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THEORETICAL METHODS FOR

ELECTRON-MEDIATED PROCESSES

JAMES R. GAYVERT

Boston University, Graduate School of Arts and Sciences, 2023

Major Professor: Ksenia B. Bravaya
Professor of Chemistry

ABSTRACT

Electron-driven processes lie at the core of a large variety of physical, biological,

and chemical phenomena. Despite their crucial roles in science and technology, de-

tailed description of these processes remains a significant challenge, and there is a

need for the development of accurate and efficient computational tools that enable

predictive simulation. This work is focused on the development of novel software tools

and methodologies aimed at two classes of electron-mediated processes: (i) electron-

molecule scattering, and (ii) charge transfer in proteins.

The first major focus of this thesis is the electronic structure of autoionizing elec-

tronic resonances. The theoretical description of these metastable states is intractable

by means of conventional quantum chemistry techniques, and specialized techniques

are required in order to accurately describe their energies and lifetimes. In this work,

we have utilized the complex absorbing potential (CAP) method, and describe three

developments which have advanced the applicability, efficiency, and accessibility of the

CAP methodology for molecular resonances: (1) implementation and investigation of

the smooth Voronoi potential (2) implementation of CAP in the projected scheme,

and (3) development of the OpenCAP package, which extends the CAP methodology
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to popular electronic structure packages.

The second major focus is the identification of electron and hole transfer (ET)

pathways in biomolecules. Both experimental and theoretical inquiries into elec-

tron/hole transfer processes in biomolecules generally require targeted approaches,

which are complicated by the existence of numerous potential pathways. To this

end, we have developed an open-source web platform, eMap, which exploits a coarse-

grained model of the protein crystal structure to (1) enable pre-screening of poten-

tially efficient ET pathways, and (2) identify shared pathways/motifs in families of

proteins.

Following introductory chapters on motivation and theoretical background, we

devote a chapter to each new methodology mentioned above. The open-source soft-

ware tools discussed herein are under active development, and have been utilized in

published work by several unaffiliated experimental and theoretical groups across the

world. We conclude the dissertation with a summary and discussion of the outlook

and future directions of the OpenCAP and eMap software packages.
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Chapter 1

Introduction

In this chapter, we give the theoretical foundations for the electron-mediated pro-

cesses studied in this thesis. First we discuss resonances, a class of metastable quan-

tum states that often serve as key intermediates in chemical conversions. Second we

describe electron and hole transfer reactions, which are essential components of a

wide variety of biological processes.

1.1 Resonances

Below, we outline the quantum theory of resonances, focusing on their key properties

that distinguish them from bound states. We also provide the foundation for the

non-Hermitian description of resonances, which is described in Chapter 2.

1.1.1 Bound states and stationary states

In quantum mechanics, the time evolution of a system is given by the time-dependent

Schrödinger equation (TDSE)[1]:

Ĥ|Ψn(r, t)〉 = i~
∂

∂t
|Ψn(r, t)〉 (1.1)

where Ĥ is the Hamiltonian operator, and Ψn(r, t) is the wave function which depends

on position r and time t. Assuming the separation of variables Ψn(r, t) = Ψn(r)fn(t),
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for a time-independent Hamiltonian, one arrives to the time-independent Schrödinger

equation:

Ĥ |Ψn(r)〉 = En |Ψn(r)〉 . (1.2)

Substituting Ψn(r, t) = Ψn(r)fn(t) into Eq. 1.1 and taking into account Eq. 1.2, the

time-dependent wave-function becomes:

fn(t) = exp(−iEnt/~) (1.3)

Thus, the resulting solution to the time-dependent Schrödinger equation has the form:

|Ψn(r, t)〉 = |Ψn(r)〉 exp(−iEnt/~) (1.4)

While the wave-function itself depends on time, it represents a stationary state,

i.e. the associated probability density, P (r, t) = |Ψn(r, t)|2, and the observables are

independent of time:

P (r, t) = |Ψn(r, t)|2

= |e−iEnt/~Ψn(r, 0)|2

= |e−iEnt/~|2|Ψn(r, 0)|2

= |Ψn(r, 0)|2

(1.5)

There are two types of solutions to the TISE: bound states, which are associated

with discrete eigenvalues of the Hamiltonian, and scattering states, which belong

to the continuous part of the spectrum. Electronic structure theory is primarily

concerned with bound states, which tend to remain localized in one or more regions of

space. Such states are elements of the L2 Hilbert space of square integrable functions,
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and thus are normalizable under the standard Hermitian inner product:

〈φi|φi〉 =

∫
φ∗i (r)φi(r)dr = 1, (1.6)

and satisfy the following boundary conditions:

Ψn(x→ ±∞) = 0. (1.7)

In contrast to bound states, scattering states do not remain localized, and thus are not

normalizable, and cannot be represented using the square-integrable basis functions

which are commonly used in electronic structure calculations for bound states.

1.1.2 Quasi-bound states

A quantum system does not always exist in a stationary state. Any superposition

of stationary states is a valid solution to the TDSE, which can yield quantum states

whose observables are dependent on time. These non-stationary states do not have a

well defined energy, and obey the time-energy version of the Heisenberg uncertainty

principle:

∆E∆t ≥ ~
2

(1.8)

Long lived non-stationary states that are primarily localized in a region of space are

often referred to as “quasi-bound” states[2]. While they still do not have a well-

defined energy, the uncertainty in the energy is relatively small, and so quasi-bound

states can be considered to possess a discretized energy similar to a bound state, but

also posses a width, Γ = 2∆E. It follows that a quasi-bound state becomes a bound

state when its width becomes 0.

A resonance is a quasi-bound state that has sufficient energy to break up into
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subsystems, and exists long enough to be observed experimentally. Formally, reso-

nances can be defined as poles of the scattering matrix[3]. They are ubiquitous in

chemistry and physics, often existing as intermediate compound states[4]. The most

familiar example can be found in nuclear physics; the well-known α-decay process

involves a metastable nuclid decaying by emission of an α-particle[5]. The ubiquity

and similarity of resonances to bound states has led to numerous theoretical and

experimental efforts to characterize them. One of the most convenient theoretical

frameworks is derived from the Siegert formalism, which associates a resonance with

a discrete solution of the TISE that satisfies purely outgoing boundary conditions,

and has a complex Siegert energy[6]:

E = ER − iΓ/2 (1.9)

where Γ = ~
τ

and τ corresponds to the lifetime. This notion of a complex energy has

also been derived using the Feshbach projection operator formalism, which describes

a resonance as a bound state coupled to the continuum[7], and scattering theory,

which associates resonances with complex poles of the S-matrix[3]. The utility of

a complex energy can be easily understood by plugging it into the stationary state

condition (Eq. 1.4):

ΨR(r, t) = e−Γt/2~e−iERt/~ΨR(r, 0), (1.10)

which shows that a complex energy with a negative imaginary part yields a stationary

state that decays exponentially in time, and whose lifetime depends on the width Γ.

1.1.3 Electronic resonances

This thesis is concerned with a particular class of resonances known electronic reso-

nances. Electronic resonances are metastable scattering states embedded in the ion-
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potential, and they decay by one-electron tunneling mechanisms. (N+1)-electron

shape resonances lie above the parent N-electron state, which can be the ground

electronic state or an excited electronic state (the latter are known as “core-excited”

shape resonances), and the parent state remains unchanged after the excess elec-

tron tunnels out[9, 15, 16]. Feshbach resonances decay by two-electron processes,

e.g. electron emission and de-excitation. Feshbach resonances generally lie below the

parent electronic state, and are metastable due to the presence of one or many open

decay channels[15]. Shape resonances tend to exhibit lifetimes in the femtosecond-

picosecond range, while Feshbach resonances are generally longer lived[8]. While the

primary focus of this work has been the study of shape resonances, the methodolo-

gies developed in Chapter 3 and Chapter 5 can be used for the study of Feshbach

resonances.

The relatively long lifetimes of molecular electronic resonances implies that they

can play important roles in chemical reactions. Electronic resonances are often im-

plicated as intermediates in processes such as radiolysis and damage to DNA by sec-

ondary electrons[17, 18], plasmonic catalysis[19], and interstellar chemistry[20, 21].

They are also important in X-ray and attosecond spectroscopies[22–24], for example,

the Auger effect is a resonant process involving a core-ionized Feshbach resonance[25].

Despite their importance, reliable calculation of energies and lifetimes of electronic

resonances in molecules remains a significant challenge. The specialized methods com-

monly used for computing resonance parameters are discussed in Sec. 2.2. The work

carried out in this thesis, described in Chapters 3-5, has been aimed at enhancing the

applicability, efficiency, and accessibility of modern electronic structure methodologies

for the description of electronic resonances in order to facilitate further development

of this exciting and under-explored field.
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ucts are the same except for an isotopic label, e.g.

Fe2+
aq + Fe∗3+

aq → Fe3+
aq + Fe∗2+

aq . (1.11)

Far more common are cross-reactions[26, 27] occurring between different chemical

species. Generations of general chemistry students are familiar with redox cross-

reactions in aqueous solution, such as the reduction of Cu+2 ion by iron:

Cu2+(aq) + Fe(s)→ Fe2+(aq) + Cu(s). (1.12)

The theoretical foundation of ET theory comes from the work of Rudolph Marcus,

for which he was awarded the Nobel Prize in 1992. Marcus Theory was originally

formulated in the 1950s for ‘outer sphere‘ electron transfer[28–31], where two chem-

ical species change their oxidation state due to the transfer of an electron but do

not undergo large structural change, and was later refined to include other types of

transformations[32]. In the Marcus picture (Fig. 1·3), the free energy surfaces of the

reactant and product state are represented as parabolas that evolve along a shared

“reaction coordinate” that contains the nuclear coordinates of the entire system, in-

cluding the solvent. In the semi-classical formulation[33], the ET rate depends on

three reaction parameters: (i) the standard reaction free-energy change ∆G◦, (2)

the structural and solvent reorganization energy associated with the electron transfer

λ, and (3) the strength of the electronic coupling between the donor and acceptor

molecules HDA. The Marcus rate constant is obtained as[33]:

kET =

√
4π3

h2λkBT
H2

DA exp

[
−(∆G◦ + λ)2

4λkBT

]
(1.13)

where kB is the Boltzmann constant, and h is the Planck constant.
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Experimental evidence on ET in biological systems comes from a variety of sources,

including protein electrochemistry and crystallography experiments. A particularly

useful technique is site-directed mutagenesis, which can be used to elucidate the

importance of individual residues for ET pathways and mechanisms[36, 45]. The

theoretical description of ET in biological systems is a challenging but feasible task

with modern computational chemistry methods, provided that the key players are

already known from experimental data or simpler theoretical models. For complex

biological systems, the quantum mechanics/molecular mechanics (QM/MM) method

with polarizable embedding has been suggested to be “gold standard” for the accurate

calculation of free energies[46], which are needed to compute observables such as

Marcus rate constants. QM/MM methods require partitioning the system into a QM

part (typically, a chromophore and its local environment) that is treated quantum

mechanically, and a MM part that is treated classically[47], and thus require some

prior knowledge of the relevant residues and co-factors.

Targeted experimental and theoretical methodologies are greatly aided by simple

theoretical models that can predict likely pathways which warrant further investiga-

tion. The development of eMap, a web application aimed at pre-screening probable

ET pathways in proteins, is described in Chapter 6. The extension of eMap to the

identification of shared pathways/motifs in families of proteins is discussed in Chapter

7.
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Chapter 2

Theoretical Background

2.1 Electronic structure methods for excited states

Electronic structure theory methods are aimed at describing the quantum states of

many-electron systems in the electrostatic field of the nuclei in atoms and molecules.

Like any quantum system, electronic wave functions are governed by the TDSE, and

the stationary solutions can be found by solving the TISE. Electronic structure calcu-

lations are most often performed within the Born-Oppenheimer (BO) approximation[48],

where it is assumed that the electronic problem can be solved for a fixed nuclear con-

figuration due to the fact that electrons are much lighter and move much faster than

the nuclei. Accordingly, one solves the electronic TISE with the nuclei fixed at posi-

tions R:

Ĥe |Ψe
k(r; R)〉 = Ee

k(R) |Ψe
k(r; R)〉 , (2.1)

which is often referred to as the clamped-nuclei approximation. Here, Ĥe is the

electronic Hamiltonian, Ee
k are energies of the electronic states, and |Ψe

k(r; R〉 are

electronic wave-functions that depend on the nuclear coordinates R only parametri-

cally.

The electronic Hamiltonian includes the electron kinetic energy (T̂ e), electron-

nuclear attraction (V̂ en), electron-electron repulsion (V̂ ee) operators and a nuclear

repulsion term (V nn). The total non-relativistic molecular Hamiltonian is given below
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in atomic units[49]:

Ĥ = T̂ n + Ĥe

Ĥe = −
∑
i

1

2
∇2
i −

∑
i,A

ZA
riA

+
∑
i>j

1

rij
+
∑
B>A

ZAZB
RAB

T̂ n = −
∑
A

1

2MA

∇2
A

(2.2)

where T̂ n is the nuclear kinetic energy operator. The indices i, j refer to electrons, the

indices A,B refer to nuclei, and M,Z denote nuclear masses and charges, respectively.

The T̂ e and V̂ en terms are often written as a sum of one-electron operators ĥi:

T̂ e + V̂ en =
Ne∑
i

ĥi. (2.3)

The solution of the non-relativistic, electronic TISE gives the electronic wave

functions |Ψe
k(r; R)〉, and the electronic energies Ee

k(R). Solving Eq. 2.1 for a range

of nuclear configurations (R) gives the potential energy surface, whose topography

provides insight into molecular geometries and chemical reaction dynamics. Below,

we describe the approximate electronic structure methods used in this thesis to solve

Eq. 2.1, whose solutions of are ultimately used in combination with the CAP method

to represent resonance wave functions (see Sec. 2.2.1).

The Hartree-Fock Method

The starting point for most of the many-body electronic structure methods used

in this work is the Hartree-Fock (HF) method[49]. The electronic wave function is
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approximated by a single Slater determinant:

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)
ψ1(x2) ψ2(x2) · · · ψN(x2)

...
...

...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣ (2.4)

where ψi are spin-orbitals (called molecular orbitals, MOs, in the case of molecules),

N is the number of electrons, and x1, x2, . . . , xN denote spatial and spin coordinates

of electrons 1, 2, . . . , N. The orbitals are optimized according to the variational

principle, which states that the expectation value of Ĥ calculated with an approximate

wave function is greater than or equal to the exact ground state energy:

Eexact
0 ≤ 〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
(2.5)

MOs |p〉, the single electron functions defined above, are expanded in terms of atomic

orbital (AO) basis functions |µ〉, which in conventional electronic structure calcula-

tions, are typically atom-centered Gaussians:

|p〉 =
∑
µ

Cµp|µ〉 (2.6)

where Cµp are elements of the MO-coefficient matrix. In the AO basis, the HF energy

is written as:

EHF =
1

2

∑
µν

DHF
µν (hµν + Fµν) + Vnn. (2.7)

where the density matrix DHF is derived from the MO coefficients:

DHF
µν =

∑
i

C∗µiCνi, (2.8)
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huv are the one-electron integrals hµν =
〈
µ
∣∣∣ĥ1

∣∣∣ ν〉, with ĥ1 defined in Eq. 2.3, and

F is the Fock matrix:

Fµν = hµν +
∑
σρ

DHF
σρ 〈µσ‖νρ〉 (2.9)

which contains the antisymmetrized two-electron integrals 〈µσ||νρ〉 =
〈
µσ
∣∣∣ 1
|r12|

∣∣∣ νρ〉−〈
µσ
∣∣∣ 1
|r12|

∣∣∣ ρν〉. In Eq. 2.9, we have used the so-called physicists notation: 〈µσ||νρ〉; in

subsequent sections of this thesis, we will primarily use chemists notation: (µν||σρ).

The two are linked by the following relation:

〈µσ||νρ〉 = (µν||σρ). (2.10)

The optimal MO coefficients that minimize the HF energy, under the constraint

that the resulting MOs form an orthonormal set, are determined by iterative solution

of the Roothan-Hall equations:

FC = SCε (2.11)

where S is the overlap matrix Sµν = 〈µ|ν〉 and ε and is a diagonal matrix that contains

the orbital energies, and C is the MO-coefficient matrix whose elements are defined

in Eq. 2.6.

Electronic correlation

Since the Hartree-Fock energy approximates the total wave function as a single Slater

determinant, according to the variational principle it only provides an upper bound

to the total energy of a system. For a given one-electron basis set, the exact energy

can be obtained from full configuration interaction (FCI), where the electronic wave
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function is represented as a linear combination of all possible Slater determinants[49]:

ΨFCI = C0Φ0 +
∑
ia

Ca
i Φa

i +
∑
i<j
a<b

Cab
ij Φab

ij + · · · (2.12)

where Φ0 is the reference HF determinant. The MO indices i, j, ... are used for

occupied orbitals, a, b, ... for virtual orbitals. Later in this section, the indices p, q,

... are used to denote general orbitals, which can be either occupied or virtual. This

notation will be used throughout the remainder of this section. The CI coefficients

Ca
i , C

ab
ij etc. are obtained by diagonalization of the molecular Hamiltonian in the basis

of all possible Slater determinants. For a system of N electrons and K spin orbitals, the

number of Slater determinants can be computed according to the binomial equation:

(
2K
N

)
=

2K!

N !(2K −N)!
(2.13)

which quickly becomes intractable for anything but small molecules. As such, ap-

proximations to the FCI expansion are essential.

The correlation energy is defined as the difference between the exact FCI energy

and the HF energy (calculated with a complete basis)[49]:

Ecorr = Eexact − EHF (2.14)

It is generally broken up into two components: dynamic correlation and static

correlation[50], though we emphasize that the distinction is not well-defined, and

that both are recovered by the inclusion of additional Slater determinants. Dynamic

correlation refers to the failure of the HF model to account for the instantaneous

interactions of electrons with each other, as the model treats every electron as inter-
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acting with the average field created by all other electrons. Methods which recover

dynamic correlation will be well suited for situations where the wave-function is dom-

inated by a single Slater determinant. Static correlation refers to the situation where

the electronic wave function is poorly represented by a single Slater determinant, and

can only be accurately described as a linear combination of multiple (often nearly

degenerate) Slater determinants. Methods which recover static correlation are essen-

tial in situations such as di-radicals and bond-breaking. In many cases, both types

of correlation are needed to obtain qualitative and quantitative results.

Reduced one-electron density matrices (1RDM)

In the many-body theories described below, the state and transition properties are

often calculated as traces of the respective integrals with reduced density matrices[51,

52]. Here, we are focused on the one-particle density matrices:

γIF (x1, x
′
1) = N

∫
...

∫
Ψ∗I(x1, x2, ...xn)ΨF (x′1, x2, ...xn)dx2...dxn (2.15)

where N is the number of electrons, and the labels I, F indicate the initial and final

state. When I = F , γ is a one-particle state density matrix, otherwise it is a one-

particle transition density matrix between states I and F . In second quantization,

this operator is written as:

γIF (x1, x
′
1) = 〈ΨI |

∑
pq

a†paq|ΨF 〉 (2.16)

where the sum pq runs over all molecule orbitals, and a†p, aq represent creation and

annihilation operators. With these quantities, the expectation value or transition
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matrix element of any one-particle operator Ô can be computed as follows:

〈
ΨI |Ô|ΨF

〉
= Tr

[
γIFO

]
(2.17)

2.1.1 Single reference wave function methods

Single reference wave function methods improve upon the HF solution by including

a large number of excited determinants, which are generated by replacing MOs that

are occupied in the reference determinant by MOs that are unoccupied. As such,

they mostly recover dynamic correlation, and can yield very accurate energies when

the target state is well described by a single reference determinant. Below, we review

each of the single reference wave function methods utilized in this work.

EOM-CC

Coupled cluster (CC) is one of the most accurate electronic structure methods, and

possesses desirable properties such as size-extensivity. The central principle of the

CC method is to improve upon the HF solution by including all excitations of a given

type (singles, doubles, etc.) to infinite order[50]. This is accomplished through the

use of an exponential ansatz[53]

ΨCC = eT̂ |Φ0〉 (2.18)

eT̂ = 1 + T̂ +
1

2
T̂ 2 + ... =

∞∑
k=0

1

k!
T̂ k
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where T̂ is the cluster operator, and |Φ0〉 is the reference HF determinant. T̂ is a sum

of excitation operators, T̂ = T̂1 + T̂2 + T̂3 + ...+ T̂N , where

T̂1 |Φ0〉 =
occ∑
i

vir∑
a

tai |Φa
i 〉

T̂2 |Φ0〉 =
occ∑
i<j

vir∑
a<b

tabij
∣∣Φab

ij

〉 (2.19)

Typically, the CC energy is not optimized variationally, and instead the reference and

excited determinants are used to determine the amplitudes t of the cluster operator.

The equations are commonly written using the similarity transformed Hamiltonian

H̄:

H̄ = e−T̂ ĤeT̂ (2.20)

which preserves the spectrum of the original Hamiltonian, but is no longer Hermitian.

The CC TISE is written as:

Ĥ|ΨCC〉 = ECC |ΨCC〉 (2.21)

where ECC is the coupled-cluster energy. Using H̄, Eq. 2.21 can be written as:

e−T̂ Ĥ|ΨCC〉 = e−T̂ECC |ΨCC〉

e−T̂ ĤeT̂ |Φ0〉 = ECCe
−T̂ eT̂ |Φ0〉

H̄|Φ0〉 = ECC |Φ0〉 (2.22)
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The expression for the ground state CC energy is obtained by projecting from the

left onto the reference determinant.

ECC = 〈Φ0|e−T̂HeT̂ |Φ0〉 = 〈Φ0|H̄|Φ0〉 (2.23)

To determine the CC energy, one must solve for the expansion coefficients in Eq.

2.19, which are known as the t-amplitudes. This is done by multiplying Eq. 2.22

from the left by excited determinants:

〈
Φa
i |H̄|Φ0

〉
= 0〈

Φab
ij |H̄|Φ0

〉
= 0

(2.24)

which yields a set of non-linear equations for the t-amplitudes that are solved it-

eratively. The coupled cluster singles and doubles method (CCSD) truncates the

excitation operator at double excitations (i.e. T̂ = T̂1 + T̂2)[54].

EOM-EEEOM-EA EOM-IP

Reference

Figure 2·1: Selected variants of EOM-CC which generate different
types of target states.
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The equations of motion method (EOM-CC) extends the coupled cluster formal-

ism to the calculation of excited or open-shell states (ionized, electron-attached, spin-

flipped)[55, 56]. After solving for the t-amplitudes of the ground state, the target

state wave function is parameterized as:

|ΨEOM〉 = R̂|ΨCC〉 (2.25)

where R̂ is a generalized excitation operator R̂ = R̂1 + R̂2 + .... Inserting ΨEOM into

the TISE and using the fact that R̂ and T̂ commute leads to the following eigenvalue

problem

H̄R̂|Φ0〉 = EexcR̂|Φ0〉. (2.26)

Target state energies and eigenvectors are found by diagonalizing the similarity trans-

formed Hamiltonian H̄ in the basis of determinants generated by the R̂ operator acting

on the reference determinant. The R̂ operator expansion is typically truncated at the

same level as the coupled cluster T̂ operator, e.g. EOM-CCSD implies R̂ = R̂1 + R̂2.

Importantly, one can generate different types of target states depending on the

choice of R̂, including those with different number of electrons than the reference

determinant (Fig. 2·1). Of particular importance for electronic resonances is the

variant for electron affinities (EOM-EA), which can be used to calculate (N+1)-

electron states, allowing for a correlated description of anionic excited states.

Algebraic Diagrammatic Construction

The Algebraic Diagrammatic Construction(ADC) method for electronically excited

states originates from the polarization propagator of many-body Green’s function

theory, which describes the time evolution of the polarization of a many-electron

system[57]. The spectral representation of the polarization propagator expressed as
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a matrix function is given as:

Πpq,rs(ω) =
∑
n6=0

〈
ψ0

∣∣c†qcp∣∣ψn〉 〈ψn ∣∣c†rcs∣∣ψ0

〉
ω + EN

0 − EN
n

+
∑
n6=0

〈
ψ0

∣∣c†rcs∣∣ψn〉 〈ψn ∣∣c†qcp∣∣ψ0

〉
−ω + EN

0 − EN
n

(2.27)

where ψ0 is the ground state wave function of the molecule with energy EN
0 , and c†q and

cp represent creation and annihilation operators typically associated with canonical

HF orbitals. The summation is carried out over all electronically excited states with

total energy EN
n . The poles ωn = EN

n −EN
0 correspond to vertical excitation energies,

and the residues are transition probabilities of the corresponding excitation. In matrix

notation, Eq. 2.27 can be written as:

Π(ω) = x†(ω − Ω)−1x (2.28)

where Ω is the diagonal matrix of vertical excitation energies ωn and x is the matrix of

transition amplitudes. A more general representation which is used for the derivation

of approximate ADC schemes is written as:

Π(ω) = f †(ω −M)−1f (2.29)

where M is a nondiagonal matrix of ‘effective’ interaction and f is the matrix of

effective transition moments. The M and f matrices are expanded according to the

typical Møller-Plesset perturbation expansion:

M = M(0) + M(1) + M(2) + . . .

f = f (0) + f (1) + f (2) + . . .

