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A B S T R A C T   

Background: Recent advances in data-driven computational approaches have been helpful in devising tools to 
objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homo-
geneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly 
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compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess 
the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. 
Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion- 
MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using 
traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder 
(DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility 
of both models using leave-one-site-out cross-validation procedure for each modality. 
Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC 
for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The 
performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). 
The classification performance remained intact when applying the DVAE framework, which reduced the number 
of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets 
compared with the traditional machine learning frameworks, albeit performance was slightly above chance. 
Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using 
large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification 
performance. The DVAE framework provided better generalizability for the multi-site data. This may be more 
significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less 
site-specific, rendering them more generalizable.   

1. Introduction 

Posttraumatic stress disorder (PTSD) is a prevalent and debilitating 
disorder, with a world-wide prevalence rate of 3.9 % (Kessler et al., 
2017; Koenen et al., 2017). Current clinical assessments of PTSD rely 
solely on reported subjective experiences, overlooking objective bio-
markers, which may lead to many cases of PTSD being undetected or 
misdiagnosed (Sumpter and McMillan, 2005). Recent advances in 
computational power and data-driven computational approaches, 
especially supervised machine learning, have been helpful in devising 
tools to objectively diagnose psychiatric disorders (Liu et al., 2015; van 
Loo et al., 2012; Bzdok and Meyer-Lindenberg, 2018). These approaches 
improve diagnosis by mining neuroimaging datasets, generating clini-
cally relevant inferences at the individual level (Lama et al., 2017; 
Steardo et al., 2020; Gao et al., 2018). In recent years, the number of 
supervised machine learning studies in translational neuroimaging has 
grown dramatically (Woo et al., 2017), but many challenges still 
remain. First, most extant studies are single-site studies of small ho-
mogeneous samples. Although efforts have been made to deal with 
overfitting (Srivastava et al., 2014; Ying, 2019), single-site studies still 
tend to yield better performance than studies of larger samples, due to 
overfitting in the latter (Y Li et al., 2020; Lanka et al., 2020; Varoquaux, 
2018). Second, methodological differences across these studies (e.g., 
machine learning approaches, scanners, acquisition parameters, and 
data processing pipelines) limit the ability to directly compare their 
results. Third, most studies estimated classification performance via 
cross-validation (i.e., all samples are used in building the prediction 
model), without testing classification performance using independent 
yet-to-be-seen test data. For example, a recent review in depression has 
shown that only 4 of 66 studies evaluated classification performance 
using a holdout dataset, with all four containing less than 200 samples 
(Gao et al., 2018). However, for machine learning models to be useful in 
real-world clinical settings, predictive models need large samples that 
enable the evaluation of model performance on an unseen holdout 
dataset or independent cohorts. In PTSD, only a handful of studies exist, 
with none exploring the reproducibility of findings using multimodal 
brain imaging across multiple sites. 

In addition to the above-described challenges, the selection of reli-
able and sensitive biomarkers to classify patients relative to controls is 
also crucial. In PTSD, most studies conduct group-level univariate 
analysis to identify PTSD-related biomarkers using one, and rarely two 
imaging modalities (Ben-Zion et al., 2020). No published studies thus far 
have explored three common imaging modalities of structural Magnetic 
Resonance Imaging (s-MRI), resting state functional MRI (rs-fMRI), and 
diffusion MRI (d-MRI), each tapping specific facets of structure or 
function to provide comprehensive information about the brain. S-MRI 

provides information on regional tissue volume of gray or white matter. 
In PTSD, structural abnormalities have been reported in the hippo-
campus, amygdala (Morey et al., 2020), prefrontal cortex, anterior 
cingulate cortex (O’Doherty et al., 2017) and insula (Siehl et al., 2020). 
Rs-fMRI measures the functional connectivity (FC) between brain re-
gions. FC abnormalities in PTSD have been reported mainly in the 
default mode network (DMN), ventral attention network (VAN), exec-
utive control network (ECN) and salience network (SN) (Koch et al., 
2016; Daniels et al., 2010). Finally, D-MRI provides information on 
white matter microstructure and the brain’s structural connectivity. 
White matter abnormalities in PTSD have been reported within the 
hippocampus, corpus callosum (Dennis et al., 2021), cingulate gyrus 
(CG), uncinate fasciculus (O’Doherty et al., 2018), and inferior 
fronto-occipital fasciculus (McCunn et al., 2021; Ju et al., 2020). How-
ever, as results from all three modalities are based on group-level 
analysis between PTSD and healthy controls (HC), or trauma exposed 
healthy controls (TEHC), it remains unclear whether PTSD can be 
discriminated at the single-subject level. Finally, most studies used only 
a single imaging modality among small samples (Liu et al., 2015; Im 
et al., 2017; Gong et al., 2014; Zilcha-Mano et al., 2020), limiting their 
broad-scale implications (Liu et al., 2015; Im et al., 2017; Li et al., 2014). 

Recently, deep learning methods have received increasing attention 
in psychiatry because they are capable of learning subtle, latent patterns 
from high dimensional neuroimaging data. Deep learning methods have 
the potential to automatically diagnose different clinical disorders (Kim 
et al., 2016; Zhao et al., 2017), including PTSD (Sheynin et al., 2021), 
advancing the understanding of the neural basis of neuropsychiatric 
disorders (Arbabshirani et al., 2017). Of specific interest is autoencoder, 
which is a type of artificial neural network that seeks to learn the most 
efficient representations of the data at the individual level (Pinaya et al., 
2019). Several neuroimaging studies show promising results for 
autoencoders in the classification of Alzheimer’s disease (Suk et al., 
2015; Ju et al., 2019), attention deficit hyperactivity disorder (ADHD) 
(Liu et al., 2021), autism spectrum disorder (ASD) (Eslami et al., 2019), 
and schizophrenia (Pinaya et al., 2019; G Li et al., 2020). Yet, the po-
tential of autoencoders for multi-site classification of PTSD remains 
unknown. 

