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Abstract 12 

Four different machine learning algorithms, including Decision Tree (DT), Random Forest (RF), 13 

Multivariable Linear Regression (MLR), Support Vector Regressions (SVR), and Gaussian Process 14 

Regressions (GPR), were applied to predict the performance of a multi-media filter operating as a 15 

function of raw water quality and plant operating variables. The models were trained using data 16 

collected over a seven year period covering water quality and operating variables, including true 17 

colour, turbidity, plant flow, and chemical dose for chlorine, KMnO4, FeCl3, and Cationic Polymer 18 

(PolyDADMAC). The machine learning algorithms have shown that the best prediction is at a 1-day 19 

time lag between input variables and unit filter run volume (UFRV). Furthermore, the RF algorithm 20 

with grid search using the input metrics mentioned above with a 1-day time lag has provided the 21 

highest reliability in predicting UFRV with a RMSE and R2 of 31.58 and 0.98, respectively. Similarly, RF 22 

with grid search has shown the shortest training time, prediction accuracy, and forecasting events 23 

using a ROC-AUC curve analysis (AUC over 0.8) in extreme wet weather events. Therefore, Random 24 

Forest with grid search and a 1-day time lag is an effective and robust machine learning algorithm that 25 

can predict the filter performance to aid water treatment operators in their decision makings by 26 

providing real-time warning of the potential turbidity breakthrough from the filters. 27 

Keywords: Filtration Performance, Machine Learning Approach, Hyper-parameter Optimisation, Unit 28 

Filter Run Volume 29 
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Graphical Abstract 30 
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Nomenclature 32 

    

Symbols   

𝐶 Cost of Constraints Violation MLR Multivariable Linear Regression 

𝐶𝑜𝑒𝑓0 Constant Parameter in the Sigmoid or 

Polynomial Kernel Function 

MSE Mean Square Error 

𝐶𝑝 Complexity Parameter NOM Natural Organic Matter 

𝐹𝑁 False-Negative NTU Nephelometric Turbidity Unit 

𝐹𝑃 False-Positive PolyDADMAC Cationic Polymer 

𝐹𝑃𝑅 False-Positive Rate RBF Radial Basis Function 

𝐼𝑄𝑅 Interquartile Range RF Random Forest 

𝐾(𝑥𝑖,𝑥𝑗) Kernel Function RMSE Root Mean Square Error 

mtry Number of candidate variables 

considered at each split 

ROC Receiver Operator Characteristics 

p Number of variables in the input matrix RS Random Search 
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𝑄 Quartile SVR Support Vector Regression 

𝑇𝑁 True-Negative TOC Total Organic Carbon 

𝑇𝑃 True-Positive UFRV Unit Filter Run Volume 

𝑇𝑃𝑅 True-Positive Rate WFP Water Filtration Plant 

𝑥𝑖, 𝑥𝑗 Data Points   

𝑦�̂�  MLR Model Prediction Value Greek Symbols 

  𝛽0  Intercept Coefficient 

Abbreviations 𝛽𝑖  Regression Coefficient 

AUC Area Under the Curve �̂� Optimal Regression Parameter 

DMG Dual Media Gravity 𝛾 Kernel Function Coefficient 

DOC Dissolved Organic Carbon Δ𝑇 Time Lag 

DT Decision Tree 𝜀 Random Error 

GPR Gaussian Process Regression 𝜆 Penalty Term 

GS Grid Search 𝜑 Mapping to a high dimensional 

feature space factor 

    

1 Introduction 33 

Extreme weather events, such as intense and frequent heavy rain events, can affect water catchments 34 

and their performance due to the increased concentrations of suspended materials, natural organic 35 

matter (NOM), and inorganic substances in source waters [1, 2]. It has been shown that the water 36 

treatment plant’s production rate can decrease by ~40% due to having weaker flocculants because of 37 

higher NOM in the feedwater after heavy rainfall [3]. These impose additional burdens on water 38 

treatment plants, requiring additional maintenance, chemical use, and waste production [4]. Hence, 39 

the use of a reliable forecasting model for filter performance can, not only help in controlling the 40 

performance of the water treatment plant, but also in predicting the production efficiency depending 41 

on the influent water quality. 42 

Filter performance can be expressed in terms of daily water production, filter run time, unit filter run 43 

