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Optimization of Spatiotemporal Apertures in
Channel Sounding

Troels Pedersen, Student Member, IEEE, Claus Pedersen, Xuefeng Yin, Member, IEEE, and
Bernard H. Fleury, Senior Member, IEEE

Abstract—In this paper, we investigate the impact of the spa-
tiotemporal aperture of a channel sounding system equipped with
antenna arrays at the transmitter and receiver on the accuracy of
joint estimation of Doppler frequency and bidirection. The contri-
bution of this paper is threefold. First, we state a spatiotemporal
model that can describe parallel as well as switched sounding sys-
tems. The proposed model is applicable for arbitrary layouts of the
spatial arrays. To simplify the derivations, we investigate the spe-
cial case of linear spatial arrays. However, the results obtained for
linear arrays can be generalized to arbitrary arrays. Secondly, we
give the necessary and sufficient conditions for a spatiotemporal
array to yield the minimum Cramér–Rao lower bound (CRLB) in
the single-path case and Bayesian CRLB in the multipath case. The
obtained conditions amount to an orthogonality condition on the
spatiotemporal array. Thirdly, we define the Doppler-bidirection
ambiguity function and derive the necessary and sufficient condi-
tions for a linear spatiotemporal array to be ambiguous. Based on
the ambiguity function, we define the normalized side-lobe level,
which we propose to use as a figure of merit in the design of spa-
tiotemporal arrays.

Index Terms—Ambiguity function, array processing,
Cramér-Rao lower bound, high-resolution channel-parameter
estimation, MIMO channel sounding, space–time sampling.

I. INTRODUCTION

T HE design and optimization of multiple-input multiple-
output (MIMO) communication systems require realistic

models of the propagation channel, which incorporate disper-
sion in delay, Doppler frequency, direction of departure, direc-
tion of arrival, and polarization. In order to develop realistic
parametric models of the channel response, it is of great impor-
tance to be able to accurately measure the dispersive behavior
of the propagation channel, that is, simultaneously measure dis-
persion in the above dimensions. Dispersion of the propagation
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channel in one dimension can be estimated from an observation
using an aperture in the corresponding Fourier domain. For ex-
ample, if Doppler frequency is to be estimated, observations at
different time instants are required.

The focus of this paper is on the joint estimation of direc-
tion of departure, direction of arrival, and Doppler frequency
from observations obtained by exciting the propagation channel
via a spatial aperture and sensing the output of the channel
via another spatial aperture at different time instants, i.e., via
a temporal aperture. Altogether, these three apertures consti-
tute a bispatiotemporal aperture, or a spatiotemporal aperture
for short. A spatiotemporal aperture can be implemented using
antenna arrays at the transmitter and receiver sites. Spatiotem-
poral sounding systems fall in two groups: parallel and switched
sounding systems.

A parallel sounding system (such as [1]) is equipped with one
transmitter for each transmit antenna element and one receiver
per receive antenna element. All transmit array elements are ac-
tive simultaneously and all outputs of the receive array elements
are observed simultaneously. Snapshots of the channel are col-
lected at different time instances. Each of the parallel transmit-
ters must transmit a unique signal. The transmitted sounding sig-
nals must be carefully chosen such that their cross- and autocor-
relation properties allow for their separation and sufficient delay
resolution, respectively. In switched sounding systems (such as
the one used in [2]–[5]), the sounding signal generated by a
single transmitter is applied to the elements of the transmit array
via a switch. The output of the receive array is sensed via another
switch. In this way, observations from all antenna pairs of one
transmit antenna and one receive antenna can be obtained. De-
spite the added switches, the hardware complexity of switched
systems is lower than that of parallel systems. Furthermore, the
cross-correlation properties of the sounding signals is not an
issue in switched channel sounding systems, and therefore any
code sequence with the desired autocorrelation property may be
applied.

Various algorithms for the estimation of directions and
Doppler shifts from data obtained from spatiotemporal arrays
have been proposed; see, e.g., [2]–[5] and references therein. It
is shown in [5] that the design of spatiotemporal apertures is
critical to the joint estimation of Doppler frequency and bidirec-
tion. Until recently, it was believed that the maximum absolute
Doppler frequency that can be estimated with a switched
sounding system is inversely proportional to the product of
the number of elements of the transmit and receive arrays.

1053-587X/$25.00 © 2008 IEEE
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This limitation was considered a major drawback of switched
systems [1]. However, as shown in [4] and [5], this limitation
is the result of the (inappropriate) choice of the spatiotem-
poral aperture and is not a fundamental (Nyquist) limit. This
inappropriate choice leads to an ambiguity in the estimation of
Doppler frequency and direction [5]. An intuitive interpretation
of this effect is that the phase changes induced by a plane wave
at the outputs of the array elements may result either due to the
fact that the wave exhibits a Doppler frequency or due to the
wave’s impinging direction, when a switched sounding system
is used. The ambiguity effect occurs when it is not possible to
distinguish which effect has really caused this phase change. In
particular, it was shown in [5] that by appropriately selecting
the spatiotemporal aperture, it is possible to extend the above
maximum Doppler frequency to the largest value that can be
estimated with a similar single-input single-output sounding
system. As illustrated by these results, the theoretical under-
standing of the impact of the spatiotemporal aperture on joint
bidirection and Doppler estimators requires a joint treatment of
the spatiotemporal aperture.