To address the gaps in knowledge, here we used machine learning 
approaches in large-scale multimodal datasets from a heterogenous 
sample that obtained through the Enhancing Neuro-Imaging Genetics 
through Meta-Analysis (ENIGMA) PTSD and Psychiatric Genetics Con-
sortium-(PGC) consortium PTSD working groups. First, we assessed 
classification performance between PTSD and controls using traditional 
machine learning methods; 2) assess the utility of the denoising varia-
tional autoencoder (DVAE) and evaluated its classification performance; 
and 3) assess the generalizability and reproducibility of both models for 
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each modality. 
More specifically, first, we assessed the utility of neuroimaging 

biomarkers from s-MRI, rs-fMRI, and D-MRI in classifying PTSD from 
healthy controls, both with and without trauma exposure, as previous 
research has suggested unique neural signatures associated with trauma- 
exposure that are not present in trauma-unexposed individuals (Weng 
et al., 2019; Ke et al., 2018). To achieve this goal, we first identified the 
brain features that best distinguish PTSD from all non-PTSD controls. 
Next, we assessed the common and distinct neural features of PTSD 
versus controls with (TEHC) and without (HC) trauma exposure. Such 
information may provide valuable insight into underlying neural 
mechanisms in the pathophysiology of PTSD, and provide a baseline for 
machine learning classification of PTSD using large-scale data. 

Second, we assessed the utility of deep learning models as a feature 
reduction method to improve classification performance. Neuroimaging 
studies usually make the predictive modeling task challenging because 
of the high dimensional feature set and relatively small sample size 
(Mwangi et al., 2014). Feature reduction methods can reduce feature 
dimensions to avoid overfitting, without losing important information 
needed for classification. Autoencoder approaches have an advantage 
over traditional feature reduction in suppressing noise from the input 
signal, leaving only a high-value representation of the input. Such an 
approach can automatically identify ways to transform raw imaging 
features into latent space variables, which are more suitable for machine 
learning algorithms, as well as capture the nonlinear representations of 
the input data. In this study, we built a DVAE for high dimensionality 
data reduction (Han et al., 2019). The latent variables were used as new 
features and input into traditional machine learning approaches for 
classification. Instead of developing a system capable only of classifying 
individuals into patients and controls, we sought to capture the key 
feature information in the latent space using the DVAE model. We first 
trained the model using controls, and subsequently applied the model to 
data from PTSD patients. Our intent was that the model would first learn 
the features representing healthy brain function and then retrieve the 
latent variables in PTSD patient data for capturing deviation of brain 
features from controls (Pinaya et al., 2019). 

Third, we assessed the generalizability and reproducibility of the 
classification model across heterogeneous datasets from multiple sites. 
The generalizability of machine learning to classify neuroimaging data is 
of great concern. Tremendous variability across studies inhibits the 
creation of a clear body of reliable knowledge from distinct studies (Cai 
et al., 2020). The ENIGMA-PGC consortium combines multimodal im-
aging and clinical data from multiple sites, enabling the development of 
models based on large samples. This offers an unprecedented opportu-
nity for testing the generalizability and reproducibility of classification 
models to unseen datasets with vastly different characteristics compared 
to the sample used for model building. We evaluated generalizability 

across sites by assessing the classification performance for each site, and 
then by using Leave-One-Site-Out Cross-Validation (LOSOCV) to test 
how well the model generalized to independent cohorts. 

2. Methods 

2.1. Participants 

Table 1 summarizes the descriptive information for each imaging 
modality. We analyzed brain MRI data from 7925 individuals (3477 
structural-MRI; 2495 resting state-fMRI; and 1953 diffusion-MRI). Of 
these 7925 individuals, 498 individuals had all 3 modalities, 736 had 2 
and 6691 only had 1 modality. Demographic information for each im-
aging modality are summarized in Supplemental Table 1~3. Inclusion 
and exclusion criteria for each cohort are summarized in Supplemental 
Table 4. 

Depending on the cohort, current PTSD was diagnosed according to 
the Diagnostic and Statistical Manual of Mental Disorders (DSM) IV or V 
criteria, using the following standard instruments: Clinician- 
Administered PTSD Scale-IV (CAPS-IV), CAPS-5 (DSM-V), Structured 
Clinical Interview (SCID-IV) (DSM-IV), Mini International Neuropsy-
chiatric Interview (MINI) 6.0.0 (3 cohorts, DSM-IV), PTSD Checklist 
(PCL)− 4 (DSM-IV), PCL-5 (DSM-V), Davidson Trauma Scale (DTS) IV (1 
cohort, DSM-IV), PTSD Symptom Scale (PSS) (DSM-IV), and Anxiety 
Disorders Interview Schedule (ADIS) (DSM-IV). All participating sites 
obtained approval from their local institutional review boards and ethics 
committees, and all study participants provided written informed 
consent. 

2.2. Image preprocessing 

The brain features included in machine learning analysis are pre-
sented in Fig. 1. All imaging data were acquired at the contributing sites 
and processed with standardized protocols established by the ENIGMA 
Consortium (Nunes et al., 2020; Renteria et al., 2017). The specific set of 
imaging features used in this study are summarized in supplemental 
Table 5~7. 

S-MRI: T1-weighted images were processed using the FreeSurfer 
processing stream to create individual subject thickness maps (http:// 
surfer.nmr.mgh.harvard.edu/). The cortex of each hemisphere was 
parcellated into 34 cortical regions of interest (ROIs) using the Desi-
kan–Killiany atlas (Klein and Tourville, 2012). To match what we 
excluded for rs-fMRI data, 10 ROIs that are part of the motor or occipital 
lobes were removed from further analysis. The volume of an ROI was 
calculated by multiplying cortical thickness at each vertex in the ROI by 
the surface area across all vertices (Wang et al., 2021). ROI volumes and 
intracranial volume (ICV) were derived from subjects’ native spaces. 

Table 1 
Demographics of PTSD and control groups across s-MRI (T1), rs-fMRI (RS), and D-MRI (DTI).    

