In the exchange rate framework and 
under a target zone regime, we should observe a volatility of shape '' '' with 
respect to  x   (maximum volatility at the central rate) (see [18]). On the 
other hand, under a free floating regime, it is common to observe a ''smile'' 
volatility (see [18]). For both possibilities, we allow the volatility to be of 
shape '' '' or '' ' '' by assuming a specification like  xexp .
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Depending on the   we will have volatility of '' '' or '' '' form. Naturally, 
0    leads to constant volatility. This specification, with  0 , can also 

be appropriate for interest rates. We propose, therefore,   

cX,dWedteeedX
0

2
tt2t1

tt
X2/2/XXk

t  (14) 

Some properties are studied in [21]. Under some conditions both 
solutions are stationary (with known stationary densities). To appreciate the 
differences between the Wiener process (the unbounded RW) and the 
bounded RW, we simulate one trajectory for both processes in the period  

20,0t   with  100X0 . We considered 2k , 221 , 100
and  4 . The paths are presented in figure 2. In the neighbourhood of  

100   the function  xa   is (approximately) zero, so  X   behaves as a 
Wiener process (or a random walk in continuous-time). In effect, if  

0xa , we have  tt dWdX   (or t0t WXX ). We draw two arbitrary 
lines to show that the bounded random walk after crossing these lines tends 
to move toward the interval of moderate values.  

80

85

90

95

100

105

110

115

120

125

130

0 2 4 6 8 10 12 14 16 18 20

Bounded Random
Walk
Wiener (Random
Walk)

Figure 2. Bounded  Randow Walk vs. Wiener Process 

3.2 Processes with volatility-induced stationarity 

3.2.1 Motivation 

Short-term interest rate processes have shown at least two main facts. 
Firstly, the mean-reverting effect is very weak (see, for example, Chan et al. 
[9] or Bandi [5]). In fact, the stationarity of short-term interest rate processes 
is quite dubious. The usual unit root tests do not clearly either reject or 
accept the hypothesis of stationarity. Since interest rate processes are 
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bounded by a lower (zero) and upper (finite) value a pure unit root 
hypothesis seems impossible since a unit root process goes to    or  
with probability one as time goes to  . Some authors have addressed this 
question. The issue is how to reconcile an apparent absence of mean-
reverting effects with the fact that the interest rate is a bounded (and possibly 
stationary) process. While Aït-Sahalia [1] and Nicolau [21] suggests that 
stationarity can be drift-induced, Conley et al. [10] (CHLS, henceforth) 
suggest that stationarity is primarily volatility-induced. In fact, it has been 
observed that higher volatility periods are associated with mean reversion 
effects. Thus, the CHLS hypothesis is that higher volatility injects 
stationarity in the data. 

The second (well known) fact is that the volatility of interest rates is 
mainly level dependent and highly persistent. The higher (lower) the interest 
rate is the higher (lower) the volatility. The volatility persistence can thus be 
partially attributed to the level of persistence of the interest rate. 
The hypothesis of CHLS is interesting since volatility-induced stationarity 
can explain martingale behaviour (fact one), level volatility persistence (fact 
two), and mean-reversion. To illustrate these ideas and show how volatility 
can inject stationarity we present in figure 3 a simulated path from the SDE:  

                       t
2
tt dWX1dX  (15) 

It is worth mentioning that the Euler scheme 

             1,0N,ttY1YY
ii

2

1i1ii tt1iittt i.i.d.  (16) 

-8
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-2
0
2
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10

1 101 201 301 401 501 601 701 801 901

Figure 3. Simulated path from the SDE (14) 

cannot be used since  Y   explodes as  it   (see [24, 27]). For a method 
to simulate  ,X  see Nicolau [24]. Since the SDE (14) has zero drift, we 
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could expect  random walk behaviour. Nevertheless, figure 3 shows that the 
simulated trajectory of  X   exhibits reversion effects towards zero, which is 
assured solely by the structure of the diffusion coefficient. It is the volatility 
that induces stationarity. In the neighbourhood of zero the volatility is low so 
the process tends to spend more time in this interval. If there is a shock, the 
process moves away from zero and the volatility increases (since the 
diffusion coefficient is  2x1 ) which, in turn, increases the probability that  
X   crosses zero again. The process can reach extreme peaks in a very short 

time but quickly returns to the neighbourhood of zero. It can be proved, in 
fact, that  X   is a stationary process.  Thus,  X   is a stationary local 
martingale but not a martingale since  0t XXE   converges to the stationary 
mean as  t   and is not equal to  0X   as would be required if  X   was a 
martingale.  

