
What's wrong with the Australian River Assessment System
(AUSRIVAS)?

Author:
Chessman, BC

Publication details:
Marine and Freshwater Research
v. 72
Chapter No. 8
pp. 1110 - 1117
1323-1650 (ISSN); 1448-6059 (ISSN)

Publication Date:
2021-07-01

Publisher DOI:
https://doi.org/10.1071/MF20361

License:
https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/unsworks_79046 in https://
unsworks.unsw.edu.au on 2024-05-18

http://dx.doi.org/https://doi.org/10.1071/MF20361
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.4/unsworks_79046
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


What’s wrong with the Australian River Assessment
System (AUSRIVAS)?

Bruce C. Chessman

Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences,

UNSW Sydney, NSW 2052, Australia. Email: brucechessman@gmail.com

Abstract. The Australian River Assessment System (AUSRIVAS or AusRivAS) is a national biomonitoring scheme
that supposedly assesses the ‘biological health’ of rivers. AUSRIVAS outputs observed-over-expected (O/E) indices

derived from macroinvertebrate survey data obtained both at a site to be assessed and at designated reference sites.
However, AUSRIVAS reference sites lack any consistent or quantified status, and, therefore, AUSRIVAS O/E indices
have no particular meaning.Moreover, many studies have foundAUSRIVASO/E to be a weak or inconsistent indicator of

exposure to anthropogenic or human-influenced stressors. Poor performance by AUSRIVAS may relate to numerous
factors including the following: (1) variable reference-site status, (2) inappropriatemodel predictors, (3) limitations ofO/E
indices, (4) inconstant sampling methods, and (5) neglect of non-seasonal temporal variability. The indices Ephemer-
optera–Plecoptera–Trichoptera (EPT) and stream invertebrate grade number – average level (SIGNAL) provide

alternatives that have often outperformed AUSRIVAS O/E in comparative tests. In addition, bioassessment of Australian
rivers might be advanced by the development of diagnostic methods to identify the stressors causing ecological impact
rather than merely to infer impact intensity and assign quality ratings to assessment sites.
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Introduction

The Australian River Assessment System (AUSRIVAS or
AusRivAS) is a national biomonitoring scheme adapted from
the British River Prediction and Classification System

(RIVPACS: Clarke et al. 2003). AUSRIVASwas developed and
tested as part of Australia’s former National River Health Pro-
gram during the 1990s (Davies 2000), and has changed little

since that time. It is currently promoted by way of a website and
biannual training courses. The AUSRIVAS software can pro-
duce various outputs, but the one that is principally used is an

observed-over-expected (O/E) index of macroinvertebrate tax-
onomic richness. In the calculation of this index, E is the sum of
probabilities of occurrence in a macroinvertebrate sample of
those taxa with a predicted probability above a specified value

(commonly 0.5), and O is the number of those taxa that were
actually recorded in the sample (Nichols and Dyer 2013). The
probabilities of occurrence are derived by a predictive statistical

model frommacroinvertebrate survey data that were collected at
designated reference sites, weighted according to their physical,
biophysical and chemical similarities to the assessment site for

which an O/E value is to be generated. AUSRIVAS O/E values
are used to assign sites to quality bands, variously labelled ‘more
biologically diverse than reference’, ‘similar to reference’,

‘significantly impaired’, ‘severely impaired’ and ‘extremely
impaired’ (Nichols and Dyer 2013).

According to its website (ausrivas.ewater.org.au; accessed
14 December 2020), AUSRIVAS is ‘a prediction system used to
assess the biological health of Australian rivers’, based on
computer models that ‘predict the aquatic macroinvertebrate

fauna expected to occur at a site in the absence of environmental
stress, such as pollution or habitat degradation, to which the
fauna collected at a site can be compared’. These claims are

problematic from a scientific perspective because they cannot be
tested objectivelywith empirical evidence. Ability to assess river
health cannot be tested because ecosystem health is a metaphor or

value judgment and not a measurable property (Suter 1993;
Lancaster 2000). Ability to predict the aquatic macroinvertebrate
fauna occurring in the absence of environmental stress cannot be
tested because nowhere on Earth can any longer be regarded as

untouched by anthropogenic stressors. Even in wilderness areas,
the freshwater biota is exposed to pervasive anthropogenic
climate change, atmospheric deposition of nutrients and toxicants,

and invasion of alien species (e.g. Hageman et al. 2006; Havel
et al. 2015; Knouft and Ficklin 2017).