(2.30)
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The expressions for the matrix elements of M and f are most conveniently de-

rived using the so-called intermediate state representation[57, 58]. Starting from a

correlated ground-state wave function ψ0, a correlated excited-state basis {ψ0
J} can

be generated by the action of excitation operators
{
ĈJ

}
≡
{
ĉ†aĉk, ĉ

†
aĉ
†
bckĉl, . . .

}
on a

reference state ψ0:

ψ0
J = ĈJψ0. (2.31)

The correlated excited states {ψ0
J} are not orthogonal in general, and are typically

orthogonalized via Gram-Schmidt orthogonalization, which yields the orthogonal in-

termediate state basis
{
ψ̃0
J

}
. The matrix elements of M and f can be expressed in

the intermediate-state basis as follows:

(M)IJ =
〈
ψ̃I

∣∣∣Ĥ − EN
0

∣∣∣ ψ̃J〉 , (2.32)

(f)J,pq =
〈
ψ̃J
∣∣ĉ†pĉq∣∣ψ0

〉
. (2.33)

Now that explicit expressions for M are available, the poles of the polarization prop-

agator (and therefore, the excitation energies) can be obtained by diagonalization of

M at a desired order of perturbation theory. One solves the Hermitian eigenvalue

problem:

MY = YΩ; Y†Y = 1 (2.34)

which yields vertical excitation energies ωn and eigenvectors y, which can be used to

compute transition amplitudes x:

x = y†f . (2.35)

It is typical in ADC calculations to choose the nth order Møller-Plesset ground state

as the starting point for generation of the intermediate-state basis, and this choice
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defines the order of the ADC(n) approximation scheme. For example, the ADC(2)

method starts from an MP2 ground state[57].

CIS/CIS(D) methods

The configuration interaction singles (CIS) is one of the simplest excited state methods[59,

60]. Starting from a single reference HF determinant, the wave function is expanded

as a linear combination of all possible singly excited determinants:

ΨCIS =
∑
ia

caiΨ
a
i (2.36)

The coefficients cai are obtained by diagonalizing the Hamiltonian in the space of all

single substitutions:

AX = ωX (2.37)

where the matrix elements of A are expressed as[60]:

Aia,jb = (EHF + εa − εi) δijδab + (ia‖jb) (2.38)

where EHF is the ground state Hartree-Fock energy, ε are orbital energies, and (ia‖jb)

are two-electron integrals. The excitation energies are simply the difference between

EHF and the CIS excited state energies ω.

CIS excitation energies often show a notable deviation from experiment. A com-

mon correction to CIS is the CIS(D) method, which approximately introduces effects

of double excitations using a perturbative approach[61]. The CIS(D) energy correc-

tion for a given CIS excitation energy ω is given by[61]:

ωCIS(D) = −1

4

∑
ijab

(
uabij
)2

∆ab
ij − ω

+
∑
ia

bai v
a
i (2.39)
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where

∆ab
ij = εa + εb − εi − εj

uabij =
∑
c

[
(ab‖cj)cci − (ab‖ci)ccj

]
+
∑
k

[
(ka‖ij)cbk − (kb‖ij)cak

]
,

vai =
1

2

∑
jkbc

(jk‖bc)
(
cai a

ca
jk + caja

cb
ik + 2cbja

ac
ik

) (2.40)

and aabij are the MP2 amplitudes:

aabij = −(ij‖ab)
∆ab
ij

. (2.41)

Further improvements to the CIS(D) model include the spin-opposite scaled SOS-

CIS(D) method[62], and the quasi-degenerate CIS(D0) method[63] the latter which

improves the description when multiple excited states are close in energy.

2.1.2 Multi-reference wave function methods

Multi-reference wave function methods generally involve two steps: an initial step

which recovers static correlation, and a second step which recovers dynamic corre-

lation. The former is necessary to obtain a qualitatively correct description of the

wave function, the latter is necessary to obtain accurate quantities such as transition

energies for excited states.

CASSCF

Similar to how the HF determinant is the starting point for single reference methods,

the starting point for the multi-reference methods discussed in this thesis is the Com-

plete Active Space Self Consistent Field (CASSCF) method[50, 64]. In CASSCF, a

subset of the electrons and orbitals are chosen to define an ‘active space’, and the FCI
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problem is solved exactly in the space defined by all possible configurations within

the active space. The remaining occupied virtuals are either frozen or deemed inac-

tive, and the remaining unoccupied orbitals are denoted as virtual (Fig. 2·2). The

CASSCF wave function is written as:

|ΨCASSCF 〉 =
∑
I

CI |I〉 (2.42)

where {|I〉} are the complete set of Slater determinants defined by the choice of the

active space, corresponding to all possible distributions of active electrons over active

orbitals. The orbitals and CI coefficients CI are variationally optimized to mini-

mize the CASSCF energy. Simultaneous description of multiple states (e.g. ground

and excited) can be incorporated by using state-averaged CASSCF (SA-CASSCF),

which is aimed at achieving a balanced description of multiple states. In this case,

optimization is performed for the state-averaged energy:

E =
∑
P

wPEP (2.43)

where wP is the weighted coefficient for an individual state P . While the optimized

orbitals are not necessarily optimal for each state individually, the SA-CASSCF ap-

proach has several advantages, including simplicity, a balanced description between

ground and excited states, and avoiding convergence issues caused by root flipping

(i.e. changes in the energetic ordering of states during optimization).
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Virtual space 

Active Space

Inactive space

All possible 
configurations

Figure 2·2: Schematic illustrating the orbital partitioning in the
CASSCF method. The active space is CAS(2,4), which indicates 2
active electrons and 4 active orbitals.

MS-CASPT2 methods

CASSCF methods mostly capture static correlation, which is insufficient to obtain

accurate excitation energies. Here, we discuss a family of methods for recovering

dynamic correlation known as multi-state complete active space second-order pertur-

bation theory (MS-CASPT2)[65], which belongs to a broader class of methods known

as multi-reference perturbation theory (MRPT)[66].

As usual in perturbation theory, the full Hamiltonian is partitioned into a zeroth-

order part Ĥ0 with known eigenfunctions, and a perturbation operator V̂ = Ĥ − Ĥ0.

The zeroth-order Hamiltonian in the MS-CASPT2 method is defined as[65]:

Ĥ(0) = P̂ f̂ P̂ + Q̂f̂ Q̂ (2.44)

where P̂ =
∑

N |N〉〈N | is the projector onto the ‘reference space’ P , and Q̂ = 1− P̂

is the projector onto the complementary space. The reference space is spanned by

the set of CASSCF states {|N〉} which are included in the MS-CASPT2 calculation
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and are linear combinations of the reference configurations included in the active

space(Eq. 2.42). f̂ is the Fock operator(Eq. 2.50), which can be either state-specific

or state-averaged, and this choice leads to different variants of MS-CASPT2, which

will be discussed more in detail later on.

In internally contracted CASPT2, the first-order wave function for the reference

state |N〉 is parameterized as[67, 68]:

∣∣∣Ψ̃N

〉
= |N〉+

∣∣∣Ψ(1)
N

〉
(2.45)

∣∣∣Ψ(1)
N

〉
=
∑
I

tIN |I〉+
∑
S,a

tSa,N |Sa〉

+
1

2

∑
ij,ab,M

tijab,NM
∣∣Φab

ij,M

〉 (2.46)

where |Sa〉, |Φab
ij,M〉, are internally contracted singly and doubly excited external con-

figuration state functions (i.e. those involving occupation of orbitals outside of the

active space) generated from the reference function |N〉. The amplitudes t are deter-

mined by the stationary condition of the Hylleraas functional:

〈
Ω
∣∣∣Ĥ(0) − E(0)

N + Eshift

∣∣∣Ψ(1)
N

〉
+ 〈Ω|Ĥ|Ñ〉 = 0 (2.47)

where Ω spans the manifold of |I〉, |Sa〉, |Φab
ij,M〉, and Eshift is a real or imaginary level

shift, which is used to avoid intruder states[69, 70]. After solving for the amplitudes,

the second order effective Hamiltonian is constructed as follows:

(Heff)MN =
1

2

(〈
Ψ̃M |Ĥ|N

〉
+
〈
M |Ĥ|Ψ̃N

〉)
. (2.48)
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Diagonalization of Heff gives the MS-CASPT2 energies, and the final wave functions:

|ΨN〉 =
∑
M

∣∣∣Ψ̃M

〉
TMN (2.49)

where T are the normalized eigenvectors of Heff .

Returning to the zeroth order Hamiltonian, the Fock operator f̂ has the form:

f̂ =
∑
rs

frsÊrs

frs = hrs +
∑
ij

Dij

(
J ijrs −

1

2
Kij
rs

) (2.50)

where hrs are the one-electron integrals, J ijrs, K
ij
rs are are two-electron integrals, and

Dij are elements of the one-particle density matrix. The one-particle density matrix

D can be state specific, or it can be a weighted average of the density matrices of the

reference states, depending on the implementation[71, 72]:

D
α

=
∑
β∈P

ωβαDβ. (2.51)

In general, the Fock operator is not diagonal in the space of reference wavefunctions,

but in the original formulation of MS-CASPT2, the elements 〈M |f̂ |N〉 in Eq. 2.44

were arbitrarily set to zero. This diagonal approximation led to an issue known as

non-invariance, which manifests as unphysical bumps on potential energy surfaces in

the vicinity of conical intersections[73]. The solution to this problem is to use a set of

rotated reference states {|Ñ〉} that diagonalize the state-averaged Fock operator[71–

74]:

U†fSAU = f̃ (2.52)
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|Ñ〉 =
∑
M

|M〉UMN (2.53)

Methods that use rotated reference states are often referred to as ‘extended methods’,

and Eqs. 2.44-2.48 proceed in exactly the same way, substituting {|Ñ〉} for {|N〉}.

Finally, as mentioned previously, the zeroth order Hamiltonian (Eq. 2.44) can use

either state-specific or state-averaged Fock operators, which defines different flavors

of extended MS-CASPT2. The original extended XMS-CASPT2[71] variant uses the

state averaged Fock operator (equal weights for each state in Eq. 2.51) for all states,

which results in a single Ĥ(0):

Ĥ(0) = P̂ f̂SAP̂ + Q̂f̂SAQ̂. (2.54)

The use of state-specific Fock operators results in a separate partitioning for each

rotated reference state:

Ĥ(0)
α = P̂ f̂αP̂ + Q̂f̂αQ̂ (2.55)

The extended dynamically weighted (XDW)[72] and rotated (RMS)[74] variants differ

in their construction of f̂α. XDW-CASPT2 dynamically adjusts the weights of an

averaged density matrix (Eq. 2.51) for each state in such a way that the Fock operator

ˆ̄fα for each state has the following property:

ˆ̄fα ≈


ˆ̄fα if |α̃〉 weakly interacts with other model states

ˆ̄f sa if |α̃〉 strongly interacts with other model states

. (2.56)

In this way, XDW-CASPT2 is meant to interpolate between the XMS-CASPT2 and

the original MS-CASPT2, behaving more like the former near conical intersections,

and more like the latter otherwise[72]. RMS-CASPT2 simply uses the state specific
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Fock matrix ˆ̄fα for each rotated reference state, and thus behaves like the original

MS-CASPT2 but for rotated reference states[74].

Multi-reference configuration interaction

The multi-reference configuration interaction (MRCI)[66, 75, 76] method is another

approach which recovers dynamic correlation following a SA-CASSCF calculation.

The MRCI wave-function is expanded in the basis of all configurations generated by

considering excitations out of the reference CASSCF space. These excitations are

typically truncated to singles or doubles, which results in the MR-CIS and MR-CISD

methods. The MR-CISD wave function, for example, is written as[66, 76]:

∣∣ΨMRCISD
〉

=
∑
I

cI |I〉+
∑
I

∑
i

∑
a

cIaiĈai|I〉

+
∑
I

∑
ij

∑
ab

cIai,bjĈai,bj|I〉
(2.57)

where Ĉ are the usual excitation operators and |I〉 are Slater determinants, typically

those which make up the reference space.

Truncated MRCI methods are not size-consistent (EAB(r =∞) = EA + EB) and

are not size-extensive (correct scaling with the number of electrons). These errors

need to be corrected in order to obtain a high level of accuracy. There are several

correction schemes, the most common being the a posteriori Davidson correction[77]:

∆EQ =
(
1− c2

0

)
(ECISD − EHF) (2.58)

where c0 is the coefficient of the HF determinant in the CISD expansion. The

Davidson correction estimates the energy up to quadruple excitations (CISDTQ)

from the energy of MR-CISD, and as such the results are frequently referred to as
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MR-CISD(Q). While the Davidson correction improves both the size consistency and

size extensivity of MRCI methods, the MR-CISD(Q) energies are not formally size-

consistent or size-extensive.

2.1.3 Density Functional Theory

Density functional theory (DFT) is an alternative framework to the wave function

based methods described previously, which uses the electron density as the basic

quantity to characterize the electronic structure of a system[50, 78]. Due to its su-

perior computational scaling, DFT has become the method of choice for much of the

quantum chemistry community, as it enables practical calculations on large systems.

The electron density ρ(r) is a physical observable that describes the distribution

of electrons in a given system:

ρ(r) = N

∫
d3r2 · · ·

∫
d3rNΨ∗ (r, r2, . . . , rN) Ψ (r, r2, . . . , rN) (2.59)

where N is the total number of electrons. The theoretical foundation for DFT was

provided by Hohenberg-Kohn theorems[79], which demonstrated the relationship be-

tween electron density and the ground-state properties of a system. The first theorem

shows that the electron density ρ(r) of a system of interacting particles uniquely de-

termines the external potential vext(r) (i.e. the V̂ en term in Eq. 2.2), and therefore,

the total energy. The second provides a variational principle, and shows that the

exact ground state density minimizes the total energy.

While these theorems do not provide a way of determining the ground state den-

sity, the Kohn-Sham (KS) formalism offers a practical foundation upon which modern

DFT implementations are built[80]. KS-DFT introduces a fictitious system of non-

interacting electrons that generate the same density as the real system. The wave
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function is a Slater determinant of Kohn-Sham orbitals ϕi, and the total energy is

expressed as a functional of the density:

E[ρ] = Ts[ρ] +

∫
drvext(r)ρ(r) + EC[ρ] + Exc[ρ] (2.60)

Here, Ts[ρ] is the Kohn–Sham kinetic energy

Ts[ρ] =
N∑
i=1

∫
drϕ∗i (r)

(
− ~2

2m
∇2

)
ϕi(r), (2.61)

vext is the external potential, EC [ρ] is the Coulomb self-interaction of the electron

density

EC [ρ] =
1

2

∫∫
ρ(r)ρ (r′)

|r − r′|
drdr′, (2.62)

and Exc[ρ] is the exchange correlation functional, which is unknown. Exc[ρ] is meant

to recover the remaining electronic energy not accounted for by the non-interacting

kinetic energy and Coulomb terms. Common approximations to Exc[ρ] are briefly de-

scribed in Sec. 2.1.3. Finally, the density that minimizes the total energy is expressed

in terms of Kohn-Sham orbitals ϕi:

ρ(r) =
N∑
i

|ϕi(r)|2 (2.63)

which are obtained through iterative solution of the Kohn-Sham equations:

(
− ~2

2m
∇2 + veff(r)

)
ϕi(r) = εiϕi(r) (2.64)

where veff is the Kohn-Sham potential in which the fictitious non-interacting particles
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move:

veff(r) = vext(r) + e2

∫
ρ (r′)

|r− r′|
dr′ +

δExc[ρ]

δρ(r)
. (2.65)

.

Time-dependent density functional theory

The time-dependent extension of DFT, TDDFT, offers a means of calculating the

excited states of a system[81–83]. It is based on the response of the ground state

density to a time-varying applied electric field, where the poles of the linear response

function correspond to excitation energies. The theoretical foundation for TDDFT

is provided by the Runge-Gross Theorem[84], which shows that there exists a unique

mapping between the time-dependent external potential vext(r, t) of a system and its

time-dependent density ρ(r, t).

In the linear response formulation, the excitation energies ω are found by solving

the following generalized eigenvalue equation:

[
A B
B∗ A∗

] [
X
Y

]
= ω

[
1 0
0 −1

] [
X
Y

]
(2.66)

The matrices A and B are defined as:

Aia,jb =δijδab (εa − εi) + (ia||jb) + (ia |fxc| jb)

Bia,jb = (ia||bj) + (ia |fxc| bj)
(2.67)

where i, j, a, b are Kohn-Sham orbital indices, ε are Kohn-Sham orbital energies,

(ia||bj) are two-electron integrals, and fxc is the exchange correlation potential. The
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integral (ia |fxc| bj) is given by[83]:

(ia |fxc| bj) =

∫
d3r d3r′ϕ∗i (r)ϕa(r)

δ2Exc

δρ(r)δρ (r′)
ϕ∗b (r′)ϕj (r′) (2.68)

where ϕ are Kohn-Sham orbitals.

X and Y above refer to the excitation and de-excitation transition vectors respec-

tively. In the Tamm-Dancoff approximation (TDA)[85–87], the de-excitation ampli-

tudes Y are neglected, and the B matrix not needed, which reduces the problem to

a Hermitian eigenvalue problem:

AX = ωX. (2.69)

Compared to other excited state methods, TDDFT has a computational cost roughly

similar to that of CIS, but can offer (depending on the functional) an improved

description compared to CIS due to electronic correlation implicitly included in the

exchange correlation functional.

Exchange correlation

As mentioned previously, the true form of the ‘exchange correlation’ functional is

unknown, and must be approximated. Hundreds of functionals have been developed,

and they are loosely arranged into one of 5 rungs on ‘Jacob’s ladder’ of functionals,

where each higher rung of the ladder represents additional complexity and (hope-

fully but not necessarily) a step closer towards chemical accuracy[88]. The simplest

approximation, and lowest rung on Jacob’s ladder, is the local density approxima-

tion (LDA), which typically applies the exchange and correlation energy expressions

derived for a uniform electron gas. Other approximations include the generalized
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gradient (GGA) and random phase (RPA) approximations.

Exchange correlation functionals can generally be decomposed into exchange and

correlation terms:

Exc = Ex + Ec (2.70)

which has led to extensive mixing and matching of ab initio and empirically derived

approaches. An important class of functionals which are used in this thesis are hybrid

functionals, which incorporate some Hartree-Fock or ‘exact’ exchange

EHF
x = −1

2

∑
i,j

∫∫
ψ∗i (r1)ψ∗j (r2)

1

r12

ψj (r1)ψi (r2) dr1dr2. (2.71)

For example, the popular PBE0 functional[89], is defined as follows:

EPBE0
xc =

1

4
EHF

x +
3

4
EPBE

x + EPBE
c (2.72)

where EHF
x is the exact exchange functional, EPBE

x is the Perdew–Burke-Ernzerhof

(PBE) exchange functional, and EPBE
c is the PBE correlation functional[90]. An im-

portant category of hybrid functionals are those which include long-range corrections

to account for the non-Coulomb part of the exchange dying off too quickly. Examples

include the CAM-B3LYP functional[91], and the long-range correction of Hirao and

coworkers[92] which can be combined with many pure correlation functionals.
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2.2 Non-Hermitian description of resonances

In section 1.1.2, we introduced the Siegert formulation of a resonance as a discrete

state with a complex energy[6]:

Eres = ER − iΓ/2.

In this framework, a resonance appears as a single solution of the TISE, and the

TDSE does not need to be solved. While the usefulness of this description can easily

be seen from Eq. 1.10, how one calculates such a state is much less obvious, as

the immediate question arises of how the Hamiltonian, a Hermitian operator, could

admit a complex eigenvalue. For practitioners of electronic structure theory, the

description of a resonance as a single square-integrable state with a complex energy

is particularly promising, as one can attempt to extend the methods for bound states

to the treatment of resonances.

The theoretical approaches for resonances can be classified into two major groups:

(i) those that account for the scattering part of the resonance wave function explic-

itly, and (ii) those that operate within the L2 representation, and thus account for the

continuum implicitly. Examples of the former include R-matrix theory[93] and the

Schwinger multichannel method[94], and examples of the latter include the stabiliza-

tion method[95–97], Stieltjes imaging technique[98, 99], and Non-Hermitian quantum

mechanics (NHQM) formalisms which we describe more in detail below.

NHQM methods involve transformation of the resonance wave function into a

square-integrable form[15]. One of the most rigorous approaches is the complex co-

ordinate or direct complex scaling (CS) method, which analytically continues the

Hamiltonian into the complex plane by scaling the coordinates by a complex number
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r → reiθ[4, 100]. The complex scaled Hamiltonian retains the same bound spectrum

as the original Hamiltonian, and continuum states are rotated into the lower complex

plane by an angle of 2θ. As θ is increased from 0 to π/2, new discrete eigenvalues

may appear at the complex Siegert energies of resonance states, and correspond to

square-integrable eigenfunctions[4].

The application of the complex coordinate method to molecular systems is not

straightforward due to complications which arise from the BO approximation[15].

This has led to the development of alternative approaches that can be applied to

molecules, such as the complex basis functions method[101, 102], and exterior complex

scaling[103]. The complex absorbing potential (CAP) method[104], described in Sec.

2.2.1, has been shown to be related to the latter[105, 106], and shares some important

properties outlined below.

Due to the non-Hermiticity of the CS Hamiltonian, the usual Hermitian inner

product is replaced by the c-product[15, 107]

(Φi | Φj) =

∫
Φi(τ)Φj(τ)dτ (2.73)

which is typically denoted by the use of round brackets, which indicates the lack of

complex conjugation on the bra vector. We caution the reader not to confuse the

c-product with the chemists notation for two-electron integrals (Eq. 2.10). When

there are no degeneracies, normalization under the c-product generates a complete

set of orthogonal eigenfunctions for the CS/CAP Hamiltonian. When degenera-

cies are present, the Hamiltonian becomes defective due to the self-orthogonality

phenomenon[15]. Such non-Hermitian degeneracies are known as exceptional points[108],

and are briefly touched upon in Sec. 4. Lastly, for a c-normalizable trial wave func-
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tion, there is an analogous complex variational principle[107]:

Ē =

(
Φ
∣∣∣Ĥcx

∣∣∣Φ)
(Φ | Φ)

(2.74)

where Hcx indicates a complex scaled or CAP Hamiltonian, which justifies the use

of standard electronic structure methods for resonances. Unlike the standard vari-

ational principle (Eq. 2.5), Ē is not an upper bound, and is instead a stationary

approximation to the true Siegert eigenvalue Eres.

2.2.1 Complex Absorbing Potential

In the CAP method[104], the physical Hamiltonian is augmented with a negative,

complex potential which is intended to absorb the outgoing tail of resonance wave

functions. The non-Hermitian, complex-symmetric CAP-augmented Hamiltonian is

written as:

Ĥ(η) = Ĥ − iηW (2.75)

where η is the CAP strength parameter, and W is typically a real and positive poten-

tial which vanishes near the system (e.g. an isolated molecule) and grows with dis-

tance. The presence of the absorbing potential changes the boundary conditions, and

transforms a resonance into a square integrable eigenstate of the CAP-Hamiltonian,

associated with the proper complex Siegert eigenvalue.

The ancestry of CAPs can be traced to optical potentials[109], but the first ap-

pearance of CAPs as we know them occurred in time-dependent calculations, where

they were introduced by Kosloff and Kosloff[110] as tools to reduce reflections from

the edge of the grid in wave packet propagation simulations. CAPs were first used

for computing resonance states by Jolicard and Austin[111], who also introduced key
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ideas such as varying the strength or location of the potential in order to minimize the

perturbations caused by the presence of the artificial potential. These concepts were

refined in the seminal work by Riss and Meyer[104], which provided a mathematical

foundation for the CAP method, described the requirements for the form of the CAP

that produces discrete resonance states, and established many of the practical aspects

of performing CAP calculations that are still in use today.

As shown by Riss and Meyer[104], with a complete basis set, the exact resonance

position and width are obtained in the limit of an infinitesimal CAP strength η → 0+,

since there is no perturbation to the system from the CAP. In finite basis set calcula-

tions, η = 0 simply yields a real eigenvalue of the original physical Hamiltonian, and

offers little useful information about resonance states. Thus, in practical calculations

with finite basis sets, Eres must either be obtained from a finite CAP strength, or

by performing analytic continuation to the η → 0+ limit, which can be done, for

example, using Padé approximants[112]. A formula for identifying a finite optimal

value of η was proposed by Riss and Meyer[104]:

ηopt = min

∣∣∣∣ ∂E

∂ln(η)

∣∣∣∣ = min

∣∣∣∣η∂E∂η
∣∣∣∣ . (2.76)

This lowest “speed” in the logarithmic velocity minimizes the first-order term in a

Taylor series expansion of the energy E(η), and strikes a balance between minimiz-

ing the perturbation due to the CAP (which increases with the CAP strength) and

minimizing the basis set error (which increases when the eigenfunction ψ(η) is more

delocalized, i.e. smaller values of η). Unfortunately, ηopt varies with the system,

basis set, and form of CAP, and cannot be determined a priori. The typical strat-

egy is to perform a series of at least 50-100 calculations to generate the so-called

η-trajectories(Fig. 2·3). Trajectories which correspond to resonances can be dis-
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which has the simple physical interpretation of U(η) removing the contribution of the

CAP to the energy to first order in perturbation theory. Eq. 2.77 can equivalently

be expressed in terms of the reduced one-particle density matrix γ[116]:

U(η) = E(η) + iηTr[γW ] (2.79)

which can eliminate the need for numerical differentiation. Multiple schemes have

been proposed for the analysis of corrected trajectories. A common strategy is to

identify the minimum of the logarithmic velocity on the corrected trajectory[117]:

min

∣∣∣∣η2 d2E

dη2

∣∣∣∣ = min

∣∣∣∣η dU

dη

∣∣∣∣ (2.80)

Alternatively, the real and imaginary parts of the corrected energies can be analyzed

independently, resulting in two separate values of ηopt[116]. The use of correction

schemes is not only physically justified, but also has significant practical benefits.