3.2.2 A definition of volatility-induced stationarity 

To our knowledge, CHLS were the first to discuss volatility-induced 
stationarity (VIS) ideas. Richter  [27] generalizes the definition of CHLS. 
Basically, their definition states that the stationary process  X   (solution of 
the stochastic differential equation (SDE)  tttt dWXbdtXadX  ) has 
VIS at boundaries  l   and  r   if xslimxslim XrxXlx

 and 
where  Xs   is the scale density, 

       value)arbitrary an  is (/2exp 0
2

0

zduubuaxs
x

zX  (17) 

There is one disadvantage in using this definition. As shown in [25], the 
VIS definition of CHLS and Richter does not clearly identify the source of 
stationarity. It can be proved that their definition does not exclude mean-
reversion effects and thus stationarity can also be drift-induced.  

A simple and a more precise definition is given in Nicolau [25]. Consider 
the following SDEs 

                       
.dWdtYadY

dWXbdtXadX

ttt

tttt  (18) 

We say that a stationary process  X   has VIS if the associated process  
Y  does not possess a stationary distribution (actually, this corresponds to 
what it defined in Nicolau [25] as VIS of type 2). The intuition is simple: 
although the process  Y   has the same drift as that of the process X , Y   is 
nonstationary (by definition) whereas  X   is stationary. The substitution of  

  for  xb   transforms a nonstationary process  Y   into a stationary 
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process. Thus, the stationarity of  X   can only be attributed to the role of the 
diffusion coefficient (volatility) and in this case we have in fact a pure VIS 
process.  

The following is a simple criterion to identify VIS, in the case of state 
space , . We say that a stationary  X   process with boundaries  
l   and  r   has VIS if .0xxalim0xxalim

xx
or

3.2.2.1 An example: Modelling the Fed funds Rate with VIS 

Processes with VIS are potentially applicable to interest rate time-series 
since, as has been acknowledged, reversion effects (towards a central 
measure of the distribution) occur mainly in periods of high volatility. To 
exemplify a VIS process monthly sampling of the Fed funds rate between 
January 1962 and December 2002 was considered. As discussed in Nicolau 
[25], there is empirical evidence that supports the specification  

                       t
2

tt dWX2/2/expdX  (19) 

where  tt rlogX   and  r   represents the Fed funds rate. The state space of  
r   is  ,0   and  X   is  .,   That is,  X   can assume any value in R .
This transformation preserves the state space of r , since .0Xexpr tt
By Itô's formula, equation (18) implies a VIS specification for interest rates 

                       t
rlog2/2/

t
rlog

tt dWerdte
2
1rdr

2
t

2
t  (20) 

It can be proved that X   is an ergodic process with stationary density 

                       
2x

X

X e
dxxm

xmxp  (21) 

i.e. 2/1,NrlogX . By the continuous mapping theorem,  
Xexpr   is an ergodic process. Furthermore, it has a log-normal 

stationary density. There is some empirical evidence that supports the above 
models. It is based on four facts: 

1. The empirical marginal distribution of  tt rlogX   matches the 
(marginal) distribution that is implicit in model (18). 

2. The results of Dickey-Fuller tests are compatible with a zero drift 
function for  ,X   as specified in model (18). 

3. Nonparametric estimates of  xa   and  xb2   do not reject 
specification (18).  
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4. Parametric estimation of model (18) outperforms common one-
factor models in terms of accuracy and parsimony. 

The estimation of SDE (18) is difficult since the transition (or 
conditional) densities of  X   required to construct the exact likelihood 
function are unknown. Several estimation approaches have been proposed 
under these circumstances (see Nicolau [20] for a brief survey). To estimate 
the parameters of equation (18) we considered the simulated maximum 
likelihood estimator suggested in Nicolau [20] (with  20N   and  20S ).
The method proposed by Aït-Sahalia [3] with  1J   (Aït-Sahalia's notation 
for the order of expansion of the density approximation) gives similar 
results. The approximation of the density based on  2J   is too 
complicated to implement (it involves dozens of intricate expressions that 
are difficult to evaluate). 

The proposed model compares extremely favourably with other proposed 
one-factor continuous-time models. In table 1 we compare the proposed 
model with other relevant models for interest rates. Only the proposed 
method was estimated by us. Remaining information was obtained from 
table VI of Aït-Sahalia [2]. For comparison purposes the proposed model 
was estimated using the same method applied to the other models (we 
considered the density approximation proposed by Aït-Sahalia [3] with  

,1J   in the period January-63 to December-98). Table 5 indicates that the 
proposed model outperforms the others in terms of accuracy and parsimony. 

