

Aalborg Universitet

Scalable emulation of dynamic multi-hop topologies

Nickelsen, Anders; Jensen, Morten N.; Møller, Erling Matthiesen; Schwefel, Hans-Peter

Published in:
The Fourth International Conference on Wireless and Mobile Communications, 2008. ICWMC '08

DOI (link to publication from Publisher):
10.1109/ICWMC.2008.44

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Nickelsen, A., Jensen, M. N., Matthiesen, E. V., & Schwefel, H-P. (2008). Scalable emulation of dynamic multi-
hop topologies. In The Fourth International Conference on Wireless and Mobile Communications, 2008. ICWMC
'08 (pp. 268-273). IEEE. DOI: 10.1109/ICWMC.2008.44

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60406811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ICWMC.2008.44
http://vbn.aau.dk/en/publications/scalable-emulation-of-dynamic-multihop-topologies(eb3b3000-257c-11dd-9b07-000ea68e967b).html

Scalable emulation of dynamic multi-hop topologies

Anders Nickelsen †, Morten N. Jensen †, Erling V. Matthiesen †, Hans-Peter Schwefel †‡
† Networking and Security Section, Department of Electronic Systems, Aalborg University, Aalborg,

‡ Forschungszentrum Telekommunikation Wien - FTW, Vienna, Austria
E-mail: {an,mnje03,evm,hps}@es.aau.dk

Abstract

Communication in wireless networks is affected by un-
controllable disturbances in the channel. Effects of these
disturbances are exacerbated in networks with dynamic
topologies and multiple hops. Lack of control of the channel
complicates testing of such networks as test conditions are
hard, or impossible, to reproduce. This paper describes how
to create reproducible test conditions for these networks by
emulating the wireless links. Emulation is performed by a
topology emulator to which end-nodes are connected us-
ing wired links. In real-time, the emulator imposes packet
drops and delays onto traffic between end-nodes. The im-
posed properties are based on simulations of node mobility,
loss and delay models. Evaluation confirms that the testbed
is capable of emulating links in real time and transparent
to upper layer protocols. Additionally, the impact on test
results is evaluated, such as increased network delays and
reduction of bandwidth when loading the emulator. Finally,
an outlook on advancing capabilities and how to integrate
such in the emulator is presented.

1. Introduction

Wireless technologies are deployed in increasingly many
types of mobile devices. The vast popularity of these mo-
bile devices, and thus the increased availability of wireless
technologies, makes applications for the mobile domain of
great interest. Evaluation is an integral part of developing
such applications. Several evaluation methods apply, such
as simulation, emulation or experimental tests. Simulation
tools, such as NS-2 [7], provide a high level of detail in the
networking layers. The application under test is, however,
typically simplified as the real application cannot easily be
used in the simulated environment. Hence, the simulation
results represent an application model and not of the appli-
cation itself. Experimental setups can be used to test the
real application. However, disturbances in the environment
may have a huge impact on the test results. Moreover, the

characteristics of these disturbance are not always control-
lable, making it very difficult to repeat even simple test runs
[10]. Emulation provides a hybrid of simulation and exper-
imental setups by allowing real applications to be subjected
to simulated network conditions. The control of the simula-
tion allows for accurate reproductions of the test conditions
to repeat test runs. A disadvantage of using emulation is
that real applications operate in real time and thus enforce
the network emulation to also effectuate in real time.

The objective of this work is to develop an emulation
testbed for wireless applications, where the wireless link is
replaced by a wired link. The wired link is less exposed
to uncontrollable disturbances and thus more controllable
than a wireless link. The properties of a wireless link, such
as packet drops and delay, are then enforced on network
traffic on the wired link in a controllable and reproducible
manner based on simulations.

Several requirements must be fulfilled in order to facili-
tate emulation. Transparency of the emulation to the net-
work application is inherent to create results comparable
to those of experimental setups. Transparency regards per-
formance, which must resemble a real wireless setup and
network protocol interfaces. These interfaces must present
features to the upper layers similar to a the real setup.
Moreover, accurate communication models must be used in
simulation to resemble influences from a real environment.
Lastly, simple interfacing in terms of deployment, use and
result processing is required to ensure usability of the emu-
lator.

The contributions of this paper are: 1) description of
the design of the topology emulator, a testbed capable em-
ulating dynamic multi-hop topologies by changing time-
varying link properties in real-time and 2) evaluations of
the topology emulator to illustrate that is capable of emulat-
ing dynamic multi-hop topologies while accomplishing the
specified requirements.

