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Not All Learnable Distribution Classes are Privately Learnable∗

Mark Bun† Gautam Kamath‡ Argyris Mouzakis§ Vikrant Singhal¶

February 6, 2024

Abstract

We give an example of a class of distributions that is learnable in total variation distance
with a finite number of samples, but not learnable under pε, δq-differential privacy. This refutes
a conjecture of Ashtiani.

1 Introduction

Given samples from a distribution D belonging to some class of distributions H, can we output a dis-
tribution D1 that is close to D in total variation distance? This problem, known as distribution learn-
ing or density estimation, has enjoyed significant study by a number of communities, including Com-
puter Science, Statistics, and Information Theory (see, e.g., [DL01, KMR`94, DDS12, ABDH`20]).

A recent line of work studies distribution learning under differential privacy [DMNS06], giving
sample complexity bounds for several classes of interest. However, many of these algorithms are
ad hoc, exploiting idiosyncrasies of the class of interest (see, e.g., [KV18, KLSU19]). Recent efforts
have succeeded in weakening assumptions and designing increasingly general learning algorithms
and frameworks (see, e.g., [LKO22, KMS`22b, AL22, KMV22, AAL23a]). It is natural to wonder
how far this agenda can be pushed – what are the limits of private learning? Specifically, we
consider the following question:

Question 1.1. Is every learnable class of distributions H also learnable under the constraint of
pε, δq-differential privacy?

The answer is known to be “no” under the stronger constraint of pε, 0q-DP (i.e., pure DP).
Bun, Kamath, Steinke, and Wu [BKSW19] showed that the covering and packing numbers of a
distribution class H give sample complexity upper and lower bounds, respectively, for learning the
class H. Consequently, this immediately gives separations between learning and pε, 0q-DP learning.1

However, they do not prove any sample complexity lower bounds for pε, δq-DP (i.e., approximate DP)
learning, leaving open the possibility that every learnable distribution class is privately learnable.

On the related task of PAC learning of functions, a rich line of work shows that there exist strong
separations between non-private learning and private learning, under both pε, 0q-DP [BBKN14,
FX15] and pε, δq-DP [BNSV15, ALMM19, BLM20]. In particular, for approximate DP, learnability
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1The simplest natural example is the class of univariate unit-variance Gaussians with unbounded mean.
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is characterized by the Littlestone dimension, rather than the VC dimension as in the non-private
setting. However, given substantial differences in the setting, it is unclear whether these separations
have any implications for private distribution learning.

At a July 2022 workshop at the Fields Institute, Ashtiani explicitly conjectured an affirmative
answer to Question 1.1: every learnable class of distributions is privately learnable [Ash22]. Indeed,
as mentioned before, the community (including contributions by Ashtiani, as well as others) has
designed increasingly generic algorithms for private distribution learning [AL22, TCK`22, AAL23a],
often depending only on a non-private learner in a black-box manner.

We refute Ashtiani’s conjecture, and give an explicit class of distributions which is learnable
from a constant number of samples, but is not privately learnable with any finite number of samples.

Theorem 1.2 (Informal version of Theorem 3.8). There exists a class of distributions H such that,
for an absolute constant c:

1. There exists an algorithm which, given Op1q samples from any distribution D P H, outputs a
pD P H such that P

”
dTV

´
pD, D

¯
ď c

ı
ě 0.9.

2. Any pε, δq-DP mechanism that attains the same accuracy guarantee needs an infinite number
of samples.

We use a “trapdoor” construction, where the class of distributions consists of mixtures over
two components. The components are entangled, in the sense that they share the same set of
parameters. The first component encodes a “key” that makes it possible to identify the other
component. The second component is hard to learn individually, even without privacy. In our
setting, the first component will be a binary product distribution over t0, 1ud, whereas the other
component will be a distribution over t˘1, . . . , ˘du. However, we stress that d will not be fixed
a-priori, in the sense that our class will include distributions where d can be any positive integer
greater than 1.2 The construction will be done in a way that the mixing weight will significantly
favor the second component, but samples drawn from it will give very little information about
the overall distribution. Eventually, the hardness in the private setting will be a consequence
of reducing from lower bounds for private mean estimation of binary product distributions (in
the appropriate error metric). We note that conceptually-similar (but technically quite different)
trapdoor constructions have recently been used to show lower bounds for PAC learning [LBD23]
and robust learnability [BDBKL23].