volume (UFRV), effluent turbidity, and pressure head loss. Of these, UFRV—defined as the volume of 44 

water filtered through a unit surface area—is a useful way of normalising performance for daily water 45 

production and run time, which depending on the loading rate, can range from 200 m3/m2 to 400 46 

m3/m2 [5]. Understanding changes in UFRV as a function of feedwater quality and plant operating 47 

variables, such as coagulant dose, provides an effective and robust way to combine large data sets 48 

into useful information on plant performance and potentially provide real-time warning of problems 49 

such as turbidity breakthroughs from the filters. Given the complexity, nonlinearity, and numerous 50 

variables in the filtration models, developing data-driven artificial intelligence (AI) models have been 51 

applied for water quality monitoring as they improve the prediction capability for accurately assessing 52 

water quality parameters [6-9].  53 



 4 

Decision tree (DT) algorithms involve real-time water quality monitoring from multivariate data 54 

collected from different sensors [10, 11]. This identifies high-quality ground-water zones [12], flood 55 

modelling [13], and algal growth prediction [14]. It was reported that an improved DT learning method 56 

could forecast and evaluate the water quality of Chao Lake in Hong Kong and can assess the trophic 57 

status of Poyang Lake in China [6, 7]. Furthermore, the predictive performance of DT models can be 58 

considerably improved by aggregating many independent individual trees, known as random forests 59 

(RF) [15]. The random forest algorithm employs the bootstrap aggregation process to combine a set 60 

of DTs, where each tree is constructed using the best split for each node among a subset of randomly 61 

chosen predictors. RF averages noisy (but unbiased models) to reduce the prediction variance to 62 

mitigate the DT algorithm’s poor performance. RF provides a multivariate, nonparametric, and 63 

nonlinear regression, where the final prediction in regression is made by averaging each tree’s 64 

prediction [15, 16]. Training RF models are less computationally expensive compared to other machine 65 

learning algorithms [17] as they are straightforward to use [18] and can handle highly correlated 66 

predictor variables [17]. Other advantages of the RF algorithm are reducing variance and consistency, 67 

while not increasing the bias of the predictions [19, 20]. Recently, a holistic review of the 68 

implementation of the RF algorithm in water resource applications has shown the effectiveness of 69 

these models for prediction and inference purposes in water resources [21]. 70 

Other promising machine learning techniques are the support vector regression (SVR) and Gaussian 71 

process regression (GPR), especially in environmental studies, from soil moisture prediction [22] to 72 

rapid detection of organic contamination events in the water distribution systems [23], and coagulant 73 

dosage prediction in water treatment plants [24]. These algorithms essentially benefit from the 74 

“kernel trick”, which efficiently maps the data into a high-dimensional feature space using a nonlinear 75 

function [8]. Despite the good predictive performance, SVR and GPR algorithms are sensitive to the 76 

choice of hyper-parameters (i.e., parameters that cannot be inferred during the model’s training). 77 

Hence, selecting proper kernel functions and hyper-parameters is crucial in applying SVR and GPR 78 

algorithms to deliver correct results [25, 26]. In general, the main hyper-parameter selection 79 

techniques are gradient-based approaches [27], such as (1) grid search (GS), where the search space 80 

of parameters is split into groups of possible parameters to be tested uniformly [28], and (2) random 81 

search (RS), where possible values for parameters are randomly picked, which exhibited more efficient 82 

in high-dimensional search spaces [25, 29]. In a previous study, we compared different machine 83 

learning algorithms (i.e., multivariable linear regression (MLR), SVR, and GPR with different kernel 84 

functions) to quantify variations in NOM in the raw water reservoir as a function of climatological and 85 

water quality factors [30]. Four independent variables: (1) precipitation, (2) temperature, (3) leaf area 86 

index, and (4) turbidity, were selected to develop and train each machine learning model. It was found 87 
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that model accuracy was very sensitive to the time-lag function, which is used to average climate 88 

observations prior to pairing with DOC observations. The SVR model with a quadratic kernel function 89 

and a 12-day time-lag function provided the highest reliability in predicting the DOC observations with 90 

a RMSE and R2 of 1.9 and 0.71, respectively.   91 

In this study, we extend the machine learning approach to predict filter performance in terms of UFRV 92 

in a treatment plant operation on the same drinking water reservoir. The main objective of this paper 93 

is to employ different machine learning algorithms, including multivariable linear regression, decision 94 

tree algorithm, random forests, support vector regression, and Gaussian process regression, to predict 95 

the filter performance in a water filtration plant in terms of influent water quality conditions. Random-96 

search and grid-search procedures are used to tune the hyper-parameters of the different kernel 97 

functions embedded in SVR and GPR to predict filter performance. The results of regression and 98 

classification models were discussed in terms of error rates and classification precision. 99 