In this paper, we investigate the impact of the spatiotemporal
aperture on the accuracy of joint estimation of Doppler fre-
quency and bidirection. The contribution of this work is three-
fold. First, we state a spatiotemporal model that can describe
parallel as well as switched sounding systems. The proposed
model is applicable for arbitrary layouts of the spatial arrays.
However, to simplify the derivations, we investigate the special
case of linear spatial arrays. Secondly, we give the necessary
and sufficient conditions for a spatiotemporal array to yield the
minimum Cramér-Rao lower bound (CRLB) in the single-path
case and Bayesian CRLB (BCRLB) in the multipath case. The
obtained conditions amount to an orthogonality condition on
the spatiotemporal array. A similar condition for azimuth and
elevation estimation has been derived in the single-path case
for planar arrays in [6] and three-dimensional arrays in [7].
Thirdly, we define the Doppler-bidirection ambiguity function
for the proposed spatiotemporal model. The ambiguity func-
tion [8] is a standard means to assess the resolution ability of
radar waveforms and a rich literature exists on ambiguity func-
tions and related results for various radar systems; see, e.g., [9]
and [10] and references therein. In [11], the ambiguity func-
tion has been defined for MIMO bistatic radar systems with
parallel transmitters and receivers. The interested reader is re-
ferred to this contribution for an overview and discussion of
recent results on ambiguity functions for mono- and bistatic
radar. The bistatic radar estimation problem is essentially the
same as the problem of parameter estimation of single-bounce
propagation paths in the field of channel sounding for MIMO
wireless communications. However, in real propagation envi-
ronments, single-bounce-only propagation cannot be assumed,
and consequently the available radar results do not apply di-
rectly. In the channel sounding literature, however, the use of
ambiguity functions has been fairly limited so far. In [12] and
[13], the delay-Doppler ambiguity function is computed. To our
best knowledge, the ambiguity function has not previously been

defined and calculated for (bi)spatiotemporal channel sounding.
The ambiguity function presented in this paper is valid for both
parallel and switched sounding systems. It is a special case of the
general ambiguity function defined in [9]. Based on this ambi-
guity function, we derive the necessary and sufficient conditions
for a linear spatiotemporal array to be ambiguous. The obtained
result generalizes the result from [5] and resembles the results of
the well-studied type-1 (or rank-1) ambiguity effect for spatial
arrays; see, e.g., [14]–[16]. Based on the ambiguity function, we
also define the normalized side-lobe level (NSL), which we pro-
pose to use as a figure of merit in the design of spatiotemporal
arrays.

This paper is organized as follows. In Section II, we intro-
duce a model of the spatiotemporal sounding system capable of
describing both parallel and switched systems. In Section III,
the impact of the spatiotemporal array on the CRLB and the
BCRLB is investigated. In Section IV, we define the Doppler-
bidirection ambiguity function, which is then used for the anal-
ysis of the above-mentioned ambiguity effect. In Section V, we
investigate the effect of the spatiotemporal aperture on the es-
timation performance by means of Monte Carlo simulations.
Concluding remarks are stated in Section VI.

Notation: Throughout this contribution, the following nota-
tion is used. Vectors and matrices have boldfaced symbols. Sets
are printed in calligraphic letters (such as ). The notations

, , and denote complex conjugation, transposition,
and Hermitian transposition, respectively. The notations
and mean the th element of the vector and element

of the matrix . The symbol denotes the Kronecker
product. The notation means that the matrix is
positive semidefinite. We denote a -dimensional column vector
with unity entries by . The notation stands for the Eu-
clidean norm of a scalar or vector and the cardinal number of a
set. Expectation is denoted by . The least integer larger than
or equal to is denoted by . The symbols , , and stand
for the set of integers, the real line, and the complex plane, re-
spectively.

II. SYSTEM MODEL

Let us consider the propagation environment depicted
in Fig. 1. The sounding system consists of two antenna arrays
referred to as Array 1 and Array 2, respectively. The index

is used to distinguish the transmitter from
the receiver . The number of elements in Array is
denoted by . At Array , the coordinates are given in carrier
wavelengths with respect to the coordinate system . The
displacement of Array element from the origin of the
coordinate system is denoted by . To simplify
the notation, we write for . The time variable is
denoted by .

Referring to Fig. 1, a certain number of waves propagate
along different paths from Array 1 to Array 2. Along its path a
wave interacts with a certain number of scatterers. We make the
following assumptions on the propagation environment.

A) Following [2], we assume that the far-field condition
holds, such that a plane wave approximation can be
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Fig. 1. The considered multipath propagation environment. The black dots in
the regions� and� indicate the positions of the array elements.

applied in a region surrounding Array when
the other array transmits. This implies that the set of
parameters describing each path is independent of the
array element positions.

B) The propagation paths are assumed to be specular.
C) We assume that the geometry of the propagation paths is

constant throughout the observation window . In other
words, the parameters of the propagation paths remain
constant for the whole measurement run.

D) We consider the narrow-band case only. Hence, without
loss of generality propagation delays are assumed to be
zero.

E) We assume that the elements of Array 1 and Array 2 are
isotropic.

Under Assumptions A)–D), the th path can be described by

the parameter vector , where is the
Doppler frequency of Path and is a unit vector with the
initial point anchored at the origin of pointing towards the di-
rection of Path in (see Fig. 1). We denote the complex gain

of path as . The 8 -dimensional vector
contains the parameters of all paths.

A. Signal Model

Let be the (complex baseband representations of the)
sounding signal applied to the input of Array 1 element . We
consider nonoverlapping sounding intervals of length . The
center time instant of the th sounding interval is denoted by .
Thus the th sounding interval reads

. The center time instants are selected such that
are disjoint. For both parallel and switched systems,

the observation window equals the union of the
sounding intervals. Element of Array 1 is said to be active
during if is a subset of the support of the signal , i.e.,
if the sounding waveform is fed to its input terminal. Similarly,
an element of Array 2 is active during if its output terminal
is sensed during . Furthermore, we say that the antenna pair

is active during if Array 1 element and Array 2
element are both active during .

For the sake of clarity, we first introduce the notation for
a parallel sounding system. Thereafter, we consider switched
sounding and describe a common model for both switched and

parallel systems. Let be the sounding pulse with sup-
port applied to the input of Array 1 element of a parallel
sounding system. Then is of the form

(1)

We consider the case where the sounding pulses have same en-
ergy and are mutually orthogonal, i.e.,

(2)

where is the Kronecker delta function. This orthogonality
restriction ensures that the signal contributions of different
transmitted sounding pulses can be extracted from the received
signal without interference from the other pulses. Further-
more, it implies that the noise contributions in the extracted
sounding pulses are uncorrelated for different sounding pulses.
In practice, the sounding pulses must be chosen to fulfill (2),
at least approximately, e.g., by letting the sounding pulses at
different transmitters be differently shifted versions of the same
pseudonoise sequence.