Related Work. Gaussians are often the first class studied when considering distribution learning.
They have been studied under the constraint of differential privacy starting from the work of Karwa
and Vadhan on estimating univariate Gaussians [KV18], with subsequent works focused on under-
standing the multivariate setting [KLSU19, BS19, BDKU20, LKKO21, AAK21, CWZ21, TCK`22,
AL22, KMS`22b, KMV22, BKS22, KMS22a, AKT`23, HKMN23, AUZ23, KMR`23], as well as
the related problem of binary product distributions [KLSU19, Sin23]. The natural generalization
to learning mixtures of Gaussians has also been studied [NRS07, KSSU19, AAL21, AL22, AAL23b,
AAL23a]. Some work focuses on estimating structured classes of distributions [DHS15]. Other
works study broad tools for distribution learning [BKSW19, AAK21, ASZ21, TCK`22, AL22].
See [KU20] for a survey of the area.

2We focus on the d ě 2 case because, for d “ 1, the two components will have overlapping supports.
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2 Preliminaries

General Notation. We denote the set of all non-zero integers by Z
˚. Additionally, given a set S,

we define Si to be the i-fold Cartesian product of the set with itself. We use the notation rns :“
t1, 2, . . . , nu and ra ˘ Rs :“ ra ´ R, a ` Rs. Also, for convenience, we will use the notations like`
R

d
˘n ” R

nˆd and
´

t0, 1ud
¯n

” t0, 1unˆd. We use Bernppq to denote a Bernoulli distribution with

probability of success p. Furthermore, given any set S, we denote the set of all distributions over
that set by ∆pSq. For any distribution D, D

Â
n denotes the product measure where each marginal

distribution is D. Thus, if we are given n independent samples from D, we write pX1, . . . , Xnq „
D

Â
n. Also, depending on the context, we may use capital Latin characters like X to denote

either an individual sample from a distribution or a collection of samples X :“ pX1, . . . , Xnq. To
denote the j-th component of a vector, we will use a subscript (e.g., Xj , if the vector is X). Given
a pair of distributions D1, D2 over a space X , their TV-distance is defined as dTVpD1, D2q :“
sup
AĎX

|D1pAq ´ D2pAq|. If D1 and D2 are discrete, it holds that dTVpD1, D2q “ 1
2

ř
xPX

|D1pxq ´ D2pxq|.
We conclude this section by introducing the definition of differential privacy and its closure

under post-processing property.

Definition 2.1 (Differential Privacy (DP) [DMNS06]). A mechanism M : X n Ñ Y is said to
satisfy pε, δq-differential privacy (pε, δq-DP) if for every pair of neighboring datasets X, X 1 P X n

(i.e., datasets that differ in exactly one entry), we have:

P
M

rMpXq P Y s ď eε
P
M

“
M

`
X 1˘ P Y

‰
` δ, @ Y Ď Y.

When δ “ 0, we say that M satisfies ε-differential privacy or pure differential privacy.

Lemma 2.2 (Post Processing [DMNS06]). If M : X n Ñ Y is pε, δq-DP, and P : Y Ñ Z is any
randomized function, then the algorithm P ˝ M is pε, δq-DP.

3 The Construction and Proofs

We define the class of distributions Hw,d :“
!

Dw,d,p : p P r0, 1sd
)

Ď ∆
´

t0, 1ud Y t˘1, . . . , ˘du
¯

,

where each Dw,d,p has pmf qw,d,p with:

qw,d,ppxq :“

$
’’’’’’’’’’&
’’’’’’’’’’%

w,
ś

jPrds
p

xj

j p1 ´ pjq1´xj , @x P t0, 1ud

1´w
d

, p
1`x

2
1 p1 ´ p1q

1´x
2 , @x P t˘1u

1´w
d

, p
1` x

2
2

2 p1 ´ p2q
1´ x

2
2 , @x P t˘2u

...