Table 1. Log-Likelihood of some Parametric Models, 1963-1998 
Models Log-

likelihooh
Nº

Parameters 
ttt dWdtrdr  1569.9 3

tttt dWrdtrdr  1692.6 3

t
2/3

tt
2

tt dWrdtrrdr  1801.9 3

tttt dWrdtrdr  1802.3 4

t
2/3

t
2

t4t32
1

t1t dWrdtrrrdr  1802.7 5 

t
rlog2/2/

t
rlog

2
1

tt dWerdterdr
2

t
2

t  1805.1 3 

3.3 A second order stochastic differential equation 

In economics and finance many stochastic processes can be seen as 
integrated stochastic processes in the sense that the current observation 
behaves as the cumulation of all past perturbations. In a discrete-time 
framework the concept of integration and differentiation of a stochastic 
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process plays an essential role in modern econometrics analysis. For 
instance, the stochastic process  ,...2,1,0t;yt   where  t1tt yy
( 1,0N.d.i.it ) is an example of an integrated process. Notice that  y
can be written as  k

t
1k0t tyy , or 

                       k

t

1k
0t xyy  (22) 

where  .x tt   One way to deal with such processes is to use a 
differenced-data model (for example,  ,y tt   in the previous 
example). Differencing has been used mostly to solve non-stationary 
problems viewed as unit roots although, historically, differenced-data 
models arose early in econometrics as a procedure to remove common trends 
between dependent and independent variables. 

In empirical finance, most work on integrated diffusion processes is 
related to stochastic volatility models (see for example, Genon-Catalot and 
Laredo [14]) and realized volatility (see for example, Andersen et al. [4] and 
Barndorff-Nielsen and Sheppard [6]). However, integrated and differentiated 
diffusion processes in the same sense as integrated and differentiated 
discrete-time processes are almost absent in applied econometrics analysis. 
One of the reasons why continuous-time differentiated processes have not 
been considered in applied econometrics is, perhaps, related to the 
difficulties in interpreting the 'differentiated' process. In fact, if  Z   is a 
diffusion process driven by a Brownian motion, then all sample functions are 
of unbounded variation and nowhere differentiable, i.e.  dt/dZt   does not 
exist with probability one (unless some smoothing effect of the measurement 
instrument is introduced). One way to model integrated and differentiated 
diffusion processes and overcome the difficulties associated with the 
nondifferentiability of the Brownian motion is through the representation 

                       
tttt

tt

dWXbdtXadX
dtXdY

 (23) 

where  a   and b   are the infinitesimal coefficients (respectively, the drift 
and the diffusion coefficient),  W   is a (standard) Wiener process (or 
Brownian motion) and  X   is (by hypothesis) a stationary process. In this 
model,  Y   is a differentiable process, by construction. It represents the 
integrated process,  

                       duXYY u

t

t 00  (24) 
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(note the analogy with the corresponding expression in a discrete-time 
setting,  ,xyy k

t
1k0t   equation (20)) and  dt/dYX tt   is the 

stationary differentiated process (which can be considered the equivalent 
concept to the first differences sequence in discrete-time analysis). If  X
represents the continuously compounded return or log return of an asset, the 
first equation in system (22) should be rewritten as  .dtXYlogd tt

Nicolau [23] argues that (22) can be a useful model in empirical finance 
for at least two reasons. First, the model accommodates nonstationary 
integrated stochastic processes (Y ) that can be made stationary by 
differencing. Such transformation cannot be done in common univariate 
diffusion processes used in finance (because all sample paths from univariate 
diffusion processes are nowhere differentiable with probability one). Yet, 
many processes in economics and finance (e.g. stock prices and nominal 
exchange rates) behave as the cumulation of all past perturbations (basically 
in the same sense as unit root processes in a discrete framework). Second, in 
the context of stock prices or exchange rates, the model suggests directly 
modelling the (instantaneous) returns, contrary to usual continuous-time 
models in finance, which directly model the prices. General properties for 
returns (stylized facts) are well known and documented (for example, returns 
are generally stationary in mean, the distribution is not normal, the 
autocorrelations are weak and the correlations between the magnitude of 
returns are positive and statistically significant, etc.). One advantage of 
directly modelling the returns ( X ) is that these general properties are easier 
to specify in a model like (22) than in a diffusion univariate process for the 
prices. In fact, several interesting models can be obtained by selecting  xa
and  xb2   appropriately. For example, the choice  xxa   and  

2
t

22 Xxb   leads to an integrated process  Y   whose returns,  
,X   have an asymmetric leptokurtic stationary distribution (see the example 

below). This specification can be appropriated in financial time series data. 
Bibby and Sørensen [8] had already noticed that a similar process to (22) 
could be a good model for stock prices. 