PTSD Control TEHC HC Difference between PTSD and Control 

s-MRI N (%) 1344 (38.7 %) 2133 (61.3 %) 1486 (42.7 %) 647 (18.6 %)   
Female N (%) 544 (40.5 %) 907 (42.6 %) 564 (38.0 %) 343 (53.0 %) χ2=1.33, p = 0.24  
Age (years) 36.0 ± 14.1 34.0 ± 15.3 36.2 ± 15.1 28.9 ± 14.4 T = 14.16, p = 0.0001  
Age range (years) 6.0~82.0 6.0~85.0 6.0~85.0 6.0~69.0   
N of sites 32 30 24 19  

rs-MRI N (%) 1016 (40.7 %) 1479 (59.3 %) 1182 (47.4 %) 297 (11.9 %)   
Female N (%) 546 (54.9 %) 761 (51.6 %) 571 (48.5 %) 190 (64.0 %) χ2=2.47, p = 0.12  
Age (years) 38.4 ± 14.0 37.0 ± 15.5 39.6 ± 15.2 26.4 ± 11.3 T = 5.48, p = 0.02  
Age range (years) 9.0~95.0 1.0~86.0 9.0~86.0 1.0~61.0   
N of sites 26 26 23 14  

d-MRI N (%) 830 (42.5 %) 1122 (57.5 %) 1027 (52.6 %) 95 (4.9 %)   
Female N (%) 310 (37.3 %) 440 (39.2 %) 387 (37.7 %) 53 (55.8 %) χ2=0.63, p = 0.43  
Age (years) 38.6 ± 14.3 36.0 ± 15.4 36.6 ± 15.5 30.0 ± 12.3 T = 13.86, p = 0.0002  
Age range (years) 8.34~81.75 9.0~83.0 8.53~83.16 13.0~65.0   
N of sites 20 19 16 9  

Abbreviations: PTSD: Posttraumatic stress disorder; TEHC: Trauma exposed healthy control; HC: healthy control. 
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Segmentations of gray and white matter and parcellations of ROIs were 
visually inspected using ENIGMA imaging quality control protocols 
(http://enigma.ini.usc.edu/protocols/). ROIs with segmentation or 
parcellation errors were excluded from the analysis. The final structural 
features included ROI cortical thicknesses (CT) and volumes for both left 
and right hemispheres, a total of 96 features (Supplemental Table 5). 

Rs-fMRI: Resting-state images were acquired at each site and pre-
processed at a single location (Duke University). Preprocessing was 
implemented in ENIGMA HALFpipe workflow (https://github.com/ 
HALFpipe/HALFpipe) based on fMRIPrep. Briefly, processing steps for 
T1w image include skull stripping, tissue segmentation, and spatial 
normalization to MNI space. Processing steps for functional images 
include motion correction using FSL MCFLIRT, slice time correction 
using AFNI 3dTshift for slice-timing correction, susceptibility distortion 
correction, and co-registration to the reference T1-weighted image using 
FSL FLIRT, and spatial normalization and warping to the template space 
using the MNI_2009 template. Each voxel was smoothed using signal 
from neighboring voxels with AFNI 3dBlurInMask followed by weight-
ing by an isotropic Gaussian kernel. This method was repeated for each 
timepoint in the time series. 

To ensure good quality of RS data, visual inspection was carried out 
on image registration, segmentation and brain extraction. To control 
confounding effects of motion artifact, several strategies were imple-
mented: First, the top five aCompCor components were removed (Beh-
zadi et al., 2007); second, frame-wise displacement (FD) was computed 
for each run, and subjects with more than 30 % frames have high levels 
of gross motion were excluded (FD> 0.5 mm). Next, subjects with tSNR 
below 1.5 * IQR were excluded, and finally, subjects for whom more 
than 85 % of independent component analysis (ICA) components clas-
sified as noise were further removed. The ROI-to-ROI functional con-
nectivity was calculated by extracting the average time series extracted 
from each of the 264 ROIs regions defined by the Power atlas (Jahan-
shad et al., 2013). A connectivity matrix between atlas regions was 
calculated using Pearson product moment correlation with PANDAS. We 
further reduced the number of features by only selecting 148 ROI re-
gions that are part of known networks including default mode (DMN), 
ventral attention (VAN), frontal-parietal (FPN), salience (SN), subcor-
tical (SCN), dorsal attention (DAN), cingulo-opercular networks (CON) 
(Gao et al., 2018). The final functional connectivity feature set con-
tained 10,878 measures (Supplemental Table 6). 

D-MRI: DTI data were preprocessed following ENIGMA-DTI pro-
tocols and quality control procedures at (Power et al., 2011). Processing 
steps include Eddy current correction, echo-planar imaging-induced 
distortion correction, motion correction, and tensor fitting. Fractional 
Anisotropy (FA) images generated from the estimated tensors were 
mapped to the ENIGMA DTI FA template and projected onto the skeleton 
FA template (FMRIB58_FA standard-space). FA values within ROIs were 
averaged within ROIs using JHU atlas for further analysis. 42 
Tract-Based Spatial Statistics (TBSS) derived features of mean FA were 
extracted from D-MRI. Details and ROI abbreviations can be seen in 
Supplemental Table 7. 

2.3. Data analysis 

Overview: The overall analysis procedure is presented in Fig. 2. The 
analysis followed the structure of the three main aims and 2 supple-
mentary aims of the paper. Goals 1 and 2 used data that was pooled 
across sites/scanners whereas goal 3 used site information to facilitate 
generalization performance assessment. Goal 1 investigated both Sup-
port vector machine (SVM) and random forest (RF) for classification of s- 
MRI data, which was repeated for rs-fMRI, and then for D-MRI. Goal 2 
investigated DVAE in conjunction with SVM and in conjunction with RF 
(DVAE+SVM/RF), first using s-MRI features and then using rs-fMRI 
features. Goal 3 investigated performance of SVM or RF on single site 
data that was tested separately on s-MRI, rs-fMRI, and D-MRI brain 
features. Goal 3 also investigated performance of LOSOCV tested sepa-
rately on s-MRI (SVM, DVAE+SVM), and rs-fMRI (SVM, DVAE+SVM) 
brain features. 