2 Methodology 100 

2.1 Dataset 101 

The data were extracted from the Supervisory control and data acquisition (SCADA) system of the 102 

Nepean Water Filtration Plant (WFP), located in south Sydney, Australia. The Nepean WFP treats 103 

surface water from the Nepean reservoir by pre-oxidation (chlorine and KMnO4), coagulation, and 104 

flocculation. Two-step filtration processes are used: roughing filtration and dual media gravity (DMG) 105 

filtration, followed by final chlorine disinfection. DMG filters at Nepean WFP consist of two types of 106 

tightly packed filtering materials: a layer of anthracite coal (media depth: 600mm), and layers of fine 107 

sand (media depth: 300mm) and gravel (media depth: 75mm). The plant uses ferric chloride (FeCl3) as 108 

the primary coagulant and polyDADMAC as a secondary coagulant [31]. The data consisted of long 109 

timescale measurements of physicochemical water quality parameters that include and are not 110 

limited to turbidity, dissolved organic carbon, color, and pH, as well as filter performance indicator as 111 

UFRV. This dataset was obtained from August 2014 to May 2020, including data from a heavy rainfall 112 

event that happened in February 2020.  113 

The Nepean catchment areas could receive more than 100 mm of rainfall over one month [32]. In 114 

extreme weather events, such as the period between the 7th and the 10th of February 2020, the 115 

catchment received 390 mm of rain [33]. In such a flash-flooding event, the inflows to the WFP could 116 

peak at 80 – 100 NTU. Consequently, an extreme rainfall event could impose a serious challenge on 117 

filtration performance to meet the drinking water Guidelines. 118 
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2.2 Data processing 119 

Data integration, outliers removal, and feature selection are implemented to process the source data 120 

for subsequent modelling. In addition, influent water quality data and chemical dosing parameters 121 

were integrated as a model input, and the filter performance indicators (e.g., UFRV) were used as the 122 

model output.   123 

2.2.1 Outlier detection and boxplot analysis 124 

Boxplot analysis was conducted as it provides insightful visualization for outlier detection. For each 125 

variable, possible outliers were labelled by computing the interquartile range (IQR) [34]. Any data 126 

points less than or greater than the lower and upper fences, respectively, were eliminated (see Eq 1 127 

and Eq 2, where 𝑄1 and 𝑄3 are the First and Third quartiles, respectively) [34].  128 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑄1 − 1.5 × 𝐼𝑄𝑅 Eq 1 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 = 𝑄3 + 1.5 × 𝐼𝑄𝑅 Eq 2 

Note that a cautious approach was used when removing the outliers as it could negatively affect the 129 

model accuracy. For example, data from heavy rainfall events might be categorized as outliers using 130 

the boxplot analysis. As such, this data was not removed in the outlier removal process and was still 131 

used in the data processing. On the other hand, a grouped outlier set due to unavoidable device errors 132 

or incorrect measurements was regarded as an outlier and removed from the dataset. 133 

2.2.2 Correlation Analysis 134 

Pearson and Spearman correlation analyses were applied to find the correlation coefficient between 135 

the different parameters to exclude multi-collinearity and to extract the possible relationships 136 

between each parameter. Appropriate input variables were selected beforehand to lower the 137 

computational time and avoid overfitting the model to the training data.  138 

2.3 Establishing the Machine Learning algorithms 139 

Multivariable linear regression, decision tree, random forest, support vector regression, and Gaussian 140 

process regression algorithms were employed to find the best machine learning algorithm that better 141 

estimates the filtration performance. The receiver operating characteristic (ROC) was conducted to 142 

investigate whether the developed machine learning models could predict extreme water quality 143 

events. To visualize the performance of the multi-class classification problem, the area under the curve 144 

(AUC) was computed by generating a confusion matrix, and the true-positive rate (𝑇𝑃𝑅) and false-145 

positive rate (𝐹𝑃𝑅) metrics were calculated as follows: 146 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Eq 3 
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𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Eq 4 

where 𝑇𝑃 and 𝐹𝑃 are true-positives, representing the correctly predicted extreme events with UFRV 147 