First order results have been shown to be less dependent on the choice of CAP and

yield more reliable complex potential energy surfaces[114, 118–120]. Additionally, in

many (but not all) cases, the corrected trajectories are easier to interpret than the

raw E(η) trajectories because they do not suffer as much from spurious or poorly

stabilized stationary points.

The relative simplicity of the CAP method has made it a popular choice for

computing resonance parameters, and has resulted in its combination with numerous

electronic structure methods, including configuration interaction[121–124], symmetry-

adapted cluster-configuration interaction[125], Fock-space coupled cluster[126], den-

sity functional theory [127], algebraic diagrammatic construction[128, 129], and multi-

reference perturbation theory[130–132]. Unfortunately, very few of these studies have



42

resulted in publicly available software implementations, a problem which we have

addressed in Chapter 5 with the development of the OpenCAP package.

2.2.2 Forms of CAP

In their seminal work on the CAP method[104], Riss and Meyer laid out requirements

for W (r) which ensure that the eigenvalues of H(η) converge towards the true Siegert

energy in the limit η → 0+ with a complete basis set. These requirements allow for a

fairly broad family of CAPs, and early studies employed simple functional forms such

as quadratic and cubic potentials centered about the center of mass of the molecular

system. In more recent years, the community has largely settled on two major types

of the CAP, the box and smooth Voronoi CAP, one or both of which are used in nearly

every publication on molecular resonances today (see Fig. 2·4). Below, we provide

details of their functional form. The applicability of performance of these two CAPs

for different types of molecular shape resonances is investigated in Chapter 3.

The quadratic “box CAP”, is defined by three cutoff parameters (R0
x, R

0
y, R

0
z) that

specify the onset of the box in each Cartesian coordinate [8, 133].

W = Wx +Wy +Wz

Wα =


0, |rα| < R0

α

(rα −R0
α)

2
, |rα| > R0

α

(2.81)

where α = x, y, or z. This convenient functional form allows for the one-electron CAP

integrals [133] to be computed analytically, and analytical gradients [134] for CAP-

EOM-CCSD calculations which use a box CAP have also been reported. However,

its rigid structure makes it less suitable for molecular systems which do not efficiently

fill the space.
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Ri is the distance to the ith nucleus and wi is the weight defined as follows:

wi =
1

(|~r − ~Ri|2 − r2
min + 1 a.u.)2

(2.84)

where rmin is the distance to the closest atom: rmin = min
i
|~r − ~Ri|. The smooth

Voronoi CAP, by definition, shares exactly the symmetry of the molecular system, and

is flexible to changing nuclear configurations, for example in dynamical simulation.

The immediate price one pays for this flexibility is a less convenient functional form;

the one-electron CAP integrals must be evaluated numerically, and there are currently

no reported implementations of analytical gradients for metastable states which use

a Voronoi CAP.

2.2.3 Projected CAP scheme

Since the CAP is simply a one-electron operator, it is conceptually straightforward

to calculate and incorporate into electronic structure calculations. Depending on

the implementation, the most challenging task is often the adaptation of standard

machineries such as eigensolvers (e.g., Davidson) and optimization procedures (e.g.,

DIIS) to handle the complex algebra with the c-product. Further, the absorbing po-

tential is generally intended to act on the excited states of a system and, in principle,

should not be affecting the description of the ground state. These considerations have

resulted in multiple strategies employed by different authors for including CAPs in

their calculations. For example, for the EOM-CC method, there are reported imple-

mentations of CAP where it is applied at the HF level [119], the CC level[137, 138],

the EOM level[138, 139], and a posteriori, where the CAP is applied to a small num-

ber of real EOM-CC eigenstates of the physical Hamiltonian[120]. The latter is by

far the most efficient, since it requires only a single EOM-CC calculation to generate
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η-trajectories, and is known as the “projected scheme”.

The projected scheme was introduced by Sommerfeld and Santra [122] for CAP/CI

calculations, and has been adapted for various electronic structure methods, including

MRPT,[130, 132], ADC [129], MRCI, and symmetry adapted cluster-configuration

interaction[125]. The projected scheme can alternately be viewed as a ’‘subspace

scheme”, where the CAP is represented on a subspace spanned by a small set of

eigenvectors, or as a quasi-degenerate perturbative scheme, where those eigenvectors

are allowed to mix under the influence of the absorbing potential. In any case, the

first step of a projected CAP calculation is to generate a set of M target states which

comprise the “correlated basis” or “subspace”. While the exact number of states

needed is generally not known ahead of time, practical experience has shown that

relatively few (typically less than 10-15) are needed to converge low lying resonances.

The next step is to compute the CAP matrix in orbital basis (which can be done

independently of the electronic structure calculation), and then project it onto the

space spanned by the correlated basis (CB):

WCB
ij = (i|W |j) (2.85)

where |i〉, |j〉 are eigenstates of the physical Hamiltonian. These expressions can easily

be evaluated using the one-electron reduced density matrices (ρ) for each state, and

the set of one-electron transition density matrices (γ) between each pair of states

obtained from the bound state calculation:

WCB
ij =

{
Tr [Wγij] , i 6= j
Tr [Wρi] , i = j

}
(2.86)

Finally, the last step is to diagonalize the CAP-augmented Hamiltonian in the space
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spanned by the correlated basis:

HCAP = HCB
0 − iηWCB (2.87)

over a range of values of η in order to generate the η-trajectory and identify the ηopt.

HCB
0 in Eq. 2.87 is an appropriate zero-order Hamiltonian for the chosen correlated

basis, e.g. the diagonalized similarity transformed Hamiltonian from CAP-EOM-

CCSD or the second order effective Hamiltonian in CAP-XMS-CASPT2[130].

To summarize, the basic ingredients of any projected CAP calculation are:

• Choice of M -dimensional correlated basis set and zero-order Hamiltonian

• Complete set of reduced one-particle density matrices and transition density

matrices between each pair of basis states

• CAP matrix projected onto correlated basis set

• Diagonalization of Eq. 2.87 over a range of η-values to identify ηopt

In Chapter 4, the implementation of the projected CAP-EOM-CCSD method is

described, and the results of benchmark calculations for various shape resonances is

presented. In Chapter 5, we describe the implementation of the OpenCAP package,

which utilizes the projected CAP scheme to extend the functionality of popular elec-

tronic structure packages to the description of molecular resonances, and present the

results of benchmark calculations using a variety of electronic structure methods.

2.3 Graph Theory

Below, we switch gears to discuss important concepts pertaining to the models used

to identify and predict ET pathways in proteins.
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In mathematics and computer science, graphs are mathematical structures used to

represent complex, structured data. Below, we establish some key definitions which

are commonly used in graph theory[140].

Graph

A graph G(N,E) is an ordered pair consisting of two sets:

• N is a set of vertices or nodes

• E is a set of edges, which connect pairs of nodes

In labeled graphs, the nodes and/or edges are assigned distinguishable labels. If

the edges represent ordered pairs of nodes, the graph is directed, otherwise it is an

undirected graph. One can also assign numerical values to each edge in the graph,

in which case the graph is considered to be weighted. Otherwise, it is considered an

unweighted graph. A tree is a special type of undirected graph in which any two

vertices are connected by exactly one path, i.e. the graph contains no cycles.

Y

X Z

Z

X

a

a

c

b

b

Figure 2·5: A graph with node labels {X,Y, Z} and edge labels {a, b, c}.
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Subgraph

If G’=(N’,E’) is a subgraph of G(N,E)

• N’ is a subset of N

• E’ is a subset of E

Isomorphism

Two graphs G(N,E) and G′ = (N ′, E ′) are isomorphic if and only if there exists a

bijection ϕ (one-to-one correspondence) from N to N ′ such that:

{u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E ′

where u, v ∈ N . In other words, two graphs are isomorphic if all nodes and edges are

preserved, and there is a one-to-one correspondence between the respective node/edge

labels.

Subgraph isomorphism

For two graphs G(V,E) and H(V ′, E ′), G and H are subgraph isomorphic if there

exists a G′(V0, E0) such that[141, 142]:

• G’ is a subgraph of G

• G’ is isomorphic to H

The task of identifying all such G’ is known as the subgraph matching problem, and

we refer to individual G’ as a subgraph isomorphisms.
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Depth First Search

Depth-first search (DFS)[140] is an algorithm for traversing the nodes and edges

of graphs. The algorithm starts at a (typically arbitrarily chosen) root node, and

explores as far as possible along a branch (see Fig. 2·6) before backtracking to nodes

which have already been visited.

5

6

7

1

2

3

4

8

Figure 2·6: A tree illustrating the order nodes are visited in a depth-first
search traversal of a graph. Back edges (edges between nodes which have
already been visited) are omitted.

DFS Code

Given a DFS tree T for a graph G, a DFS code(G, T ) is an edge sequence that

describes the order in which the edges of a graph were traversed in a depth-first

search[143]. One can represent each edge as a 5-tuple, (i, j, li, lij, lj), where i and j

are indices which indicate the order in which nodes vi and vj were first visited, li/j is



50

the label of node vi/j, and lij is the label of the edge connecting nodes vi and vj.

Support

For a given set of graphs D = {G1, G2, . . . , Gn}, the support(P ) is the number of

graphs G ∈ D for which P is a subgraph[143].

2.4 Identifying ET pathways in proteins

2.4.1 Pathways Model

The Pathways model is a theoretical framework for identifying efficient ET pathways

based on the tertiary protein structure[144–146]. It is focused on estimating the

donor-acceptor coupling HDA from Marcus Theory (Eq. 1.13), and assumes that ET

occurs as a sequence of tunneling events. Each step can be mediated by a covalent

bond, hydrogen bond, or vacuum, and is characterized by a penalty function. The

total coupling HAB is calculated as a product of penalties for each step [145, 146]:

HDA = const×
∏

i∈space

εi ×
∏

j∈bond

εj ×
∏

k∈H-bond

εk (2.88)

In most parameterizations, the penalty for covalent bond mediated tunneling is εj =

0.6[147], the penalty for through space tunneling is εi = 0.6× exp(βS(Ri − 1.4)), and

the penalty for hydrogen bond mediated tunneling is εk = 0.6 × exp (βS(Rk − 2.8)),

where Ri/k is the interatomic distance, and the decay factor βS is 1.7 Å−1[145, 148,

149]. Later studies have also used decay factors of 1.1 Å−1 for β-sheets and 1.4 Å−1

for α-helical structures[145, 150].

With this parameterization of HDA, the task of identifying the most efficient

pathways is equivalent to maximizing the product in Eq. 2.88. To solve this problem,
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2.4.2 Frequent Subgraph Mining

In the eMap software, the task of identifying shared pathways among a family of

proteins is formulated as searching for frequently occurring subgraphs among a fam-

ily of protein graphs. In graph theory, this problem is known as frequent subgraph

mining(FSM)[152, 153]. FSM techniques are commonly used in areas which require

identification of patterns in structured data, such as analysis of XML documents and

web usage. FSM has also been applied to various problems in the bio- and chemin-

formatics communities, including drug discovery[154], identification of protein-ligand

interfaces[155, 156] and the study of evolutionary relationships through mining phy-

logenetic trees[157–159].

FSM in the eMap software relies on the well-known gSpan algorithm[143]. gSpan

is a complete algorithm, which means it identifies all possible subgraphs whose sup-

port is above a given threshold. The algorithm relies on a lexiographic ordering

scheme to determine minimum DFS codes. Consider the following example. Let

α = code (Gα, Tα) = (a0, a1, . . . , am) and β = code (Gβ, Tβ) = (b0, b1, . . . , bn). In the

DFS lexicographic ordering, α ≥ β if and only if either of the following is true:

1. ∃t, 0 6 t 6 min(m,n), ak = bk for k < t, at < bt

2. ak = bk for 0 6 k 6 m, and n > m

Fig. 2·8 and Table 2.1 show an example of 3 possible DFS codes for the same graph.

According to the DFS lexicographic ordering, ω < β < α, i.e. ω is the minimal DFS

code among these three[143].

The mining algorithm is illustrated schematically in Fig 2·9, and is described more

in detail in Ref. [143]. Briefly, the algorithm utilizes a depth first search traversal of

the search space, only exploring subgraphs which are frequent (i.e. support greater
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0-edge graphs

1-edge graphs

2-edge graphs

… …

…

Support < thresh
Pruned

…

< <

Figure 2·9: Schematic illustrating the gSpan algorithm. The DFS
codes are sorted in lexicographic ordering, and a DFS traversal of the
search space is performed to identify frequent subgraphs. Subtrees of
infrequent or non-minimal DFS codes are pruned.

this work, we use the VF2 matching algorithm; the details of the algorithm will not

be described here and can be found elsewhere[141, 142, 160]. Since there can be

hundreds of matches for a given pattern, a novel clustering algorithm (see Chapter 7

and Appendix C) based on sequence or structural similarity is used to group similar

pathways.

The implementation and application of FSM techniques for identifying shared ET

pathways in the eMap web application is presented in Chapter 7.
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Chapter 3

Application of Box and Voronoi CAPs to

Molecular Clusters

3.1 Overview

The complex absorbing potential (CAP) approach offers a practical tool for char-

acterization of energies and lifetimes of metastable electronic states, such as tem-

porary anions and core ionized states. Here, we present an implementation of the

smooth Voronoi CAP combined with equation-of-motion coupled cluster with sin-

gle and double substitutions method for metastable states. The performance of the

smooth Voronoi CAP and box CAP is compared for different classes of systems: res-

onances in isolated molecules, and localized and delocalized resonances in molecular

clusters. The benchmark calculations show that the Voronoi CAP is generally more

robust when applied to molecular clusters, but box CAPs are equally reliable for

localized resonances or in the cases when the resonance does not exhibit significant

electron density delocalization into the intramolecular region. As such, the choice of

the CAP shape and onset should be guided by the character of the metastable states.

.

The work reported in this Chapter is reproduced with permission from Ref. [114]. Copyright
2022 American Chemical Society. The Supporting Information for this Chapter is available free of
charge at https://pubs.acs.org/doi/full/10.1021/acs.jpca.2c04892
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3.2 Introduction

Electronic resonances are metastable electronic states with finite lifetimes lying in

the ionization/detachment continuum. Common examples include transient anions

formed by electron attachment, and core-excited and core-ionized states that can

undergo Auger decay or related relaxation pathways. These states are key players

in a wide variety of processes ranging from those that occur in high energy envi-

ronments (plasmonic photocatalysis, attosecond and X-ray spectroscopies) to low

energy electron-molecule scattering (DNA damage from secondary electrons, inter-

stellar chemistry) [17, 21–24, 161]. Resonances belong to the continuous spectrum of

the electronic Hamiltonian, so they are not part of the usual Hilbert space of square

integrable functions [4]. Theoretical description of these states is generally not pos-

sible by means of conventional quantum chemistry methods developed for bound

states, and one has to use special techniques to obtain accurate resonance energies

and lifetimes.

Non-Hermitian quantum mechanics (NHQM) techniques provide an appealing ap-

proach that allows one to leverage existing quantum chemistry methodology to treat

metastable electronic states [15, 162, 163]. In NHQM formalisms, a resonance ap-

pears as a single square-integrable eigenstate of a non-Hermitian Hamiltonian. The

resonance parameters can be extracted from the corresponding complex eigenvalue:

E = ER −
iΓ

2
(3.1)

where the real part of the energy (ER) is the resonance position, and the imaginary

part (- Γ/2) is the negative of the half-width, which is inversely proportional to the

lifetime of the metastable state (τ = ~
Γ
) [4, 104]. One of the NHQM formalisms that

has been successfully used to study resonances in molecular systems is the complex

absorbing potential (CAP) method. CAPs are imaginary potentials added to the
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Hamiltonian, originally devised as a numerical technique to absorb outgoing wave

packets near the boundaries of finite grids [110]. CAPs have also been applied in the

time-independent framework to study various problems, including the Stark effect,

reactive scattering, and quantum transport in molecular devices [164–166], and are

now routinely used for evaluation of metastable states parameters [8, 125, 127–130,

132, 135, 167].

In this work, we explored the effects of the CAP shape on computed resonance

parameters in molecular systems. In the context of electronic structure of metastable

electronic states, CAPs are used to transform the resonance into a single square

integrable state, and to render the state accessible by means of standard bound-

state techniques [104]. To this end, the electronic Hamiltonian is augmented with an

imaginary potential (−iηW )

HCAP (η) = H − iηW (3.2)

where η is the CAP strength parameter, and W is a real potential which vanishes in

the vicinity of the molecular system and grows with distance [104]. An ideal CAP

must satisfy the following two criteria. First, it should not perturb the system in the

inner, molecular region, i.e. it should not introduce reflections. Secondly, the CAP

should absorb the outgoing tail of the resonance wave function [104, 135]. Several

approaches for minimizing these residual reflections have been proposed. Examples

include “reflection-free” and “transformative” CAPs [168–170], and eliminating the

artificial effect of CAP using the Padé approximant[112]. In most practical applica-

tions, simple quadratic CAPs such as those discussed here are used, as they can easily

be combined with existing electronic structure theory codes.

Since the CAP-augmented Hamiltonian depends on the strength of the CAP

(Eq. 3.2), an optimal value of η which provides the best estimate of the resonance po-
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sition and width, must be identified. With a complete one-electron basis set, the exact

resonance position and width are obtained in the limit of an infinitesimally weak CAP

(η→ 0+) [104]. In practice, when finite bases are used, the optimal CAP strength ηopt

is found by locating a stationary point on the eigenvalue trajectory E(η), for example

using the minimum of the logarithmic velocity criterion (|η dE
dη
| → min) [104]. The

structure of this trajectory, and the best estimate of resonance position and width

for a given basis set/method, depends on the choice of the CAP.

The most commonly used form of the CAP for electronic structure calculations is

the quadratic “box CAP”, which is defined by three cutoff parameters (R0
x, R

0
y, R

0
z)

that specify the onset of the box in each Cartesian coordinate [8, 133].

W = Wx +Wy +Wz

Wα =


0, |rα| < R0

α

(rα −R0
α)

2
, |rα| > R0

α

(3.3)

where α = x, y, or z.

Practical recipes for choosing the box size have been suggested, and correction

schemes have been shown to reduce the dependence of the results on the box size [116,

119]. However, the rigid box-like shape is not always reflective of the detailed geome-

try of a molecular system, and it can be difficult to apply this type of CAP to systems

which do not efficiently fill the space.

The idea of defining a CAP using each atom’s Voronoi cell was proposed by Som-

merfeld and Ehara [135, 136]. The Voronoi absorbing potential wraps uniformly

around any molecule, and is specified by a single cutoff radius rcut. Following the

work by Sommmerfeld and Ehara [135, 136] we use the “smooth Voronoi” poten-

tial, which smooths out the edges between Voronoi cells, making the resulting CAP
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more amenable to numerical integration [135]. In this case, the CAP is defined as

follows [135]:

W (~r) =


0, rWA ≤ rcut

(rWA(~r)− rcut)2, rWA > rcut

(3.4)

rWA(~r) in Eq. 3.4 is the effective distance to the molecular system evaluated as a

weighted average of the distances to all nuclei:

rWA(~r) =

√∑
iwi|~r − ~Ri|2∑

iwi
(3.5)

Ri is the distance to the ith nucleus and wi is the weight defined as follows:

wi =
1

(|~r − ~Ri|2 − r2
min + 1 a.u.)2

(3.6)

where rmin is the distance to the closest atom: rmin = min
i
|~r − ~Ri|.

In contrast to the box CAP, the Voronoi CAP shares exactly the symmetry of the

molecular system, and is flexible, i.e. is easily adjustable to changing nuclear con-

figurations, for example in dynamical simulation. The immediate price one pays for

this flexibility is a less convenient functional form; CAP integrals [133] and gradients

[134] for metastable states can be obtained analytically for box CAP, but currently

must be evaluated numerically using Voronoi CAPs. Another consequence of this

flexible functional form is that unlike the box CAP, the Voronoi CAP will leak into

the empty spaces in molecular clusters as it wraps around each molecule. As such,

one can expect differences in behavior of these two types of CAP for different types

of systems.

To shed light on these differences, we have implemented the smooth Voronoi CAP

in the Q-Chem program package [171] and compared its performance to that of the
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standard box CAP for shape resonances in several representative systems. To explore

the effects of CAP type on resonances in compact molecules we considered π∗ reso-

nances in N−2 and CO−. Following the work by Ehara and Sommerfeld [135], we have

explored the effects of CAP shape on a localized resonance in an N−2 (H2O)2 cluster. In

addition, we have considered an example of delocalized electron-attached resonances

in an anion of the experimentally observed [172–174] carbon monoxide dimer ((CO)2).

We employed the CAP equation-of-motion coupled cluster method with single and

double substitutions for electron attachment (CAP-EOM-EA-CCSD) [8, 116, 119]

to compute the resonance energies and widths of all model systems. Specifically, we

exploit CAP-EOM-EA-CCSD in the projected scheme, where the CAP-augmented

Hamiltonian is represented on a reduced subspace spanned by a small number of

EOM-EA-CCSD eigenstates[120, 122, 125, 129, 130, 132].

The structure of this Chapter is as follows. We outline the main features of the

CAP method in Sec. 3.3 and discuss the technical details in Sec. 3.3. The perfor-

mance of box and smooth Voronoi CAPs for description of resonance parameters in

diatomics, localized and delocalized resonances in clusters is discussed in Secs. 3.4, 3.4,

and 3.4, respectively.

3.3 Methods

Complex Absorbing Potentials

In the CAP method, resonance parameters are obtained as complex eigenvalues

(Eq. 3.1) of the CAP–augmented electronic Hamiltonian (Eq. 3.2). The CAP-

augmented Hamiltonian is complex symmetric (H(η)† = H(η)∗), and so the usual

Hermitian inner product is replaced with the c-product [104, 175]

(φi(~r)|φj(~r)) =

∫
d~rφi(~r)φj(~r)
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In a finite basis representation, an optimal ηopt which provides the best estimate

of resonance position and width must be identified. The ηopt is system- and state-

dependent, and varies with the electronic structure method, basis set, and the form

of the CAP used. To search for ηopt, the calculation is repeated over a range of η

values, generating complex eigenvalue trajectories which depend on η. When using

the logarithmic velocity criterion [104], ηopt corresponds to the CAP strength on the

eigenvalue trajectory where |η dE
dη
| has its minimum.

Results obtained in this fashion are sensitive to the CAP onset, due to unphysical

perturbations of the resonance wave function induced by the CAP [116]. Several

correction schemes have been proposed to improve the accuracy and stability of CAP

augmented calculations [116, 117]. Here we employ the scheme based on first order

“de-perturbation” of the complex energy [104]. The real, UR, and imaginary, U I ,

parts of the resulting corrected complex energy can be expressed as follows [116]:

UR = ER − ηTr
[
WγI

]
U I = EI + ηTr

[
WγR

]
(3.7)

where W is the CAP matrix (Eq. 3.2), and γR/γI are the real and imaginary parts of

the state reduced one particle density matrix. The ηopt for corrected trajectories can

be obtained by minimizing the logarithmic velocity of U(η):∣∣∣∣ηdUdη
∣∣∣∣→ min (3.8)

Alternatively, the real and imaginary parts of the corrected energy can be analyzed

independently, resulting in two values of ηopt[116].

Regardless of which scheme is used, analysis of η-trajectories can pose a signifi-

cant challenge when there are multiple apparent stationary points. Naively following

Eq. 3.8, for example, can result in sudden jumps from switching between station-
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ary points, which is undesirable for the purpose of obtaining smooth potential energy

curves, and for the purpose of comparing results from different CAPs on equal footing.

Strategies such as continuum remover CAP [113] aim to identify the “true” resonance

stabilization point, but ultimately still rely on graphical searches, which can be in-

conclusive. In the reported numerical results, the value of ηopt for each calculation

was selected based on Eq. 3.8, following the same stationary point (when possible)

for different CAPs at each geometry.

Computational Details

The smooth Voronoi CAP was implemented in the Q-Chem program package, and all

calculations were performed using Q-Chem version 5.4.1. In this work, we employ the

CAP-EOM-EA-CCSD method in the projected scheme[120, 122]. 30 EOM-EA-CCSD

states in the appropriate irreducible representation were included in the correlated

basis for the projected CAP calculations.