1.1. Related work

Many solutions handle network emulation by manipu-
lating the same properties as in the proposed solution. An
extension to ns-2, called ns-2e [6], is capable of emulating
network properties from a simulated ns-2 network model
by centrally affecting network traffic. The approach of Sea-
wind [5] is similar. The challenge in these approaches is
that the deployment effort increases when scaling the num-
ber of end-nodes, as the setup changes when more nodes
are needed, for instance by installing several network inter-
faces. Also the performance of the real-time emulation may
degrade resulting in a drifting emulated scenario which does
not meet real-time requirements. Opposed to the centralized
approach is the distributed approach where each node cal-
culates its own networking properties and this data must be
synchronized between all participating nodes. A such ap-
proach is used by both EMWIN [11] and JEmu [4]. Testing
real applications on such tools becomes a challenge as the
end-node environment is deployed as a virtual machine and
thus not a native environment. This work provides a scal-
able centralized environment, for real applications on real
end-nodes, while obeying the real-time constraints of on-
line emulation.

2. Topology emulator overview

The topology emulator is designed for scalability using
modular network and software architectures, which are de-
scribed in the following.

Ad-hoc network

Topology emulator with
network connectivity emulation and

mobility simulation

Node

Node

Node

Node

Logical network
connection

Physical Ethernet link

Figure 1. Topology emulator network archi-
tecture; emulator node, switch and end-
nodes.

2.1. Topology emulator architecture

The network architecture of the topology emulator is il-
lustrated in Figure 1. It consists of one centralized node

called the emulator node and a central network switch to
which all end-nodes are connected. End-nodes hold the ap-
plications or communication protocol (Layer 3 and higher)
to be evaluated. Changing from a wireless to a wired inter-
face on the end-node is the only change from a real setup to
using the emulator. The switch facilitates connecting many
nodes to the emulator providing a scalable network archi-
tecture.

The emulator node receives all frames transmitted be-
tween end-nodes. No end-nodes receive frames before they
have been bridged by the emulator node. Node separation
is obtained through 802.11q virtual LAN (VLAN) tagging
[8] on the switch. This concentrates all frames from one
end-node into one VLAN unique for that end-node. The
VLAN-tag is also used by the emulator node to identify the
sources of the frames. By enabling the emulator node to
bridge between all virtual LANs, all end-nodes can success-
fully transmit frames to each other, given they are forwarded
by the emulator node. By selectively dropping or delaying
frames, the emulator node controls the link properties of all
links between end-nodes. Ultimately, as the emulator node
forwards frames, its existence is by design transparent to
any networking protocols (Layer 3 and higher) used on the
end-nodes.

The software architecture of the emulator node consists
of two parts, namely a simulation part and an emulation
part. The simulation part, detailed in Figure 2, calculates
the link properties by simulating node movement and wire-
less links and saves them into trace-files. The emulation

SimulatorStorage

Node position trace Channel model PHY model

Link layer model

Packet drop probability
(PDP) trace

Delay table
Delays

PDP

Bit error rate

RSS
IN

OUT

OUT

Figure 2. Simulation part of the emulator
node. Traces of node movement are trans-
formed into traces of packet drop probabili-
ties and packet delays for the emulation.

part, depicted in Figure 3, emulates the properties of the
simulated wireless links real-time while end-nodes commu-
nicate. The properties are loaded from the trace-files and
used to decide if a packet should be dropped or not. If pack-
ets are not dropped the emulator determines a delay for each
packet and transmits it once the delay expires.

Storage

Packet drop probability
(PDP) trace

Delay table

IN

IN

Network interface

Ingoing packet queue
[all nodes]

Outgoing packet
queue

[all nodes]

Emulator

Periodically update PDP
of all linksPDPs

Delays

Evaluate packets
according to link properties
(if dropped or delayed)

Packets

Schedule packets according to delayPackets

IN

OUT

Not dropped packets

Figure 3. Emulation part of the emulator
node. Link properties are used to evalu-
ate incoming packets. Packets that are not
dropped are scheduled for delayed forward-
ing.

2.2. Simulation models

Node mobility is input to the emulator node in the form
of node positions over time t as (x, y)-coordinates. These
positions are based on realizations of either deterministic
paths that nodes follow or based on stochastic models such
as random walk or random way-point [2].

Packet drop probability (PDP) on a link is calculated
based on distances between nodes and models of the wire-
less environment. As shown in Figure 2, models of the
channel, the physical layer and the medium access control
can be used to calculate PDP. The output of the calcula-
tions is a trace of probabilities over time pi,j(t) on every
link (between nodes i and j) in the topology. Note that the
symmetry of the probabilities on a link depends on the loss
model, as the topology emulator supports emulating asym-
metrical links. Based on a probability threshold P the num-
ber of next-hop neighbors ni(t) of node i at time t is calcu-
lated from pi,j(t) for all t. This is used to determine how
many nodes share the channel when determining delay for
a packet sent by node i at time t.