For classification using SVM or RF (Goal 1) and DVAE+SVM or 
DVAE+RF (Goal 2) (Kingma, 2013), we used aggregated pooling 
methods for each modality. Pooling methods refer to techniques used to 
aggregate or combine data from multiple sites, so that the model can 
leverage information from diverse resources or sites to improve the 
overall model performance, and generalize the learned patterns across 
different sites. In this analysis, 70 % of all sites’ data was used for 
cross-validation, and 30 % of all sites’ data was used for independent 
testing. For the generalization test (Goal 3), we first tested the classifi-
cation performance for each site across all three modalities, and then 
used LOSOCV procedure for each modality. In addition, we tested the 
impact of site, age and sex on classification performance. 

Fig. 1. Brain features from structural MRI (s-MRI), resting state fMRI (rs-fMRI), and DTI (d-MRI) used in this study. T1-weighted images were processed using the 
FreeSurfer pipeline, the final s-MRI features included 96 ROI cortical thicknesses (CT) and volumes for both left and right hemispheres. Rs-fMRI images were 
preprocessed using ENIGMA HALFpipe workflow, the final rs-fMRI features included 10,878 ROI-to-ROI functional connectivity measures. DTI data were pre-
processed following ENIGMA-DTI protocols, 42 Tract-Based Spatial Statistics (TBSS) derived features of mean FA were included in the analysis. 
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3. Classification 

We built three models for classifying PTSD relative to 1) all controls 
(HC and TEHC), 2) healthy controls with no trauma history (HC), and 3) 
those previously exposed to trauma who did not develop PTSD (TEHC) 
for each modality. 

SVM and RF algorithms were used for classification (Supplemental 
Material Methods). Machine learning algorithms and Gridsearch were 
implemented in Python, and are available as part of the scikit-learn li-
brary (https://scikit-learn.org/stable/about.html#citing-scikit-learn). 
Our first task was to train classifiers that can differentiate patients with 
PTSD from control subjects using pooling methods. We randomly split 
all imaging data into two subsets: 70 % of the data was used for training 
and validation (cross-validation), and the remaining 30 % was used as a 
hold-out test dataset. The labeled training+validation data is used to 
train a machine learning model through cross-validation. The validation 
data, which is separate from the training data, is used for hyper-
parameter tuning and assessing the model’s performance during the 
cross-validation training process. The independent-test data is entirely 
separate from the training+validation data and is never involved in 
model training phase. Brain features with 30 % of missing data were 
dropped from further analysis (Madley-Dowd et al., 2019). RobustScaler 
from the scikit-learn library was used to scale the data for each modality, 
and missing values were imputed with the mean of the training dataset. 
The same scaling method was applied to the test set (Pedregosa et al., 
2011). Gridsearch with stratified 10-fold cross-validation was used to 
select hyperparameters for both classifiers and to validate performance. 
Based on previous research (Gao et al., 2018), we used 10-fold cross 
validation, which generally provides better and more stable 

performance across different datasets, compared to Leave-One-Out 
Cross-Validation (LOOCV). To achieve an equal number of samples for 
each group, random under-sampling was applied to the imbalanced 
groups, with the under-sampling transform applied to the training 
dataset on each split of a repeated 10-fold cross-validation. The model’s 
performance during training phase was evaluated by averaging across 
its the performance in the 10 fold. After model training, and the selec-
tion of the best hyperparameters, its performance is also assessed on the 
independent test set. Classification performance was measured using 
standard metrics including accuracy, sensitivity, specificity, and area 
under the receiver operating characteristic curve (ROC-AUC), which 
summarizes sensitivity and specificity at different thresholds. 

Denoising variational autoencoder (DVAE): In our study, the 
feature dimension was very high for rs-fMRI data (148 ROIs, 10,878 
ROI-to-ROI connectivity pathways), and relatively high for s-MRI data 
(96 regions). Researchers often use various feature reduction techniques 
for better performance and efficiency. Here, we implemented DVAE 
models using the PyTorch library (https://arxiv.org/abs/1912.01703). 
Gaussian noise with a mean of 0 and a standard deviation of 0.1 was 
applied to the input data. Our goal was to induce the model to learn to 
find more robust features of the data that are tolerant to noise and thus 
be able to reconstruct the noiseless data from noisy input data. This was 
the denoising aspect of the DVAE (Pinaya et al., 2019; Du et al., 2017). 

Model Architecture: The autoencoder consists of an encoder and a 
decoder (Supplemental Fig. 1). The encoder has one input layer, x, one 
hidden layer, h1, and an encoding layer, z. The decoder consists of one 
hidden layer, h2, and one output layer x̂. The size of h1, h2, and z was 
varied depending on the modality used. For s-MRI, a size of h1 = h2 =
250 and size of z = 5 were chosen. For rs-fMRI, a size of h1 = h2 = 400 

Fig. 2. Overall analysis procedure. The analysis followed the structure of the three main aims and 2 supplementary aims of the paper. Goals 1 and 2 used data that 
was pooled across sites/scanners whereas goal 3 used site information to facilitate performance assessment. Goal 1, investigated both Support vector machine (SVM) 
and random forest (RF) for classification of s-MRI data, which was repeated for rs-fMRI, and then for D-MRI. Goal 2 investigated DVAE in conjunction with SVM and 
in conjunction with RF (DVAE+SVM/RF), first using s-MRI features and then using rs-fMRI features. Goal 3 investigated performance of SVM or RF on single site data 
that was tested separately on s-MRI, rs-fMRI, and D-MRI brain features. Goal 3 also investigated performance of LOSOCV tested separately on s-MRI (SVM, 
DVAE+SVM), rs-fMRI (SVM, DVAE+SVM), and D-MRI (SVM) brain features. S-MRI: structural MRI; RS-fMRI: resting state fMRI; D-MRI: diffusion MRI; SVM: support 
vector machine; RF: random forest; DVAE: Denoising variational autoencoder. 
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and a size of z = 10 was chosen. The sizes of the respective layers were 
chosen by performing a sparse grid search for each of the layers’ sizes 
independently and evaluating the performance of the model both with 
respect to the loss function and classification accuracy (Sheela, 2013). 
The grid search parameters for s-MRI and rs-fMRI included activation 
function (tanh, selu), latent size (Koenen et al., 2017; van Loo et al., 
2012; Woo et al., 2017; Varoquaux, 2018; Koch et al., 2016; Kim et al., 
2016), and hidden layer size ((Jahanshad et al., 2013), 100, 150, 200, 
250, 400, 500). 