The output signal of Array 2 element is given as

(3)

where and denote, respectively, the
signal contribution due to the th sounding pulse applied to
the input of Array 1 element and the noise contribution to

. The noise contributions across the Array 2 element
outputs are assumed to be spatially and temporally white circu-
larly symmetric complex Gaussian processes, i.e., fulfilling

(4)

where is a positive constant and denotes the Dirac delta
function.

Under the Assumptions A)–E), we can write the signal con-
tribution as

(5)

B. Maximum-Likelihood Estimation of Path Parameters

First we introduce a notation that clearly distinguishes among
the parameter of the propagation paths, their estimates, and the
free parameter in the log-likelihood function. We adhere to the
following notational convention: is an estimate of the pa-
rameter given as argument and is a free parameter in the
log-likelihood function. As an example, the symbol denotes
the Doppler frequency of Path , of which the estimate is ob-
tained by joint maximization of the log-likelihood function
with respect to and the remaining free parameters of .
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In the sequel, we consider the maximum-likelihood estimator
of the parameter vector

(6)

where is the log-likelihood of given an observation
of the processes and

denotes the estimation range of the parameter given as index.
The maximization in (6) is over the 8 -dimensional domain

.1

The log-likelihood of given an observation
of reads [2], [17]

(7)

Due to the orthogonality (2) of the transmitted pulses, all “cross
terms” in the leftmost integral of (7) vanish. Thus, (7) simplifies
to the triple sum

(8)

where the summands are defined as

(9)

with

(10)

and

(11)

The integral can be split into a signal term and a
noise term. Inserting (3) and dropping the terms that are zero
due to the orthogonality condition given in (2), we obtain

(12)

Remembering that the noise contributions are temporally and
spatially white, and applying the orthogonality assumption (2),

1The maximization over � is computationally prohibitive. However, a
low-complexity approximation of the maximum likelihood estimate can be
obtained using a space-alternating generalized expectation-maximization
algorithm [2]–[5].

the complex Gaussian random variables are uncor-
related

(13)

C. Sounding Modes and Their Spatiotemporal Aperture
Matrices

In the following, we generalize the system model such that it
can account for any configuration of switched and parallel trans-
mitters and receivers. Motivated by the particular form of (8), we
use the term spatiotemporal sample to denote the signal compo-
nent that was transmitted from Array 1 element , received at
Array 2 element during . Each sample results in one term
of the sum in (8). Therefore, each spatiotemporal sample can
be indexed by the triplet . In (8), the spatiotemporal
samples are obtained from all combinations of one Array 1 el-
ement and one Array 2 element for every sounding interval. It
follows readily from the derivation of (8) that if any of the spa-
tiotemporal samples are left out, the corresponding terms in (8)
will disappear. For instance, in a switched system, have a
similar form, but the triple sum in (8) will only be over a subset
of the set of all triplets .

Definition 1 (Sounding Mode): A sounding mode is a subset
of .

The log-likelihood function of associated to the sounding
mode is given by

(14)

We enumerate the elements of a sounding mode by the
index , i.e., we define a bijection

(15)

Thus, specifies in which sounding interval sample was
generated. Similarly, the indexes and specify
which element of Array 1 and which element of Array 2,
respectively, is used to generate sample . The total number
of spatiotemporal samples acquired in a measurement run
is . Thus for a parallel sounding system, where

, the number
of samples is . For a switched sounding system
where one sample is acquired in each sounding interval, we
have .

Defining , we can now recast
(14) as

(16)

The choice of indexing in (15) is not unique. The particular enu-
meration of the elements of a sounding mode only determines
the order of the terms in the sum (16), which is irrelevant in
the further development. The indexing can therefore be selected
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Fig. 2. A sounding system with linear arrays. The black dots indicate the cen-
troids of the antenna elements.

arbitrarily by the system designer. In switched sounding sys-
tems, it is natural to select the indexes such that and

. In parallel sounding systems, however,
indexing purely according to the temporal order is not possible
because the sounding pulses overlap in time.

We define the vector

(17)

where , , and . We say
that is the center point of the th spatiotemporal sample.

Definition 2 (Spatiotemporal Aperture Matrix): The 7
spatiotemporal aperture matrix is determined as

(18)

with defined in (17).
Without loss of generality, we select the origin of the spa-

tiotemporal coordinate system such that the columns of fulfill

(19)

However, as we will see in Section III-A, this condition has
some optimality property, in the sense that it ensures decoupling
in the Fisher information matrix between the linear and
nonlinear parameters of path . The spatiotemporal aper-
ture is uniquely defined by the spatiotemporal aperture matrix

together with the pulse length .

D. Linear Antenna Arrays

For sounding systems with linear antenna arrays, as the one
depicted in Fig. 2, the signal model can be simplified. We say
that Array is linear if its elements are located along a straight
line through the origin of , i.e., . In
this case, the position of a point on the array axis is spec-
ified by the signed distance from the origin of .
Likewise, denotes the centroid position of the th tem-
poral sounding pulse at Array . Obviously, the full -vector
cannot be estimated in this case but only its projection onto the
array axis . Therefore, we replace by this projection, de-
noted by . It can be noticed that , where

is the angle between the array axis and . We call
the spatial frequency of Path at Array . In the sequel,

we assume one-dimensional arrays and replace by and
by . Consequently, ,

, and
is a 4 -dimensional vector throughout the remainder of this
paper. We also define and

for the subsequent investigations.

E. Specific Examples of Systems Using Linear Arrays

In numerical examples, we will consider two switched
systems named “MIMO-ULA” and “SIMO-ULA.” The
MIMO-ULA system is equipped with two uniformly spaced
linear arrays consisting of antenna elements with half-wave-
length interelement spacing. The position of element
is given by , where is selected
such that (19) is fulfilled. We define the antenna element index
vector . The SIMO-ULA system
is a MIMO-ULA system with . For both MIMO-ULA
and SIMO-ULA, the uniform temporal sampling

(20)

is selected. Here, denotes the time period between consecu-
tive samples. With this definition, , as required
from (19). Hence, the spatiotemporal aperture matrix of the
MIMO-ULA system is fully defined by the vectors and .
For the SIMO-ULA system, it suffices to specify .