The basis sets used in all calculations consisted of Dunning’s correlation consistent

cc-pVTZ [176] basis augmented by additional even-tempered basis functions. For the

N2 monomer and the N2(H2O)2 cluster, the basis set was chosen to match that used

by Ehara and Sommerfeld in Ref. [135]. Starting from the cc-pVTZ basis set, the

basis set for nitrogen was augmented with a (2s5p2d) set of even-tempered diffuse

functions (with scaling factors of 1/2 for s-type and d-type functions, and 2/3 for p-

type basis functions), and the basis set for the oxygen atoms on the water monomers

was augmented with a set of (1s1p1d) diffuse functions (with a scaling factor of 1/3 for

all angular momenta). For the CO monomer and the dimer, the aug-cc-pVTZ basis set

was augmented by an additional (3s3p3d) set of diffuse even-tempered basis functions

(with a scaling factor of 1/2) located at the center of mass of each monomer[119].

The grid used for computing the CAP integrals was a Becke-type grid of 500 radial

points and 3470 angular Lebedev points [177, 178].
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(B)(A)

Figure 3·1: Geometries of the N2(H2O)2 model cluster (A), and the
(CO)2 dimer (B). Resonance states are investigated as functions of the
intermolecular distance, R.

Bond lengths of 2.0740 and 2.1316 bohr were used for N2 and CO, respectively.

For the model N2(H2O)2 cluster, experimental equilibrium geometries were used for

the monomers N2 and H2O, while the N2-oxygen distance was varied, as indicated in

Fig 3·1A. For the CO dimer, the computed equilibrium geometry of the lower energy

“a-state” isomer from Ref. [179] was chosen as the starting point, and the distance

between centers of mass of the two monomers was varied (Fig. 3·1B). Representative

geometries of the clusters are given in the SI (Sec. S1).

Throughout the discussion, the box CAP size is specified by a single onset param-

eter rbox in such a way that the onset in each dimension (R0
α in Eq. 3.3, α = x, y, z)

is obtained by adding rbox to the maximum value of the nuclear coordinate in that

dimension (x, y, or z), centered at the molecular center of mass. Voronoi CAPs are

specified by the rcut cutoff radius (see Eq. 3.4). For all CAP calculations on the model

N−2 (H2O)2 and the (CO)−2 dimer, the CAP onset was chosen as 3.0 bohr for box and

Voronoi CAPs.

3.4 Results and Discussion

In this section, we compare computed eigenvalue trajectories for box and Voronoi

CAPs for three types of systems: resonances in diatomic molecules (3.4), localized
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space in the intermolecular region. As a result, the in-plane state (2B1g) experiences a

weaker CAP as R is increased, while the out-of-plane state (2B3g) is largely unaffected

by this empty space. Based on the trends observed for the N−2 monomer, one could

expect a lower resonance energy and width for the in-plane (2B1g) state relative to

the out-of-plane (2B3g), and indeed, the asymptotic value of the resonance widths for

the 2B1g state is ∼0.05 eV below that for the out-of-plane 2B3g state and the isolated

N−2 monomer. This also explains why the 2B1g state is more sensitive to the CAP

shape from 4 Å to 8 Å ; the in-plane state feels the presence of Voronoi CAP in the

cavity more strongly, while the box CAP becomes progressively weaker, resulting in

a larger difference in the computed widths between the two CAPs for this state.

In the initial benchmarks for Voronoi CAP, Ehara and Sommerfeld [135] reported

that a box CAP resulted in larger values of Γ than a Voronoi CAP for the in-plane

2B1g state as the system was stretched from R ∼ 4 − 5 Å, which at first appears to

contradict our results. The authors of Ref. [135] attributed this behavior to artifacts

stemming from the “dead space”. This disagreement likely stems from analysis of the

trajectories. The trajectories admit multiple stationary points, and depending on the

choice of the stationary point, the width for the box CAP in this region can be either

smaller or greater than that for the Voronoi CAP (see Figs 3·8 and S14), However, at

the dissociation limit, there is only one stationary point (where box CAP exhibits a

smaller width), which is the one we chose to follow throughout the potential energy

curve. To support our conclusions, we repeated the calculations with the projected

CAP/EA-ADC(2) method[129], and were able to reproduce the same key trends (see

Figs. S13, S14, and Table S3).

Delocalized resonance: (CO)−2

Lastly, we examine the effect of CAP shape on delocalized resonance states. As a

model system we use an anion of the carbon monoxide dimer. The neutral dimer has
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Figure 3·9: Schematics and the real part of complex Dyson
orbitals[181]for each of the four resonance states of the (CO)−2 dimer.
The Dyson orbitals were plotted at the equilibrium geometry with an
isosurface value of 0.02.

Potential energy curves for the out-of-plane states for the 2Bg (out-of-phase) and

2Au (in-phase) states of the (CO)−2 dimer are shown in Fig. 3·10. Both CAPs yield

similar trajectories at each geometry (see Figs. S4 and S5), and we were able to

obtain smooth real and imaginary potential energy curves which become degenerate

at the dissociation limit, and approximately reproduce the resonance parameters of

the isolated CO− monomer (see Table 3.1). The in-phase 2Au state is more sensitive

to CAP shape for both the real and imaginary parts of the energy, with resonance

positions from the two CAPs varying by as much as 0.1 eV (e.g. at R to 7 and 8





73

the Voronoi CAP clearly stabilizes a single resonance trajectory, the box CAP splits

into two stabilized regions near 1.5 eV and 2.9 eV, neither of which yields reliable

stationary points on the corrected trajectory. This second region eventually comes

down in energy and becomes stabilized on the corrected trajectory starting near 14

Å, and as shown in Fig. 3·13, trajectories from the two CAPs start to resemble each

other again as the dissociation limit is approached. This problematic behavior in the

intermediate region can likely be attributed to the poor basis set description in the

cavity. This issue is expected to be especially problematic for this state in particular,

which arises from and in-plane in-phase combination of π∗ orbitals. In principle, a

more flexible basis set could resolve the issue, but our attempts to do so by including

additional diffuse functions in the cavity region were unsuccessful, which underlines

the challenge of describing such a state with primarily atom centered basis functions.

Notably, both Voronoi and box CAP exhibit a large 0.2 eV jump in resonance position

from R = 8 Å to R = 9 Å. The out-of-phase 2Bu state is not as problematic, and

clear stabilization points for both CAPs are present on the corrected trajectories at

each geometry.
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balanced description of all four states, while the box CAP struggles to do so due to

different states being sensitive to different components of the CAP onset. Lastly, to

support our conclusions, we repeated the calculations using the projected CAP/EA-

ADC(2) method[129], which showed similar trends for each of the states (see Figs

S6-S9 and Table S1).

Table 3.1: Resonance positions (widths) of the four states of the
(CO)−2 dimer at the equilibrium geometry, and at R = 20 Å, computed
using box and Voronoi CAPs.

Eq. R = 20 Å

Box
2Ag 1.719(0.181) 1.921(0.660)
2Bu 2.877(0.957) 1.921(0.663)
2Au 1.536(0.576) 1.946(0.577)
2Bg 2.236(0.289) 1.947(0.576)

Monomer - 1.970(0.593)

Voronoi
2Ag 1.721(0.174) 1.981(0.648)
2Bu 2.850(0.819) 1.985(0.647)
2Au 1.563(0.689) 1.981(0.650)
2Bg 2.255(0.321) 1.982(0.650)

Monomer - 1.991(0.644)

Experiment1 - 1.50(0.8)182

1 - estimate extracted as a half-width of the peaks in elastic (ν’=0) and inelastic (ν=1)
cross-sections[182].

3.5 Conclusions

In summary, we have analyzed the performance of box and Voronoi CAPs for three

different types of systems. For diatomics, box and Voronoi CAPs were shown to

generate eigenvalue trajectories which share the same key features, and display a

similar dependence on CAP onset. For localized resonances in the N−2 (H2O)2 cluster,
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Voronoi CAPs yield systematically larger widths in the intermediate region when the

state is sensitive to the presence of CAP in the cavity, but ultimately produce the

proper behavior at the dissociation limit. The box CAP performed well for both local-

ized resonance states, but did not fully reproduce their degeneracy at the dissociation

limit, due to the in-plane state experiencing a weaker CAP. For delocalized resonances

in the (CO)−2 dimer, the two types of CAP perform equally well for the out-of-plane

states, but the flexibility of the Voronoi CAP was crucial for robust description of the

in-plane in-phase state, where the box CAP struggled to stabilize the resonance as

the system was stretched due to reflections from the edge of the basis set. Thus, the

choice of CAP for molecular clusters should be guided by the character of the state

of interest. The convenience of box CAPs can be exploited when the state is less

sensitive to the onset in the dimension where box CAP is absent (e.g. the clustering

axis), but a Voronoi CAP should be used when a more flexible CAP is needed.
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Chapter 4

Projected CAP-EOM-CCSD method for

electronic resonances

4.1 Overview

The complex absorbing potential equation-of-motion coupled-cluster (CAP-EOM-

CC) method is routinely used to investigate metastable electronic states in small

molecules. However, the requirement of evaluating eigenvalue trajectories presents a

barrier to larger simulations, as each point corresponding to a different value of the

CAP strength parameter requires a unique eigenvalue calculation. Here, we present

a new implementation of CAP-EOM-CCSD which uses a subspace projection scheme

to evaluate resonance positions and widths at the overall cost of a single electronic

structure calculation. We analyze the performance of the projected CAP-EOM-CC

scheme against the conventional scheme, where the CAP is incorporated starting from

the Hartree-Fock level, for various small and medium sized molecules, and investigate

its sensitivity to various parameters. Finally, we report resonance parameters for a set

of molecules commonly used for benchmarking CAP-based methods, and we report

estimates of resonance energies and widths for 1- and 2-cyanonaphtalene, molecules

which were recently detected in the interstellar medium.

.

The work below is reproduced from Ref. [120], with the permission of AIP Publishing. The
Supplementary Material for this Chapter is available free of charge at https://aip.scitation.

org/doi/10.1063/5.0082739
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4.2 Introduction

Electronic resonances are (N+1)-electron metastable electronic states which lie ener-

getically above the associated N-electron system and decay through auto-ionization,

and thus have intrinsically finite lifetimes. Common examples include transient anions

formed by electron attachment to closed-shell species[9, 183], and core ionized or core

excited states which decay through Auger decay or other related processes[25]. These

states play important roles in a wide variety of processes, ranging from low energy

electron-molecule scattering (e.g. DNA damage by secondary electrons, interstellar

chemistry) [17, 21] to electron-molecule interactions occurring in highly energetic en-

vironments (e.g. plasmonic photocatalysis, attosecond and X-ray spectroscopies)[19,

22–24]. Resonances belong to the continuous spectrum of the Hamiltonian, and there-

fore, the associated eigenstates are not square-integrable[4]. Accurate calculation of

resonance energies and lifetimes is a challenging task due to the non-stationary na-

ture of metastable electronic states, which makes them formally not tractable with

the conventional quantum chemistry techniques developed for bound states. Among

the theoretical approaches developed for resonances, two groups of methods can be

distinguished: those based on scattering theory which account for the continuum ex-

plicitly [7, 93, 184], and L2 methods which implicitly treat the scattering nature of

the decaying state[4, 8, 104, 125]. In this work, the focus is on the complex absorbing

potential (CAP) method, an L2 method which can be readily applied to the study

of resonances in molecular systems[104, 111]. The CAP method is a non-Hermitian

quantum mechanics L2-formalism, in which the physical Hamiltonian is augmented

with a complex-valued, artificial absorbing potential. Resonances appear as square-

integrable eigenstates of the resulting Hamiltonian, and are associated with complex

Siegert-Gamow eigenvalues: E = ER − iΓ/2, where ER and Γ correspond to reso-

nance energy and width, respectively[6, 15]. Other examples of L2 methods include
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complex scaling[175], complex basis functions[101], stabilization[95–97], and the ana-

lytical continuation of the coupling constant (ACCC) method[185]. The performance

of the CAP, stabilization, and analytic continuation methods for a model potential

was recently studied by Davis and Sommerfeld[162].

CAPs were originally introduced as tools to avoid reflections from the edge of

the grid in wave packet propagation simulations[110], but were later adapted for

computing resonance states by Jolicard and Austin[111], and placed on a firm theo-

retical footing for this purpose by Riss and Meyer[104]. They have since been com-

bined with several many-body electronic structure methods, including configuration

interaction (CI)[121–123], symmetry-adapted cluster-configuration interaction (SAC-

CI)[125], Fock-space coupled cluster[126], density functional theory (DFT) [127], alge-

braic diagrammatic construction (ADC)[128, 129], and multi-reference perturbation

theory[130–132].

In this work, we present an implementation of the CAP equation-of-motion coupled-

cluster (CAP-EOM-CC) method which uses the CAP subspace projection scheme [122,

125, 129, 130, 132] to investigate shape resonances in molecular systems. Our main

focus is on the variant of EOM-CCSD for electron attachment energies (EOM-EA-

CCSD), however, our implementation is completely general, and can be applied to

other types of target states (e.g. EE/SF/IP etc.) and EOM-CC models which incor-

porate higher levels of excitation, provided that one-particle density and transition

density matrices are available. Here, we show that projected CAP-EOM-CCSD pro-

vides a computationally efficient alternative to the “full” CAP-EOM-CCSD when

the CAP is introduced at the Hartree-Fock stage[116, 119], with practically no loss

in accuracy for zero-order results, and relatively minor differences between the two

methods for first-order results.

The structure of this Chapter is as follows: In Sec. 4.3 we briefly outline the CAP
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formalism (Sec. 4.3), and then discuss CAP-EOM-CCSD and its implementation in

the projected scheme (Sec. 4.3). In Sec. 4.4 we describe the relevant computational

details. In Sec. 4.5 we present the comparison of the projected and full CAP-EOM-

CCSD methods for describing resonance positions and widths of well-known π∗ shape

resonances of N−2 and CO−. Sec. 4.5 reports the resonance parameters obtained

for polyatomic molecules, including 1- and 2-cyanonapthalene, which were recently

identified in the interstellar medium [186]. Finally, the results are summarized in

Sec. 4.6.

4.3 Theory

Complex Absorbing Potential

The CAP method is aimed at computing the complex Siegert-Gamow energy[6]

E = ER − iΓ/2 (4.1)

of a resonance, where ER and Γ are the resonance position and width, respectively. To

this end, the physical Hamiltonian H is augmented with a complex potential (-iηW)

which absorbs the outgoing tail of the resonance wave function, transforming it into

a square-integrable eigenstate of the non-Hermitian Hamiltonian [104]. The resulting

CAP-augmented Hamiltonian is written as follows:

HCAP = H − iηW, (4.2)

where η is the CAP strength parameter, and W is a real potential which vanishes

in the vicinity of the molecular system and grows with distance. In this work, W is

chosen as either a quadratic box-potential [133] or smooth Voronoi potential [135].

The box potential has the following form:
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W = Wx +Wy +Wz

Wα =

{
0 |rα| ≤ R0

α

(rα −R0
α)

2 |rα| > R0
α

} (4.3)

where α = x, y, or z, and the parameters R0
α define the onsets of the CAP along the

Cartesian axes [8, 133]. The smooth Voronoi potential wraps around the molecular

system at a specified cutoff radius rcut; details of its functional form can be found in

Ref. [135].

In a complete one-electron basis set, the eigenvalue associated with a resonance

converges to the exact Siegert-Gamow energy in the limit of an infinitesimal CAP

strength [104]. With a finite basis set, the limit η → 0+ yields only the real en-

ergy of a discretized continuum state. As such, in practical calculations employing

finite basis sets, the approximate Siegert-Gamow energy is obtained by analyzing the

parametric dependence of the eigenvalues of the CAP-augmented Hamiltonian on the

CAP strength parameter η. The resonance position and width are typically extracted

by analyzing the so-called η-trajectory: the series of eigenvalues associated with the

resonance computed for a range of η values. The estimate of the resonance energy

and width is obtained from an optimal value of the CAP strength parameter, ηopt, for

which the trajectory exhibits a pronounced stabilization [104]. The ηopt for a given

resonance cannot be determined a priori. It is state-specific, and depends on both the

one-particle basis set and the CAP onset. Thus, evaluation of a single resonance po-

sition and width requires multiple eigenvalue calculations (typically at least 50-100).

Specific schemes that can be used to identify ηopt and, therefore, the best estimate of

the resonance position and width, are outlined in Sec. 4.3.
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CAP-EOM-CC

To accurately compute energies and lifetimes of electronic resonances, the CAP

method must be combined with a reliable electronic structure method. Here, we use

the EOM-CC method with single and double substitutions (EOM-CCSD) [55, 56]. In

the EOM-CC framework, the target states are parameterized as:

|ΨI〉 = R̂Ie
T̂ |Φ0〉 (4.4)

where |Φ0〉 is the Hartree-Fock reference, T̂ is the cluster operator from the coupled

cluster ansatz, and R̂I is a generalized excitation operator [56].

The CAP can be introduced at different stages of the EOM-CC theory, which has

led to multiple implementations. The implementation of CAP-EOM-CCSD described

by Zuev et al.[119] introduces the CAP starting from the Hartree-Fock (HF) level

(herein referred to as “fCAP” or “full” CAP). Implementations which introduce CAP

at the CC and EOM levels, which have the advantage of not perturbing the SCF

ground state, have been described by Ghosh et al.[138, 139]. In the present work, we

utilize the projected CAP scheme (herein referred to as “pCAP” or projected CAP),

in which the CAP-augmented Hamiltonian is represented on a subspace spanned by

a small number of real eigenstates of the physical Hamiltonian [122]. This approach

was first used in the context of CAP augmented configuration interaction (CAP-CI)

by Sommerfeld and Santra [122], and later adapted for CAP-based multi-reference

perturbation theory (MRPT)[130, 132], algebraic diagrammatic construction [129],

and symmetry adapted cluster-configuration interaction (SAC-CI)[125], the latter

of which is closely related to EOM-CC. While the majority of implementations of

CAPs for resonances have either included it at the post-HF stage or have utilized the

projected CAP scheme, we have chosen to use the fCAP implementation of Zuev et

al.[119], which has been implemented in the Q-Chem program package[171], as our
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reference for comparison.

In the projected CAP-EOM-CC method, one first obtains a set of M real left

and right eigenstates of the similarity transformed Hamiltonian (often less than 20-30

states) which comprise the subspace or “correlated basis set”. In addition, the reduced

one-particle density and transition density matrices between each pair of states must

be evaluated. The CAP matrix in atomic orbital basis is calculated separately and

then transformed into the “correlated basis set” as follows:

WCB
ij =

{
Tr
[
WAOγij

]
, i 6= j

Tr
[
WAOγi

]
, i = j

}
(4.5)

where γi is the reduced one-particle density matrix for state i, and γij is the one-

particle transition density matrix between states i and j. The similarity transformed

Hamiltonian H̄ is diagonal in the M ×M block of the basis states, which we refer

to as HCB
0 . The complex, non-Hermitian projected CAP Hamiltonian is then defined

as:

HCAP = HCB
0 − iηWCB (4.6)

The search for ηopt therefore requires a single real-valued EOM-CC calculation, fol-

lowed by the relatively trivial task of repeated diagonalization of the M ×M HCAP

defined by Eq. 4.6 for different values of η. Thus, the entire η-trajectory, and there-

fore the best estimate of resonance position and width, is obtained at the cost of a

single electronic structure calculation.

Introducing a CAP to the physical Hamiltonian (Eq. 4.2) makes the results sen-

sitive to the CAP parameters, as the presence of the artificial potential introduces

perturbations (often referred to as reflections)[104, 170]. To diminish the artifacts

introduced by the CAP, one can employ η-trajectories corrected for the presence of

CAP, typically up to the first order. The zero-order trajectory (E(η)) corresponds

to the bare eigenvalues of the CAP-augmented Hamiltonian. In the first order, the
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complex energy has the form [104]:

U(η) = E(η)− ηdE
dη
, (4.7)

The derivative dE
dη

can be evaluated using finite differences, or it can be recast as

the expectation value of the CAP via the generalized Hellman-Feynman theorem[104,

115]:

dE

dη
= −i (ψ(η)|W |ψ(η)) (4.8)

which leads to the convenient expression:

U(η) = E(η) + iηTr[γW ], (4.9)

where γ is the reduced one-particle density matrix[116]. Note that the parentheses in

Eq. 4.8 indicate the use of the complex symmetric scalar product (c-product) instead

of the usual Hermitian inner-product[104].

The ηopt for zero-order trajectories can be found using the logarithmic velocity

criterion: ∣∣∣∣ηdEdη
∣∣∣∣→ min (4.10)

The same approach can be used for finding the ηopt for the first-order corrected tra-

jectories by minimizing the logarithmic velocity of U(η). A different scheme has been

proposed by Jagau et al.[116], where separate values of ηopt for real and imaginary

parts are obtained by locating stationary points for the real and imaginary parts of

U(η) independently:

UR(η) = ER(η)− ηTr
[
γIW

]
(4.11)

U I(η) = EI(η) + ηTr
[
γRW

]
(4.12)

In this work, we obtain a single ηopt for first-order trajectories from the minimum of
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the logarithmic velocity of the first-order trajectory.∣∣∣∣ηdUdη
∣∣∣∣→ min (4.13)

The real and imaginary parts of U(ηopt) determine the resonance energy and width,

respectively.

4.4 Computational Details

We have implemented the projected CAP-EOM(EA/EE/SF/IP) family of methods

in the Q-Chem program package, and all calculations were performed using version

5.4 [171]. In this work, we have focused on the EOM-EA-CCSD variant for electron

affinities, which is well-suited for describing (N+1)-electron target states. We have

used both the “full” CAP-EOM-EA-CCSD method of Zuev et al.[119][119] and the

new projected CAP-EOM-EA-CCSD. For the rest of the paper, these methods will

be referred to as “fCAP” and “pCAP”, respectively.

Experimental ground state geometries obtained from the NIST Computational

Chemistry Comparison and Benchmark Database were used for N2, CO, CO2, HCN ,

formaldehyde (CH2O), and ethylene(C2H4) [187]. For para-benzoquinone (pBQ), the

optimized geometry of the ground state radical anion from Ref. [188] was used. For

chloroethene, the geometries from Ref. [189] were used. For all remaining systems, the

optimized geometry of the neutral ground state at the B3LYP/cc-pVTZ level of theory

was used [190, 191]. The frozen-core approximation was utilized for calculations on

uracil, pBQ, and the naphthalene derivatives, while all orbitals were correlated in the

remaining calculations.

The basis sets used in CAP-EOM-CCSD calculations consist of Dunning’s cor-

relation consistent (aug)-cc-pVXZ [176] basis sets augmented by additional even-

tempered diffuse basis functions. Following Ref. [119], we explored two different
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types of augmentation. The first, denoted as [A], augments the basis set for all heavy

atoms, and the second, denoted as [C], places a set of diffuse functions with exponents

averaged over those for different chemical elements located at the center of mass of the

molecule[119]. In most cases, the exponents for the additional diffuse functions were

obtained as one half of the exponent of the preceding function of the same angular

momentum, starting from the most diffuse function in the parent basis set[119]. The

exception was the 2s5p2d[A] basis set[125], for which we generated the exponents for

the additional basis functions in a similar way, but used a scaling factor of 1.5 for

p-type functions, and 2.0 for s and d type functions.

Unless otherwise specified, we used the aug-cc-pVTZ + 3s3p3d[C] basis set for cal-

culations on N2, CO, CO2, HCN , CH2O, and C2H4. For pBQ, we used the cc-pVTZ

+ 8gh [3s] basis set from Ref. [188]. For chloroethene, we used the aug-cc-pVDZ +

3p basis from Ref [189]. For uracil, naphthalene, and 1- and 2-cyanonaphthalene, we

used the cc-pVDZ +2s5p2d[A] basis set[104, 191]. All CAP integrals were evaluated

through numerical quadrature using a Becke-type grid of 99 radial points and 500

angular Lebedev points. [177, 192].

Multiple forms of CAP were used in this work, and the CAP parameters for each

system are summarized in Table S1 in the supplementary material. Unless otherwise

specified, a quadratic box-potential[133] was used, and the onset in each Cartesian

coordinate was chosen as the square root of the expectation value 〈α2〉 (α = x, y, z)

for the ground state calculated at the CCSD level of theory[119]. For calculations on

uracil, naphthalene, and 1- and 2-cyanonaphthalene, a smooth Voronoi potential[135]

with a cutoff radius of 4.0 bohr was used.

For zero-order trajectories, ηopt was determined following Eq. 4.10. For first-order

results, we computed the first-order correction using Eq. 4.9, and a single ηopt for

the first-order trajectory was obtained using Eq. 4.13. For pCAP, the density matrix
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takes 54 and 524 seconds for 4 states and 30 states, respectively. For pCAP, since

the EOM-EA-CCSD eigenvectors are only computed once, these estimates essentially

represent the entire cost of generating an eigenvalue trajectory for any range of η

values for the corresponding subspace (4 or 30 eigenvectors). For fCAP, each value

of η requires an independent calculation. For this example, with 200 η-points and

approximately 300 seconds per η value (e.g. the timings for η = 0, 0.015 and 0.05

were 212 s, 357 s, and 388 s, respectively, when requesting 4 states), generating the

fCAP eigenvalue trajectory required a total of ∼17 CPU hours.