1´w
d

, p

1` x
d

2

d p1 ´ pdq
1´ x

d
2 , @x P t˘du

.

Simply put, each Dw,d,p is a mixture of d ` 1 components. The first component has mixing weight

w and is a binary product distribution over t0, 1ud with probability vector p. Each of the remaining
components has mixing weight 1´w

d
and is a binary distribution that takes the value j with proba-

bility pj and the value ´j with probability 1 ´ pj. Note, in particular, that the probability vector
p is shared for both components of the distribution. In this context, the first component can be
seen as the “key” to learning the distribution, because a single sample from it reveals information

3



about the whole parameter vector, in contrast to the last d components which, taken together,
play the role of the “hard distribution”, since a sample from it reveals information about only one
component of the parameter vector. Our goal will be to use Hw :“ Ť

dě2

Hw,d as the class that will

lead to the separation. Specifically, we will show that the sample complexity of privately learning
each Hw,d is dimension-dependent. As d grows, the sample complexity will approach infinity. At
this point, we note that lower bounds shown for individual classes Hw,d are also lower bounds for
Hw which, combined with our previous observation, implies that it’s impossible to learn Hw with
a finite number of samples.

Suppose that our target error is denoted by α. Our proof will focus on an instance of Hw with
w “ α

2
. Specifically, focusing on the sub-class H α

2
,d for d ě 2, we will first show a lower bound

of Ω

ˆ ?
d

logp 1
α q?

αε

˙
for density estimation up to error α with probability of success 0.9 for this class

under pε, δq-DP (Corollary 3.5), and then argue that the non-private sample complexity for the
same task is O

`
1

α3

˘
(Lemma 3.7). We conclude by formally establishing the desired separation in

Theorem 3.8.
We start by showing the lower bound under privacy. Doing so involves an argument which

establishes a reduction from parameter estimation for binary product distributions to density esti-
mation for the class H α

2
,d. Formulating the reduction first necessitates showing how a mechanism

that performs density estimation for the class H α
2

,d can be used to construct a mechanism that
estimates the parameter p of distributions in this class.

Lemma 3.1. Let d ě 2, p P r0, 1sd, and X „ Dbn
α
2

,d,p
. If M :

´
t0, 1ud Y t˘1, . . . , ˘du

¯n

Ñ H α
2

,d

is an pε, δq-DP mechanism that outputs a pD such that E
X,M

”
dTV

´
pD, D α

2
,d,p

¯ı
ď α ď 1, then it is

possible to output a pp P r0, 1sd such that E
X,M

r}pp ´ p}1s ď 2dα, while preserving pε, δq-DP.

Proof. We observe that all the distributions in the class are mixtures with two components that have
disjoint supports, and that the mixing weights are the same for all distributions. As a consequence,
given a pair p1, p2 P r0, 1sd, we have the following for the corresponding distributions:

dTV

´
D α

2
,d,p1

, D α
2

,d,p2

¯
“ α

2
dTV

˜
â

jPrds
Bernpp1,jq,

â

jPrds
Bernpp2,jq

¸
` 1 ´ α

2

d
}p1 ´ p2}1. (1)

Based on the above, if we have a distribution pD ” D α
2

,d,pp, such that E
X,M

”
dTV

´
pD, D α

2
,d,p

¯ı
ď α,

it must always be the case that
1´ α

2

d
E

X,M
r}pp ´ p}1s ď α ùñ E

X,M
r}pp ´ p}1s ď dα

1´ α
2

ď 2dα. Thus,

all we have to do is identify the probability vector pp that corresponds to pD and output it, while
privacy is preserved thanks to Lemma 2.2. �

To complete the reduction, we need to show how, given a mechanism that performs density
estimation for the class H α

2
,d, it is possible to use it to perform ℓ1-parameter estimation for binary

product distributions. This is done in the following lemma:

Lemma 3.2. For d ě 2, let P be a binary product distribution over t0, 1ud with mean vec-
tor p P r0, 1sd, and let X „ P bn. If any pε, δq-DP mechanism T : t0, 1unˆd Ñ r0, 1sd with
E

X,T
r}T pXq ´ p}1s ď 2dα requires at least n ě n0 samples, the same sample complexity lower
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bound holds for any pε, δq-DP mechanism M :
´

t0, 1ud Y t˘1, . . . , ˘du
¯n

Ñ H α
2

,d that satisfies

E
Y,M

”
dTV

´
MpY q, D α

2
,d,p

¯ı
ď α ď 1, where Y „ Dbn

α
2

,d,p.

Proof. To establish our result, it suffices to show that estimating the parameter vector of P can be
transformed into an instance of density estimation for distributions in H α

2
,d, implying that lower

bounds for the former problem also apply to the latter. To do so, we assume we have an pε, δq-
DP mechanism M :

´
t0, 1ud Y t˘1, . . . , ˘du

¯n

Ñ H α
2

,d with E
Y,M

”
dTV

´
MpY q, D α

2
,d,p

¯ı
ď α ď 1

for Y „ Dbn
α
2

,d,p
. We will show how to use this mechanism to construct an pε, δq-DP mechanism

T : t0, 1unˆd Ñ r0, 1sd with E
X,T

r}T pXq ´ p}1s ď 2dα for X „ P bn.

The crux of the argument involves proving that, given a dataset X „ P bn, it is possible to
generate a dataset Y „ Dbn

α
2

,d,p
. The mechanism T will consist of this sampling step (pre-processing),

and an application of M over the resulting dataset. Appealing to Lemma 3.1 suffices to establish
that T will have the desired accuracy guarantee, so the rest of the proof is devoted to describing
the sampling process.

Given any datapoint Xi, we set Yi equal to it with probability α
2

, or, with probability 1 ´ α
2
,

we choose one of the coordinates of Xi uniformly at random (say the j-th coordinate). If the j-th
coordinate of Xi is equal to 1, we set Yi “ j. Otherwise, we set Yi “ ´j. The resulting dataset
Y will follow the desired distribution. We stress that this process preserves privacy guarantees,
because changing a point of X can result in at most one point of Y changing (conditioned on the
randomness involved in the conversion of X to Y ). �

At this point, we recall the following result from [KLSU19]:

Proposition 3.3. [Lemma 6.2 from [KLSU19]] Let p be any vector in
“

1
3
, 2

3

‰d
, and let X :“

pX1, . . . , Xnq be a dataset consisting of n independent samples from a binary product distribution P

over t0, 1ud with mean p. If M : t0, 1unˆd Ñ
“

1
3
, 2

3

‰d
is an pε, δq-DP mechanism with ε P r0, 1s and

δ “ O
`

1
n

˘
that satisfies E

X,M

”
}MpXq ´ p}2

2

ı
ď α2 ď Opdq, @p P

“
1
3
, 2

3

‰d
, it must hold that n ě Ω

`
d

αε

˘
.

While phrased in terms of mechanisms with mean-squared-error guarantees, the above result
also implies a bound for ℓ1-estimation. The connection is described in the following lemma:

Lemma 3.4. For d ě 2, an absolute constant C1 ą 0, and any α ď C1, consider the class of

distributions H α
2

,d. Let p P
“

1
3
, 2

3

‰d
, and let X „ Dbn

α
2

,d,p. If M :
´

t0, 1ud Y t˘1, . . . , ˘du
¯n

Ñ
H α

2
,d is an pε, δq-DP mechanism with ε P r0, 1s and δ “ O

`
1
n

˘
that outputs a pD such that

E
X,M

”
dTV

´
pD, D α

2
,d,p

¯ı
ď α, @p P

“
1
3
, 2

3

‰d
, it must hold that n ě Ω

´ ?
d?

αε

¯
.

Proof. We recall the inequality }x}2
2 ď }x}8}x}1, @x P R

d. This is a consequence of Hölder’s
inequality, but can also be shown in an elementary way by remarking that:

}x}2
2 “

ÿ

iPrds
x2

i ď max
iPrds

t|xi|u
ÿ

iPrds
|xi| “ }x}8}x}1.