For the MIMO-ULA system, the estimation range of
is given as

(21)

with and . For
the SIMO-ULA system, where is not estimable, we select

.

III. FISHER INFORMATION MATRIX AND

CRAMÉR–RAO LOWER BOUNDS

In this section, we investigate the effect of the spatiotem-
poral aperture matrix on the (conditional) CRLB and on the
BCRLB for the estimation of the entries of the parameter vector

. The CRLB is a function of , whereas the BCRLB depends
on an assumed prior density function for [18].

In Section III-A–E, we first derive the CRLB for the esti-
mator and show which criterion the aperture matrix should ful-
fill in order to yield the minimum CRLB in a scenario with one
propagation path . Thereafter, we show that the same
criterion minimizes the BCRLB in the multipath case.

A. The Conditional Cramér–Rao Lower Bound

The CRLB on the variance of the estimation error of an un-
biased estimator of can be calculated as the th diagonal
element of the inverted Fisher information matrix

(22)
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In Appendix I, the Fisher information matrix for the esti-
mation of is shown to be of the form

...
. . .

... (23)

where the submatrix is partitioned as

(24)

Defining the normalized element factor of sounding pulse (see
also Section IV) as

EF (25)

with , the entries
, and of read

EF (26)

EF (27)

and

EF (28)

As can be noticed from (26)–(28), the matrix in general
depends on the parameter vectors and . For , the
factor EF in (25) and the exponential terms in (26)–(28)
are all unity. Therefore, making use of (19) and the identity

, we obtain

(29)

As is apparent from (29), the matrix depends only on
and not on the remaining entries of . Notice that the choice of a
coordinate system satisfying (19) ensures that holds.
Similar effects have previously been noticed for radar systems
[19], for direction estimation [6] and for switched sounding sys-
tems [2].

B. The One-Path Case, Orthogonal Aperture

For the one-path case , we have . For sim-
plicity, we drop the path index . It follows from (23), (24),
and (29) that the Fisher information matrix reads

(30)

with

(31)

where is the signal-to-noise ratio (SNR)
and , , ,
denote the rows of .

By inspection of (31), we see that the th diagonal element of
depends only on the squared norm of the th row of , e.g.,

element (1,1) depends only on . The off-diagonal elements
of are cross-terms involving scalar products of different
rows of . For example, the off-diagonal element is
proportional to .

Theorem 3: The CRLBs for the estimation of the Doppler
and spatial frequencies fulfill the inequalities

CRLB

CRLB (32)

Moreover, equality in all three inequalities is achieved simulta-
neously in (32) if and only if the rows of are orthogonal, i.e.,

and (33)

Proof: It is shown in [20, pp. 231] that
for any , i.e., lower bounds the CRLB for parameter .
Using Lemma 19 given in Appendix II, we see that the equality

is obtained for all if and only if is
diagonal. By inspection of (30), we see that is diagonal if
and only if the rows of fulfill (33).

Restricting the comparison to the class of apertures with equal
diagonal elements in their associated Fisher information ma-
trices, we have the corollary:

Corollary 4: Within the class of spatiotemporal apertures
with identical values of , , and , the minimum
CRLB is obtained if and only if the rows of the aperture ma-
trix are orthogonal.

In the literature there exists a result for the joint estimation
of elevation and azimuth of a single path analogous to Theorem
3. As shown in [6] and [7], the minimum CRLB for joint es-
timation of azimuth and elevation from data collected with a
three-dimensional array is achieved if and only if the nondiag-
onal terms of the matrix vanish.
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C. Specific Examples (Continued)

In the following, we demonstrate the impact of the spatiotem-
poral aperture on the CRLB in the one-path case. We consider
the CRLB of an MIMO-ULA system with and the
commonly used sequential sounding mode

(34)

(35)

Equivalently, and
. We chose . This selection of en-

sures that all pairs of one Array 1 element and one Array 2 ele-
ment are active once, and, as we will show in Section III-E, that

. The resulting spatiotemporal aperture matrix yields
a nondiagonal Fisher information matrix because
and the minimum CRLB is not obtained. If in addition

, the Fisher information matrix is noninvertible, and hence
the CRLB is infinite. For instance, in the case where

and , the ratios between the CRLBs obtained for
the selected aperture matrix resulting from (34) and (35)
and the minimum CRLB for , , and are calculated as

dB, dB,

and dB, respectively.
In the above example, the spatial sounding was selected such

that all antenna array elements are active the same number of
times during one measurement run. In the next example, we
compare this case to that where some antenna elements are ac-
tive more frequently than others. With , we see
that if all Array elements are active eight times.
For comparison, we select the spatial sampling schemes such
that , i.e., we use only four of the eight
elements of each array. In this case, provided all the used an-
tenna array elements are active the same number of times (i.e.,
16 times) during the measurement run, we have . If
both spatiotemporal apertures fulfill (33), we see that the CRLB
in the latter case is lower than in the former case. The difference
amounts to approximately 2.46 dB.

These two examples clearly show that the sounding mode
highly affects the CRLBs for the estimation of spatial and
Doppler frequencies in the one-path case.

D. Orthogonal Apertures in the Multipath Case

Motivated by the above orthogonality criterion that applies to
the one-path case, it is of interest to see if this condition holds
true in the multipath case as well. As remarked in Section III-A,
the Fisher information matrix depends on the parameters to be
estimated. In particular, the off-diagonals of the Fisher informa-
tion matrix which enters the proof of Theorem 3 depend on the
path parameters. Thus it is difficult to give a characterization of
the minimum CRLB in the multipath case. To circumvent this
obstacle, we investigate the BCRLB.

The BCRLB for the estimation of is [18]

BCRLB (36)

where is the Fisher information matrix averaged with respect
to the prior density

(37)

and the matrix depends only on the prior (and is independent
of the aperture matrix). The particular choice of prior does not
affect our analysis in the following. By (23), we see that can
be written as

...
. . .

... (38)

with

(39)

We remark that the diagonal blocks of read

(40)

with

(41)

where denotes the expectation with respect to the prior
of .