We observe that the model defined in equation (22) can be written as a 
second order SDE,  tttt dWXbdtXadt/dYd .  These kinds of 
equations are common in engineering. For instance, it is usual for engineers 
to model mechanical vibrations or charge on a capacitor or condenser 
submitted to white noise excitation through a second order stochastic 
differential equation. Integrated diffusions like  Y   in equation (23) arise 
naturally when only observations of a running integral of the process are 
available. For instance, this can occur when a realization of the process is 
observed after passage through an electronic filter. Another example is 
provided by ice-core data on oxygen isotopes used to investigate paleo-
temperatures (see Ditlevsen and Sørensen [12]).
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To illustrate continuous-time integrated processes we present in figure 4 
two simulated independent paths of  duXYY u

t
00t   where  X   is 

governed by the stochastic differential equation  

                       t
2

ttt dW05.0X101.0dtX01.020dX  (25) 

( X   is also represented in figure 4). All paths are composed of 1000 
observations defined in the interval  .10,0t   It is interesting to observe 
that  Y   displays all the features of an integrated process (with a positive 
drift, since  01.0XE t  ): absence of mean reversion, shocks are persistent, 
mean and variance depend on time, etc. On the other hand, the unconditional 
distribution of  X   (return) is asymmetric and leptokurtic. 

Figure 4 Simulation of two independent paths from a second order SDE 

Estimation of second order stochastic differential equations raises new 
challenges for two main reasons. On the one hand, only the integrated 
process  Y   is observable at instants  ,...2,1i,ti   and thus  X   in model 
(22) is a latent non-observable process. In fact, for a fixed sampling interval, 
it is impossible to obtain the value of  X   at time  it   from the observation  

itY   which represents the integral  duXY u
t
00

i . On the other hand, the 
estimation of model (22) cannot in principle be based on the observations  

,...2,1i,Y
it   since the conditional distribution of  Y   is generally 

unknown, even if that of  X   is known. An exception is the case where  X
follows an Orstein-Uhlenbeck process, which is analyzed in Gloter [16].
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However, with discrete-time observations  ,...2,1i,Yi   (to simplify 
we use the notation  ,iti   where  1ii tt  ), and given that 

               ,
1

1

001 duXduXduXYY u

i

iu

i

u

i

ii  (26) 

we can obtain a measure of  X   at instant  iti   using the formula:  

                       1ii
i

YY
X~  (27) 

Naturally, the accuracy of (27) as a proxy for  iX   depends on the 
magnitude of  .  Regardless of the magnitude of    we have in our 
sample, we should base our estimation procedures on the sample  

,...2,1i,X~i   since  X   is not observable. Parametric and semi-parametric 
estimation of integrated diffusions is analyzed in Gloter [15, 16] and 
Ditlevsen and Sørensen [12]. In Nicolau [23] it is supposed that both 
infinitesimal coefficients  a   and  b ,  are unknown. Non-parametric 
estimators for the infinitesimal coefficients  a   and  b  are proposed.  The 
analysis reveals that the standard estimators based on the sample  

,...2,1i,X~i   are inconsistent even if we allow the step of discretization  
  to go to zero asymptotically. Introducing slight modifications to these 

estimators we provide consistent estimators. See also [22].

ACKNOWLEDGEMENTS 

I would like to thank Tom Kundert for helpful comments. This research 
was supported by the Fundação para a Ciência e a Tecnologia (FCT) and by 
POCTI.   

REFERENCES

1. Aït-Sahalia, Y. (1996), Testing Continuous-Time Models of the Spot Interest Rate, The 
Review of Financial Studies 9, 385-426. 

2. Aït-Sahalia, Y. (1999), Transition Densities for Interest Rate and Other Nonlinear 
Diffusions, The Journal of Finance LIV, 1361-1395. 

3. Aït-Sahalia, Y. (2002), Maximum Likelihood Estimation of Discretely Sampled 
Diffusions: a Closed-Form Approximation Approach, Econometrica 70, 223-262. 