Now, let X be a dataset of size n that has been drawn i.i.d. from a binary product distribution P

with mean vector p, and let T : t0, 1unˆd Ñ r0, 1sd be an pε, δq-DP mechanism with ε P r0, 1s, δ “
O

`
1
n

˘
that satisfies E

X,T
r}T pXq ´ p}1s ď 2dα. We have }T pXq ´ p}8 ď 1 which, by an application of

5



the above inequality, yields }T pXq ´ p}2
2 ď }T pXq ´ p}1. This implies that T satisfies the guarantee

E
X,T

”
}T pXq ´ p}2

2

ı
ď 2dα. Consequently, the lower bound of Proposition 3.3 applies to T if we set

α Ñ
?

2dα. Then, appealing to Lemma 3.2 completes the proof. �

The lower bound of Lemma 3.4 also holds for mechanisms that achieve the accuracy guarantee

P
X,M

”
dTV

´
pD, D α

2
,d,p

¯
ď α

ı
ě 0.9, albeit at the cost of getting a result that’s weaker by a log-factor.

The argument is sketched in the proof of Theorem 6.1 of [KLSU19], so we point readers there and

do not repeat it here. The resulting sample complexity bound is n ě Ω

ˆ ?
d

logp 1
α q?

αε

˙
.

We summarize the above remarks in the following corollary.

Corollary 3.5. For d ě 2, an absolute constant C1 ą 0, and any α ď C1, consider the class of

distributions H α
2

,d. Let p P
“

1
3
, 2

3

‰d
, and let X „ Dbn

α
2

,d,p. If M :
´

t0, 1ud Y t˘1, . . . , ˘du
¯n

Ñ
H α

2
,d is an pε, δq-DP mechanism with ε P r0, 1s and δ “ O

`
1
n

˘
that outputs a pD such that

P
X,M

”
dTV

´
pD, D α

2
,d,p

¯
ď α

ı
ě 0.9, @p P

“
1
3
, 2

3

‰d
, it must hold that n ě Ω

ˆ ?
d

logp 1
α q?

αε

˙
.

Remark 3.6. While the lower bounds in the above statements are phrased in terms of proper
learners, they also imply the same bounds against improper learners. If computation is not a
concern, an improper learner can be converted to a proper one by enumerating over all densities
in the class and projecting to whichever one is closest with respect to the TV-distance. Since the
TV-distance satisfies the triangle inequality, this can lead to the error increasing by a factor of 2.

We now proceed to argue that the non-private sample complexity of proper density estimation
with respect to the TV-distance for the class H α

2
,d is independent of d.

Lemma 3.7. For d ě 2, there exists an algorithm A :
´

t0, 1ud Y t˘1, . . . , ˘du
¯n

Ñ H α
2

,d which,

given a dataset X „ D

Â
n

α
2

,d,p
of size n “ O

˜
log

´
1
β

¯

α3

¸
, outputs a distribution pD ” D α

2
,d,pp P H α

2
,d such

that:
P
X

”
dTV

´
D α

2
,d,pp, D α

2
,d,p

¯
ď α

ı
ě 1 ´ β.

Proof. By (1), we have:

dTV

´
D α

2
,d,pp, D α

2
,d,p

¯
“ α

2
dTV

˜
â

jPrds
Bernpppjq,

â

jPrds
Bernppjq

¸
` 1 ´ α

2

d
}pp ´ p}1.

Based on the above, in order to attain error α in TV-distance, it suffices to p1q estimate
Â

jPrds
Bernppjq

up to error 1 in TV-distance, and p2q estimate the vector p up to error dα
2

in ℓ1-distance. Statement
p1q holds trivially, since all distributions are at TV-distance 1 from each other, so we focus on p2q.