Moreover, AUSRIVAS reference sites lack any consistent or

quantified status, being chosen on rather vague and geographi-
cally variable criteria such as being ‘selected primarily on the
basis of riparian zone integrity and absence ofmajor point sources

of pollution upstream’ (Turak et al.1999, p. 286) or being ‘usually
located in conservation reserves, little grazed pastoral land or
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forested areas not recently logged’ but sometimes ‘located in
rivers running through farmland or other disturbed areas’ (Halse

et al. 2007, p. 164). Consequently, degrees of inferred deviation
from reference status, as expressed by O/E values and band
assignments, have no particular meaning.

Nevertheless, numerous studies provide evidence about the
behaviour of AUSRIVAS outputs, and especially its O/E index,
in relation to measurable properties such as repeatability,

capacity to discriminate among sites with different levels of
exposure to human influences, and strength of association with
anthropogenic or human-influenced physical and chemical
variables. An appraisal of the performance of AUSRIVAS

based on these studies may help progress bioassessment of
Australian rivers, which has fallen into decline in recent years
(Nichols et al. 2017). Accordingly, the present contribution

critically evaluates the performance of AUSRIVAS by review-
ing the findings of previous studies. Possible reasons for
performance inadequacies are then explored, and, finally,

some suggestions are made for more effective bioassessment
of Australian rivers. Although the evaluation is limited to
AUSRIVAS, issues raised may be relevant to similar systems
used elsewhere in the world.

Materials and methods

Studies providing empirical evidence of the behaviour and
performance of AUSRIVAS in Australian states and territories,
mostly based on its O/E index, were summarised in terms of the

geographic location of the study, the criterion or criteria by
which the performance of AUSRIVAS could be evaluated, and
the overall findings (Table 1). Occasional applications of

AUSRIVAS outside of Australia were excluded. The perfor-
mance of AUSRIVAS was then rated as ‘good’, ‘fair’ or ‘poor’
on the basis of the evidence presented and the authors’ evalua-

tions. Thus, if AUSRIVAS performed well or better than did
alternatives tested, a ‘good’ rating was assigned, whereas if
AUSRIVAS performed weakly or worse than did alternatives, a
‘poor’ rating was allocated. If AUSRIVAS performed ade-

quately in some circumstances or respects but not in others, a
‘fair’ rating was applied. Publications on AUSRIVAS, and
articles describing the application of RIVPACS-typemethods to

biota other than macroinvertebrates and outside of Australia,
were also consulted for information on factors that might limit
the performance of AUSRIVAS.

Results

Evaluation of the behaviour and performance of AUSRIVAS
encompassed 25 studies including all Australian states and ter-

ritories (Table 1). On the basis of information in these studies,
‘good’ ratings were assigned in seven cases (28%), ‘fair’ ratings
in six cases (24%), and ‘poor’ ratings in 12 cases (48%).Many of

the studies demonstrated a failure to discriminate between sites
with lower and those with higher levels of exposure to anthro-
pogenic stress, or a lack of statistically significant association

with anthropogenic or human-influenced physical and chemical
stressors that are well known to have an impact on aquatic
macroinvertebrates. When AUSRIVAS showed statistically
significant discrimination or association, it often did so more

weakly than did alternatives (Table 1).

Discussion

Instances when the performance of AUSRIVAS was rated as
‘good’ mostly related to exposure to severe stress, such as gross
pollution from acid mine drainage (Sloane and Norris 2003;

Linke et al. 2005) or the presence of a major dam immediately
upstream (Nichols et al. 2006a). This observation concurs with
the conclusion of some authors that impact detection by AUS-
RIVAS O/E is reliable only for severe stress (Smith et al. 1999;

Edward et al. 2000). Even studies for which the performance of
AUSRIVAS was rated as ‘good’ revealed some weaknesses,
such as failure of some models to meet set criteria (Linke et al.

2005) or infrequent detection of a mild impact (Bailey et al.

2014; Nichols et al. 2014).
The frequent insensitivity of AUSRIVAS is of concern from

a management perspective. For example, a stream in Western
Australia with a nitrate concentration of 5.8 mg L–1, due to a
discharge of treated sewage from a small town, was evaluated as

AUSRIVAS Band A, equivalent to reference condition (Halse
et al. 2007). Edward et al. (2000) expressed disquiet about the
inability of AUSRIVAS to detect impacts on macroinvertebrate
assemblages related to anthropogenic salinisation caused by

land clearing and rising water tables, which is a major environ-
mental problem in south-western Western Australia.