4. Andersen T. & T. Bollerslev & F. Diebold & P. Labys (2001) The Distribution of 
Exchange Rate Volatility. Journal of the American Statistical Association 96, 42-55. 

40 J. Nicolau



Financial Econometric Models  

5. Bandi, F. (2002), Short-Term Interest Rate Dynamics: A Spatial Approach, Journal of 
Financial Economics 65, 73-110. 

6. Barndorff-Nielsen, O. & N. Sheppard (2002) Econometric Analysis of Realized 
Volatility and its use in Estimating Stochastic Volatility Models. Journal of the Royal 
Statistical Society B 64, 253-280. 

7. Bauer, C. “A Better Asymmetric Model of Changing Volatility in Stock Returns: Trend-
GARCH”, Working Paper 03-05, University Bayreuth, 2005. 

8. Bibby, B. & M. Sørensen (1997) A Hyperbolic Diffusion Model for Stock Prices. 
Finance and Stochastics 1, 25-41. 

9. Chan, K., G. Karolyi, F. Longstaff and A. Sanders (1992), An Empirical Comparison of 
Alternative Models of the Short-Term Interest Rate, The Journal of Finance XLVII, 
1210-1227.

10. Conley, T., L. Hansen, E. Luttmer and J. Scheinkman (1997), Short-term interest rates as 
subordinated diffusions, The Review of Financial Studies 10, 525-577. 

11. De Long, J.B., Shleifer, A., Summers,L.H. and Waldmann, R.J., (1990) Noise trader risk 
in financial markets, Journal of Political Economy 98, 703-738. 

12. Ditlevsen S. & M. Sørensen (2004) Inference for Observations of Integrated Diffusion 
Processes. Scandinavian Journal of Statistics 31(3), 417-429. 

13. Engle, R. “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance 
of the United Kingdom Inflation”, Econometrica, vol. 50-4, pp. 987-1007, 1982. 

14. Genon-Catalot, V. & J. Laredo (1998) Limit Theorems for Discretely Observed 
Stochastic Volatility Models. Bernoulli 4, 283-303. 

15. Gloter A. (1999) Parameter Estimation for a Discretely Observed Integrated Diffusion 
Process. Preprint, Univ. of Marne-la-Vallée, 13/99. 

16. Gloter A. (2001) Parameter Estimation for a Discrete Sampling of an Integrated 
Ornstein-Uhlenbeck Process. Statistics 35, 225-243. 

17. Hommes, C. “Heterogeneous agent models in economics and finance”, in Kenneth L. 
Judd, and Leigh Tesfatsion, ed.: Handbook of Computational Economics (North-
Holland) Vol. 2: Agent-Based Computational Economics, 2005. 

18. Krugman, P. & Miller, M. (1992) Exchange Rate Targets and Currency Bands. Centre 
for Economic Policy Research, Cambridge University Press. 

19. Mandelbrot, B. “The variation of certain speculative prices”, Journal of Business vol. 36,
pp. 394-419, 1963. 

20. Nicolau, J. “New Technique for Simulating the Likelihood of Stochastic Differential 
Equations” The Econometrics Journal, 5(1). pp. 91-103, 2002. 

21. Nicolau, J. “Stationary Processes that Look Like Random Walks -- the Bounded Random 
Walk Process in Discrete and Continuous Time”,  Econometric Theory, vol. 18 (1), pp. 
99-118, 2002. 

22. Nicolau, J. “Bias Reduction in Nonparametric Diffusion Coefficient Estimation”, 
Econometric Theory, vol. 19(5), pp. 754-777, 2003. 

23. Nicolau, J. “Non-Parametric Estimation of Second Order Stochastic Differential 
Equations”, Working Paper 3-04, CEMAPRE, 2004. 

24. Nicolau, J. “A Method for Simulating Non-Linear Stochastic Differential Equations in 
R1”, Journal of Statistical Computation and Simulation, vol. 75(8), pp. 595-609, 2005. 

25. Nicolau, J. “Processes with Volatility-Induced Stationarity. An Application for Interest 
Rates”, Statistica Neerlandica, 59(4), pp. 376-396, 2005. 

26. Nicolau, J. “Modelling the Volatility Created by Chartists: A Discrete and a Continuous-
Time Approach”, Working Paper 4-05, CEMAPRE, 2005. 

27. Richter M. (2002), A study of stochastic differential equations with volatility induced 
stationarity (unpublished). 

41