We are now able to give the following characterization of the
aperture matrices, which yields the lowest BCRLB in the mul-
tipath case.

Theorem 5: Let BCRLB be the BCRLB resulting from
the aperture matrix and similarly BCRLB the BCRLB re-
sulting from an arbitrary aperture matrix with the property
that diag diag . If the inequality

BCRLB BCRLB (42)

is fulfilled for any such aperture matrix , then the rows of
are orthogonal.

Proof: We prove Theorem 5 by proving that if the BCRLB
of an aperture matrix is lower than or equal to the BCRLB of
an orthogonal aperture matrix , then is orthogonal as well.
By the assumption (42)

(43)

is fulfilled for any such that diag diag .
Making use of (69) in Appendix II and eliminating the terms,
we obtain from (43)

(44)

Then, by invoking Lemma 18 in Appendix II and inserting (40),
we obtain, after elimination of some irrelevant terms

for all (45)
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Now, suppose that is row-orthogonal. Then is diag-
onal and for all . Inserting in
(45) yields

for all (46)

From [21, Th. 7.7.8], we have that
for any . Since diag diag ,

then for any . Hence
for any . Combining this

additional inequality with (46), we obtain, for any

(47)

(48)

By Lemma 19 in Appendix II, the two inequalities in (47) are
fulfilled for all if and only if is diagonal. Hence, is
row-orthogonal.

It is worth noticing the difference between Theorems 3 and
5. Theorem 3 states that (in the one-path case) the orthogo-
nality condition (33) is a necessary and sufficient condition for
the minimum CRLB to be achieved. The result in Theorem 5
states a necessary (but not sufficient) condition for an aperture
matrix to yield the minimum BCRLB in the sense of (42). The
reason for this seemingly weaker result is that the cross-terms

in the matrices and are removed in the step
from (44) to (45). If the off-diagonal blocks should be taken into
consideration, more specific assumptions must be made about
the prior. Considering a prior and a group of apertures such that

, one can prove that row-orthogonality is a nec-
essary and sufficient condition for an aperture matrix to yield the
minimum BCRLB. The proof is similar to that of Theorem 3.

E. Uniform and Parallel Spatiotemporal Apertures

In the following, we define the concept of uniformity of a spa-
tiotemporal aperture matrix and show that uniformity implies
that this matrix is row-orthogonal. For convenience we define
the row indexes , , and of such that
is fulfilled. Let be a column of , i.e., .
Then the number of columns of that coincide with in the

th and th elements can be written as

Definition 6: A spatiotemporal aperture matrix is
-uniform if and only if there exists a constant such

that , for all .
We can now prove a simple lemma that turns out to be helpful

for the design of row-orthogonal spatiotemporal aperture ma-
trices.

Lemma 7: Row and row of a -uniform spatiotem-
poral aperture matrix are orthogonal.

Proof: Let denote the th row of
and . Then .
Therefore

By convention , which implies .
Thus .

As an example, a (2,3)-uniform (i.e., spatially uniform) aper-
ture is a spatiotemporal aperture where all pairs of antenna array
elements are active times during one measure-
ment run. For all spatially uniform aperture matrices, the con-
dition is fulfilled. For instance, the spatiotemporal
aperture matrix defined by (34) and (35) is spatially uniform
with and, therefore, in this case.

For a parallel sounding system with transmitters and
receivers where all antenna pairs are active simultaneously, we
see that . In this case, is (1,2)-uniform with

, -uniform with and (2,3)-uniform
with . Therefore, such a system always fulfills (33).
This result agrees with that in [22] and [23], that

always hold for a parallel system with .
From the observation that parallel systems always fulfill (33),

it might seem tempting to conclude that parallel systems are
preferable to switched systems. However, the comparison of the
CRLBs of different spatiotemporal apertures must be done with
the same SNR and thus with the same for all considered aper-
tures. To illustrate the comparison problem, we consider the case
where all antenna pairs are active once during the measurement
run. In a parallel system, this condition implies that all sam-
ples are taken simultaneously and therefore . Hence,
in this case, Doppler frequency estimation is not possible. In
a switched sounding system, the same condition implies that

, and thus a spatiotemporal aperture with finite CRLB
can be constructed. In general, one can always construct a spa-
tiotemporal aperture of a switched sounding system with a value

larger than that of a parallel sounding system with the same
number of samples. An additional major difference between par-
allel and switched systems is that parallel systems do not allow
for adjustments of without changing the geometry of the
antenna arrays, as do switched systems.

IV. SPATIOTEMPORAL AMBIGUITY FUNCTION

In this section, we define a (bi)spatiotemporal ambiguity
function for channel sounding. To our best knowledge, this
problem has not previously been addressed in published work.

Definition 8: The Doppler-(bi)direction ambiguity function
of a (bi)spatiotemporal channel sounding system is defined to
be

(49)
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where with de-
fined in (5).

The magnitude of the ambiguity function ranges from zero to
unity. For any , . In the case where there
exists a vector such that , two
signal components with parameter vectors and , respectively,
are indistinguishable. We call this the ambiguity effect. Due to
the particular form of the sounding pulses [see, e.g., (5)], the
ambiguity function in (49) can be recast as

(50)

Thus, is a function of the difference vector , i.e.,
. For simplicity, we refer to both

and as “ambiguity function.” It suffices to investigate the
behavior of , defined as

(51)

EF (52)

Notice that while the definition of Woodward’s ambiguity
function [8] involves the transmitted signal only, the definition
(49) includes both the transmitted temporal signal and the spa-
tial aperture. A more general class of ambiguity functions is
derived in [9], where the definition given in (49) is a special
case. It is shown in Appendix III that the Doppler-direction
ambiguity function fulfills a constant volume property, as does
Woodward’s ambiguity function. Due to this property, ambi-
guity volume can be moved from one region of the estimation
range to another but not canceled. Thus, if a side-lobe of the
ambiguity function is suppressed, the corresponding suppressed
ambiguity volume appears elsewhere.