< 150 m3/m2, and false-positives, representing the model’s false alarms where UFRV < 150 m3/m2, 148 

respectively. In contrast, 𝑇𝑁 and 𝐹𝑁 are true-negatives, representing the correct predictions of 149 

normal treatment conditions with UFRV > 150 m3/m2, and false-negatives, representing the failures 150 

to predict the occurrence of extreme events (i.e., failed alarms).  151 

The ROC curve illustrates the trade-off between the TPR and FPR for a suite of possible thresholds 152 

[35]. The AUC values could vary between 0.5 and 1, where values near 1 suggest excellent 153 

performance and values near 0.5 denote poor forecasting accuracy, not differing from random-154 

classifier [36, 37]. 155 

2.3.1 Multivariable Linear Regression 156 

The multivariable linear regression is a baseline model to evaluate the added benefit of using a more 157 

complex model than the conventional linear models. Eq 5 represents the relationship between the 158 

dependent variable (UFRV), and the k independent variables, using the MLR model. 159 

𝑈𝐹𝑅�̂� = 𝛽0 + ∑(𝛽𝑖𝑥𝑖)

𝑘

𝑖=1

+ 𝜀 
Eq 5 

𝛽0 is the intercept coefficient, 𝛽𝑖 is the regression coefficient, and 𝜀 is the random error. To estimate 160 

the regression coefficients, the ordinary least squares were used to find the parameters that minimize 161 

the model’s mean squared error (MSE) of the model, as implied by Eq 6. 162 

�̂� = arg min (∑(𝑦𝑖 − 𝑦�̂�)
2) Eq 6 

The UFRV is denoted as �̂� = {�̂�𝑖|𝑖 = 1, 2, … 𝑛}), �̂� represents the optimal regression parameter, and 163 

𝑦�̂� represents the MLR model prediction value calculated by Eq 5. 164 

2.3.2 Decision Tree 165 

Although the decision tree method has many advantages, such as fast calculation speed, high 166 

efficiency, and relatively insensitive to missing values [11], they are considered noisy models [38] and 167 

tend to overfit the model to the training samples [39]. Intuitively, the tree construction does not 168 

continue beyond the current node if the cost of adding another branch from the current node is higher 169 

than the complexity parameter (𝐶𝑝), which is calculated as: 170 

𝐶𝑝 = ∑ 𝑀𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖 + 𝜆 × (𝑠𝑝𝑙𝑖𝑡)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒𝑠

 Eq 7 
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where 𝜆 is the penalty term, also known as the regularization rate that is used to tune the over impact 171 

of regularization on the complexity error. A Cp value of 1 represents a tree with only 1 split that does 172 

not account for variable interactions. In this work, the optimal value for Cp was determined for each 173 

model using the hyperparameter optimization techniques discussed in section 2.4.1. 174 

2.3.3 Random Forests 175 

The “mtry” parameter (i.e., the number of candidate variables considered  at each split) is optimized 176 

using grid and random search techniques to run the RF algorithm. The mtry default value was selected 177 

at p/3, where p is the number of variables in the input matrix [15]. 178 

2.3.4 Kernel-based regression models 179 

The kernel function denotes an inner product in feature space and is represented as: 180 

𝐾(𝑥𝑖,𝑥𝑗) = 𝜑(𝑥𝑖)𝜙(𝑥𝑗) Eq 8 

Where 𝜑 is the mapping to a high dimensional feature space. Choosing the right kernel function and 181 

fine-tuning its hyper-parameters depends on the problem and the information extracted. 182 

Consequently, the predicted filter performance (UFRV denoted as �̂� = {�̂�𝑖|𝑖 = 1, 2, … 𝑛}) is 183 

determined as: 184 

�̂� = ∑ 𝛼𝑖𝐾(𝑥𝑖,𝑥) + 𝑏
𝑁

𝑖=1
 

Eq 9 

Support vector regression and gaussian process regression were used as Kernel-based regression 185 

models. The SVR model can concurrently minimize model dimensions and estimation errors, while 186 

having decent generalization ability and less prone to over-fitting [40]. GPR requires a relatively small 187 

training data set that includes stability, flexibility, generalization capacity, and flexible kernel functions 188 