At least five factors may contribute to weak performance by

AUSRIVAS, including (1) variable reference-site status, (2)
inappropriate model predictors, (3) limitations of O/E indices,
(4) inconstant sampling methods, and (5) neglect of non-

seasonal temporal variability. Below, each is discussed, in turn,
before alternatives to AUSRIVAS are briefly explored and
possible future directions for more effective bioassessment of

Australian rivers are considered.

Variable reference-site status

Faunal predictions made by AUSRIVAS are derived from data

collected at reference sites that are supposedly ‘minimally dis-
turbed’ (Nichols and Dyer 2013). Although quantification of
disturbance at these sites does not seem to be available, it is clear

from descriptive accounts that they are exposed to spatially
variable and often substantial human influence. For example,
some reference sites have been located on regulated rivers

and within farmland (Turak et al. 1999; Halse et al. 2007).
Consequently, anthropogenic faunal alteration at AUSRIVAS
reference sites has been suggested as a possible reason for
weak performance by some authors (Chessman and Royal

2004; Chessman et al. 2006). A fundamental conundrum of the
AUSRIVAS approach is that if there were an effective way
to determine the degree of anthropogenic faunal alteration at

reference sites, the same method could presumably be applied
to assessment sites as well, in which case, comparison with
reference sites would not be needed. In reality, the degree of

anthropogenic faunal alteration at reference sites is unknow-
able, considering the plethora of anthropogenic and human-
influenced stressors, cryptic biotic legacies of past human

disturbance that may linger for decades or even centuries (e.g.
Ogden 2000; Maloney et al. 2008; Wohl 2019), and transmis-
sion of stressors and biota between potential reference sites and
other parts of the landscape (e.g. Pringle 1997; Lake et al. 2010;

Spear et al. 2018).
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Inappropriate model predictors

The AUSRIVAS models collectively use a great variety of
environmental variables for matching an assessment site to par-

ticular groups of reference sites, so as to generate occurrence
probabilities of macroinvertebrate taxa at the assessment site
(Simpson and Norris 2000). Many of these environmental pre-

dictors are subject to anthropogenic alteration, for example,
alkalinity, discharge, stream depth and width, substratum com-
position and vegetation. The values of such predictors input to the

AUSRIVAS models are the measured values, not the values that
would occur in the absence of human influence, and this practice
is likely to cause model predictions to deviate from natural
expectations (Clarke et al. 1996; Hargett et al. 2007; Chessman

2014). For example, faunal predictions for an assessment site
with unnaturally high alkalinity as a result of anthropogenic
salinisation may be derived from reference sites with naturally

high alkalinity, whereas reference sites with naturally low alka-
linity would have been the appropriate comparison (Metzeling
et al. 2006; Schäfer et al. 2011). The estimation of natural values

of anthropogenically altered predictors (e.g. Olson and Hawkins
2012, 2013) might help alleviate this problem.

By contrast, if environmental variables that are subject to

anthropogenic alteration are simply excluded, predictionmay be
less accurate (Clarke et al. 1996; Theroux et al. 2020). For
example, Chessman et al. (2010) noted that in western New
SouthWales, the applicable AUSRIVASmodel used only slope

and geographic position (latitude, longitude and elevation) to
match assessment sites with reference sites, and thus did not use
hydrological variables. It is, therefore, uncertain how well this

model matches assessment and reference sites in terms of the
natural variation in hydrological regimes that can have a major
bearing on the composition ofmacroinvertebrate assemblages in

Australian dryland rivers (Sheldon and Thoms 2006). Similarly,
in south-western Western Australia, a major determinant of
macroinvertebrate assemblage composition, i.e. salinity, could
not be used for faunal prediction because both naturally saline

and anthropogenically salinised sites had similar salinities
(Halse et al. 2007).

Moreover, predictor variables that are not subject to human

alteration may actually be surrogates for variables that are

anthropogenically modified. For example, latitude and longi-
tude obviously do not have a direct causal influence on macro-

invertebrate assemblages, and if they have predictive value it
must be because they correlate with other, unknown variables
that do have a causal influence, that is, variables that might be

subject to anthropogenic alteration.