Inspired by the terminology used in antenna theory [24], we
call EF the normalized element factor of the sounding
pulse . When all element factors are equal, i.e., EF
EF , the ambiguity function simplifies to

EF AF (53)

where

AF (54)

is the normalized spatiotemporal array factor or array factor, for
short. The factorization of (53) is analogous to the well-known
factorization in the theory of antenna systems. The radiation pat-
tern of an antenna array with identical elements is the product
of an element factor and an array factor [24]. This factoriza-
tion splits the impacts on the ambiguity function of the array
elements, reflected via the element factor, and of the aperture
configuration, reflected via the array factor. The main concern
of this paper is the impact of the configuration of the spatiotem-
poral aperture of an MIMO channel sounder. Thus, the factor of
interest in the product (53) is the array factor. Two equivalent
conceptual approaches can be followed to investigate the effect
of the aperture configuration only. The first approach consists

merely in restricting the attention to the array factor of the aper-
ture. The second approach consists in considering an ambiguity
function induced by the aperture with the impact of the element
factor dropped. This is achieved by assuming that the element
factor is constant. This assumption is often valid since the du-
ration of a measurement run is typically large compared to the
duration of a sounding pulse. The fact that both conceptual ap-
proaches are equivalent follows from (53).

It follows from (54) that the array factor achieves its max-
imum value at , namely, AF . If there ex-
ists a nonzero such that AF is fulfilled,
the ambiguity effect occurs, provided that the element factor is
constant. This observation leads to the following definition.

Definition 9 (Ambiguous Array Factor): A spatiotemporal
array factor AF is ambiguous if there exists a
in such that AF .

A spatiotemporal array factor that is not ambiguous is termed
a nonambiguous array factor. If a spatiotemporal aperture
yields an ambiguous array factor, we say the aperture is am-
biguous.

In the following, we analyze how the spatiotemporal aper-
ture affects the array factor. In particular, we state a necessary
and sufficient condition for a spatiotemporal aperture to be am-
biguous.

A. Specific Examples (Continued)

The following numerical examples illustrate the behavior
of the array factor for different spatiotemporal apertures.
We consider an SIMO-ULA system with and

. Fig. 3 reports the magnitude of the array factors
corresponding to four different spatiotemporal apertures for

. In Fig. 3(a),
is given by (35). It is apparent from the figure that the

absolute value of the array factor exhibits multiple maxima of
unit magnitude and is therefore ambiguous. In Fig. 3(b),
is defined by , i.e., each Array 2 element is active
eight times in succession. As shown in Fig. 3(b), this yields a
nonambiguous array factor with a unique maximum but a wide
main-lobe. Hence high variances of and are to be expected
in this case at large SNRs. Furthermore, since the main-lobe
is tilted, an error in the Doppler frequency estimate affects the
error in the direction estimate and vice-versa. The two estima-
tors are statistically dependent. In Fig. 3(c), is defined by

. This spatial array corresponds
to permuting the array element indices and then applying the
spatial sounding given in (35). It is apparent from Fig. 3(c) that
the array factor is nonambiguous in this case, and its main lobe
is narrower than that depicted in Fig. 3(b). However, “stripes”
of side-lobes separated by along the axis are visible.
Finally, Fig. 3(d) depicts the array factor when results from
a random permutation of the vector . The
depicted function has a unique maximum and the magnitude of
the highest side-lobe is significantly lower than in Fig. 3(c).

Due to the factorization (53), the constant volume property
of the ambiguity function is fulfilled for the array factor as well.
This effect is clearly visible in Fig. 3(a)–(d). In Fig. 3(a), the
ambiguity volume is concentrated in eight lobes with unit max-
imum magnitude. Thus, the array factor depicted in Fig. 3(a)
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Fig. 3. The spatiotemporal arrays (left plots) and corresponding magnitude of
the array factors (right plots) in the four cases (a)–(d) described in the text. Each
dot of the aperture plots denotes one ������ � ���� point, i.e., the centroid of one
spatiotemporal sample.

is ambiguous. In Fig. 3(b), the volume is mainly located in the
wide main-lobe. In Fig. 3(c) the volume is concentrated in the
main-lobe and in stripes of side-lobes. In Fig. 3(d), there is no
large side-lobe, and the main-lobe remains rather narrow. In-
stead, the ambiguity volume is distributed to the multiple small-
magnitude side-lobes.

B. Necessary and Sufficient Condition for a Spatiotemporal
Aperture to be Ambiguous

The following lemma gives a necessary and sufficient condi-
tion for a spatiotemporal aperture to be ambiguous.

Lemma 10: A spatiotemporal aperture is ambiguous if and
only if there exists , , such that

(55)

Proof: The spatiotemporal array factor AF has
magnitude of one if and only if the phases of the exponential
terms in (54) satisfy

(56)

The total number of congruences in this system is the facto-
rial of . Solving (56) is equivalent to solving the 1 “neigh-
boring” congruences (55). The latter set of congruences is al-
ways fulfilled for the “trivial solution” . The array factor
AF is ambiguous if, and only if, (56) has a nontrivial
solution in .

C. Specific Examples (Continued)

In the following, we define a class of spatiotemporal aper-
tures for an SIMO-ULA system called modulo-type apertures
and show that the elements in this class are ambiguous.

Definition 11: A modulo-type spatiotemporal aperture of an
SIMO-ULA system is an aperture satisfying

(57)

where are relatively prime.
As an example, the commonly used spatiotemporal aperture

given in (35) is a modulo-type aperture with and
.

For an SIMO-ULA system, (55) reads

for all (58)

It is easy to see that for a modulo-type aperture,
, for all . Therefore,

by inserting (57) in (58), we obtain the congruences

and (59)

Solving for yields the
system of equations

(60)

It can be seen that for each , there exists a unique satis-
fying (60) such that (56) holds. Therefore, there exist in total

different pairs
such that (56) is fulfilled. Thus, any modulo-type spa-
tiotemporal aperture of an SIMO-ULA system is am-
biguous. As remarked in Section IV-A, this effect is
clearly visible in Fig. 3(a), where the array factor exhibits

different lobes of unit magnitude at the positions
.

D. Component Apertures and Subapertures

It is, in general, difficult to prove whether, for a given spa-
tiotemporal aperture, the system of congruences (55) is fulfilled
or not. However, in the following, we give the definition of the
two concepts of “component aperture” and “subaperture” and
show two corollaries of Lemma 10 that are useful for identi-
fying ambiguous apertures.