Next, we investigated the effect of the CAP onset on computed resonance param-

eters. Zero-order and first-order results for CO− with different box sizes are shown in

Fig. 4·5. The box size in Fig. 4·5 is specified by a single onset parameter, rbox, such

that the onset in each dimension, R0
α in Eq. 4.3, is obtained by adding rbox to the

maximum value of the nuclear coordinate in that dimension, with the origin placed

at the center of mass. The two methods show a similar monotonic dependence on

the CAP onset for both real and imaginary parts of the energy, and the resonance

parameters computed from pCAP and fCAP lie within 0.01 eV and 0.05 eV of each

other for the position and width respectively. Importantly, these differences are less

than the shifts of the results due to the variation in the CAP onset, which changes

the resonance position by as much as 0.19 eV, and the width by as much as 0.28 eV

as the box is moved from 2.0 bohr to 5.0 bohr. Similar trends were observed for N−2

(see Fig. S2 in the supplementary material), indicating that the relative performance

of the two methods is weakly dependent on the CAP onset.

Next, we investigated the sensitivity of the results for N−2 to the valence and

diffuse parts of the one-electron basis set. For each basis set, we calculated up to 30

states (the corresponding trajectories and resonance parameters dependence on the

size of the correlated basis set are given in the supplementary material, Sec. SV). The
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Table 4.2: Basis set dependence of the computed zero-order resonance
parameters for the N−2 π∗ shape resonance. All energies are given in
eV.

pCAP fCAP

Basis set # States ER Γ ηopt ER Γ ηopt

aug-cc-pVDZ+3s3p3d[C] 3 2.775 0.373 0.0055 2.778 0.381 0.0056

aug-cc-pVTZ+3s3p3d[C] 4 2.619 0.385 0.0070 2.617 0.395 0.0070

aug-cc-pVQZ+3s3p3d[C] 4 2.507 0.360 0.0039 2.508 0.369 0.0038

aug-cc-pV5Z+3s3p3d[C] 5 2.454 0.377 0.0026 2.456 0.384 0.0024

aug-cc-pVTZ+3s3p3d[A] 7 2.526 0.500 0.0015 2.524 0.494 0.0015

aug-cc-pVTZ+6s6p6d[C] 7 2.536 0.423 0.0023 2.536 0.425 0.0023

cc-pVTZ+2s5p2d[A] 4 2.518 0.499 0.0016 2.518 0.498 0.0016

aug-cc-pVTZ+3s3p[A] 5 2.601 0.360 0.0059 2.604 0.370 0.0060

aug-cc-pVTZ+3s3p[C] 2 2.901 0.758 0.0400 2.922 0.707 0.0410

number of states in Tables 4.2 and 4.3 refers to the initial set of eigenstates with 1p

character which appear before the first 2p1h state, and the reported data corresponds

to the correlated basis set defined by these states.

In all cases except the aug-cc-pVTZ + 3s3p[C] basis set, the eigenvalue trajectories

obtained from pCAP and fCAP have nearly identical structures, and yield zero-order

resonance parameters and first-order resonance positions within 0.01 eV. First-order

resonance widths obtained from pCAP are systematically lower than those from fCAP,

though there is no clear trend between the size of the basis set and the agreement

between the two methods. Increasing the size of the correlated basis set (and thereby

including additional states of mixed 1p/2p1h character) does typically lead to better

agreement with the fCAP result, though even with the minimal subspace, the first-

order widths obtained from the two methods differ by less than 0.1 eV. For this

system, increasing the quality of the valence basis set does lead to better agreement

of the first-order results (though not the zero-order ones) with the values from Ref.

[193], which were obtained using a parameterized model fitted to the experimental
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for determining ηopt becomes crucial. Jagau et al. [118] obtained smooth complex

potential energy curves for this system using fCAP and the same basis set by evalu-

ating ηopt for the real and imaginary parts of the energy separately, with the width

taken as a maximum of U I(η), and the resonance position a minimum of UR(η) (see

Eqs. 4.11 and 4.12). While this strategy works well for pCAP from 1.0-1.4 Å, at

smaller bond distances, the structures of the first-order pCAP trajectories begin to

noticeably differ from fCAP (see Fig. S12 in the supplementary material), leading

to drastically different results between pCAP and fCAP for the resonance position if

one uses this criteria. For example, as shown in Fig. 4·8, at a bond distance of 0.80

Å, the pCAP resonance position obtained by locating a minimum of UR(η) would be

-0.80 eV, a value which is obviously not physically meaningful, and the fCAP reso-

nance position would be evaluated as ∼ 2.5 eV, a value which is ∼ 2 eV less than the

zero-order resonance position. When the first-order energy for both pCAP and fCAP

is evaluated using Eq. 4.13, there is no such discrepancy, and the two methods yield

similar first-order results even at bond distances less than 1.0 Å. Lastly, we note that

zero-order results and trajectories for pCAP and fCAP are very similar for all points

we explored, but resonance parameters cannot be obtained for either method beyond

1.3 Å, as the resonance becomes too narrow to determine an optimal CAP strength

using Eq. 4.10 (see Fig. S11 in the supplementary material).

Shape resonances in polyatomic molecules

Below, we discuss the performance of the projected CAP-EOM-EA-CCSD scheme

for evaluation of the resonance position and width for low-lying shape-resonances

in several representative polyatomic systems. Computed zero-order and first-order

resonance positions and widths are listed in Tables 4.4 and 4.5. In all cases, eigenvalue

trajectories obtained from the two methods have the same general structure once the

initial set of 1p-dominated states (the second column in Table 4.4) are included in
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Table 4.4: Zero-order resonance parameters for the lowest electron-
attached π∗ shape resonances in polyatomic molecules. All energies are
given in eV.

Projected Full

System # states ER Γ ER Γ

HCN 8 2.145 1.197 2.163 1.239

CO2 6 4.017 0.178 4.006 0.171

CH2O 7 1.202 0.322 1.205 0.328

C2H4 3 2.012 0.432 2.012 0.439

pBQa 4 2.871 0.034 2.89188 0.027
a ER is reported relative to CCSD energy of ground state anion.

Table 4.5: First-order resonance parameters for the lowest electron-
attached π∗ shape resonances in polyatomic molecules. All energies are
given in eV.

Projected Full Experiment

System ER Γ ER Γ ER Γ

HCN 1.969 0.820 1.949 0.957 2.260195 -

CO2 4.000 0.111 3.989 0.116 3.6196 -

CH2O 1.154 0.233 1.155 0.268 0.8611, 197 -

C2H4 1.932 0.306 1.932 0.347 1.8198, 199 0.7

pBQ 2.867 0.012 2.87188 0.013 2.5200 0.025

symmetry in the Cs point group. The results we report in Table 4.6 were obtained

using a smooth Voronoi[135] CAP with a cutoff radius of 4 bohr, and we included up

to 55 states in our calculations.

Starting with the π∗1 state, our reported pCAP resonance position lies 0.15 eV

above the projected CAP/SAC-CI resonance position reported by Sommerfeld et

al. [136]. However, our obtained pCAP resonance parameters agree well with the

fCAP results reported by Thodika et al. [191]. The minor differences between the

fCAP and pCAP results in Table 4.6 are simply due to the different choice of CAP;

pCAP nearly perfectly reproduces fCAP resonance parameters when the same CAP
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is used (see Table S11 in the supplementary material). For the π∗2 state, EOM-

CC and SAC-CI show much better agreement, but the resonance position still lies

0.6 eV above the experimental ETS result and the results obtained from electron

scattering calculations [201–203]. The present deviations of 0.5-0.6 eV for the π∗1 and

π∗2 states are consistent with previous CAP/SAC-CI studies on double-bonded and

heteroaromatic compounds, and such deviations have been attributed to geometry

relaxation effects and the incomplete one-electron basis set[136, 190]. With the chosen

one-electron basis set, the first 22 eigenstates have primarily 1p character, and this

subspace is more than sufficient to describe these first two states (see Sec. SX in the

supplementary material). A satisfactory first-order trajectory appears with 7 states

for the π∗1 state, and 19 states for the π∗2, and the resonance parameters change very

little for both states when the size of the subspace increases any further.

The behavior of the π∗3 state is more complicated, and exhibits a strong dependence

on the subspace size. One can expect that the projected scheme applied to anions can

converge slower for resonances lying above or near the first excited state of the neutral

molecule owing to interaction with another continuum associated with the excited

state decay channel in addition to the ground state one. When 20 states are included,

a stabilized first-order trajectory originating (η = 0) at ∼ 5.0 eV can possibly be

attributed to the π∗3 resonance (see Fig. S22 in the supplementary material), and the

zero-order and first-order trajectories obtained from this subspace strongly resemble

the projected CAP/SAC-CI trajectories reported in Ref. [136]. However, inclusion

of the next two states, which both have 1p-character, leads to pronounced changes

in the trajectories: the zero-order trajectory, which previously was not stabilized,

shows stationary behavior near 5.1 eV (Γ ≈ 1.2 eV), and the stationary point on the

first-order trajectory vanishes. Inclusion of the 23rd state, which has 2p1h-character,

shifts the zero-order resonance position even further to ∼ 5.3 eV, and brings down the
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Table 4.6: Resonance positions and widths of three lowest π∗ reso-
nances in uracil. All energies are given in eV.

π∗1 π∗2 π∗3
Method ER Γ ER Γ ER Γ

Zero-order 0.731 0.05 2.284 0.232 5.31 0.818

First-order 0.726 0.042 2.258 0.17 - -

fCAP (First-order)191 0.718 0.033 - - - -

CAP/SAC-CI (First-order)136 0.57 0.05 2.21 0.10 4.82 0.58

SMCPP202 0.14 0.005 1.76 0.15 4.83 0.78

R-Matrix201 0.13 0.003 1.94 0.17 4.95 0.38

Experiment203 0.22 - 1.58 - 3.83 -

resonance width to 0.82 eV. Including additional states beyond this point has little

effect, and we were unable to obtain a stabilized first-order trajectory when including

up to 55 states. This 23rd state is actually a decay channel which corresponds to the

first A′ excited state of the neutral molecule, which at the EOM-EE-CCSD level of

theory has an excitation energy of 5.56 eV, but this is shifted to 7.36 eV in EOM-

EA-CCSD, likely due to higher levels of excitation being required for the EOM-EA-

CC ansatz to accurately represent this state. While further studies are necessary

to determine the nature of interaction between π∗3 resonance and the excited decay

channel, in the present work, we consider the zero-order result in Table 4.6 to be

our best estimate of the resonance parameters of the π∗3 state using this method and

one-electron basis set.

As a pilot application of the pCAP method, we explore low-lying π∗ resonances

in polyaromatic hydrocarbons (PAHs). In astrochemical environments, PAHs are

believed to be widely abundant, and are thought to carry up to 25 percent of all

carbon in the universe [21, 204]. The formation of PAH anions in space has been

a frequent topic of study, due to their perceived abundance and their vacant π∗

orbitals, which could give them the ability to soak up free electrons. Low-lying shape
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Table 4.7: First-order positions and widths of three lowest π∗ states
of naphthalene and 1- and 2-cyanonaphthalene. All energies are given
in eV.

Molecule π∗1(2B2g) π∗2(2B1g) π∗3(2B3u)

1-cyanonapthalene -0.226 0.759(0.019) 1.423(0.119)

2-cyanonapthalene -0.146 0.500(0.016) 1.551(0.241)

naphthalene 0.674(0.015) 1.335(0.042) 2.150(0.384)

Experiment13 0.19 0.90 1.67

resonances can potentially serve as gateway states to stable anions, particularly in

species which lack a sufficient dipole moment to support dipole-bound states, which

are widely believed to be involved in such processes [21]. Recently, the first two PAHs,

1- and 2-cyanonaphthalene, were conclusively identified in the TMC-1 molecular cloud

[186]. The dipole-bound states of these two molecules were recently investigated by

Ref. [205], but to our knowledge, no experimental or theoretical data exists for

their resonances. In Table 4.7 we report first-order positions and widths for three

π∗ states in 1- and 2-cyanonaphthalene and in the parent naphthalene, along with

the experimental electron transmission spectroscopy (ETS) data for naphthalene by

Burrow et al. [13]. The symmetry labels in Table 4.7 correspond to the assignments

in Ref. [13] of the 1p states of naphthalene. The states of 1- and 2-cyanonaphthalene

all belong to A′′ symmetry in the Cs point group, and we group them with the

analogous states of the parent naphthalene based on their character. Starting with

naphthalene, the resonance energies obtained by Burrow et al.[13] were originally

presumed to be associated with vertical transitions, but later studies have ascribed

those values to adiabatic transitions, thus making geometry relaxation effects and zero

point vibrational energy (ZPVE) crucial [206–208]. Our computed resonance energy

for the 2B2g state of naphthalene agrees well with the EOM-EA-CCSD/aug-cc-pVDZ

value of 0.63 eV by Shelton et al. [207], and when the ”pseudo adiabatic” corrections
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for naphthalene from Ref. [208] are applied, we obtain a resonance position of 0.33

eV. Indeed, our computed resonance positions for all three resonances of naphthalene

are ∼ 0.5 eV above the ETS measurements, and so we attribute these deviations to

the aforementioned geometry relaxation effects and ZPVE. The metastable 2B2g state

of the naphthalene anion becomes bound in the cyano-derivatives due to the electron

withdrawing CN groups. Experimental measurements on these species have yielded

adiabatic electron affinities of 0.68 eV and 0.65 eV for 1- and 2-cyanonaphthalene

respectively[206], which is fairly consistent with our vertical estimates of 0.146 eV and

0.226 eV. The lifetimes of the π∗2 and π∗3 states of both derivatives agree well with the

lifetimes of the corresponding states in naphthalene, and in both cases the presence

of the cyano group brings down the vertical energies by more than 0.5 eV. While

the roles of these states in astrochemistry and other physical processes has yet to be

investigated, here we emphasize that our new methodology is capable of computing

resonances in these large molecules in a computationally feasible manner. With the

chosen one-electron basis set, and exploiting Cholesky decomposition, computing the

lowest 40 A′′ states of 1- and 2-cyanonaphthalene each took approximately 38 hours

in wall time, and computing 10 states in each of the three irreducible representations

for the parent naphthalene took approximately 2.5 hours in wall time using 16 threads

on an 8-core 2.90 GHz Intel® Xeon® E5-E5-2690 processor.

As a final test, we consider the performance of pCAP near exceptional points, the

analogues of conical intersections between metastable electronic states on complex

potential energy surfaces. Our test case is the chloroethene anion, which belongs

to a class of widely studied unsaturated halogenated compounds that are believed

to undergo dissociative electron attachment (DEA) processes[209–212]. A proposed

mechanism involves initial formation of a long lived π∗ resonance, which subsequently

couples to a σ∗ resonance, leading to C-Cl bond dissociation[213]. This system was
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Table 4.8: Comparison of pCAP and fCAP for π∗ and σ∗ states of
the chloroethene anion. All energies were obtained from zero-order
trajectories, and are given in eV.

Equilibrium geometry

Projected Full189

State ER Γ ER Γ

π∗ 1.800 0.257 1.801 0.260

σ∗ 2.273 1.042 2.268 1.115

MEEP

Projected Full189

State ER Γ ER Γ

π∗ 1.396 0.240 1.381 0.267

σ∗ 1.378 0.249 1.388 0.279

recently studied by Phung et al. using projected CAP/SAC-CI and projected CAP-

XMS-CASPT2[130], and the minimum energy exceptional point (MEEP) between

the π∗ and σ∗ resonance states was identified by Benda et al.[189] using analytical

gradient techniques they have developed for fCAP[134]. In Table 4.8 we compare zero-

order fCAP and pCAP results at the equilibrium geometry of neutral chloroethene,

and the MEEP geometry identified in Ref. [189]. At the equilibrium geometry, which

belongs to the Cs point group, we computed 60 A′ states for the σ∗ state and 43

A′′ states for the π∗ state. At the MEEP geometry, where the Cl atom is bent

out of the plane of the molecule (thereby allowing the two states to interact), we

computed 65 A states. Data from the minimal 1p subspace is provided in Table S15

in the supplementary material. We have also chosen to optimize η separately for

both states at both geometries, while Ref. [189] used the same value of η for both

states at the MEEP because they were unable to identify a stationary point for the

σ∗ state. Although pCAP does not quite reproduce the near exact degeneracy of

fCAP at the MEEP, we are clearly able to distinguish two eigenvalue trajectories
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with nearly degenerate stationary points, and agreement with fCAP at the MEEP

and the equilibrium geometries suggest that the performance of the projected scheme

does not significantly deteriorate near exceptional points. These results, as well as the

results of Ref [130], show that projected CAP schemes are robust enough to generate

complex potential energy surfaces involving multiple interacting resonance states,

provided that the underlying electronic structure method is capable of accurately

describing the target states.

4.6 Summary and Conclusions

We have presented the projected CAP-EOM-CC-CCSD method for electronic res-

onances, and benchmarked its performance relative to full CAP-EOM-CCSD. We

have shown that a small number of EOM-EA-CCSD states (typically the initial set

of 1p-dominated states) is sufficient to produce zero-order projected CAP-EOM-EA-

CCSD trajectories which closely approximate those obtained from full CAP-EOM-

EA-CCSD. There are more noticeable differences between the first-order trajectories

obtained from projected and full CAP-EOM-EA-CCSD, but in most cases, the first-

order resonance parameters differ by less than 0.1 eV. We have also demonstrated

that the projected and full CAP-EOM-CC are similarly dependent on CAP onset

and choice of one-electron basis set, and that the differences in results obtained from

the two methods are small relative to the sensitivity of the results to these parameters.

Lastly, our results show that the projected CAP-EOM-CCSD scheme can be readily

applied to larger molecules and potential energy surfaces, two situations in which the

drastic improvement in computational efficiency can be particularly advantageous.
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Chapter 5

OpenCAP: An Open-Source Framework

for Computing Resonance Parameters in

Molecules

5.1 Overview

The complex absorbing potential (CAP) is a flexible tool for computing resonance

parameters of metastable electronic states. In this work, we describe OpenCAP, an

open-source package for conducting and analyzing CAP-augmented electronic struc-

ture calculations. The OpenCAP software exploits the projected CAP scheme, which

allows for interfaces with a wide variety of electronic structure methods. The approach

allows one to calculate resonance parameters by a straighforward post-processing of

the results obtained from standard bound-state calculations. To demonstrate the ca-

pabilities of the software, we present the results of benchmark calculations for molec-

ular shape resonances computed using various electronic structure methods with com-

monly used quantum chemistry packages. We discuss the technical details of setting

up, running, and analyzing the results of CAP-based calculations with the OpenCAP

software, as well as advantages and limitations of specific electronic structure methods

for describing resonance parameters.

.

This manuscript has been submitted to the Journal of Physical Chemistry A. Copyright Amer-
ican Chemical Society. The OpenCAP software, described below, is publicly available on GitHub,
and pre-compiled wheels are distributed on PyPI.
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5.2 Introduction

Electronic resonances are (N+1)-electron metastable states which lie energetically

above an N-electron decay channel, and consequently decay through electron emis-

sion. These transient states live long enough to be characterized experimentally, and

play key roles in a wide variety of processes, including low energy electron-molecule

scattering (e.g. DNA damage by secondary electrons, interstellar chemistry) [17, 21],

and electron-molecule interactions occurring in highly energetic environments (e.g.

plasmonic photocatalysis, attosecond and X-ray spectroscopies)[19, 22–24]. Reso-

nances can be accessed when a molecule is excited above its ionization threshold,

and are commonly formed by electron attachment to closed-shell species[9, 183], or

through core-ionization or core-excitation[25].

Because resonances are embedded in the ionization/detachment continuum, the

associated eigenstates are not square-integrable[4]. Their non-stationary nature im-

plies that conventional quantum chemistry techniques which have been developed

for bound states cannot be applied in a straightforward way[8]. Two major groups

of methods to characterize electronic resonances have emerged: scattering theory ap-

proaches which account for the continuum explicitly [7, 93, 94], and L2 methods which

treat the scattering part of the metastable state implicitly[4, 8, 104, 125]. Examples

of the first class include R-matrix theory [93] and Feshbach projection operator ap-

proaches [7, 214], and examples of the latter include stabilization[95–97] and complex

scaling[175]. Due to their highly specialized nature, such calculations are far from

routine, and there is a very limited number of electronic structure methods that can

be used.

The complex absorbing potential (CAP)[104, 111] method is one of the most com-

monly used non-Hermitian approaches, and belongs to the second group of L2 meth-

ods. In the CAP method, the physical Hamiltonian is augmented with a complex-
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valued, artificial potential which absorbs the scattering tail of the resonance wave

function. Resonances appear as square-integrable eigenstates of the CAP-augmented

Hamiltonian associated with complex Siegert-Gamow eigenvalues: E = ER − iΓ/2,

where ER and Γ correspond to resonance energy and width, respectively[6, 15].

Several properties of the CAP approach make it particularly attractive for de-

scribing electronic resonances in molecular systems. The first is its ease of imple-

mentation. The CAP itself is simply a one-electron operator, and the corresponding

one-electron integrals can be computed analytically[133] or using standard numerical

integration techniques, depending on the choice of CAP. Second, there is flexibility in

how one chooses to incorporate the CAP into the calculation[119, 122, 126, 138, 139].

And finally, CAP, in principle, is compatible with any many-body electronic struc-

ture method as long as the method can accurately describe the target states of

interest. This has led to numerous implementations with various electronic struc-

ture methods, including configuration interaction (CI)[121–124], symmetry-adapted

cluster-configuration interaction (SAC-CI)[125], Fock-space coupled cluster[126], den-

sity functional theory (DFT) [127], algebraic diagrammatic construction (ADC)[128,

129], and multireference perturbation theory (MRPT) [130–132].

Despite a renewed interest in CAPs in the last decade, very few electronic struc-

ture packages possess the capability to perform CAP-augmented electronic structure

calculations out of the box. To our knowledge, Q-Chem[171], which supports CAP for

the equation-of-motion coupled-cluster with single and double substitutions (EOM-

CCSSD) [119, 120] and for ADC[129] calculations, is the only quantum chemistry

package which includes documented CAP functionality as part of its distribution.

To enhance the accessibility of CAP methodologies, we have developed OpenCAP;

a free open-source package which is aimed at extending the CAP methodology to a

variety of electronic structure methods and software packages. OpenCAP is a hybrid
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C++/Python package built using pybind11[215], and is primarily distributed through

its Python interface: PyOpenCAP. OpenCAP leverages the growing trends in quan-

tum chemistry of open-source software and enhanced post-processing capabilities, and

utilizes the CAP subspace projection scheme[122] to perform CAP augmented multi-

state electronic structure calculations through post-processing of data generated by

conventional quantum chemistry calculations. The data can be specified through

standard post-processing formats (Molden[216], checkpoint, HDF5 etc.) or in RAM

within the Python environment, and then Python-based analysis tools are used to ex-

tract resonance position and width. OpenCAP officially supports interfaces with the

OpenMolcas[217], PySCF[218], PSI4[219], Q-Chem[171], and Columbus[76] packages,

and in principle results from any multi-state electronic calculation can be supported

by supplying properly formatted one-particle density matrices.

Below we discuss the main theoretical concepts pertaining to the OpenCAP ap-

proach, its implementation, and its performance. First, we outline important aspects

of the CAP theory, and the CAP subspace projection formalism which provides the

foundation for the OpenCAP approach (Sec. 5.3). Next, we present the relevant

details of the computational set-up (Sec. 5.4). The structure and functionality of

the OpenCAP package are described in Sec. 5.5.1. Finally, we present the results of

benchmark calculations and discuss important technical aspects of performing pro-

jected CAP calculations with several electronic structure methods. Specifically, we

examine single reference wave function based methods (Sec 5.5.2), multi-reference

methods (Sec. 5.5.2), and a pilot application of projected CAP combined with time-

dependent density functional theory (TDDFT) (Sec. 5.5.2).

5.3 Theory
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5.3.1 Complex Absorbing Potential

In the CAP method, the physical Hamiltonian H is augmented with a complex po-

tential (-iηW ) which absorbs the outgoing tail of a resonance wave function and

transforms it into a square-integrable form[104]

HCAP = H − iηW, (5.1)

Here, η is the CAP strength parameter, and W is a real potential which vanishes in

the vicinity of the molecular system and grows with distance. A resonance appears

as a discrete eigenstate of the non-Hermitian CAP-augmented Hamiltonian, and is

associated with a complex Siegert-Gamow energy of a resonance[6]

E = ER − iΓ/2 (5.2)

where ER and Γ are the resonance position and width, respectively. In a complete

one-electron basis, the exact resonance position and width is formally obtained in

the limit of an infinitesimal CAP strength (η → 0+). In finite basis set calculations,

the limit η → 0+ yields a real eigenvalue corresponding to the original Hermitian

Hamiltonian, and thus yields no useful information about the resonance state. In

practical calculations, the approximate Siegert-Gamow energy is instead found by

locating an optimal value of the CAP strength parameter, ηopt, where the so called

η-trajectory exhibits a pronounced stabilization. The ηopt can be found using the

logarithmic velocity criterion[104]: ∣∣∣∣ηdEdη
∣∣∣∣→ min (5.3)
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Further, it is typical in CAP calculations to apply a first-order correction to the raw

CAP energies which diminishes the artifacts due the CAP[104, 117]

U(η) = E(η)− ηdE
dη
, (5.4)

The corrected η-trajectories have been shown to reduce the dependence on the CAP

onset[116, 119], and exhibit more stable behavior for applications such as potential

energy curves[118, 120]. In this work, the ηopt for the first-order corrected trajectories

can be found by minimizing the logarithmic velocity,∣∣∣∣ηdUdη
∣∣∣∣→ min (5.5)

of U(η)[117].