Delay of a packet at a given time t is determined from
two parameters; ni(t) and a static delay table. Each row in
the table contains delays distributed according to the delay
model when ni(t) + 1 nodes share the channel. The delay
table is calculated in the simulation part prior to emulation.
During emulation, the specific delay is determined by draw-
ing a number randomly from the set in the ni(t)’th row. The
use of delay tables instead of an analytic model of the delay
allows for complex delay assumptions during delay simula-
tion, as a parametric delay distribution does not need to be
known to determine a specific packet delay during emula-

tion.
All simulation models used to generate input to the em-

ulator must compensate for the fact that all calculations
are performed before running the emulating. In effect, this
means for the delay that the amount of and characteristics of
traffic used in the emulator must be reflected in the models.
Also, it is not possible to dynamically change communica-
tion parameters, such as modulation scheme, during emu-
lation. These restrictions must be implemented in the sim-
ulation models using constant parameters such as expected
network utilization.

2.3. Deployment

All nodes in the topology emulator are connected to a
Cisco Catalyst 2950T VLAN-aware switch, equipped with
two Gigabit ports. One of these ports is used in trunking
mode, meaning that all traffic sent on other ports is for-
warded to this port. The emulator node is then connected
to one Gigabit port for forwarding packets using iptables.
The machine is has an Intel Core 2 Duo 1.86GHz proces-
sor and has Linux kernel v2.6.18 installed. Once a packet
is received on the emulator node, a netfilter kernel mod-
ule ensures that the link to the receiving node is available
(pi,j(t) < P). This is to prevent successful transmission of
link layer datagrams, e.g from using ARP [9], when there
is no emulated link present. Link layer datagrams are not
handled in the IP-layer, and thus not by iptables, in Linux.
If a link exists, the packet is enqueued by iptables for the
emulating process. This process determines if the packet is
to be dropped from pi,j(t), which is updated every 100ms.
The process also determines the delay by using the number
of neighbors, ni(t), on node i and the delay table. The de-
lay table is a N − 1× 1000 matrix, where N is the number
of nodes connected to the switch. Once the delay has been
determined, the packet is scheduled for delayed transmis-
sion. The packet scheduler checks for packets to send every
122µs.

3. Evaluation

The evaluation of the topology emulator is two-fold; 1)
evaluating that the emulator is capable of emulating dy-
namic multi-hop topologies and 2) verifying the specified
performance requirements. Both evaluations are described
below.

3.1. Functionality evaluation

A scenario with mobile nodes, creating a dynamic topol-
ogy, and communication using ad-hoc routing is used to
evaluate the emulator functionality. The node movement
is illustrated in Figure 4. During the scenario, a node in

the end-to-end path disappears and is replaced by another
node, effectively breaking links around the disappearing
node temporarily. Throughout the scenario the link is sub-
jected to packet drops and delays from the simulations. The
used models are of an IEEE 802.11g wireless link incorpo-
rating shadowing and fading in the channel. The objective
of the scenario is to illustrate how the ad-hoc routing algo-
rithm is subjected to a dynamic multi-hop topology. The

Figure 4. Movement scenario with relay
nodes R1 and R2 move periodically back and
forth between Source and Destination, allow-
ing changing 2-hops end-to-end paths and
persistent 3-hops paths.

specified movement is used as input to simulate PDP and
delay. The PDP of the links is illustrated in Figure 5 as
the probability varying over time on each link in the net-
work topology. A 3-hop path is always present (R2-R1-
Destination), as is a 2-hop path. However, the specific links
of a 2-hop path change over time. This effectively illus-
trates the dynamic multi-hop topology. The trace of simu-
lated PDP and the delay table are then used as input for the
emulation process to impose the topology information onto
real traffic. ping is set to continuously ping from source to
destination while OLSR [3] is used as ad-hoc routing algo-
rithm between the nodes. The resulting traffic recorded by
the emulator is illustrated in Figure 6.

From the figure, we see that the emulator is capable of
subjecting end-nodes to a dynamically changing multi-hop
topology. This is seen as the flow of packets is redirected to
use the available links when the currently used link becomes
unavailable. Moreover, the packets sent using the R1-R2
link clearly illustrates the multi-hop emulation capability.

Figure 5. PDP trace on links in the evalua-
tion scenario. The end-to-end path changes
from using R2-Destination-link to using Source-
R1-link and back over 60 seconds.