Definition 12 (Component Aperture): Let be a spatiotem-
poral aperture matrix. Then the aperture matrix of a compo-
nent aperture is obtained by replacing one or two rows of by
the all-zero row.

Definition 13 (Subaperture): Let be spatiotemporal aper-
ture matrix. Then the aperture matrix of a subaperture is ob-
tained by erasing a number of columns in .
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Inserting Definition 12 in Lemma 10 yields the corollary.
Corollary 14: A spatiotemporal aperture with one ambiguous

component aperture is ambiguous.
Corollary 15: Any subaperture of an ambiguous aperture is

ambiguous.
Proof: The proof follows from the observation that if (56)

is fulfilled, then a subset of the congruences is fulfilled as well.
Therefore, if (56) is fulfilled for , it is fulfilled for too.

As an example of Corollary 14, a sufficient condition for an
aperture of a MIMO-ULA system to be ambiguous is that ei-
ther or yields an ambiguous array factor when used in
an SIMO-ULA system. Therefore if a modulo-type aperture is
used at either the transmitter or the receiver in a MIMO-ULA
system, the corresponding array factor is ambiguous. It is worth
noting that the most commonly used spatiotemporal apertures
are indeed formed by a combination of a repetition scheme [as
the one used in Fig. 3(b)] at Array 1 and a modulo-type scheme
at the Array 2. Since in this case the component aperture formed
by the temporal aperture and the spatial aperture at Array 2 is
ambiguous, the whole bispatiotemporal aperture is ambiguous.

We see by Corollary 15 and the example given in
Section IV-C that any aperture formed by leaving out sounding
pulse of a modulo-type aperture is ambiguous. One such aper-
ture was analyzed in [5].

V. THE IMPACT OF THE SPATIOTEMPORAL APERTURE ON THE

THRESHOLD EFFECT

In the following, we investigate the effect of the spatiotem-
poral aperture on the root mean-squared estimation error
(rmsee) of the joint Doppler frequency and spatial frequency
estimator. We consider the one-path case . To simplify
the notation, we drop the path index in the sequel.

Generally, the rmsee of a nonlinear estimator exhibits the
same typical behavior that we sketch here considering the pa-
rameter vector . Below a certain threshold in SNR, the

rmsee of increases rapidly as the SNR decreases [25], [26].
This effect is commonly known as the threshold effect. The pre-
vious sections show that the spatiotemporal aperture determines
the behavior of the array factor AF and therefore of
the ambiguity function . As can be seen from the exam-
ples given in Section IV-A, the magnitudes of the side-lobes of
the array factor depend on the spatiotemporal aperture. Conse-
quently, the spatiotemporal aperture also affects the robustness
of the estimators toward noise, since this robustness directly de-
pends on the magnitudes of the side-lobes [25]. In the following,
we use the NSL associated with a spatiotemporal aperture as a
figure of merit for noise robustness of the parameter estimators.

Definition 16: The NSL associated with a spatiotemporal
aperture matrix is defined as

NSL AF (61)

where AF is the set
of local maxima of AF .

If a spatiotemporal aperture is ambiguous there exists by def-
inition at least one such that AF and there-
fore NSL . On the contrary, a spatiotemporal aperture with

Fig. 4. Simulated rmsee curves obtained from 1000 Monte Carlo runs using the
two different orthogonal spatiotemporal apertures� (marked with�) and�
(marked with �). The dashed lines are the corresponding CRLBs obtained from
(32). The solid curves without marks show the simulated rmsee of the single-
parameter maximum-likelihood estimator with all other parameters known. An
MIMO-ULA type system with� �� � � and � � �� is used and��� � �.
Isotropic sounding pulses are assumed �EF ����� � ��.

NSL less than one has a unique maximum. In that case, the NSL
coincides with the magnitude of the highest side-lobe of the nor-
malized array factor. Generally, the NSL is hard to obtain ana-
lytically but can, however, be computed numerically.

To study the relation between the NSL and in more detail,
a method for computing is needed. Motivated by the obser-
vation that the estimators at hand all converge to the CRLB at
high SNR, is defined in the following as the maximum

such that the inequality:

rmsee (62)

is fulfilled. The threshold of the joint estimator is defined
as the maximum of the thresholds of the individual estimators

, , and , i.e.,

(63)

Hence, can be determined if the rmsee is known. In prac-
tice, the rmsee and are estimated by means of Monte Carlo
simulations.

A. Specific Examples (Continued)

Fig. 4 reports the results of a Monte Carlo simulation com-
paring the rmsees of , , and using two different orthog-
onal spatiotemporal aperture matrices , with NSL

, and , with NSL together with the corre-
sponding CRLBs. The parameter setting used for this simulation
is reported in the caption of the figure. For comparison, we have
included the simulated rmsee of each single maximum likeli-
hood estimator of , , and with the two other parameters
known. These curves are lower bounds on the rmsees when all
parameters are estimated jointly.
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Fig. 5. Simulated rmsee versus SNR for an SIMO-ULA system with settings
� � �, � � �, and � � ��. The remaining settings are the same as
those reported in the caption of Fig. 4. The resulting rmsees of three spatiotem-
poral apertures with different NSLs are plotted. The dashed lines are the cor-
responding CRLBs. The solid curves without marks show the rmsees of the
single-parameter maximum likelihood estimators when all other parameters are
known.

In the case, the threshold estimates , , and
all take the value 16 dB; hence

dB (64)

for , the estimated threshold values are
dB, dB and, consequently, dB. Defining

as the largest threshold estimate for the single-param-
eter estimators, we see that exceeds by 2 and 4 dB in
the and cases, respectively. The simulation results given
in Fig. 4 suggest that one should select an orthogonal spatiotem-
poral aperture matrix that yields the lowest possible .