[18, 41]. In this study, the kernel functions used for the SVR and GPR algorithms and their adjustable 189 

hyper-parameters are presented in Table 1. 190 

2.3.5 Adjustable hyper-parameters 191 

Table 1 lists commonly used kernel functions for SVR and GPR, and the adjustable parameters for 192 

selected machine-learning algorithms. In these kernel functions, xi and xj are two different data points 193 

in the training data set. Degree defines the dimension of the polynomial function, and Coef0 is the 194 

constant parameter in the sigmoid or polynomial kernel function. The gamma parameter (γ) defines 195 

how far the influence of a single training example reaches. Cost (C) is the cost of constraints violation, 196 

which means when the value is small, the penalty for misclassification is reduced, which means having 197 

a strong generalization ability. For example, in the application of SVR with kernel function, the 198 

hyperparameters, namely γ (the coefficient of the kernel function) and C (the regularisation parameter 199 
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of the optimisation problem) are key points in the training process of the SVR model. The 200 

hyperparameter C controls the trade-off between minimising the model’s complexity and minimising 201 

the training error. The hyper-parameter γ represents the width of the Radial Basis Function (RBF) 202 

kernel, and it determines whether the model will tend to over-fit the training data or it would make 203 

the model not flexible enough for complex function approximation [42]. 204 

Table 1: Set of common kernel functions used in this study for selected machine learning algorithms 205 
along with their adjustable parameters 206 

Machine 

learning  

algorithm 

Kernel Equation 
Adjustable 

parameters 

SVR 

Linear kernel 𝐾(𝑥𝑖,𝑥𝑗) = 𝑥𝑖 ∙ 𝑥𝑗 + 𝑐  

Polynomial kernel 𝐾(𝑥𝑖,𝑥𝑗) = (𝛼𝑥𝑖 ∙ 𝑥𝑗 + 𝑐)
𝑑

 Degree, scale, offset 

Radial basis function 

(RBF) kernel 
𝐾(𝑥𝑖,𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾(𝑥𝑖 − 𝑥𝑗)

2
) Gamma, cost 

Sigmoid kernel 𝐾(𝑥𝑖,𝑥𝑗) = tanh (𝛼𝑥𝑖 ∙ 𝑥𝑗 + 𝑐) Scale, offset 

GPR 

RBF kernel 
𝐾(𝑥𝑖,𝑥𝑗) = 𝑒𝑥𝑝 (

−1

2𝜎2 (𝑥𝑖 − 𝑥𝑗)
2

) 
Sigma 

Laplacian Kernel 
𝐾(𝑥𝑖,𝑥𝑗) = 𝑒𝑥𝑝 (−

‖𝑥𝑖 − 𝑥𝑗‖

𝜎
) 

Sigma 

Hyperbolic Tangent 

kernel 

𝐾(𝑥𝑖,𝑥𝑗) = tanh (𝛼𝑥𝑖 ∙ 𝑥𝑗 + 𝑐) Scale, offset 

ANOVA Kernel 
𝐾(𝑥𝑖,𝑥𝑗) = ∑ exp (−𝜎(𝑥𝑖

𝑘 − 𝑥𝑗
𝑘)

2
)

𝑑
𝑛

𝑘=1

 
Sigma, degree 

Bessel Kernel 
𝐾(𝑥𝑖,𝑥𝑗) =

𝐽𝜐+1(𝜎‖𝑥𝑖 − 𝑥𝑗‖)

‖𝑥𝑖 − 𝑥𝑗‖
−𝑛(𝜐+1)

 
Sigma, order, degree 

DT NA NA Cp 

RF NA NA mtry 

 207 

The mapping that the kernel functions are represented to transform the non-linear input space to a 208 

high-dimensional feature space where linear regression is possible depends on the intrinsic 209 

topological structure of the data. This requires the kernel type and hyper-parameters to be optimised 210 

to approximate the ideal mapping [43]. This study focused on commonly used kernel functions, 211 

namely, the RBF, the polynomial, the sigmoid (hyperbolic tangent), the laplacian, and the Bessel kernel 212 

for SVR and GPR as supervised machine learning algorithms (outlined in Table 1). The predictive 213 

performance of SVR and GPR machine learning algorithms depends exclusively on the suitability of 214 

the selected hyper-parameters. While hyperparameter tuning has widely been applied to find a good 215 
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combination of control parameters in the model, there has yet to be much discussion on which 216 

hyperparameter optimisation technique is best in machine learning model development.  217 