Figure 6. Traffic on links during emulation
as recorded by the topology emulator shows
that only available links are used, which
change over time.

3.2. Performance verification

To ensure that the emulator performs as required, evalu-
ations of bandwidth and service time have been performed.
As previously described, the emulator must appear transpar-
ent to the end-nodes meaning that decreased network band-
width and increased link delay (besides the emulated delay)
is not tolerated when comparing to a wireless environment.

Bandwidth limitations in a network occur at processing
bottlenecks. In the emulator, two such potential bottlenecks
exist, i.e. in the switch and in the emulator node. As the
complexity and processing need in the emulator node is far
greater than that of the switch, the emulator node is con-
sidered the significant bandwidth bottleneck in the setup.
Hence, the bandwidth capabilities of the emulator node are

evaluated. To evaluate available bandwidth of the emula-
tor node, a traffic generator called D-ITG [1] is used. By
use of 4 nodes in a fully connected emulated topology, each
sending and receiving a stream of totally 100MBit/s asyn-
chronously distributed to the 3 other nodes, the emulator
node is loaded heavily. D-ITG is then capable of recording
the received bandwidth by the nodes, which during success-
ful emulation should amount to 100Mbit/s per node, deduct-
ing a small overhead percentage from transport and network
layers. In total this amounts to 400Mbit/s load on the emu-
lator.
The results of the bandwidth test show that all nodes re-
ceive the expected bandwidth of 100Mbit/s, meaning that
emulator is capable of handling a bandwidth of at least
400Mbit/s. Considering that the expected throughput at-
tained with IEEE 802.11g in a real wireless channel is
54Mbit/s, the emulator node is capable of supporting 8 sep-
arate channels within the 400Mbit/s limit. Note however,
that this limit is not of the topology emulator, but of the
testing equipment and that the actual bandwidth limit of
the emulator node itself may be higher. Note also, that the
derived limitation of 8 channels is equal to 16 connected,
fully loading nodes in separated groups of two and is in ef-
fect only when the nodes experience a traffic-free channel.
This is of course a possible situation when testing the wire-
less application, however, not considered to be very likely.
Therefore, the bandwidth capabilities of the emulator node
are considered acceptable.

Service time (emulator processing delay) is also evalu-
ated by use of ping by measuring the round-trip time for a
link by sending out packet probes. The evaluation is per-
formed on a emulated link (with emulated delay = 0) and
compared to both a direct wired link and measurements of
an IEEE 802.11g wireless link. This is done to establish the
service time of the emulator node to learn if it is capable of
emulating even the smallest delays expected in a real wire-
less connection. As the service time relates to processing
time of a packet, and this time is dependent on the packet
size, several packet sizes are used. Packet of sizes 0-5000
bytes, with standard Ethernet frame size of 1500 bytes pay-
load are used to show if the service time of the emulator
compare to a direct wired and a direct wireless link. The
results of the service time measurements are illustrated in
Figure 7, where we see that the emulator node uses approx.
250µsmore to service a packet than when using a real wired
link. In addition, the figure shows that these excess 250µs
are well below the measurements of a wireless link. This
means that the emulator processing delay is acceptable as it
is below the values of an IEEE 802.11g link.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

Packet size [B]

P
ac

ke
t d

el
ay

 [m
s]

Direct connection
Emulated connection (without emulated delay)
Real wireless connection
95% confidence interval

Figure 7. Service time from various packet
sizes on: A real wireless IEEE 802.11g link,
a direct emulated link (with delay = 0) and a
direct wired Ethernet link. The confidence
interval is shown for the wireless measure-
ments only, as the variations in the remaining
measurements are insignificant.

4. Limitations

The software architecture of the topology emulator is de-
veloped using a two-stage model divided between a simula-
tion part and an emulation part. On one hand, this model en-
ables complex link simulations to be performed free of real-
time constraints and the emulation to be performed with
minimized computation during real-time constrained run-
time. On the other hand, the two-stage model prohibits any
changes in movement or traffic to affect the link models dur-
ing run-time, as the link properties are only calculated once
prior to emulation. Also, as all emulation is carried out on
the emulator node, end-nodes have no way of determining
position or measuring link quality. Finally, only PDP and
delay have been calculated, meaning that the upper layers
do not have access to traditional link layer information such
as received signal strength indication (RSSI). The setup re-
quires all upper layer technologies to be independent of the
link layer and the physical layer. Affecting the simulation
models from the emulation can be approached by simulat-
ing several sets of link properties, based on real-time pa-
rameters such as network utilization, and then choosing sets
dynamically during emulation. Furthermore, the simulation
can be performed during emulation, and thus use real pa-
rameters, for instance to allow node movement to depend
on link quality. This approach is currently being investi-
gated for the emulator.