5.3.2 CAP Subspace Projection Scheme

OpenCAP exploits the CAP subspace projection scheme, in which the CAP-augmented

Hamiltonian is represented on a subspace spanned by a small number of real eigen-

states of the physical Hamiltonian [122]. This approach was first used in the con-

text of CAP augmented configuration interaction (CAP-CI) by Sommerfeld and

Santra [122], and has been adapted for various electronic structure methods, includ-

ing MRPT [130, 132], ADC [129], SAC-CI [125], and EOM-CCSD [120]. Previous

studies[120, 122], have shown that the projected CAP scheme serves as a very ac-

curate approximation to approaches which include the CAP in the full many-body

Hamiltonian, and is robust enough to yield smooth potential energy surfaces and

handle the case of multiple resonances belonging to the same symmetry.

The first step of any projected CAP calculation is to generate a set of M target

states which comprise the “correlated basis” or “subspace” by performing a conven-

tional (in the absence of CAP) multistate electronic structure calculation. While it
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is generally not possible to know a priori which or how many zero-order states are

needed, practical experience has shown that relatively few (typically less than 10-15)

states are needed to converge low lying resonance states. The next step is to compute

the CAP matrix in orbital basis, and then project it onto the space spanned by the

correlated basis:

WCB
ij = (i|W |j) (5.6)

where i and j label the eigenstates of the physical Hamiltonian (i, j = 1, ...N) and

the parentheses emphasize the use of c-product. Since the CAP is a one-particle

operator, these expressions can easily be evaluated using the one-electron reduced

density matrices (ρ) for each state, and the set of transition density matrices (γ)

between each pair of states that are obtained from the bound-state calculation:

WCB
ij =

{
Tr [Wγij] , i 6= j
Tr [Wρi] , i = j

}
(5.7)

Finally, the last step is to diagonalize the CAP-augmented Hamiltonian in the space

spanned by the correlated basis:

HCAP = HCB
0 − iηWCB (5.8)

over a range of values of η in order to generate the η-trajectory and identify the ηopt.

H0 in Eq. 5.8 is an appropriate zero-order Hamiltonian for the chosen correlated basis,

e.g. the diagonalized similarity transformed Hamiltonian from CAP-EOM-CCSD or

the second order effective Hamiltonian H
(2)
eff from CAP-XMS-CASPT2.

To summarize, the basic ingredients of any projected CAP calculation are:

• Choice of M -dimensional correlated basis set and zero-order Hamiltonian

• Complete set of reduced 1-particle density matrices and transition density ma-

trices between each pair of basis states
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• CAP matrix projected onto correlated basis set

• Diagonalization of Eq. 5.8 over range of η-values to find ηopt

Since the CAP matrix can be computed independently, the projected CAP approach

can be accomplished entirely through post-processing of data generated by a single

electronic structure calculation.

5.4 Computational Details

Experimental ground state geometries of the neutral obtained from the NIST Com-

putational Chemistry Comparison and Benchmark Database were used for N2, CO2,

formaldehyde (CH2O), and ethylene (C2H4), the geometries are given in Sec. A1

in Appendix A. Unless otherwise specified, we used the quadratic box-potential, and

computed the integrals analytically[133]. The Box CAP parameters for each molecule

are provided in Sec. A2 in Appendix A.

In all calculations, we used Dunning’s correlation consistent aug-cc-pVTZ [176]

basis set augmented by an additional set of even-tempered 3s3p3d diffuse basis func-

tions placed on a ghost atom in the center of the molecule. The exponents for the

additional diffuse functions were obtained as one half of the exponent of the preced-

ing function of the same angular momentum, starting from the most diffuse function

in the parent basis set[119]. For the MRPT, ADC, and TDDFT calculations, an

additional diffuse function with an exponent of 1 × 10−8 was placed on the ghost

atom to mimic ionization[132]. The frozen core approximation was utilized for multi-

reference CI (MR-CI) calculations. To avoid intruder states IPEA shift[220] of 0.25

a.u. and an imaginary shift[69] of 0.2 a.u. were used in MRPT simulations. For

XDW-CASPT2[72], the squared energy difference was used to compute the weights,

and the parameter ζ was chosen as 50 for all calculations.
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Table 5.1: Summary of CAP subspace projection methods used in
this work.

Method HCB
0 1RDMs Package

EOM-CCSD Diagonal Unrelaxed
EOM-CCSD

PySCF

ADC(n) Diagonal Unrelaxed
ADC(n)

ADCC

MRPT H
(2)
eff Unrelaxed

CASSCF
OpenMolcas

MR-CI Diagonal Unrelaxed MR-
CI

COLUMBUS

TDDFT Diagonal TDA amplitudes PySCF

Multiple quantum chemistry packages have been used for the various electronic

methods employed in this work (summarized in Table 5.1). For the EOM-EA-CCSD

calculations, the PySCF package [218, 221, 222] version 2.01 was used. For the

ADC(N) calculations, we used the PySCF interface to the ADC-connect package

[223, 224], version 0.15.14. For the MRPT calculations, we used the OpenMolcas

[217] package revision v21.06. For the MR-CI calculations, we used the COLUMBUS

package [76], version 7.0.2. For the TDDFT calculations, we used the Libxc [225]

library as implemented in PySCF version 2.01. For the CIS and CIS(D) methods,

we used a locally modified version of the Q-Chem [171] package, version 5.4. All

projected CAP calculations were carried out with OpenCAP version 1.2.6, and all

results reported herein, unless otherwise specified, refer to first-order or ‘corrected’

results computed using Eqs. 5.4 and 5.5.

5.5 Results and Discussion

5.5.1 Using OpenCAP

The OpenCAP package is designed to post-process data from commonly used elec-

tronic structure packages in order to conduct projected CAP calculations. There is

built-in support for post-processing files in common formats such as Molden, format-
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ted checkpoint, and HDF5, from popular packages such as Q-Chem and OpenMolcas.

However, the interface is flexible enough to support any package provided that the

user can prepare the necessary data in a supported manner. Below, we briefly outline

the three major components of the OpenCAP package: the System, the CAP, and

the CAPHamiltonian.

System: The System contains the molecular geometry and one-electron basis set.

It is most conveniently created by specifying a Molden or other post-processing file,

but the geometry and basis set can also be specified using an inline format. The

overlap matrix computed by the System can be used to verify the ordering of the

atomic orbital basis functions as is required for the next section.

CAP: The CAP component computes the CAP integrals, first in the atomic

orbital basis, and then projected into the CAP subspace using the one-particle density

matrices. There is built in support for the commonly used box[133] and smooth

Voronoi CAPs[135], and support for custom CAP functions defined by the user in the

PyOpenCAP interface. CAP integrals in the AO basis are computed analytically by

default for Box CAPs, and numerically for all other CAPs. For numerical integration,

we exploit standard DFT quadrature, computed using the NumGrid package[226].

The radial grid is computed using the scheme from Ref. 227, which is basis set

dependent and tuned using a single radial precision parameter (set to 1 × 10−16

by default). The angular grid is generated using the SPHERE LEBEDEV RULE

library[228], which is done according the scheme from Lebedev and Laikov [192] and

requires users to specify an allowed number of grid points (590 by default). We

briefly explore the dependence of computed resonance positions and widths on these

numerical integration parameters in Sec. 5.5.2. Alternatively, users can specify a

numerical integration grid of their own choice, which is done atom by atom.

The next step is to process the one-particle densities in order to perform the CAP
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5.5.2 Benchmarks

In this section, we present the results of benchmark calculations for various projected

CAP methods obtained using OpenCAP and popular electronic structure packages,

and provide practical insights for computing shape resonances using different elec-

tronic structure methods.

Single reference wave-function methods

As an initial proof of concept, we consider the 2B1 resonance in formaldehyde using

two electronic structure methods which have frequently been combined with CAP:

EOM-CCSD[55, 56] and ADC[57]. Specifically, for EOM-CCSD, we utilize the EOM-

CCSD for electron affinities (EOM-EA-CCSD) as implemented in PySCF, and for

ADC we utilize the standard variant for excitation energies as implemented in the

freely available ADC-connect package [223, 224]. In the latter case, we “trick” the

method into computing electron affinities by including a diffuse continuum-like or-

bital with an exponent of 1.0× 10−8 (”fake-ip” orbital) in the basis set so the lowest

energy state corresponds to the electron occupying this continuum orbital and repre-

senting the neutral. The results for CAP/EOM-EA-CCSD and different variants of

CAP/ADC are presented in Table 5.2. Since the description of this shape resonance

relies primarily upon accurate description of one-particle states, the second-order

ADC(2) scheme is able to provide a similar level of accuracy to ADC(3) and EOM-

CCSD[129]. The ad hoc ADC(2)-X scheme provides an unbalanced description of the

excitation spectrum, which leads to an underestimated resonance position[57].

For all methods, 30 states were computed, and the resonance appears as the

6th eigenvector of the CAP augmented Hamiltonian. The resonance eigenvector is

strongly coupled to five other low-lying states through the CAP matrix. These six

states form the minimal correlated basis set required to represent the state, and
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Table 5.2: Resonance parameters for the 2B1resonance in CH2O
−

computed using the EOM-EA-CCSD and ADC family of methods.

Method ER Γ ηopt
EOM-EA-CCSD 1.159 0.225 0.005
ADC(2) 0.996 0.176 0.005
ADC(2)-X 0.757 0.123 0.0052
ADC(3) 1.142 0.213 0.0051
Electron transmission spectroscopy [11] 0.87

correspond to the lowest six one-particle (1p)-states of the proper symmetry. There

is no straightforward way to determine the size of this minimal subspace ahead of

time, and it varies with the system and the choice of one-electron basis set [120]. The

structures of the zero-order and first-order trajectories can serve as a useful diagnostic

tool for this purpose. As shown in Fig. 5·2, the zero-order trajectory first becomes

stabilized when 13 states (which among other states contain three states that are

strongly coupled to the resonance eigenvector) are included; however, the curvature

beyond the stationary point rapidly accelerates into the complex plane, and as a

result, no clear stationary point appears on the first-order trajectory. This is an

indication that more states are needed, and it’s not until 24 states (which corresponds

to adding two additional strongly coupled states) where a stationary point finally

appears on the first-order trajectory. Previous studies have shown that increasing the

size of the subspace beyond this point to include higher lying states which couple to

the resonance can slightly improve the accuracy of first-order parameters[120, 124,

129], however, the differences are minor once stabilization on the first-order trajectory

is achieved, and so we will not discuss this point any further.

Lastly, we explore the convergence of numerical integration of the CAP integrals

with respect to the size of the radial and angular components of the grid. In Figs.

5·3 and 5·4, we consider the results for EOM-EA-CCSD, focusing on the CAP norm

(|W |) and zero-order half-width (Γ/2). Both types of CAP show a similar convergence

behavior with respect to the numerical integration parameters. For a given radial
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total electrons and orbitals in the system, and a state-averaging scheme. These choices

are commonly guided by chemical intuition, although there are several automated

approaches that have been proposed recently[230, 231]. Choosing the active space and

state-averaging scheme is especially challenging in the case of electronic resonances,

where special care should be taken to account for relevant diffuse orbitals in order

to generate a model space which can represent the discretized continuum. For the

MRPT calculations discussed below, the active spaces for each calculation include an

occupied π orbital and a virtual π∗ orbital, augmented by additional virtual orbitals

belonging to the target symmetry. Additionally, a diffuse orbital with an exponent of

1.0 × 10−8 is added to the active space in order to include the neutral ground state

in the state-averaging and subsequent MS-CASPT2 treatment, thereby achieving a

balance in the energies of the neutral and anionic states[132]. For example, a CAS(3,5)

active space for C2H
−
4 , consists of one π b1u orbital, one very diffuse b2g orbital

to capture the ground state, and three additional b2g orbitals (Fig. 5·5). Unless

otherwise specified, the model space for the MRPT step consisted of all reference

CASSCF states generated by the preceding SA-CASSCF calculation. Note that in

the case of the linear molecules CO−2 and N−2 , we included both sets of degenerate π

and π∗ orbitals in the active space, but only averaged over states in one irreducible

representation.

CAP/MRPT results can be strongly dependent on the choice of active and model

spaces[130, 132]. In our calculations, the model spaces which gave the best results

consisted of the ground state (closed shell + electron occupying fake IP orbital) and

a one-electron state for each virtual orbital included in the active space. While it is

not always straightforward to generate such a model space without imposing further

restrictions (i.e. generalized active space approaches[232]), a strategy which seemed

to work well was to average over the same number of states as the number of virtual
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Table 5.3: Computed CAP/MRPT first-order resonance parameters,
along with selected theoretical and experimental results for the π∗ shape
resonances studied in this work. ER and Γ are given in eV.

Method ER Γ
CO−2

SA(7)-CAS(5e,15o)
XMS 4.000 0.125
RMS 4.065 0.138
XDW 3.992 0.129
CAP/EOM-EA-CCSD[120] 4.017 0.178
Electron transmission spectroscopy [233] 3.58 -

N−2
SA(5)-CAS(5e,11o)

XMS 2.394 0.195
RMS 2.474 0.224
XDW 2.409 0.206
CAP-EOM-EA-CCSD[120] 2.581 0.226
Feshbach projection formalism based on experimental data [193] 2.32 0.41

C2H
−
4

SA(4)-CAS(3e,5o)
XMS 1.733 0.233
RMS 1.790 0.269
XDW 1.730 0.241
CAP-EOM-EA-CCSD[120] 2.012 0.432
Electron scattering [198] 1.8 0.7

CH2O
−

SA(7)-CAS(3e,8o)
XMS 1.137 0.170
RMS 1.252 0.216
XDW 1.147 0.177
CAP-EOM-EA-CCSD[120] 1.202 0.322
Electron transmission spectroscopy [11] 0.87 -

tional setup. Importantly, the model spaces used in Table 5.3 are the minimal model

spaces required to represent each respective resonance. As illustrated for CH2O
− in

Fig. 5·6, including fewer model states results in no clear stationary point appearing

on the first-order trajectory, similar to what we showed in Fig. 5·2 for EOM-CCSD.

Further, the minimum number of model states, excluding the ground state, is equal

to the minimum number of EOM-EA-CCSD states required for the same basis set

(see Ref. 120), which points to the minimal CAP subspace dimension likely being

a property of the one-electron basis set rather than the electronic structure method,

assuming a similar character of the low-lying 1p-states in both methods.
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Table 5.4: Computed CAP/MRPT first-order resonance parameters
for the 2B2g resonance state of C2H

−
4 using selected active spaces and

state averaging schemes. ER(Γ) are given in eV.

Nr. of
states

Nr. of b2g

orbs.
XMS RMS XDW

10 4 1.415(0.171) 1.771(0.252) 1.584(0.216)
10 5 1.528(0.208) 1.843(0.315) 1.670(0.277)
4 5 1.963(0.316) 1.995(0.344) 1.958(0.321
4 6 1.960(0.315) 1.992(0.342) 1.955(0.320)
4 4 1.733(0.233) 1.790(0.269) 1.730(0.241)
5 5 1.741(0.227) 1.809(0.266) 1.744(0.236)
6 6 1.727(0.221) 1.807(0.266) 1.746(0.237)
10(4)* 4 1.664(0.168) 1.768(0.210) 1.702(0.187)
* SA-CASSCF was performed with 10 states, but only
the 4 one-electron attached states were included in the
model space at the MRPT step.

terface with the COLUMBUS package[76]. There are a few key differences in the

CAP/MR-CI scheme from what we used previously for MRPT. First, the matrix

elements WCB
ij and HCB

0 are expressed in the basis of MR-CI states (rather than

CASSCF), and accordingly, HCB
0 is diagonal, and WCB

ij is computed using MR-CI

densities. Second, the COLUMBUS package has the capability of including states

of different spin, symmetry, and with different number of electrons in the same SA-

CASSCF calculation, so the state-averaging between the neutral and anionic states

can be done explicitly without using an extra diffuse orbital. We use the notation

SA(1+N) to indicate that the state averaging was performed with the neutral ground

state in the totally symmetric irreducible representation, and N anionic states in the

target irreducible representation. Lastly, at the MR-CI step, we compute 5-10 anionic

states (enough for a stationary point to appear on the first-order trajectory) and the

neutral ground state in separate calculations using the same set of optimized orbitals.

In Table 5.5, we present CAP/MR-CI results for active spaces equivalent to those

discussed in Table 5.3 for MRPT. In general, both CAP/MR-CIS and CAP/MR-

CISD overestimate the resonance parameters compared to MRPT and EOM-CCSD,
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Table 5.5: Computed CAP/MR-CI first-order resonance parameters.
ER(Γ) are given in eV.

Molecule Method MR-CIS MR-CISD MR-CISD(Q)
C2H

−
4 SA(1+3)-CAS(3e,4o) 2.375(0.575) 2.177(0.455) 2.034(0.373)

N−2 SA(1+4)-CAS(5e,10o) 3.100(0.345) 2.941(0.329) 2.721(0.320)
CH2O

− SA(1+6)-CAS(3e,7o) 1.877(0.547) 1.715(0.469) 1.532(0.294)
CO−2 SA(1+6)-CAS(5e,14o) 4.578(0.163) 4.388(0.153) 4.212(0.168)

Table 5.6: Computed CAP/MR-CI first-order N−2
2Πg resonance pa-

rameters for selected active spaces. ER(Γ) are given in eV.

Method MR-CIS MR-CISD MR-CISD(Q)
C2H

−
4

SA(1+9)-CAS(3e,5o) 2.231(0.466) 2.248(0.547) 2.072(0.424)
SA(1+3)-CAS(3e,5o) 2.241(0.469) 2.202(0.512) 2.062(0.413)
SA(1+4)-CAS(3e,5o) 2.323(0.543) 2.219(0.520) 2.071(0.409)

N−2
SA(1+3)-CAS(5e,8o) 3.262(0.377) 3.227(0.188) 3.009(0.425)*
SA(1+9)-CAS(5e,10o) 2.977(0.325) 3.017(0.357) 2.759(0.341)
SA(1+4)-CAS(5e,12o) 2.903(0.269) 2.8873(0.304) 2.686(0.300)
SA(1+5)-CAS(5e,12o) 3.034(0.317) 2.934(0.345) 2.719(0.339)
* Uncorrected result; no stationary point could be iden-
tified on first-order trajectory.

which can be due to multiple factors, including an imbalance in correlation between

the neutral anionic states and the well known size extensivity problem of truncated CI

methods[76, 124]. For MR-CISD, the latter can be approximately accounted for using

a posteriori corrections to the energy, and here we employ the Davidson correction[77],

which is commonly referred to as MR-CISD(Q). The MR-CISD(Q) resonance posi-

tions are generally shifted lower (between 0.1 and 0.2 eV), and thus agree better with

the MRPT and EOM-CCSD results summarized in Table 5.3.

The lack of an explicit dependence on a model space for MR-CI leads to some im-

portant differences from what we previously discussed for MRPT, which are demon-

strated using results from selected active spaces and state-averaging schemes in Table

5.6. While there is some dependence on the state averaging scheme, which also affects

the optimized orbitals, CAP/MR-CI does not suffer from the marked shifts which arise
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from ‘unbalanced’ active spaces in CAP/MRPT. Another important difference is that

one can use smaller active spaces with MR-CI, for example a CAS(5e,8o) active space

for N−2 . It has been shown that a minimum of four one-electron-attached discretized

continuum states (each corresponding to occupation of a different virtual orbital in

the target irreducible representation) must be included in the correlated basis set

to achieve stabilization on the first order CAP-EOM-EA-CCSD trajectory[120] for

the basis set used. The (5e,8o) active space includes three pairs of degenerate vir-

tual orbitals of symmetries corresponding to the two degenerate resonances), thus

it is not possible to generate reference states for four discretized continuum states

with four different virtual orbitals being singly-occupied with this active space. This

leads to the failure of MRPT to yield stabilized trajectories in this case (see Fig.

A11 in Appendix A). With MR-CI methods, the question instead becomes whether

the discretized continuum states corresponding to occupation of orbitals outside of

the active space are described in a balanced enough way. At the MR-CIS level, we

are able to achieve a stabilized first-order trajectory with a CAS(5e,8o) active space

which resembles those from larger active spaces (Fig. A9 in Appendix A), but at the

MR-CISD level, the stationary point on the first-order resonance trajectory is far less

pronounced (Fig. A10). However, using such small active spaces with fewer virtual

orbitals than the CAP subspace dimension is not advisable, as it leads to even further

overestimation of the resonance parameters (Table A4 in Appendix A).

Lastly, we note that a recent CAP/MR-CI study[124] reported MR-CISD overes-

timating the resonance position by 0.4 eV compared to MR-CIS for N−2 , which we

did not observe in our calculations. There are two likely causes of this discrepancy.

The first is that the authors of Ref. 124 did not include the ground and anionic states

in the same SA-CASSCF calculation, and instead used orbitals optimized for the an-

ionic states only. The second is that they used a CAS(5e,8o) active space, which as



129

noted previously is problematic at the MR-CISD level. Overall, we recommend that

users exercise caution when using CAP/MR-CI methods due to their tendency to

overestimate resonance parameters, and suggest to use active spaces that include at

least as many virtual orbitals as the minimum number of states required to represent

the resonance.

Time dependent density functional theory

Finally, as a pilot application of OpenCAP, we explore CAP combined with time de-

pendent density functional theory (TDDFT)[82] for the first time. DFT is one of the

most commonly used methods in quantum chemistry, but its application to anions has

historically been controversial[235–239]. For bound anions, concerns were raised early

on that DFT calculations often yielded positive HOMO energies for the anion (thus

describing an unbound electron[235–237]), a discrepancy that has been attributed to

strong self-interaction errors[236, 238, 240]. Despite these formal difficulties, numer-

ous studies have demonstrated that few problems arise in practice with reasonable

finite basis sets[239, 241], and thus it has been argued that conventional DFT can

give reliable and useful results for electron affinities when calculated self-consistently

as a difference between the total energies of the anionic and neutral species [236, 237].

For temporary anions, a CAP complex DFT (CAP-CODFT) implementation was

described by Zhou and Ernzerhof in Ref. 127, but to our knowledge, there has been

little development since then in combining CAP with density functional theory for this

purpose. DFT has seen much wider use in conjunction with stabilization methods

[95, 97, 242–249], including studies on resonances in large systems with biological

relevance such as quinones[250] and polyaromatic hydrocarbons[251].

In the present CAP-TDDFT calculations, we have used the PySCF package

[218, 221, 222, 225], employing the diffuse orbital trick to compute the (N+1)-electron

states, supplying the Kohn-Sham orbitals of the closed-shell neutral molecule as an
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initial guess for the reference DFT calculation to aid convergence. The Tamm-Dancoff

approximation (TDA) is employed [85–87], and the density matrices are computed

by taking the TDA amplitudes as CIS coefficients. We consider several function-

als: long-range corrected functionals LC functionals which employ exact exchange

at long electron-electron distances without re-parametrization of the parent func-

tional (LC BLYP[92, 252, 253] and LC ωPBE[254]), commonly-used range-separated

functionals (ωb97XD[255] and CAM-B3LYP[91]), and functionals which use exact

exchange at all electron-electron distances (HFE LYP[253] and HFE PBE[90]). The

use of exact exchange functionals follows the work of Falcetta et al.[249], who found

that such functionals provide good results for unbound anions in the context of stabi-

lization calculations. Importantly, all range-separated functionals used in this work,

except CAM-B3LYP, employ 100% asymptotic HF exchange for the long-range.

In Table 5.7, we present CAP/TDDFT results for the 2Πg resonance in N−2 , along

with the stabilization results reported in Ref. 249, the CAP/CO-DFT results from

Ref.127, and results from the CAP/CIS(D)[60–63] family of methods, which involve

perturbative corrections to the CIS energies to recover additional correlation. Our

findings for CAP-TDDFT are very similar to the data obtained with the stabilization

technique reported by Falcetta et al. [249]. The range separated hybrids severely

underestimate both position and width, the long range corrected functionals fare

slightly better, and the exact exchange functionals provide by far the best perfor-

mance. With the lone exception of the LC BLYP functional, there is good agreement

for the resonance positions between CAP-TDDFT and the stabilization calculations,

while CAP-TDDFT generally predicts lower widths. There is also good agreement be-

tween exact exchange CAP-TDDFT and the CAP-CIS(D) family of methods, which

all slightly overestimate the resonance position and width compared to more accurate

electronic structure methods such as CAP/EOM-CCSD.
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culation, which can possibly originate from the near-degeneracy between the neutral

and the anionic states treated within a single calculation using ’fake-ip’ approach.