As there is no exact method to obtain the best possible set of hyper-parameters, search algorithms 218 

are usually applied to find the optimal set of hyper-parameters [44-46]. Hence, in this paper, two 219 

separate search algorithms, random search and grid search, were implemented in combination with 220 

a 10-fold cross-validation procedure on each candidate parameter vector for adjusting hyper-221 

parameters of SVR and GPR to guarantee the maximum possible quality of the final machine learning 222 

algorithms. It should be noted that grid search and random search were selected as hyperparameter 223 

optimisers as they are among the more popular methods for hyperparameter optimisation. Other 224 

hyperparameter optimisation methods, such as the Bayesian optimisation method used in other water 225 

treatment plant applications [47] were considered, but required biased inputs, such as operator 226 

experience, were not used in this study which focussed only water quality and filter performance data. 227 

could be explored in future studies. The selection of the initial ranges of parameters is a common 228 

problem in both grid search and random search algorithms, which can be selected either based on 229 

experience with the regression problem studied, or using large ranges of parameters [28]. The usage 230 

of large parameter ranges implies an increase in the search space and the training time of the machine 231 

learning algorithms. Table 4 shows the range of values for hyper-parameters explored in this work [25, 232 

28, 48-51]. The results of the random search hyper-parameter optimisation algorithm were compared 233 

to the best results found in the grid search. 234 

2.4 Time-lag function 235 

All data indicators (i.e., operational data, chemical dosing, water quality parameters, and filtration 236 

performance) were temporally paired with each other. Theoretically, it takes as long as the residence 237 

time for water to go through different steps in a water filtration plant and pass through the filters. In 238 

reality, however, the water quality conditions and treatment regime at a given time might not lead to 239 

the recorded filter performance at that same time. Hence, a time-lag function is used to represent the 240 

delay between recorded filter performance indicators, and the associated operational data and water 241 

quality conditions. Time lags from zero up to three days for model input variables were considered. 242 

When the time lag is zero (△T=0), the filter performance indicators are in sync with the time of the 243 

model input variables. Whereas when the time lag is two (△T=2), the model input variables are for a 244 

time that is 2 days ahead of the time of the filtration performance indicators. In other words, the 245 

model simply uses the previous value as the prediction for the future. 246 

�̂�𝑇 = ∑ 𝛼𝑖𝐾(𝑥𝑖,𝑥)
𝑇−∆𝑇 + 𝑏

𝑁

𝑖=1
 

Eq 10 
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As the time lag was unknown, the performance of machine learning algorithms was evaluated as a 247 

function of time lag, while the lag that provided the strongest performance was selected. 248 

2.5 Performance and accuracy assessment of machine learning algorithms 249 

The framework to train, validate, and test the machine learning algorithms to predict filtration 250 

performance is presented in Figure 1. A 10-fold cross-validation was utilised for performance 251 

assessment of machine learning algorithms in which the training data are divided into 10 subsets of 252 

approximately equal size [30]. The resulting machine learning models are established by training on 253 

nine subsets, and one subset was retained to test the model. The procedure is repeated 10 times with 254 

each subset used for testing once, while the error of the machine learning model is determined by 255 

averaging the test errors over the 10 trials. The root mean squared error (RMSE) and mean square 256 

error (MSE) were employed as the statistical indicators for estimation performance. This approach 257 

was used to model plant performance over a range of conditions from normal to extreme. The 258 

extreme events occur over short temporal scales and are infrequent and there is insufficient data to 259 

train and independently test the model. 260 

Once the optimum machine learning model and the optimal time lag were determined, the final model 261 

could be used to optimise the plant performance by changing the influencing treatment parameters. 262 

To evaluate whether developed models can predict the events with low filtration performance, the 263 

ROC and AUC were used by plotting the true-positive rate versus the false-positive rate at different 264 

thresholds. The values of AUC-ROC range between 0.5 and 1, where 1 denotes a model's excellent 265 

forecast capacity and 0.5 indicates its poor predictive accuracy [52]. This was programmed, trained, 266 

and tested using Matlab by MathWorks [53]. 267 
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 268 

Figure 1: The overall framework to train, validate, and test the machine learning algorithms to 269 
predict filtration performance 270 
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3 Results and Discussion 271 