Limitations of O/E indices

The O/E index used by AUSRIVAS and similar bioassessment
methods such as RIVPACS combines two variables, namely, the

predicted probability that a taxon will occur in a sample under
reference conditions (a continuous variable ranging from 0 to 1)
and the detection or non-detection of a taxon in a sample (a binary

variable with values of 0 or 1). Neither variable takes account of
taxon abundance, except to the extent that abundance affects
likelihood of occurrence or detection. Aguiar et al. (2011) sug-
gested that the non-incorporation of abundance informationmight

explain the poor performance of a RIVPACS-type application for

Portuguese stream macrophytes, relative to alternatives that were
tested. However, Kanninen et al. (2013) found that an alternative

to O/E that incorporated abundance did not have superior per-
formance for lacustrine macrophytes in Finland.

The O/E index also has a structural weakness in that the

detection of taxa with a low modelled probability of occurrence
can counter the non-detection of taxa with a high probability of
occurrence, leading to an under-representation of the difference

between the predicted and observed assemblages (Van Sickle
2008). Furthermore, the choice of a threshold of predicted
probability for including taxa in the calculation of the O/E index
affects index values, even for reference sites (Yuan 2006). For

assessment sites, the choice of a high threshold excludes taxa
that are infrequent at reference sites but may, nevertheless, be
adversely affected by anthropogenic stress (Clarke and Murphy

2006; Mazor et al. 2016), or alternatively may benefit from
certain types of anthropogenic stress (Edward et al. 2000).
However, the presence or absence of such taxa may be quite

informative. For example, in applying RIVPACS-type methods
to diatoms, Chessman et al. (1999) found that sites with a greater
exposure to anthropogenic influence were characterised more
by the presence of taxa with predicted probabilities of,0.5 than

by the absence of taxa with probabilities of.0.5. This problem
may not be alleviated by the use of a low threshold, which
has sometimes been reported to improve index performance

(Clarke andMurphy 2006; Vander Laan andHawkins 2014), but
much more often found to reduce performance (e.g. Van Sickle
et al. 2007; Aroviita et al. 2009; Meador and Carlisle 2009).

Instead, the solution may be to use a different index (Chessman
et al. 1999; Van Sickle 2008; Kanninen et al. 2013).

Finally, because the value of the AUSRIVAS O/E index

depends on the number of expected taxa that are recorded in a
sample, the index value is highly sensitive to the chance
detection or non-detection of individual taxa that are present
at an assessment site (Smith et al. 1999). This issue is particu-

larly acute for naturally harsh environments with low taxon
richness, such as dryland or nutrient-deficient streams or the
profundal zone of lakes (Chessman et al. 2006;Halse et al. 2007;

Jyväsjärvi et al. 2011), because the intrinsic variability of O/E is
higher when the number of expected taxa is low (Hämäläinen
et al. 2018).

Inconstant sampling methods

Inherent variability in taxon detection is likely to be compounded
by weakly standardised sampling or subsampling methods. Pro-

tocols for AUSRIVAS invertebrate sampling and subsampling
vary substantially among the separate manuals for each Austra-
lian state and territory (available from ausrivas.ewater.org.au/

index.php/manuals-a-datasheets). However, all protocols pro-
vide quite limited standardisation. For example, all manuals
specify that samples should be collected over a 10-m transect, but

in most cases this distance is permitted to be either continuous or
broken up into multiple, physically separated segments at the
operator’s discretion. Moreover, none of the manuals specifies

any time limit for sample collection or describes a procedure to
measure the distance over which sampling actually occurs.

Procedures for subsampling macroinvertebrates from the
bulk sample of macroinvertebrates and associated plants, algae,

sediment and debris are quite varied among jurisdictions, and
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variously impose requirements for the number of animals to be
retrieved, the time to be spent, or both. These requirements can

be complex; for example, in the New South Wales manual
(Turak et al. 2004), operators are instructed to use a sequence
of different strategies to pick out specimens for successive

periods of 5, 20, 5 and 10 min, variously focussing on collecting
common taxa, seeking new taxa, or accumulating more indivi-
duals. After 40 min, picking may or may not continue for up to

20 additional minutes, depending on whether the operator
believes that additional taxa are still being found. It is question-
able whether such a complex procedure, applied by various
operators for diverse samples, will retrieve a consistent propor-

tion of the taxa present in the sampling area.