We now consider an SIMO-ULA system and assume that
is known. We consider three spatiotemporal apertures with

NSL , and , respectively. The simulated rm-
sees together with the corresponding CRLBs and the simulated
single-parameter rmsees are reported in Fig. 5. As can be ob-
served from the figure, increases with the NSL. In the NSL

case, exceeds by approximately 1 dB.
In the above investigation, a very large number of Monte

Carlo runs is required to estimate the threshold position accu-
rately. Therefore, this approach is not feasible when a large
number of spatiotemporal aperture matrices should be com-
pared. Furthermore, the Monte Carlo simulations commonly
underestimate due to the low outlier probability [27].
Hence the values obtained from Figs. 4 and 5 are too
optimistic. Several methods for estimating the threshold value
of an estimator are available in the literature. In [28], [29],
Athley describes a method to approximate the rmsee in the
threshold region based on the magnitudes of the side-lobes of
the ambiguity function.

Fig. 6 reports for different selections of as a function of
the corresponding NSL. The parameter settings are the same as

Fig. 6. The estimated rmsee threshold �� as a function of the NSL. The points
marked by � are obtained from Athley’s method, while the points marked with�
are obtained from Monte Carlo simulations. The simulation setting is described
in the caption of Fig. 5.

in Fig. 5. The points marked by “ ” are obtained using Athley’s
method [28, eq. (20)]; the points marked “+” are obtained from
Monte Carlo simulations with 1000 runs and varying in steps
of 1 dB. It is apparent from the figure that the values of ob-
tained from the Monte Carlo simulations are maximally 4 dB
lower than the values obtained using Athley’s method. This
is to be expected due to the finite number of Monte Carlo runs
and the uncertainty caused by the 1 dB quantization of used in
the simulation. As can be seen for both methods, the obtained es-
timates exhibit an increasing trend with respect to the NSL.
Hence, the NSL can be used as a figure of merit to assess the
robustness of spatiotemporal aperture towards noise.

VI. CONCLUSION

A novel model of wireless MIMO channel sounding systems
was proposed. This model is based on the concept of (bi)spa-
tiotemporal aperture and can describe switched as well as par-
allel sounding systems. The proposed model provides a descrip-
tion of the impact of spatiotemporal sounding on the joint es-
timation of Doppler frequency, direction of arrival, and direc-
tion of departure. The Fisher information matrix and the condi-
tional CRLBs on the estimator variances were derived. For the
one-path case, it was shown analytically that a spatiotemporal
aperture fulfilling an orthogonality property yields the minimum
CRLBs. It was also shown that the aperture which yields the
minimum Bayesian CRLB in the multipath case also fulfills this
orthogonality criterion.

An ambiguity function for Doppler-bidirection estimation
was defined. The ambiguity function factorizes into an “el-
ement factor” multiplied by an “array factor” The necessary
and sufficient condition for the array factor to be ambiguous
was stated, and a certain family of spatiotemporal apertures
(the so-called modulo-type apertures), which includes the most
commonly used apertures, was found to be ambiguous, i.e., to
yield an ambiguous array factor.

Monte Carlo simulations show that the normalized side-lobe
level is a sensible figure of merit for the identification of spa-
tiotemporal apertures performing close to optimum in terms of
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root mean square estimation error among the class of spatiotem-
poral apertures exhibiting the orthogonality property.

As a general conclusion, when designing a spatiotemporal
aperture for joint estimation of Doppler frequency, direction of
departure, and direction of arrival, it is not advisable to optimize
the temporal or spatial apertures separately. Joint optimization
of the bispatiotemporal aperture should be performed instead.

APPENDIX I
DERIVATION OF THE CONDITIONAL

FISHER INFORMATION MATRIX

The Fisher information matrix for joint estimation of

the parameter vector from an observation of

can be written as

...
. . .

... (65)

where we use the notation

(66)

with the complex gradient defined as in [30, Appendix B]. We
remark that in (66), the explicit mention of the dependence of

has been dropped to simplify the notation. Using [2], (22),
can be rewritten as

(67)

where with
given in (5). Inserting (5) and (25) in (67) yields (24).

APPENDIX II
TECHNICAL LEMMAS

Lemma 17 (Modified Version of [21, Observation 7.1.2]):
Let be an index set and and be the
principal submatrices of the positive definite matrices
and formed by deleting the rows and columns complementary
to those indexed by . Then, we have

(68)

Proof: Let be a vector with arbitrary entries in the
components indicated by and zero entries elsewhere.
Let be the subvector of indicated by . Thus

and .
The lemma follows from insertion into .

We remark that for positive definite matrices and

(69)

A proof of (69) is given in [21, Th. 7.7.4].
Lemma 18: Let and be positive definite matrices

and let be an index set. Then the implication

(70)
holds.

Proof: From and Lemma 17, it follows that
. Then by (69), we have .

Then Lemma 18 follows by applying Lemma 17.
Lemma 19: A positive definite matrix fulfills

for all if and only if is diag-
onal.

Proof: It is easily checked that if is diagonal, then
for all .

We now prove the converse, i.e., if
for all , then is diagonal. Let be an positive
definite matrix and partition it as

(71)

where is a scalar, is a vector, and is the upper left
1 1 principal matrix of . Inversion of

yields

(72)

Assume that for all and, therefore, in
particular

(73)

Then (72) implies or .
Since is positive definite, so is . Thus
if and only if . To complete the proof, we repeat the argu-
ment for to show that

and thus is diagonal.

APPENDIX III
CONSTANT VOLUME PROPERTY OF THE AMBIGUITY FUNCTION

In the following, the ambiguity volume
is derived. Making use of (49), some straight-

forward algebraic manipulations lead to (74) and (75) as shown
at the top of the next page. The function in (75) is
defined as and .
We notice that the integral term in
(75) vanishes for index values , such that .
Similarly, is zero for , such that

is an integer. Thus, by selecting spatiotem-
poral array such that for any , with , at least one
of the quantities and is an
integer, the terms are zero. This condition holds for
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(74)

(75)

switched sounding systems where . The
condition also holds for systems equipped with uniform linear
arrays with half-wavelength interelement spacing.

For a spatiotemporal array such that , the
ambiguity volume reads

(76)

Thus, for this class of spatiotemporal arrays, the ambiguity
volume depends only on the second-order moment and
fourth-order moments , , of the trans-
mitted sounding pulses.
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