The encoding layer z is referred to as the latent space of the model. 
This layer stores the model’s reduced feature representation of the input 
data. In a general VAE framework, the features of the latent space z, 
referred to as latent variables, are drawn from Gaussian distributions 
determined by learned parameters (μ, log(σ2)). These Gaussian distri-
butions comprise an estimated distribution q(z|x) to approximate the 
true underlying prior distribution p(z). Once the encoded representation 
z is sampled, the values are reparameterized and fed into the decoder 
network. The decoder network then tries to reproduce the input using 
the reparameterized encoded data. The activation function for the layers 
was chosen as scaled exponential linear units (SELU) (Pinaya et al., 
2019). 

Loss Function of Model: For an autoencoder, the loss is usually 
determined solely by L = MSE(x, x̂) where MSE is the mean squared 
error loss. This makes the autoencoder’s sole objective to maximize its 
reconstruction accuracy. For a VAE the Kullback-Leibler Divergence 
(DKL) is added to the loss function. The DKL term is used to determine 
how much q(z|x) and p(z) differ. This constrains the way in which the 
parameters for the Gaussian distributions are updated and regularizes 
the latent space. Thus for a VAE, the loss function is generally 

L = MSE(x, x̂) + DKL(q(x) ‖ p(z)).

For p(z), usually the unit Gaussian or N(0, 1) is chosen. This was the 
choice for our model as well. 

Training of the DVAE model: The model was trained with ADAM 

optimizer (Kingma, 2014) using rs-fMRI or s-MRI data from controls 
only. Our intent was that the model would first learn the features rep-
resenting salient aspects of healthy brain function and use the same 
features to represent PTSD. Prior to feeding the data to the model, the 
data was standardized by median and interquartile range. The total 
control sample was split into training (70 %) +validation (30 %) data. 
The labeled training data is used to train the VAE model. The validation 
data, which is separate from the training data, is used for hyper-
parameter tuning and assessing the model’s performance in each epoch. 
The independent-test data is completely separate from the train-
ing+validation data and is never involved in model training. It is used to 
evaluate the generalization of the trained model to unseen PTSD data. 
Each epoch, the samples were fed as mini batches of size 128 to the 
network. L2 regularization (regularization parameter = 0.1) was applied 
to penalize high values of the network’s weights and to avoid over-
fitting. The model was then trained for 500 epochs with the train-
ing+validation data. Once the training was completed, the model’s 
performance was evaluated on the independent-test data, which pro-
vides an unbiased estimate of how the model generalizes to unseen data. 
The resulting VAE model learned to encode healthy patterns from the 
input brain features into its latent representation. Later, the brain fea-
tures from patients with PTSD (PTSD test set) were input into the same 
VAE model, and the latent variables were extracted as new features for 
classification analysis (Fig. 3). 

Convergence was measured by evaluating the per-feature loss, which 
we defined as L/n where n is the number of features of the input. This 
was done so as to be able to roughly compare the loss for models from 
different modalities, as each had a different number of features. 

Encoding and Classification: After training the model, we used it to 
encode and reconstruct the data from both control subjects and the in-
dividuals with PTSD. For each subject, the values for their latent dis-
tributions, μ, log(σ2), were computed and extracted. Second, we 
compared the performance of the encoded features (DVAE+SVM/RF) to 
the original features using the SVM and RF classifiers (SVM/RF). 

Calculating feature importance: To find features that are most 

Fig. 3. Denoising Variational Autoencoder analysis pipeline: The model was trained using rs-fMRI or s-MRI data from controls only. The samples were then split into 
a training+validation (70 %) and independent-test (30 %) data. Then 20 % of the training data was set aside for validation and hyperparameter tuning. Once the 
training+validation was completed, the model’s performance was evaluated on the independent-test data, which provides an unbiased estimate of how the model 
generalizes to unseen data. The resulting VAE model learned to encode healthy patterns from the input brain features into its latent representation. Later, the brain 
features from patients with PTSD (PTSD test set) were input into the same VAE model, and the latent variables were extracted as new features for classifica-
tion analysis. 
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predictive of PTSD, we used a permutation-based feature-importance 
method on a RF classifier (Altmann et al., 2010; Breiman, 2001). After 
choosing the best RF model, we permuted the values of each feature and 
recomputed the accuracy. Predictor importance was then described by 
the difference between the baseline accuracy of the classifier and the 
difference in accuracy after permuting the feature. This method, while 
slower to compute, is more robust than the Gini importance (GI) method, 
which is a more commonly used method to calculate feature importance. 

4. Generalization 

Single Site: We evaluated the same SVM or RF parameterization used 
in previous analyses on each site’s data, to shed light on its replicability. 
However, this method requires each site’s sample size to be large enough 
to appropriately fit a machine-learning model. Thus, we only included 
sites that had more than 20 subjects in each group (PTSD and all con-
trol). For sites that have imbalanced samples, a down sampling approach 
was used to have a distributed sample across the two groups. To maxi-
mize generalizability and avoid overfitting, we applied the SVM or RF 
for each site using the default parameters, without grid search for 
optimal parameters, or feature reduction and selection. This method is 
stratified insofar as the proportion of cases and controls (in respective 
folds) is similar in both training and validation sets. The SVM or RF 
model was trained and evaluated using a 10-fold cross validation, and 
predictive performance was evaluated based on the cross validation. 