For p2q, it holds that }pp ´ p}1 ď
?

d}pp ´ p}2, so it suffices to have a pp such that }pp ´ p}2 ď
?

dα
2

.
Assume, now, that we are given m samples drawn i.i.d. from a binary product distribution, and
that we want to estimate its parameter vector within ℓ2-error α with probability at least 1´ β

2
. It is

a folklore fact that m “ Θ

˜
d`log

´
1
β

¯

α2

¸
samples, are both necessary and sufficient for this task, with

6



the bound being attained by taking the sample mean. Thus, setting α Ñ
?

dα
2

yields Θ

˜
d`log

´
1
β

¯

dα2

¸
,

which is dominated by O

˜
log

´
1
β

¯

α2

¸
. Consequently, in order to get }pp ´ p}2 ď

?
dα
2

in our setting, it

suffices to have m “ O

˜
log

´
1
β

¯

α2

¸
samples from the first component (the binary product distribution).

For that reason, assume that, for each datapoint Xi we draw from D α
2

,d,p, we have an associated

random variable Zi „ Bern
`

α
2

˘
which becomes 1 if Xi comes from the first component. We assume

now that we have n samples with nα
2

ě m. We will show that n “ O

˜
log

´
1
β

¯

α3

¸
suffices to ensure

that the event
ř

iPrns
Zi ă m doesn’t happen, except with probability at most β

2
. The Hoeffding

bound implies that:

P

»
– ÿ

iPrns
Zi ă m

fi
fl ď P

»
–

ˇ̌
ˇ̌
ˇ̌

ÿ

iPrns
Zi ´ nα

2

ˇ̌
ˇ̌
ˇ̌ ě nα

2
´ m

fi
fl ď e´ pnα´2mq2

2n .

To ensure that the above is upper-bounded by β
2
, it suffices to have n ě

2
´

2αm`log
´

2
β

¯¯

α2 “ O

˜
log

´
1
β

¯

α3

¸
.

By a union bound, the total probability of failure is upper-bounded by β, completing the proof. �

We are now ready to establish our main result.

Theorem 3.8. Given any D P H C1
2

, we have:

1. There exists an algorithm A :
Ť

dě2

´
t0, 1ud Y t˘1, . . . , ˘du

¯n

Ñ H C1
2

which, given n “ Op1q

samples drawn i.i.d. from D, outputs a pD P H C1
2

such that P
X

”
dTV

´
pD, D

¯
ď C1

2

ı
ě 0.9.

2. For finite n, there exists no pε, δq-DP mechanism M :
Ť

dě2

´
t0, 1ud Y t˘1, . . . , ˘du

¯n

Ñ H C1
2

with ε P r0, 1s, δ “ O
`

1
n

˘
which, given a dataset X „ Dbn, outputs a pD P H C1

2

that satisfies

P
X,M

”
dTV

´
pD, D

¯
ď C1

2

ı
ě 0.9.

Proof. Let a (potentially adversarially chosen) D ” D C1
2

,d,p
P H C1

2
,d

be our ground truth.

Without privacy constraints, all the algorithm A has to do is look at the samples to identify the
number of components d, and then calculate the sample mean corresponding to the samples from
the first component (as we did in the proof of Lemma 3.7). The desired guarantee is immediate by
the guarantees of that lemma.

Under privacy, we will establish our result by contradiction. Assume that, for some finite n, there

exists an pε, δq-DP mechanism M :
Ť

dě2

´
t0, 1ud Y t˘1, . . . , ˘du

¯n

Ñ H C1
2

with ε P r0, 1s, δ “ O
`

1
n

˘

which, given X „ Dbn, outputs a pD P H C1
2

such that P
X,M

”
dTV

´
pD, D

¯
ď C1

2

ı
ě 0.9. We note

that pD might not be in H C1
2

,d
(since the output range is assumed to be the entire H C1

2

). However,
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working as we described in Remark 3.6, we can round the output to an element of H C1
2

,d
, with the

TV-distance between the resulting distribution and the ground truth now being C1 (the privacy
guarantee is preserved thanks to Lemma 2.2). Then, by Corollary 3.5, it must be the case that

n ě Ω
´?

d
ε

¯
. This must hold for every d ě 2, so taking d Ñ 8 leads to a contradiction. �
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