The resonance parameters at 1.38 Å are ER = 0.05 eV and Γ = 0.01eV, this can

reasonably be interpreted as the crossing point with the neutral ground state. This

result agrees very well with CAP/EOM-CCSD, which predicts the resonance to be-

come bound at 1.41 Å[118, 120]. The difficulty in representing the bound anionic state

with CAP/TDDFT beyond the crossing region is a drawback of the current approach,

but the results are internally consistent (i.e. the resonance width approaches zero as

the energy of the electron-attached state approaches the energy of the neutral), and

show overall good agreement with the results from CAP/EOM-CCSD.

5.5.3 Conclusions

In summary, we have reported the development and application of the open-source

OpenCAP package, which extends the capability of electronic structure methods to

electronic resonances using the projected CAP methodology. We have described the

basic structure and usage of the code, and how it is integrated with several popu-

lar electronic structure packages and methods implemented within. Additionally, we

have benchmarked various CAP methodologies, including single reference electronic

structure methods, multi-reference methods, and a pilot application of CAP-TDDFT,

providing practical insight on how each methodology can be applied to shape reso-

nances in molecular systems. We hope that the free of charge OpenCAP package

can provide a platform for further explorations of CAP-based methodologies, and

make performing such calculations accessible to anyone who wishes to do so with the

method of their choosing.
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Chapter 6

eMAP: an online platform for identifying

and visualizing electron and hole transfer

pathways in proteins

6.1 Overview

The work reported in this Chapter is reproduced with permission from Ref. [151].

Copyright 2019 American Chemical Society. The Supporting Information for this

Chapter is available free of charge at https://pubs.acs.org/doi/10.1021/acs.

jpcb.9b04816.

Since this publication, the back end to the eMap web application has been re-

leased as an open-source Python package known as PyeMap, distributed on PyPI.

Additionally, several features not mentioned below have been added, include auto-

matic detection of iron-sulfur clusters and metal ions, and inclusion of other standard

amino acid residues. The novel algorithms which were developed to generate the

protein graphs and identify aromatic moieties of cofactors are described in Appendix

B.
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eMap is a web-based platform for identifying and visualizing electron or hole trans-

fer pathways in proteins based on their crystal structures. The underlying model can

be viewed as a coarse-grained version of the Pathways model, where each tunneling

step between hopping sites represented by electron transfer active (ETA) moieties is

described with one effective decay parameter that describes protein-mediated tun-

neling. ETA moieties include aromatic amino acid residue side chains and aromatic

fragments of cofactors that are automatically detected, and, in addition, electron/hole

residing sites that can be specified by the users. The software searches for the shortest

paths connecting the user-specified electron/hole source to either all surface-exposed

ETA residues or to the user-specified target. The identified pathways are ranked

based on their effective length. The pathways are visualized in 2D as a graph, in

which each node represents an ETA site, and in 3D using available protein visualiza-

tion tools. Here, we present the capability and user interface of eMap 1.0, which is

available at https://emap.bu.edu.

6.2 Introduction

Electron transfer (ET) in proteins lies at the core of many biological processes in-

cluding respiration, photosynthesis, DNA photodamage repair, and possibly mag-

netosensing by migratory birds. [38–41] Many proteins, including photosystem II,

ribonucleotide reductase, galactose reductase, cytochrome c oxidase, photolyase, and

cryptochrome, utilize redox-active aromatic Tyrosine (Tyr or Y) and Tryptophan

(Trp or W) amino acid residues to shuttle electrons or holes. [44] The recent anal-

ysis by Gray and Winkler has revealed that one third of structurally characterized

proteins exhibit extended chains of Tyr and Trp residues, which they hypothesize

to serve as universal oxidative stress protection mechanism in proteins. [42, 43] Un-

derstanding the mechanistic features of proteins and their stability, therefore, often
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depends on availability of detailed information on the electron/hole transfer pathways

through aromatic sites. Here, we present eMap, a robust computational tool aimed at

qualitative mapping of electron hopping pathways in proteins based on their tertiary

structures. The primary purpose of this software is to efficiently identify possible elec-

tron hopping channels to be used in further quantitative studies. The performance

of the model is illustrated on two representative proteins.

Existing software for predicting paths of electron transfer in proteins ranges from

empirical models (e.g. Pathways plugin [149] for VMD [256]) to more sophisticated

electronic structure based schemes (e.g. Electron Tunneling in Proteins Program

or ETP [257]). The Pathways model [146, 258] by Beratan and Onuchic describes

electron transfer as a collection of pathways, each of which is defined as a sequence of

through-space, through-covalent bond, and through-hydrogen bond hopping events

with multiplicative penalty functions. The ETP software developed by Stuchebrukhov

and co-workers [257] evaluates and visualizes electron tunneling current based on

multi-level electronic structure calculations including semi-empirical simulation on an

entire protein. However, this sophisticated analysis is computationally demanding.

eMap provides an inexpensive chemistry-inspired alternative, and can be viewed as

a coarse-grained version of the Pathways model, limiting the analysis to protein-

mediated tunneling between hopping sites represented by automatically identified

Electron Transfer Active (ETA) moieties.

The structure of this Chapter is as follows. The empirical electron hopping model

used in eMap is described in Sec. 6.3. The structure of the software is outlined in

Sec. 6.3. The functionality and user interfaces are described in Sec. 6.3. Finally, the

results of the eMap analysis for two representative proteins are discussed in Sec. 6.4.
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and bond length. The penalty functions for through-space (εi = 0.6×exp(−1.7(Ri − 1.4)))

and through-hydrogen bond (εk = 0.6 × exp (−1.7(Rk − 2.8))) tunneling are empiri-

cal and distance-dependent, where Ri/k is the interatomic distance in bohr. Smaller

values of the prefactor in the exponent (1.1 Å−1 and 1.4 Å−1 for β-sheet and for

α-helical structures, respectively) were suggested in later works by Beratan and

coworkers[145, 259].

The protein then can be viewed as an undirected graph, with each atom repre-

senting a node and the edges connecting the nodes being associated with the penalty

functions. To make the problem tractable with graph theory methods, it is convenient

to operate with non-negative edge lengths and additive parameters rather than mul-

tiplicative penalty functions. This can be achieved using modified penalty functions,

P ′ = − log ε. Maximizing the product of ε penalty functions, which determines TDA

coefficient (Eq. 6.1) is equivalent to minimizing the sum of the corresponding modi-

fied P ′ functions. Therefore, finding the path with the largest TDA value is equivalent

to finding a shortest path on a graph with edge lengths defined by modified penalty

functions, P ′. [144–146, 258] This can be efficiently done using graph theory algo-

rithms, for example, Dijkstra’s. The analysis relies on the available tertiary structure

and a specified electron donor and acceptor.

The model employed by eMap can be viewed as a coarse-grained extension of the

Pathways model where only protein-mediated through-space hopping events between

ETA sites are considered. The unique features that distinguish eMap from other

available software are discussed below.

eMap: coarse-grained hopping model

eMap relies on a chemistry-inspired tunneling model extending Pathways approach to

electron hopping through aromatic and/or user-specified ETA sites. While having an

atomistic description of electron flow in proteins is often desirable, the key chemically



138

relevant information, e.g. whether a specific mutation is going enhance or inhibit elec-

tron transfer, can be obtained without an atomic-resolution picture. eMap is aimed

at identifying aromatic residues playing key roles in hopping events, such as serving

as intermediate electron or hole traps, or serving as terminal acceptors of a hole or

electron at the protein surface. The coarse-grained description of long-range electron

or hole hopping distinguishes eMap from the Pathways model implementation, and

allows the user to obtain an intuitive picture for long-range hopping channels.

eMap translates a problem of finding efficient electron/hole hopping pathways into

finding the shortest paths between the electron transfer active (ETA) moieties based

solely on the geometry information obtained from a PDB/CIF file. The nodes on the

eMap graph represent ETA sites, which are side chains of aromatic residues and/or

user-defined redox-active centers. The edge lengths are defined as modified penalty

functions, P ′ = − log ε, with ε = α exp [−β(R−Roffset)], where α, β, and Roffset are

tunneling parameters, similar to the through-space tunneling penalty function in the

Pathways model. The default values of α, β, and Roffset are 1.0, 2.3 Å−1, and 0.0 Å,

respectively. R corresponds either to the distance between centers of mass of the two

ETA sites or to the distance between two closest atoms belonging to the two ETA

sites (see Sec. 6.3 for more details). For the default parameters, the edge lengths

are equal to the distances between the hopping sites (multiplied by a prefactor of

2.3 × log(e) ≈ 1). The software then finds the shortest paths connecting a given

electron/hole source (node 1 in Fig. 6·1) to either all surface-exposed residues of the

protein (nodes 2, 3, and 7 in Fig. 6·1) or to a user-specified target residue, which

can be buried or surface-exposed. More details on different modes of using eMap are

given in Sec. 6.3.
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267] criteria (see Sec. 6.3). Biopython, [260, 261] together with the MSMS [262] or the

DSSP [265, 268] software, is utilized to perform this classification. A pairwise distance

matrix is then constructed for the ETA sites, and an image of a graph with each

node representing an ETA site and the edge lengths being defined by the distances

between sites is returned to the front end (Module III in Fig. 6·2). The final step on

the back end is to search for the shortest paths connecting a specified electron/hole

source to each surface-exposed residue or to a single user-specified target (Module

IV in Fig. 6·2). The analysis is done using the NetworkX python package, [160] and

the graphs are visualized using PyGraphviz. [269] The graph images, along with the

results of the analysis (the identified paths ranked by their effective lengths) are then

passed to the client side, where the pathways are also visualized in 3D using the NGL

Viewer, [270, 271](Module V in Fig. 6·2). Some of the relevant algorithmic details

and features are discussed below.

The full list of external packages, references, and licenses is given in the Supporting

Information.
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4

Features and the user interface
(a)

(b)

(c)

Figure 6·3: Options specifying pairwise distance map construction:
specification of the chains included in the analysis, algorithm used to
identify surface-exposed residues, intersite distance evaluation scheme,
and standard ETA sites (a); selection of the non-protein ETA sites
included in the analysis (b); tuning thresholds, cuto↵s, and penalty
function parameters for drawing graph edges (c).
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Below we discuss the key input parameters and algorithmic details used to construct

the graph and predict the most efficient electron transfer channels.

Specifying ETA sites. Once the protein structure uploaded by the user (using

either PDB ID or PDB/CIF file) has been parsed, the user can specify the sites

to be considered as ETAs, and therefore, to be included in the analysis. This is

done using options illustrated in Fig. 6·3a and 6·3b. By default, all of the Tyr and

Trp residues from every chain of the protein and all of the automatically identified

aromatic moieties of cofactors will be included into the analysis. The “Additional

Residues” tab (Fig. 6·3b) shows identified non-amino acid aromatic sites. The user

can also manually specify ETA sites atom-by-atom (from PDB atom serial number)

using the Custom Atom Range option (Fig. 6·3b).

Identifying surface-exposed residues. The user can choose one of two al-

gorithms to classify residues as surface-exposed or buried (Fig. 6·3a). The default

option is the residue depth criterion. Residue depth is defined as the average distance

of the residue’s atoms to the computed solvent-excluded surface of the protein. [262–

264] Alternatively, the user can choose relative solvent accessibility, [265–268] which

is defined as the ratio of the calculated solvent accessible surface area to the tabu-

lated maximum solvent accessible surface area (MaxASA) for this residue type. [267]

Relative solvent accessibility cannot be evaluated for non-protein ETA sites due to

the lack of pre-computed MaxASA values for non-protein residues.

Graph and shortest path search parameters. The general parameters panel

sets the distance measure used in the penalty function: either the distance between

the centers of mass of the two ETA sites or the shortest distance between two atoms

of the ETA sites (Fig. 6·3a). In addition, the “Advanced” tab enables tuning thresh-

old parameters (Fig. 6·3c) for how the graph is constructed. Edges with distances

greater than Distance Cutoff (Fig. 6·3c) are immediately discarded. The density of
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the graph can be tuned using the Edges per Vertex and Standard Deviation (SD)

sliders (Fig. 6·3c). The former specifies the percentage of the shortest edges that are

kept per node, with a minimum of 2 edges being preserved as long as they satisfy the

distance cutoff. Among the remaining edges, only those with length l ≤ l̄node + σnode

are kept, where σnode is determined by the SD parameter, and l̄node is the average

length of the edges for a given node.

Specifying electron/hole donor and acceptor. Once all of the input pa-

rameters are specified and the structure has been processed, the user then specifies

the electron or hole source. The target(s) can be selected to be a single site, or the

collection of all surface-exposed residues. The shortest paths are evaluated using the

NetworkX package. [160] For a single target, the five shortest paths connecting the

source and target are identified on the basis of Yen’s algorithm. [272] The shortest

paths connecting the source to each surface-exposed residue are identified using Dijk-

stra’s algorithm (single path per single target residue). The paths are then grouped

based on the first surface-exposed residue reached during the path, and ranked ac-

cording to their effective length. The pathways are further visualized in 3D using the

NGL viewer. [270, 271]

6.4 Applications

Below we illustrate the capabilities of eMap in predicting electron hopping pathways

in proteins using Arabidopsis Thaliana Cryptochrome 1 (Cry1) and Pseudomonas

aeruginosa azurin as examples.

Mapping electron transfer in Cryptocrhome. Cryptochromes are photoac-

tive flavoproteins with diverse biological functions, including being an integral part of

a circadian clock machinery and likely being involved in magnetoreception by avian

birds. [273] Photoactivation of the plant Cry1 proceeds via photoinduced electron
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missing in the predicted shortest path. To illustrate this, an example of Pseudomonas

aeruginosa azurin mutant [279] is considered. The mutant was originally designed to

demonstrate the increase in the long-range electron transfer rate by introducing two

intermediate Trp residues between hole donor (Re) and hole acceptor (Cu). [279] The

crystallographic structure with PDB ID 6MJS [279] was used for the analysis. The

Custom Atom Range feature was used to specify a hole donor (Re-atom) and accep-

tor (Cu-atom). The results of the eMap analysis are shown in Fig. 6·5. CUST-2 and

CUST-1 ETA sites represent Re and Cu atoms, respectively. One can see that if the

default parameters for edge generation are used (Fig. 6·5a), the edge between W124

and CUST-1 is present on the graph, and, therefore, the shortest path found by eMap

corresponds to CUST-2–W124–CUST-1 hopping pathway, rather than to a pathway

involving two Trp residues. Thus, if a direct hopping is allowed in the model (i.e. the

corresponding edge is present in the graph), the resulting one-step hopping will be

always preferred by eMap over a multi-step hopping, which may or may not be the

case in the actual protein system. If the Distance Cutoff criterion is tightened (13

Å) the edge between W124 and CUST-1 site is discarded, and now the most efficient

pathway is CUST-2–W124–W122–CUST-1 (Fig. 6·5b, c), the pathway verified and

characterized experimentally for this protein.

6.5 Conclusions

The eMap web application is a user-friendly tool for predicting and visualizing elec-

tron hopping pathways in proteins based on their crystal structure. On the basis of

an empirical tunneling model, the software predicts shortest tunneling pathways con-

necting the specified electron or hole donor with either user-specified acceptor or all

surface-exposed residues. The software is publicly available at https://emap.bu.edu

free of charge.
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Chapter 7

eMap 2.0: A web-based platform for

identifying electron transfer pathways in

proteins and protein families

The manuscript below has been prepared for submission to the journal Wiley Inter-

disciplinary Reviews: Computational Molecular Science. The developments described

therein are implemented in the eMap software, and the open source PyeMap backend

is publicly available at GitHub and is distributed on PyPI. The Supporting Informa-

tion for this article is provided in Appendix C.
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7.1 Introduction

Biological processes, such as respiration [280, 281], photosynthesis [282, 283], and

DNA photo-damage repair [284, 285] utilize electron or hole transfer. Structural

analysis of the protein database has shown that approximately one third of the struc-

turally characterized proteins exhibit extensive chains of Trp and Tyr residues. This

observation led to the suggestion that these chains serve as protective channels against

oxidative stress by guiding potentially chemically reactive holes away from the active

site towards the surface of the protein [42]. Indeed, Trp and Tyr have been shown

to participate in electron/hole shuttling in various protein families [286] including

but not limited to: cryptochromes [287, 288], photolyases [285, 289], cytochrome c

peroxidasse [290], blue light receptors [291], Photosystem II [292], oxalate decarboxy-

lases [293], and ribonucleotide reductases [294].

Theoretical description of electron transfer in proteins that yields quantitative

observables such as electron transfer rates is a challenging but often a feasible task

provided that the key players are known either from experimental data (e.g. mutage-

nesis studies), or from preliminary simulations [294–297]. Detailed characterization

of electron transfer requires accounting for the dynamic behavior of a protein and

careful description of nuclear and electronic degrees of freedom, especially for proton-

coupled electron transfer events [298]. While this can be achieved for a single protein

system when the participating residues and co-factors are known, rigorous quantita-

tive characterization of electron transfer process without any a priori knowledge is

seldom feasible computationally.

Several theoretical models have been proposed to enable blind screening for ET

pathways in proteins using the protein structure as an input. The Pathways model [146]

proposed by Beratan and Onuchik describes ET as a sequence of through-bond,

through-space and through-H-bond atom-to-atom tunneling events. Each electron
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hop is parameterized by an empirical penalty function exponentially decaying with

the distance. The model relies on a graph theory algorithms to find the most effi-

cient electron transfer pathway as a shortest path on a connected graph. Each protein

atom represents a node in the graph, and the edge lengths are specified by the penalty

function [146]. The outcome of the simulation is a series of pathways ranked based on

the predicted tunneling matrix element values. A more rigorous approach based on

semi-empirical quantum-chemical calculations has been proposed by Stuchebrukhov

and co-workers [257]. The model and the corresponding software, Electron Tunnel-

ing in Proteins program (ETP), [257] quantifies and visualizes electron tunneling

current through a protein. The recently proposed EHPath model [299] by Beratan

and co-workers targets electron/hole hopping through redox-active sites in the pro-

tein. EHPath identifies and ranks electron transfer pathways in the protein based

on pathway’s mean residence time. EHPath relies on a kinetic model parametrized

using Marcus rate constants for the electron hopping events, and, thus inevitably

requires information on the Gibbs free energies, reorganization energy, and electronic

couplings [299]. The eMap model [151] proposed earlier by us can be viewed as an

intermediate between Pathways and EHPath approaches. Similar to EHPath the

model targets electron/hole hopping processes through redox-active sites, avoiding

atomistic electron flow description, however it otherwise follows the Pathways ap-

proach, keeping only through-space tunneling penalty functions. The approach was

used successfully in predicting existing electron transfer pathways in cryptochromes,

and more examples are given below. The simplicity of the model allows for a quick

screening for efficient electron transfer pathways based solely on the protein crystal

structure. The model has been implemented as a web application with an intuitive in-

terface that is available at https://emap.bu.edu. Here we describe the new features

implemented in the current release of eMap 2.0, in particular the ability to screen
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series of proteins for shared electron transfer pathways. We discuss multiple modes of

how one can use eMap 2.0 to analyze a single protein or protein families, and present

test cases which show the potential of the software to predict individual and shared

ET pathways.

7.2 Model

Following the Pathways model [146], eMap relies on graph theory to identify can-

didates for efficient electron transfer pathways in a protein. In eMap 2.0, we apply

graph mining approaches to search for shared electron transfer pathways (or struc-

tural motifs) among a group of protein structures. Before describing the eMap model,

we first establish some definitions which will be used throughout the paper.

7.2.1 Preliminaries

Below we introduce relevant graph theory definitions used in the single protein and

multiple protein analysis models.

Graph. A graph G(N,E) is an ordered pair consisting of two sets:

• N is a set of vertices or nodes

• E is a set of edges, which connect pairs of nodes

In a labeled graph, the nodes and edges are assigned distinguishable labels. If the

edges represent ordered pairs of nodes, the graph is directed, otherwise it is an undi-

rected graph. One can also assign numerical values to each edge in the graph, in which

case the graph is considered to be a weighted graph. Otherwise, it is considered an

unweighted graph. The eMap model employs weighted, undirected graphs.

Subgraph. If G’=(N’,E’) is a subgraph of G(N,E)
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• N’ is a subset of N

• E’ is a subset of E

Isomorphism. If G’=(N’,E’) is isomorphic to G(N,E)

• there exists a one-to-one and onto mapping between N and N’

• there exists a one-to-one and onto mapping between E and E’

Subgraph isomorphism. For two graphs G(V,E) and H(V’,E’), G and H are sub-

graph isomorphic if there exists a G’(V0,E0) such that:

• G’ is a subgraph of G

• G’ is isomorphic to H

The task of identifying all such G’ is known as the subgraph matching problem, and

we refer to individual G’ as subgraph isomorphisms[300].

7.2.2 Single protein analysis

The eMap model of a single protein can be viewed as a coarse-grained adaptation of

the Pathways model [144–146, 258], where only through-space tunneling between aro-

matic residues and other user-specified sites is considered. In the original Pathways

model, an electron/hole transfer pathway between a specified donor and acceptor is

described as a series of through-space, through-covalent bond, and through-hydrogen

bond tunneling events. When multiplicative penalty functions (εi/j/k) for each tun-

neling event are employed, the tunneling matrix element (TDA), an effective donor-

acceptor coupling, has the following form: [146]

TDA = const×
∏

i∈space

εi ×
∏

j∈bond

εj ×
∏

k∈H-bond

εk (7.1)
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Thus the task of finding the most efficient pathways can be formulated as identifying

those which maximize the matrix element TDA.

In the eMap model, the protein crystal structure is used to construct an undi-

rected weighted protein graph, where each aromatic residue or other user-specified

site represents a node, and each edge has a weight associated with a through-space

tunneling penalty function. To make use of standard graph theory methods, it is

convenient to operate with non-negative edge weights and additive parameters rather

than multiplicative penalty functions. This is done using modified penalty functions,

P ′ = − log ε, (7.2)

with ε = α exp [−β(R−Roffset)], where α, β, and Roffset are empirical parameters,

and R is the distance between the sites defined either as the distance between the

centers of mass of the sites or as the distance between the closest atoms. Since

minimizing the sum of the modified functions P ′ is equivalent to maximizing the

product of the penalty functions ε, finding the path with the largest TDA value is

equivalent to finding the shortest path in a graph with edge lengths defined by the

modified penalty functions, P ′. [144–146, 258] For graphs with non-negative weights,

this problem is easily solved using Dijkstra’s algorithm[301] to find the optimal path,

or Yen’s algorithm[272] to find deviations from the optimal path, for a given source

and target.

Currently, the default values for α (=1.0), β (=2.3 Å−1), and Roffset (=0.0 Å) give

edge weights which are equal to the scaled distances between hopping sites, resulting

in a purely distance dependent model. To reduce the complexity of the protein graphs,

and therefore provide a more meaningful network structure, the edges of the graph

are pruned, favoring those with the smallest weights[302]. Lastly, nodes in the graph

are classified as buried or surface-exposed using either the residue depth [262–264] or
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7.2.3 Searching for common electron/hole pathways

Single protein analysis results in a protein graph for the protein of interest, and each

pathway identified by eMap can be viewed as a subgraph of the protein graph. There-

fore, using the eMap model, the task of identifying pathways (and other structural

motifs) which are shared among a group of proteins can be formulated as identifying

frequently occurring subgraphs in a data set of protein graphs. This is a well-studied

problem in graph theory known as frequent subgraph mining (FSM)[152, 153].

FSM techniques are aimed at the discovery of patterns in graphs that exhibit a

particular structure which is deemed interesting or relevant[303]. What makes a pat-

tern “interesting” or not depends on the application. FSM techniques are useful where

there are complex relationships between data entities, and are commonly used in areas

such as analysis of XML documents and web usage[304]. In the scientific community,

FSM has seen numerous applications in bio- and cheminformatics contexts, including

drug discovery[154], identification of protein-ligand interfaces[155, 156] and the study

of evolutionary relationships through mining phylogenetic trees[157–159]. While oth-

ers have used FSM techniques to identify conserved three-dimensional structures or

motifs in proteins[155, 305–307], to our knowledge, eMap is the first to do so with an

emphasis on electron transfer.

The FSM problem has a large degree of computational complexity. The most

basic task, determining whether a graph G contains a pattern P , is an instance of

the subgraph isomorphism problem, which is NP-complete[143]. Further, searching

over all possible patterns P becomes rapidly intractable for large and dense graph

datasets. Several approaches have been developed to efficiently tackle this problem,

where the goal is typically to identify patterns which occur more often than a given

threshold[303]. Here, we use the gSpan algorithm, implemented in the gspan-mining

Python package[143, 308, 309]. gSpan is a popular and complete algorithm which
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identifies all subgraphs P that satisfy a minimum support threshold. For a graph

dataset, D = {G1, G2, . . . , Gn}, the support(P ) is the number of graphs G ∈ D for

which P is a subgraph. The details of the algorithm can be found in Ref. 143; here

we focus on the aspects which relate to its usage in the eMap software.