Leave-one-site-out cross-validation (LOSOCV): Sites with sample size 
greater than 20 in each group were included in this analysis. In each fold 
of cross-validation, we used the DVAE trained latent features as 
described above. The DVAE model was trained based on control sub-
jects’ data only (exclude the controls from the independent test site), 
then the brain features from patients with PTSD across all sites were 
input into the same VAE model, and the latent variables were extracted 
as new features for machine learning analysis. Thus, the hold-out site 
was completely left out from the training procedure. For machine 
learning analysis (SVM),), in each iteration, one site was left out as test 
set, data from the rest of the sites was used in training procedure through 
10 folds cross-validation. The training set was further randomly parti-
tioned into 10 folds for cross-validation. Model performance was eval-
uated on the data from the hold-out site. The goal of this procedure was 
to assess the generalizability of the classifier to a totally independent 
data set that was sampled from a different sample and scanner. The 
LOSOCV performance was compared with an aggregated pooling 
method, in which data from all sites were included in training process. 

ComBat: For a large multi-site study, it is important to consider 
whether a classifier can generalize well to new data coming from a 

different scanner or site. We used the ComBat method (Radua et al., 
2020) to remove the site-specific information from the data and to test 
the generalizability of our classifier. The ComBat method models each 
imaging measure as a combination of three parts: variation of Y captured 
by the covariates such as age and sex, mean differences across sites, and 
the error term that contributes a different normal from each sites. Then 
the ComBat harmonized data can remove these additive and multipli-
cative effects due to site differences. 

Biologically relevant covariates: To evaluate the contribution of 
confounding factors (age and sex) on the classification performance, we 
included age and sex as features and tested the impact on the overall 
performance. 

5. Results 

5.1. Classification performance between PTSD and controls for each 
imaging modality using traditional SVM and RF 

The CV AUC and test AUC using RF and SVM are presented in Fig. 4 
for brain features from s-MRI, rs-fMRI, and D-MRI modalities respec-
tively. The performance for RF was similar to SVM. Accuracy, Sensitivity 
and Specificity are reported in the Supplemental Table 8 and the receiver 
operating characteristic curve (ROC curve) are reported in the Supple-
mental Figures 2–4. First, our findings show that RF and SVM achieved 
similar performance when classifying PTSD from controls. Second, our 
models showed balanced CV AUC and test AUC, indicating that our 
models can generalize to an independent test set, which was not 
involved in model training, with no overfitting in these models. Third, 
all three modalities achieved comparable performance (using SVM: s- 
MRI: test AUC=0.60, Cohen’s d = 0.354; rs-fMRI: test AUC=0.59, 
Cohen’s d = 0.325; D-MRI: test AUC=0.56, Cohen’s d = 0.212). Among 
the three contrasts (PTSD vs. HC; PTSD vs. TEHC; PTSD vs Controls), the 
performance of classifying PTSD from HC was the best across all three 
modalities (SVM: s-MRI: test AUC=0.72, Cohen’s d = 0.82; rs-fMRI: test 
AUC=0.75, Cohen’s d = 0.948; D-MRI: test AUC=0.78, Cohen’s d =
1.09) (see Supplemental Table 8). 

Some common and distinct features (Supplemental Fig. 5) that 
differentiate PTSD from both HC and TEHC are presented in Supple-
mental Results. 

5.2. Classification performance between PTSD and controls using deep 
learning framework 

Applying DVAE to rs-fMRI data reduced the number of features from 
10,878 (latent variables) to 10. The performance of DVAE+SVM was CV 

Fig. 4. The overall classification performance (measured by cross validation AUC [CV AUC], and test AUC) between PTSD and all controls, between PTSD and HC, 
and between PTSD and TEHC, for s-MRI, rs-fMRI, and D-MRI. Error bar represents standard deviation of the 10 fold cross validation results. 
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AUC mean=0.60, std=0.045; test AUC=0.62, Cohen’s d = 0.424. 
Compared with the performance (CV AUC) using SVM of all features, the 
performance of DVAE+SVM or DVAE+RF (CV AUC) significantly 
improved (SVM: t (O’Doherty et al., 2017)=2.56, p = 0.016; RF: t 
(O’Doherty et al., 2017)=4.158, p = 0.0006). The classification per-
formance between PTSD and controls using SVM was presented in Fig. 5, 
which achieved similar results. We also applied DVAE to s-MRI data 
(feature size: 96), which reduced the features to 5 latent variables. The 
performance of DVAE+SVM was CV AUC mean=0.60, std=0.045; test 
AUC=0.62, Cohen’s d = 0.424. Compared with the performance (CV 
AUC) using SVM or RF of all features, the performance of DVAE+SVM or 
DVAE+RF (CV AUC) significantly improved (SVM: t (O’Doherty et al., 
2017)=1.55, p = 0.019; RF: t (O’Doherty et al., 2017)=2.56, p =
0.0196). 

The reconstruction loss function was used to assess whether the 
DVAE is a good predictor for classification of controls vs PTSD. The loss 
function during the training process for each modality is reported in 
Fig. 6. 

5.3. Generalization and reproducibility 

5.3.1. Assessing the classification performance for each site 
S-MRI: The CV AUC in individual sites ranged from 0.36 to 0.83 

using SVM. The average of individual site results yielded a CV AUC of 
0.55 (std: 0.11) using SVM.Rs-fMRI: The CV AUC in individual sites 
ranged from 0.39 to 0.69 using SVM. The average of individual site 
results yielded a CV AUC of 0.54 (std: 0.08). D-MRI: The CV AUC of 
individual sites ranged from 0.24 to 0.68 using SVM. The average of 
individual site results yielded a CV AUC of 0.53 (std: 0.11) (Fig. 7, and 
Supplemental Table 9). We also assessed the CV AUC using RF. There is no 
statistical differences between the CV AUC results using RF or SVM (s- 
MRI p = 0.97; rs-fMRI p = 0.32; D-MRI p = 0.65). 