3.1 Data processing 272 

The Pearson correlation analysis observations are listed in Table 2. It was noticed that UFRV was not 273 

influenced by temperature (r=0.02), pH (r=-0.03), total Mn (r=0.02), and alkalinity (r=0.05) (Table 2). 274 

Hence, the parameters with no correlations were excluded as potential variables. DOC/TOC was also 275 

removed as potential explanatory variables because the number of measurements was not enough 276 

and considering them as variables meant that Dissolved Organic Carbon (DOC) and Total Organic 277 

Carbon (TOC) data had to be removed as explanatory variables data. Parameters with a correlation 278 

coefficient of more than 0.4 with the target variable (UFRV) were selected as independent potential 279 

input variables. To comprehensively consider the amount of data in the dataset, KMnO4 was also 280 

considered as an input parameter to investigate the potential effects of oxidants on filtration 281 

performance. Hence, UFRV was correlated with seven parameters: (1) true colour, (2) turbidity, (3) 282 

flow, (4) chlorine, (5) KMnO4, (6) FeCl3, and (7) Cationic Polymer (PolyDADMAC). The statistical 283 

descriptions of the influencing factors, including mean, median, maximum, minimum, and standard 284 

deviation, are shown in Table S1. 285 

Table 2: Pearson correlation analysis between filter performance indicator (UFRV) and potential 286 
explanatory variables 287 

Method: Pearson Turbidity DOC TOC True Colour Flow Temperature pH total Mn Alkalinity KMnO4 Chlorine 
Ferric 

Chloride 
Cationic 
Polymer UFRV 

Turbidity 1.00              

DOC 0.60 1.00             

TOC 0.58 0.96 1.00            

True Colour 0.67 0.65 0.68 1.00           

Flow -0.37 -0.39 -0.39 -0.40 1.00          

Temperature -0.24 0.22 0.27 -0.14 0.01 1.00         

pH -0.06 -0.13 -0.15 -0.17 -0.04 0.10 1.00        

total Mn 0.04 -0.19 -0.01 0.24 0.07 0.25 0.06 1.00       

Alkalinity -0.29 -0.45 -0.23 -0.25 -0.12 0.09 0.54 0.31 1.00      

KMnO4 0.01 0.43 0.57 0.43 -0.12 -0.35 0.17 0.34 0.43 1.00     

Chlorine 0.54 0.65 0.54 0.66 -0.60 -0.01 0.27 0.31 0.34 0.29 1.00    

Ferric Chloride 0.57 0.56 0.42 0.61 -0.62 0.06 0.18 0.20 0.05 0.01 0.86 1.00   

Cationic Polymer 0.54 0.53 0.31 0.66 -0.64 0.11 -0.09 -0.07 -0.28 0.06 0.51 0.86 1.00 
 

UFRV -0.52 -0.32 -0.30 -0.57 0.61 0.02 -0.03 0.02 0.05 0.21 -0.43 -0.49 -0.48 1.00 
 288 

Five models with a different number of predictor parameters, as presented in Table 3, were 289 

considered to analyse their contribution to the accuracy of the predicted filtration performance 290 

indicator. For example, the difference between Model-1 and Model-2 is that FeCl3 has been included 291 

in Model-2 to determine whether considering FeCl3 will improve the accuracy of the predicted model. 292 
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Table 3: Set of influent water quality and operational input variables used in each model for UFRV 293 
estimation 294 

Model Model Predictor Variables 

Model-1 Flow True Colour Turbidity 
    

Model-2 Flow True Colour Turbidity FeCl3 
   

Model-3 Flow True Colour Turbidity FeCl3 PolyDADMAC 
  

Model-4 Flow True Colour Turbidity FeCl3 PolyDADMAC Chlorine 
 

Model-5 Flow True Colour Turbidity FeCl3 PolyDADMAC Chlorine KMnO4 

 295 

3.2 Hyper-parameter tuning with Grid Search and Random Search 296 

The optimal hyper-parameters for each supervised machine learning model with the lowest RMSE 297 

were computed by GS and RS techniques. RS randomly generated a set of candidate parameters from 298 

the same tuning range for GS as in Table 4. Table 4 also presents the optimum parameter values only 299 

for Model-4 with a one-day time lag. The optimal values of the hyper-parameters with respective 300 

kernel functions computed by RS and GS techniques for all five models and different time lags up to 3 301 

days are shown in Table S2. The optimum hyper-parameters for each machine-learning algorithm 302 