5. Conclusions and future work

In this paper, we present a new network emulating tool
capable of emulating dynamic multi-hop topologies. This
is especially important when developing wireless applica-
tions, as field tests of such applications become cumber-
some or even impossible to reproduce. As an advance to
existing tools, the topology emulator features real-time em-
ulation of dynamically changing multi-hop topologies that
are resulting from node movement in a pre-specified sce-
nario. Moreover, the architecture of the topology emulator
is designed to be scalable and modular to facilitate exten-
sions without any modification to the deployed version.

The emulation functionality is two-stage; a simulation
part and an emulation part. The simulation part simulates
a complex wireless network from node movement result-
ing in packet drop probabilities and delays on each link be-
tween nodes. The emulation part executes these properties
real-time on a central emulator node. End-nodes, that are
usually in the wireless domain, are connected to the emula-
tor node via wired links through a central switch. All frames
sent from end-nodes are forwarded to the emulator node and
based on the link property traces the emulation part decides
if frames should be forwarded further. If so, a delay is de-
termined and the frames are scheduled for transmission to
the receiving end-node.

By designing the connecting point as a switch, the net-
work architecture allows for up to 20 real end-nodes to be
connected to the emulator. Evaluations of the functionality
and the performance of the emulator shows that it is capa-
ble of emulating dynamically changing topology properties
transparently towards all connected end nodes. The results
also show, that the nodes do not experience bandwidth lim-
itations from using the emulator. Moreover, the delay expe-
rienced from the processing of the emulator is acceptable as
it is well below the actual delays to be emulated, and are as
such handled inside the topology emulator.

Limitations of the two-stage approach have been ad-
dressed and work is ongoing exploring the options for en-
abling the nodes to affect the simulation properties. Also,
future work includes dedicated performance evaluations to
research where the actual performance limit of the topology
emulator lies.

6. Acknowledgments

This work was partially supported by the EU IST
FP6 project ’HIghly DEpendable ip-based NETworks and
Services – HIDENETS’, see www.hidenets.aau.dk. The
Telecommunications Research Center Vienna (ftw.) is sup-
ported by the Austrian Government and by the City of Vi-
enna within the competence center program COMET.

References

[1] S. Avallone, A. Pescape, and G. Ventre. Distributed inter-
net traffic generator (D-ITG): analysis and experimentation
over heterogeneous networks. ICNP 2003 poster Proceed-
ings, International Conference on Network Protocols, At-
lanta, Georgia, 2003.

[2] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa. Stochas-
tic Properties of the Random Waypoint Mobility Model.
Wireless Networks, 10(5):555–567, 2004.

[3] T. Clausen and P. Jacquet. Optimized Link State Routing
Protocol (OLSR). RFC 3626 (Experimental), Oct. 2003.

[4] J. Flynn, H. Tewari, and D. O’Mahony. A Real-Time Em-
ulation System for Ad Hoc Networks. Proceedings of the
Communication Networks and Distributed Systems Model-
ing and Simulation Conference, 2002.

[5] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and
K. Raatikainen. Seawind: a Wireless Network Emulator.
In proceeding of 11th GI. ITG Conference on Meaurement,
Modelling and Analysis (MMB 2001), pages 151–166, 2001.

[6] D. Mahrenholz and S. Ivanov. Real-Time Network Emula-
tion with ns-2. Proceedings of the The 8-thIEEE Interna-
tional Symposium on Distributed Simulation and Real Time
Applications (DS-RT 2004).

[7] S. McCanne, S. Floyd, et al. Network simulator ns-2.
The Vint project, available for download at http://www. isi.
edu/nsnam/ns.

[8] D. McPherson and B. Dykes. VLAN Aggregation for Ef-
ficient IP Address Allocation. RFC 3069 (Informational),
Feb. 2001.

[9] D. Plummer. Ethernet Address Resolution Protocol: Or
Converting Network Protocol Addresses to 48.bit Ethernet
Address for Transmission on Ethernet Hardware. RFC 826
(Standard), Nov. 1982.

[10] H. Waeselynck, Z. Micskei, M. Nguyen, N. Riviere, and
F. LAAS-CNRS. Mobile Systems from a Validation Per-
spective: a Case Study. Parallel and Distributed Computing,
2007. ISPDC’07. Sixth International Symposium on, pages
14–14, 2007.

[11] P. Zheng and L. Ni. EMWIN:: emulating a mobile wire-
less network using a wired network. Proceedings of the 5th
ACM international workshop on Wireless mobile multime-
dia, pages 64–71, 2002.