We further assessed the correlation between the sample size at each 
individual site and the CV AUC. No significant correlation was found, for 
all three modalities. 

5.3.2. Leave one site out cross validation (LOSOCV) 
The LOSOCV performance was compared with an aggregated pooling 

method (as in Results Section 1). For all three MRI modalities (s-MRI, rs- 
fMRI, and D-MRI), LOSOCV provided chance level classification (s-MRI: 
test AUC=0.56, Cohen’s d = 0.212; rs-fMRI: test AUC=0.47, Cohen’s d 
= 0; D-MRI: test AUC=0.49, Cohen’s d = 0) (Supplemental Table 10), and 
performed worse than the aggregate pooling method (Fig. 8). In s-MRI 
and rs-fMRI, we also compared LOSOCV and pooling methods using 
DVAE features, and assessed their generalizability. The DVAE achieved 
the same performance between LOSOCV and the pooling method, 
indicating a good generalization to unseen dataset using DVAE. 

Specifically, the LOSOCV method using SVM yielded an averaged test 
AUC of 0.61 (std:0.064) for s-MRI; and an averaged test AUC of 0.62 
(std: 0.052) for rs-fMRI (Supplemental Fig. 6). 

5.3.3. Effects of site, age, and sex 
We evaluated the impact of site by first harmonizing each site using 

ComBat (Pomponio et al., 2020), and then assessed the classification 
performance between PTSD and all controls using RF and SVM. The site 
harmonization did not impact the classification performance using RF, 
but the performance dropped using SVM (s-MRI: before: test AUC=0.60, 
Cohen’s d = 0.354; after: test AUC=0.52, Cohen’s d = 0.071; rs-fMRI: 
before: test AUC=0.59, Cohen’s d = 0.325; after: test AUC=0.46, 
Cohen’s d = 0; D-MRI: before: test AUC=0.56, Cohen’s d = 0.212; after: 
test AUC=0.52, Cohen’s d = 0.071) (Supplemental Fig. 7). 

We also evaluated the impact of age and sex on classification per-
formance by including age and sex as features in the classification 
models. Age and sex did not impact the classification performance using 
either RF or SVM (Supplemental Fig. 8). 

6. Discussion 

The primary focus in the present study was to use machine learning 
techniques to create classifiers that leverage the complex multivariate 
patterns of structural and functional brain deficits. Specifically, we 
rigorously tested the classification performance on both cross-validation 
AUC and test AUC, in which a fully independent portion of the data was 
left out when selecting the model (both architectures and parameters). 
We found relatively poor classification performance in classifying PTSD 
vs. controls (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D- 
MRI using SVM). This is lower than top-performing studies conducted at 
a single site, with sample size ranging from N = 30 to 89. These studies 
achieved accuracy ranging between 55.56 % (Y Li et al., 2020) and 97.1 
% (Lanka et al., 2020) for rs-fMRI, and between 73 % (Im et al., 2017) 
and 80 % (Li et al., 2014) for studies focusing on multimodal bio-
markers. Our single-site performance is comparable to other single-site 
studies (Fig. 7). Yet, single-site studies show poor generalization to in-
dependent datasets (Pereira et al., 2009), suggesting that performance 
might be adversely affected by small sample sizes, high-dimensional 
features, and use of complex models with a large number of parame-
ters. Good performance on training data, with poor performance on test 
data, suggests overfitting, as most machine-learning studies are evalu-
ated only on the basis of cross validation. Therefore, while our accuracy 
is relatively low (Y Li et al., 2020), the strength of our methods and 
sample size support the importance of our findings. Conversely, the 
present results are comparable with machine-learning studies using 
large scale imaging datasets in other psychiatric disorders based on 
s-MRI data – 65 % accuracy when classifying MDD from HC (Gao et al., 

Fig. 5. Compare classification performance between PTSD and Controls using all features (labeled as RF or SVM) and DVAE-based latent variables (labeled as 
DVAE+RF or DVAE+SVM) in s-MRI (A) and rs-fMRI (B). Compared with the performance (CV AUC) using SVM of all features, the performance of DVAE+SVM (CV 
AUC) significantly improved for both s-MRI and rs-fMRI. 
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2018); 65.2 % accuracy in differentiating bipolar disorder from controls 
(Nunes et al., 2020); and a CV AUC of 0.57–0.61 when classifying OCD 
from controls (Bruin et al., 2020). Exploring the utility of a DVAE, 
improved classification results emerged as compared to traditional ML 
approaches. The DVAE successfully reduced feature dimensions, e.g. 
reduced the rs-fMRI features from 10,878 features to 10 latent variables, 
without losing information important for classification (SVM test 
AUC=59 %, Cohen’s d = 0.325 using 10,878 features; test AUC=62 %, 
Cohen’s d = 0.424 using 10 latent variables). Thus, the present results 
have the potential to provide a baseline classification performance for 
PTSD when using large scale imaging datasets. 

When considering HCs and TEHCs as separate control groups, our 
results yielded a markedly improved discrimination standard (test AUC 
in the range of 72 % to 78 %) across the three modalities, with the 
discrimination between PTSD and HC outperforming that of PTSD and 
TEHC. These findings are in line with previous studies showing greater 
similarity in underlying neural circuits between PTSD and TEHC par-
ticipants (Belleau et al., 2020; Sheynin et al., 2020), than when 
comparing PTSD to HC with no trauma exposure. 

Evaluating the generalizability by assessing the model performance 

for each site and each modality, showed that the classification AUC at 
the individual sites across all three imaging modalities ranged from 40 % 
to 82 % using SVM. However, such a wide range in the performance 
across individual sites is expected in large-scale multi-site studies, also 
shown in other disorders (Nunes et al., 2020; Bruin et al., 2020), as 
samples are highly heterogeneous due to between-site differences (e.g., 
inclusion/exclusion criteria, demographic characteristics, clinical pro-
files, scanner used and scanning parameters, etc.). Furthermore, to avoid 
overfitting, we limited the scope of default parameters to SVM only, 
without hyperparameter tuning, which may have impacted the range of 
site performances compared to fine-tuning models using cross validation 
(Nunes et al., 2020). 