Frequent subgraph mining in eMap can be divided into 3 major steps: (1) graph

generation (2) mining and matching (3) clustering of identified subgraphs (Figure

7·2)[303]. Below, we outline how each of these steps is implemented in the eMap-

gSpan model for identifying shared pathways and motifs in protein graphs.

Figure 7·2: Flowchart illustrating the three major steps of frequent
subgraph mining with eMap. The first step (a) generates a graph data
set which consists of protein graphs created by the single protein ver-
sion of eMap. In the second step (b), the graph data set is mined for
frequently occurring subgraph patterns. For each identified pattern,
all instances of said pattern within the data set are found using graph
matching, which yields a set of protein subgraphs. In the final step (c),
the protein subgraphs matching a selected pattern are clustered into
groups based on similarity. Shown in the bottom of panel C is the
web interface which enables users to browse through clusters of similar
protein subgraphs, visualized in 2D and in the 3D protein structure.
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Graph Generation

Processing a PDB structure by eMap yields a graph with labeled nodes, where each

node is an electron-transfer-active (ETA) site, and edges weighted based on the dis-

tances between sites. When the analysis is performed on n proteins the result will

be a set of n protein graphs D = {G1, G2, . . . , Gn}. gSpan exploits depth-first-

search (DFS) together with a uniquely defined canonical labeling system to efficiently

discover common subgraphs in the dataset, D. It relies on DFS codes, which are

sequences of edges visited during a depth-first search traversal. Since there are many

possible DFS codes for a graph, gSpan uses a lexicographic ordering scheme to gen-

erate minimum DFS codes (Fig. 7·3). In the simplest implementation, all nodes and

edges are of the same type, and thus the algorithm will identify frequent patterns

of connectivity in the graph database. Both the the efficiency and descriptive power

of gSpan are enhanced when the DFS code distinguishes between different types of

nodes and edges.

The protein graphs generated by eMap naturally lend themselves to classifications

of nodes and edges. By default, each standard amino acid type included in the graph

is assigned a label, and all non-standard residues included in the analysis are labeled

as ‘NP’ for non-protein. To add additional flexibility, users can specify a group

of standard amino-acid residue types to be given the label ‘X’ (the usual notation

for unknown residue type), which enables these residues to be deemed equivalent

in isomorphism testing. The edges can also be labeled based on their weights by

specifying cutoff thresholds to define different edge types. For example, setting the

thresholds 8 Å and 12 Å defines three categories of edges: 0-8 Å, 8-12 Å, and ≥ 12

Å .
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Figure 7·3: Example of DFS codes for a graph with node labels
{X, Y, Z}, and edge labels {a, b, c}. Back edges (edges between nodes
which have already been visited) are indicated as dashed lines. Many
different DFS codes can be generated for a given graph by choosing dif-
ferent starting nodes and making different choices at each step of the
traversal. By the gSpan lexicographic ordering scheme, the ordering of
these three codes is 3 < 2 < 1, i.e. 3 (the most right column) is the
minimal DFS code among these three[143]. X, Y, Z, etc. correspond to
the chemical nature of the redox-active site (e.g. aromatic amino acids)
and a, b, c label edges classified based on their length.

Mining and Matching

Unlike earlier algorithms, gSpan does not rely on explicit generation of candidate

subgraphs, and instead grows frequent (k+1)-edge DFS codes from frequent k-edge

DFS codes, which essentially combines the creation of candidate subgraphs with test-

ing for isomorphism. This allows for an aggressive reduction of the search space

through pruning of infrequent and non-minimum DFS codes while maintaining the

completeness of the algorithm[143] (see Fig. 7·4) up to a specified support threshold.

The end result of gSpan is a set of minimum DFS codes {P} corresponding to the

subgraph patterns which meet the minimum support threshold, and the support of

each subgraph pattern within the data set.
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Figure 7·4: Illustration of depth-first traversal of the search space by
the gSpan algorithm for an example graph data set. Starting from 1-
edge graphs, the search space is expanded by adding additional edges,
those which are infrequent are pruned (indicated by a dashed circle).
The DFS code tree is constructed using the canonical lexicographic
ordering, so when a non-minimum DFS code is encountered, the entire
branch below can be pruned[143].

In some contexts, simply identifying the patterns and frequencies is sufficient,

but in the case of eMap, it is crucial to identify the actual pathways (i.e. the specific

residues involved) in each PDB. For this purpose, the VF2 graph matching algorithm,

as implemented in NetworkX, is employed[141, 142, 160, 310]. For each protein graph

G which supports a given subgraph P , all subgraph isomorphisms G’ are identified.

When done for the entire graph dataset, this gives a set of protein subgraphs that all

share the same connectivity and node/edge labels.

In addition to blind searches performed with the gSpan algorithm, one can also

perform guided searches to find protein subgraphs which match a previously known

pattern P . In this case, the problem is reduced to one of subgraph matching, and we
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use the VF2 algorithm[141, 142, 160] to search each protein graph G for subgraphs

which are isomorphic to P .

Clustering

For a given frequent subgraph pattern P , there can be hundreds of matches, and thus

a meaningful analysis requires grouping them based on some metric of relevance.

Since the objective of eMap is to identify shared pathways, we perform a clustering

analysis to group protein subgraphs by their similarity. eMap employs two metrics

of similarity: structural similarity, which is based on a modified root mean squared

distance (RMSD) between residues, and sequence similarity, which is based on a

multiple sequence alignment performed using the MUSCLE package[311]. Details of

the similarity metrics are described in Sec C2 of Appendix C.

The clustering algorithm is as follows (see Fig. 7·5). For a given subgraph pattern

P , we have a set of protein subgraphs {V } which correspond to specific pathways in

protein structures that match the pattern P . We construct a supergraph G(V,E),

where each node corresponds to a protein subgraph, and two nodes share an edge

if and only if they are the corresponding protein subgraphs are deemed sufficiently

similar by the chosen similarity metric. The supergraph G is composed of one or

multiple connected components, and each connected component corresponds to a

cluster of similar protein subgraphs. As such, structurally or sequentially ‘conserved’

pathways will belong to the same cluster of protein subgraphs. The end result of the

analysis is that users can browse through different subgraph patterns, and then for

each subgraph pattern, examine the different groups of structurally or sequentially

similar protein subgraphs.



160

Figure 7·5: Illustration of algorithm used to cluster a set of protein
subgraphs {V } which match a particular subgraph pattern. The largest
cluster in the super graph G(V,E) contains 16 protein subgraphs which
are deemed structurally or sequentially similar.

7.3 Application examples

Below we discuss several different modes of how the eMap 2.0 software can be used

to explore electron transfer pathways in a single protein and protein families. For

multiple protein analysis, we present two test cases. The first corresponds to a blind

search, where no information on the shared pathway/structural feature is given as

an input, and the second is an illustration of a search for a shared electron transfer

pathway between a user specified donor and acceptor.

7.3.1 Efficient electron transfer pathway in a single protein

eMap has been used before to successfully identify an existing ET transfer channel in

a single cryptochrome protein [151]. Here, we present a case study of radical transfer

pathway in class Ia ribonucleotide reductase (RNR) from Escherichia coli. RNRs

catalytically reduce ribonucleotides into deoxyribonucleotides and, thus, play a key

role in DNA biosynthesis. Ribonucleotides reduction by class Ia RNRs proceeds via

formation of a thiyl radical generated by a long-range radical transfer from diferric-

tyrosyl radical co-factor in a neighboring unit (Fig. 7·6). The ET pathways involves
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Table 7.1: Four identified ET pathways from Y122 (β subunit) to
C439 (α subunit) in class Ia RNR from E.coli.

Source Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Score
FY3122(C) W48(C) Y356(C) Y731(B) Y730(B) C439(B) 39.26
FY3122(C) W48(C) Y356(C) Y413(B) Y730(B) C439(B) 41.23
FY3122(C) W48(C) Y356(C) Y731(B) Y413(B) Y730(B) C439(B) 45.83
FY3122(C) W48(C) Y356(C) Y413(B) Y731(B) Y730(B) C439(B) 46.61

(thymidine triphosphate, TTP, and guanosine diphosphate, GDP) and non-standard

aminoacids (3-fluoro tyrosine, F3Y ). Including Y, W, C, and all non-aminoacid aro-

matic sites into the analysis and considering only chains B (α) and C(β) yields the

graph shown in Fig. 7·7b. Specifying FY3122(C) as a source and C439(B) as a tar-

get of charge transfer, and using default simulation parameters, the experimentally

observed pathway is the top ranked pathway (Table 7.1), i.e. is predicted to be the

most efficient ET pathway channel.
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7.3.2 Shared electron transfer pathways and structural motives

The main new feature of the eMap 2.0 software is screening a group of PDB files

for the existence of common electron transfer pathways or structural motifs. There

are two primary ways of using eMap to explore electron transfer in protein families.

The first is a blind search of a shared pathways in a series of proteins. The other is

a guided search when some mechanistic information on the participating residues is

available. Below we present case studies illustrating these two applications.

Blind search

Cryptochromes and photolyases. To illustrate the graph mining by eMap we have

first considered a series of 27 flavoprotein crystal structures (1U3D, 1U3C, 6LZ3,

2J4D, 6FN2, 1NP7, 3ZXS, 4GU5, 4I6G, 6PU0, 1IQR, 4U63, 6KII, 3FY4, 1DNP,

1QNF, 1IQU, 2WB2, 6RKF, 1O96, 1EFP, 1O97, 1X0P, 2Z6C, 1G28, 4EER, 2IYG).

The set includes 7 plant cryptochromes, 3 animal cryptochromes, 8 photolyases, and 9

non-cryptochrome and non-photolyases proteins. Light absorption by cryptochromes

and photolyases initiates photo-induced electron transfer involving FAD cofactor and

conserved Trp residues [273, 314–316]. Plant cryptochromes ET pathways involve

three conserved Trp residues (one replaced by Tyr in some cases), the so-called Trp-

triad [273, 314]. The ET pathway in animal cryptochromes is extended by forth

aromatic residues (Tyr or Trp) [317]. To test the capability of eMap to identify the

shared electron transfer pathway in cryptochromes and photolyases, we performed a

blind search for all frequent subgraphs. The search was performed using the default

parameters and the minimum support of 18. The mining yielded 25 shared subgraph

patterns with the support above 18. However, only 5 of those contained shared

subgraph groups with significant structural similarity (Fig. 7·8). The established

electron transfer pathway corresponds to the subgraph patterns 21 and 22 in Fig.
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7·8 and is found by eMap in 16 proteins, those that are either cryptochromes or

photolyases. The only two cryptochrome structures which did not contain the Trp

triad are 6LZ3 and 3ZXS. 6LZ3 is a cryo-EM structure of a tetramer of CRY1c

from Zea mays with the second Trp the Trp-triad replaced by Ala (W368A mutation

following the residue indexing in 6LZ3) [318]. 3ZXS is an X-ray structure of CRYb

from Rhodobacter Sphaeroides that contains Tyr (Y387) in place of the first Trp in the

triad [319]. Thus, the eMap software correctly identified all proteins (cryptochromes

and photolyases) that exhibit the conserved Trp triad.

Interestingly, some of the other shared subgraphs identified by eMap could also

have mechanistic importance. Subgraph patterns 8 and 9 include adenine and flavin

moieties of the FAD cofactor as well three Trp residues. Two of which belong to

the conserved Trp triad (W420 and W397 in PDB ID 4GU5, see Fig. 7·9), while the

third Trp (W353) is also highly conserved among 18 considered photolyases and cryp-

tochromes, and appears in 16 of them. Importantly, the remaining subgraph pattern

only contain clusters with 8 or less proteins, which indicates that they are unlikely cor-

respond to mechanistic pathways common for cryptochrome or photolyases families

of proteins.

7.3.3 Guided search

Heme-to-heme electron transfer in bacterial cytocrhome c peroxidases

To illustrate eMap’s ability to make evolutionary suggestions given limited mech-

anistic information, we look towards the bacterial cytochrome c peroxidase (bCcPs)

family of proteins, which catalyze the reduction of hydrogen peroxide, and are part of

the oxidative stress protection machinery of many Gram-negative prokaryotes [320].

The catalytic cycles of some of the reductively activated bCcPs rely on electron

transfer between the heme sites. One of the proposed pathways for electron shuttling

between the two heme center involves a Trp94 residue [320]. To test whether eMap
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Figure 7·9: Residues involved in photo-induced electron transfer
(canonical Trp triad, Trp420, Trp397, Trp342) as well as other Trp
residues from shared subgraphs identified by eMap. The numbering
and structure correspond to PDB ID 4GU5.

Marinobacter structures, but the pathway was only identified in the latter by eMap.

The absence of the Heme-Trp-Heme pathway in the 1RZ6 and 1NML structures is

explained by the fact that neither of these structures were crystallized in the active

form, and the protein loop containing the Trp residue is shifted out of alignment to

a position where it is no longer directly between the donor and acceptor hemes[322]

(Fig. 7·10). The ability of eMap to make this distinction between inactive and active

redox pathways highlights the predictive power of the relatively simple underlying

model of electron transfer. Finally, all seven identified pathways were deemed both

structurally and sequentially similar, which indicates an evolutionary relationship

that is revealed by eMap analysis.
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Figure 7·10: Active and inactive forms of chain A in the di-
haem Cytochrome C Peroxidase in Marinobacter nauticus (PDB struc-
tures:1RZ5, 1RZ6). Shown are overlays of the active and inactive sys-
tem, where Trp94 is shifted out of the central location between hemes
in the inactive form. This inactive structure was not identified as a
HEC-Trp-HEC pathway by eMap.

7.4 Conclusions

The eMap 2.0 web application is a user-friendly tool which enables prediction and

visualization of electron and hole hopping pathways in single proteins, and identifi-

cation of shared pathways in families of proteins. For single proteins, eMap has been

used to quickly screen for efficient pathways based on an empirical tunneling model,

connecting a user-specified electron or hole donor with either a user-specified accep-

tor or all surface-exposed residues. For families of proteins, we have demonstrated

the capability of the software to identify shared pathways in cryptochromes and pho-

tolyases based solely on their crystal structures, and to provide evolutionary insights

into bcCPs based on limited mechanistic information. The software is publicly avail-

able at https://emap.bu.edu free of charge, and the open-source backend PyeMap
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is available at https://github.com/gayverjr/pyemap/.
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Chapter 8

Summary and Outlook

The new methods and software discussed in this dissertation have advanced the com-

putational infrastructure available to researchers in the field of electron-molecule in-

teractions, and have provided researchers studying charge transfer in biological sys-

tems with an interactive platform for identifying relevant pathways.

In Chapter 3, we examined the performances of the box and smooth Voronoi

CAPs for shape resonances in different types of systems[114]. We found that the

Voronoi CAP provides a more flexible and robust treatment of states with different

symmetries, but the advantages of box CAP can be exploited when the system is

less sensitive to the CAP onset in the dimension where box CAP is absent, e.g. the

clustering axis.

In Chapter 4, we described the projected CAP-EOM-CCSD approach for molecu-

lar resonances, and analyzed its performance for shape resonances in small to medium

sized molecules. Additionally, we investigated the sensitivity of the new method to pa-

rameters such as the basis set and CAP onset. Our results show that a small number

of EOM-EA-CCSD states is sufficient to produce projected CAP-EOM-CCSD results

which closely approximate those obtained from conventional CAP-EOM-CCSD. The

method can be readily applied to larger molecules and potential energy surfaces, two

situations where the drastic improvement in computational efficiency is particularly

advantageous.

In Chapter 5, we described the OpenCAP package, and explored the advantages
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and limitations of several electronic structure methods for calculating resonance pa-

rameters. The software is publicly available on GitHub, and pre-compiled wheels are

distributed on PyPI. OpenCAP is under active development, and there are multiple

directions we intend to explore in future work. First, we plan on developing interfaces

with more electronic structure packages, particularly focusing on those which are ca-

pable of performing calculations which go beyond double excitations. One possibility

is the CFOUR package of Stanton et al[323], which is capable of performing advanced

calculations such as EOM-CCCSDT. These methods are crucial for the description of

strongly correlated systems such as dipole-supported resonances[324], which cannot

be accurately described with methods which truncate at double excitations, and are

very challenging to characterize using multi-reference methods. Another direction

is dynamical simulation of resonance states using CAP-based approaches. We are

currently developing an interface with the Surface Hopping including Arbitrary Cou-

plings (SHARC) molecular dynamics program[325–327], with the goal of performing

surface leaking fewest switches surface hopping (SL-FSSH)[328, 329], which is able to

incorporate resonance lifetimes into non-adiabatic molecular dynamics simulations.

Finally, we intend to explore other forms of CAP and alternate numerical integration

strategies for computing CAP integrals, two areas which have seldom been explored

in the literature, but can now be easily investigated using the PyOpenCAP interface.

In Chapters 6 and 7, we described the development of the eMap software, and

presented example applications for identifying pathways in single proteins, and for

identifying shared pathways in families of proteins. The eMap web application is

available free of charge, and the open-source PyeMap backend is hosted on GitHub

and PyPI. The most immediate goal for the future of the software is to improve

the underlying model of electron transfer. Current efforts are focused on computing

Marcus-like rate constants to describe hopping between aromatic sites. In order to
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use shortest path algorithms, the edge weights are defined as the mean residence time

associated with hopping from a donor residue to an acceptor residue[299]:

τapprox
∼=

1

kD→A
(8.1)

If we neglect all backward ET rates, the average time spent on the hopping chain (i.e.

the efficiency of the pathway) is approximately the sum of the mean residence times

for each step of the pathway:

τapprox
∼=

N∑
n=0

1

kn→n+1

(8.2)

Several developments are underway to approximate the necessary Marcus parame-

ters from the crystal structure. For the electronic coupling HDA, we are developing

machine learning models which use a structural feature set[330–332], and are trained

on couplings computed at the DFT level using the frontier molecular orbital (FMO)

approach[333]. We are also exploring approaches for estimating the free energy which

include the effects of the solvation[334, 335] and the local electrostatic environment.
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A.1 Geometries

All coordinates are given in Å.

A.1.1 N2

N 0.000000 0.000000 0.548757

N 0.000000 0.000000 -0.548757

Gh 0.000000 0.000000 0.000000

A.1.2 C2H4

C 0.669462 0.000000 0.000000

C -0.669462 0.000000 0.000000

H -1.232083 0.928897 0.000000

H 1.232083 0.928897 0.000000

H -1.232083 -0.928897 0.000000

H 1.232083 -0.928897 0.000000

Gh 0.000000 0.000000 0.000000

A.1.3 CO2

C 0.000000 0.000000 0.000000

O 0.000000 0.000000 -1.162100

O 0.000000 0.000000 1.162100

A.1.4 CH2O

C 0.000000 -0.000000 0.533358

H 0.942900 0.000000 1.120983

H -0.942900 0.000000 1.120983

O 0.000000 0.000000 -0.671617

Gh 0.000000 0.000000 -0.069317

A.2 CAP Parameters

A.3 Alternative MRPT schemes
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Table A.1: Box CAP Parameters (in bohr) for systems studied in this
work.

System R0
X R0

Y R0
Z

N2 2.76 2.76 4.88

CO2 3.331 3.331 9.539

CH2O 3.872 2.958 6.086

C2H4 7.077 4.639 3.422

Table A.2: Computed CAP/MRPT first-order resonance parameters
using IPEA shift of 0.25 a.u. and real shift of 0.2 a.u. ER(Γ) are given
in eV.

Molecule Method XMS RMS XDW
CO2 SA(7)-CAS(5e,15o) 4.051(0.127) 4.105(0.139) 4.040(0.131)
N2 SA(5)-CAS(5e,11o) 2.494(0.211) 2.560(0.240) 2.503(0.222)
C2H4 SA(4)-CAS(3e,5o) 1.787(0.253) 1.835(0.286) 1.780(0.259)
CH2O SA(7)-CAS(3e,8o) 1.172(0.162) 1.320(0.226) 1.189(0.172)

Table A.3: Computed CAP/MRPT first-order resonance parameters
using alternative scheme without diffuse orbital. The orbitals are opti-
mized for the anionic states only, and the neutral ground state energy
is obtained using CASCI/CASPT2 with the optimized orbitals. An
IPEA shift of 0.25 a.u. and an imaginary shift of 0.2 a.u. are used for
the perturbation theory step for both calculations. ER(Γ) are given in
eV.

Molecule Method XMS RMS XDW
CO2 SA(6)-CAS(5e,14o) 3.969(0.123) 4.056(0.134) 3.984(0.126)
N2 SA(4)-CAS(5e,10o) 2.378(0.206) 2.483(0.224) 2.410(0.209)
C2H4 SA(3)-CAS(3e,4o) 1.717(0.253) 1.775(0.263) 1.725(0.254)
CH2O SA(6)-CAS(3e,7o) 1.070(0.170) 1.196(0.210) 1.087(0.174)



176

A.4 Smaller MRCI active spaces

Table A.4: Computed CAP/MRCI first-order resonance parameters
using various small active spaces. No stationary point could be iden-
tified on either trajectory for MRCISD/MRCISD(Q) for CO2. The
trajectories are provided in Figs. A·9-A·12.

Molecule Method MR-CIS MR-CISD MR-CISD(Q)
C2H4 SA(1+2)-CAS(3e,3o) 2.702(0.619) 2.448(0.143) 2.277(0.127)
N2 SA(1+3)-CAS(5e,8o) 3.262(0.377) 3.227(0.188) 3.009(0.425)*
CH2O SA(1+5)-CAS(3e,6o) 2.333(0.532) 2.224(0.155) 1.831(0.124)
CO2 SA(1+5)-CAS(5e,12o) 4.733(0.092) 4.500(0.165)* 4.306(0.186)*
* Uncorrected result; no stationary point could be iden-
tified on first-order trajectory.
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Appendix B

Algorithms for Chapter 6

B.0.1 Percent-based edge pruning algorithm

This algorithm considers only the smallest Percent Edges % of edges by weight per

node, and then prunes based on the mean and standard deviation of the weights of

the remaining edges.

Algorithm 1 Prune by Percent

procedure prune(G(V,E), percent edges, num st dev edges, distance cutoff)
for v in V do

for e in v.edges do
if e.distance ¿ distance cutoff or e.weight ¿ per-

centileweight(percent edges) then
G.remove(e)

end if
end for
l̄ = mean weight(v.edges)
σ = st dev weight(v.edges)
for e in v.edges do

if e.weight ¿ l̄ + num st dev edges · σ then
G.remove(e)

end if
end for

end for
end procedure

B.0.2 Degree-based edge pruning algorithm

This algorithm greedily prunes the largest edges by weight of the graph until each

node has at most Max Degree neighbors.
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Algorithm 2 Prune by Degree

procedure prune(G(V,E), max degree, distance cutoff)
removal candidates = []
for e in E do

if e[’distance’] ¿ distance cutoff then
G.remove(e)

end if
end for
for v in V do

if degree(v) ¿ D then
removal candidates.append(v.edges)

end if
end for
sort by weight descending(removal candidates)
for e(u,v) in removal candidates do

if degree(u) ¿ max degree or degree(v) ¿ max degree then
G.remove(e)

end if
end for

end procedure

B.0.3 Identification of non-protein ET active moieties

After initial parsing, non-protein residues are analyzed for detection of ET active

moieties. For each non-standard residue, a chemical graph is constructed using the

NetworkX library, consisting of the O, C, N, P and S atoms in the residue [160]. To

isolate the conjugated systems, an edge is only drawn between two atoms j and k if:

rjk ≤ x− 2σx

where x is the mean single-bond distance between those two elements, and σx is

the standard deviation. The data was obtained from the online CRC Handbook of

Chemistry and Physics [336].

If there are any conjugated systems, the resulting chemical graph will contain one

or more connected components. Each connected component that contains a cycle, or
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consists of 10 or more atoms will be considered a non-protein ET active moiety, and

can be selected for the analysis.



Appendix C

Supporting Information for Chapter 7

C.1 Default Mining Parameters

Table C.1: Relevant default parameters for frequent subgraph mining
in eMap version 2.0.2.

Parameter Value
Standard AA Tyr, Trp
Edge pruning Max Degree[302] = 4
Edge thresholds 12 Å
Distance criteria Center of mass

C.2 Protein Subgraph Clustering

C.2.1 Structural Similarity

The structural similarity between two protein subgraphs in eMap is computed by

superimposing the two sets of atoms and computing the root mean squared distance

(RMSD). We make the following approximations to the true RMSD:

• Only the alpha carbon (CA) is considered for standard amino acid residues. If

one or both are missing the alpha carbon, the residues will not be connected in

the supergraph.

• For non-standard amino acids, we use the first atom type both residues have in

common. If no shared atom type is found, the residues will not be connected

in the supergraph.
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The threshold used for determining whether two subgraphs are connected in the

supergraph is 0.5 Å.

C.2.2 Sequence Similarity

Sequence similarity in eMap relies on a multiple sequence alignment, which is per-

formed by the MUSCLE package[311]. Starting from a one-to-one mapping between

the residues, the sequence similarity between two protein subgraphs is defined as the

sum of the differences in the residue numbers with respect to the multiple sequence

alignment. Non-protein ET active moieties are not considered in sequence similarity,

only standard amino acids. The threshold used for determining whether two sub-

graphs are connected in the supergraph is N , where N is the number of nodes, which

allows for slight misalignments.
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