Neglect of non-seasonal temporal variability

AUSRIVAS attempts to deal with natural temporal variability by
creating separate predictive models for its two sampling seasons,
spring and autumn. However, non-seasonal (e.g. inter-annual)
variation in macroinvertebrate faunas can also be high, even at

reference sites (Bailey et al. 1998; Feio et al. 2006; Mazor et al.
2009). Over much of Australia, especially the arid and semi-arid
zones, much of the variation in hydrological regimes and, conse-

quently, biota, is naturally aseasonal or supraseasonal (Bunn and
Davies 2000; Sheldon 2005). In such regions, it may be advisable
to partition reference data according to antecedent rainfall or the

phase of the flood–drought cycle, and not just calendar season
(Davis et al. 2006; Chessman et al. 2010).

Alternatives to AUSRIVAS

Alternatives to theAUSRIVASO/E index formacroinvertebrate-
based bioassessment of Australian rivers include the Ephemer-
optera–Plecoptera–Trichoptera (EPT) index (Lenat and Penrose

1996) and family-level and genus-level versions of the stream
invertebrate grade number – average level (SIGNAL) index
(Chessman 2003; Chessman et al. 2007). Both of these indices

have been widely tested, and found to out-perform AUSRIVAS
O/E in several investigations (e.g. Chessman et al. 2006; Walsh
2006; Cox et al. 2019). Other options, such as the environmental
filters method of Chessman and Royal (2004), the salinity index

of Horrigan et al. (2005), and the invertebrate species index of
Haase andNolte (2008), have not been greatly tested, and so their
general utility is uncertain. Surprisingly, multimetric indices of

biotic integrity, widely used around the world for bioassessment
based on macroinvertebrates, fish and other organism groups
(Ruaro et al. 2020), have not been developed for Australian

freshwater invertebrates, perhaps because of early criticism by
proponents of AUSRIVAS (Norris and Hawkins 2000) and
ecological risk assessment (Suter 1993, 2001).

Ephemeroptera–Plecoptera–Trichoptera indices are based

on the number or proportion of taxa or individuals belonging
to the generally pollution-sensitive insect orders Ephemerop-
tera, Plecoptera and Trichoptera (Kitchin 2005). SIGNAL

indices are an abundance-weighted or unweighted average of
numerical grades assigned to individual taxa to represent their
tolerance of general environmental stress (Chessman 2003).

SIGNAL is conceptually different fromAUSRIVASO/E in that
SIGNAL is proposed as an indicator of measurable environ-
mental stressors such as chemical enrichment or contamination

(Chessman 2003), and not of unmeasurable ‘river health’.
Because SIGNAL is an average, it is little affected by variation

in sampling and subsampling methods (Growns et al. 1997;
Metzeling et al. 2003), in contrast to AUSRIVAS O/E (Nichols
and Norris 2006; Nichols et al. 2006b).

Unlike AUSRIVAS O/E, EPT and SIGNAL do not contain
built-in reference data. Users of EPT and SIGNAL are, there-
fore, at liberty to generate reference values in a transparent way

that is appropriate to their objectives. For example, in New
Zealand, Collier and Hamer (2013) and Clapcott et al. (2017)
used regression models to generate reference values of the EPT
index and a macroinvertebrate community index similar to

SIGNAL by setting values of predictors that represented anthro-
pogenic stressors to zero.

Future directions

A notable trend in freshwater bioassessment globally is the
development of diagnostic methods to identify the stressors
causing ecological responses, rather than to merely estimate the
intensity of anthropogenic impact and, thereby, assign quality

ratings to study sites (e.g. Lemm et al. 2019; Feld et al. 2020). A
diagnostic approach is needed to support effective management
(Negus et al. 2020) in a world where a natural reference state is

ever more hypothetical and unattainable, and the distinction
between natural and human influences on aquatic biota is
increasingly blurred (Bishop et al. 2009; Dufour and Piégay

2009; Bouleau and Pont 2015). An early Australian test of the
diagnostic approach with stream macroinvertebrates had mixed
success (Chessman and McEvoy 1998), and more recent Aus-
tralian efforts based on the species at risk (SPEAR) method

(Schäfer et al. 2011; Kath et al. 2018; Bray et al. 2021) are yet to
demonstrate stressor specificity. Nevertheless, advances in
other parts of the world suggest that a diagnostic approach,

whether based onmacroinvertebrates or on other biota, may be a
vehicle to progress bioassessment of Australian rivers, partic-
ularly at a time when technical advances such as identification

by DNA analysis promise greatly reduced costs (Dafforn et al.

2016; Carew et al. 2017).
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