Our results also indicated that LOSOCV performed using traditional 
machine learning and the aggerated pooling method performed worse 
than the performance using DVAE framework, as typically LOSOCV 
using traditional machine learning may result in large between-sample 
heterogeneity between training and test sets, resulting in roughly 
chance-level classification. Thus, imaging features do not provide strong 
biomarkers that enable generalization to new sites using traditional 
machine-learning methods. Previous studies have made an attempt at 

Fig. 6. The reconstruction loss function of the Denoising Variational Autoencoder model for s-MRI (A), rs-fMRI (B), and D-MRI (C), blue line: loss for the training set 
(from control data), orange line: loss for the validation set (from control data), green line: loss for the validation data (from PTSD data). 

Fig. 7. s-MRI, rs-fMRI, and D-MRI single site performance for classification of PTSD from controls using SVM. The classification performance was measured by cross 
validation (CV) AUC, the dot indicates the average of the AUC of each fold in cross validation for each site, the line indicates the standard deviation of each fold in 
cross validation for each site. The boxplots were made by utilizing the boxplot() function from the seaborn library in Python. The box encompasses the interquartile 
interval, or the middle 50 % of the dataset. The upper and lower whiskers represent data points located in the top and bottom 25 % of the dataset. Data that fall 
outside this range are considered outliers and are plotted individually. 
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LOSOCV, yielding average accuracies of around 75.0 % schizophrenia 
using s-MRI (Rozycki et al., 2018; Skatun et al., 2017), and an accuracy 
of 58.67 % when assessed LOSOCV in bipolar disorder (Nunes et al., 
2020). These studies, however, used relatively small number of sites (3 
to 5) for LOSOCV test, while we tested generalizability in 28 sites 
(s-MRI). Conversely, when extracting s-MRI and rs-fMRI features using 
DVAE models based on controls’ data only, the LOSOCV method ach-
ieved the same performance as the pooling method, demonstrating 
better generalizability using the DVAE framework. Importantly, the 
LOSOCV may be more significant in clinical practice because when 
multi-site data is used for model training, the final neuroimaging-based 
diagnostic classification models are much less site-specific, rendering 
them more generalizable. Indeed, the VAE framework has been used for 
site harmonization and produced promising results. Site specific infor-
mation can then be added to the latent representations to reconstruct the 
MRI data (Moyer et al., 2020; Dinsdale et al., 2021). 

Assessing the effect of site on classification performance showed that 
discrimination remained the same when using a random forest classifier, 
and dropped when using the SVM classifier, and after site harmonization 
with ComBat. Previous literature suggests that statistical harmonization 
methods developed to reduce data heterogeneity have the potential to 
improve accuracy, but at the cost of generalizability. Such approaches 
may compromise the train/test separation and introduce additional as-
sumptions. Our findings demonstrate that DVAE may be able to capture 
differences across sites, and can be better generalized to new sites data. 
More importantly, the DVAE model does not require a priori knowledge 
of site information. Taken together, our findings support reproducibility 
of the DVAE across heterogeneous datasets from multiple sites. Testing 
generalizability, we also assessed the effect of age and sex on perfor-
mance by adding them as features to the model (Bruin et al., 2020), 
which did not affect classification performance. Neither did they emerge 
as informative features in classifying patients with PTSD from controls. 
Future studies should further assess the specific effects of age and sex on 
PTSD classification. 

Several challenges still remain to be explored. First, combining bio-
markers from different modalities with data fusion approaches is still in 
its infancy, and should be considered in future analyses to better detect 

potentially weak or latent effects hidden within high-dimensional 
datasets. Most deep-learning models are still being applied as black 
boxes, but serious efforts are underway to visualize latent variables and 
therefore improve the interpretability of results. Second, neuropsychi-
atric comorbidity was not consistently recorded across participating 
sites, so we could not evaluate it in the present study. Future studies 
should rectify this by also assessing comorbid conditions, exploring the 
underlying brain features that discriminate PTSD patients with and 
without comorbidity. Third, due to limited data of neurocognitive per-
formance, we were not able to link emergent brain biomarkers to neu-
rocognitive performance associated with the same brain circuits and/or 
regions. Fourth, while deep learning models typically give better per-
formance than traditional machine learning, they are still perceived as 
black-box models, as they do not readily provide corresponding in-
terpretations. However, deep learning need not be uninterpretable - as 
witnessed by the rapid expansion of methods for explainable deep 
learning (Bai et al., 2021; Singh et al., 2020), which uses new forms of 
visualization and representations of model outcomes. For example, VAE 
offers several advantages over the autoencoder and can be used for 
better interpretation of the latent representations. Specifically, VAE 
models the latent space as a probability distribution, thus it can generate 
new data by sampling from different parts of the latent distribution. This 
allows for meaningful interpolation and exploration of the latent space. 
Future studies should explore the latent representation discovered in 
this study. Fifth, the deep learning models were trained using data from 
all controls, not HC; future studies could generate separate models using 
HC and TEHC, and further explore the difference in latent variables 
generated by different control groups (HC and TEHC). Sixth, this study 
only used the DVAE model for ML classification. Future studies can 
assess different variations of autoencoder models such as VAE, sparse 
autoencoder, and adversarial autoencoder. Lastly, although our study 
benefited from a large sample size and advanced analytics, its value in 
predicting disease progression and treatment response needs to be 
investigated by future studies. 

Taken together, our findings highlight the promise offered by ma-
chine learning and deep learning methods in diagnosing patients with 
PTSD using multimodal brain imaging data. Our findings show that the 
control group used can heavily affect classification performance. We 
also demonstrate the possibility of improving generalizability using 
DVAE models, which may provide valuable insight into the neural 
mechanisms underlying the pathophysiology of PTSD. 
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