(Table S2) were applied in selected kernel functions to compare how well each machine-learning 303 

algorithm can estimate the UFRV of filters. Whereas the Cp was used to adjust the DT model 304 

performance for predicting the UFRV. 10-fold cross-validation was considered in developing the DT 305 

model to avoid overfitting [54]. For the grid search technique, a grid network was established in the 306 

range of 0 to 1 with Cp to find the optimal value of Cp in the present study. Eventually, the Cp value 307 

of 0 was defined as the optimal value for the DT algorithm for 5 selected models and different time-308 

lag values (see Figure S1 in the Supplementary Information document). 309 

Table 4: Adjustable parameters for each supervised machine learning model and tuned optimum 310 
parameter values 311 

Supervised 

model 

Kernel 

Function 

Tuned 

parameters 

Search range 

 

Optimal parameter 

setting 

(Model-4 with one-day 

time lag) 

Grid 

Search 

Random 

Search 

SVR Polynomial 

Degree [2, 9] 4 3 

Cost [2-2, 215] 1 1 

Gamma [2-15, 23] 0.01 0.1 
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RBF 
Cost [2-2, 215] 3 82 

Gamma [2-15, 23] 0.8 0.15 

Sigmoid 
Scale [0, 10] 0 1 

Offset [0, 10] 1 0.1 

GPR 

RBF Sigma [10-3, 103] 0.65 0.7 

Laplacian Sigma [10-3, 103] 0.5 0.5 

Hyperbolic 

Tangent 

Scale [0, 10] 1 3 

Offset [0, 10] 5 1 

Bessel 

Sigma [10-3, 103] 1 0.2 

Order [1, 10] 1 1 

Degree [1, 5] 5 5 

DT  Cp [0, 1] 0 0.02 

RF  mtry [1, number of model predictors] 2 2 

 312 

3.3 Machine learning model performance assessment 313 

Once the optimal values of the hyper-parameters using GS and RS techniques were determined, the 314 

performance of the optimisation process for selected machine learning algorithms was evaluated. It 315 

is important to consider the optimal hyper-parameter measures to determine the best predictive 316 

machine learning algorithm for filtration performance prediction. Figure 2 compares the effects of 317 

increasing the time-lag from 0 to 3 days between UFRV and model input variables (Model-1 to -5 in 318 

Table 3) on the performance of developed machine learning algorithms, which include MLR, DT, RF, 319 

and SVR with different kernel functions, as well as GPR with different kernel functions that are based 320 

on R-squared values. Figure 2 also shows whether incorporating more parameters as model input 321 

would improve UFRV predictions. 322 

  323 
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Grid-Search Random-Search 
(a) 

 

(d) 

 
(b) 

 

(e) 

 
(c) 

 

(f) 

 
Figure 2: R-squared values of estimated UFRV from different machine learning algorithms by 324 

increasing the time-lag between UFRV and model input variables (Model-1 to -5) from 0 to 3 days 325 
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Figure 2 shows that considering a 1-day time lag between input variables and UFRV as model output 326 

resulted in better predictions than time-lags of 0, 2, and 3 days for all the machine learning algorithm. 327 

For example, the results show that by applying the MLR algorithm to Model-4 (input variables: true 328 

colour, turbidity, flow, FeCl3, PolyDADMAC, and Chlorine), the R-squared values for having the time-329 

lag of 0, 1, 2, and 3 days to be 0.54, 0.64, 0.61, and 0.57 respectively. This implies that the regression 330 

model for UFRV prediction has a higher predictive power when using a time-lag of 1-day in this 331 

dataset. Also, Model-4 and Model-5 showed better performance in terms of R-squared than Model-332 

1, Model-2, and Model-3. However, incorporating KMnO4 as a model input variable (i.e., the difference 333 

between Model-4 and Model-5, see Table 3) did not enhance the model performance in terms of R-334 

squared with 1-day time lag using SVR-RBF, GPR-RBF, GPR-Bessel, and DT algorithms. In other machine 335 

learning algorithms, it only improved the model predictions marginally.  336 

It is also essential to identify the root mean square error (RMSE) of the machine learning models to 337 

identify the best model in UFRV prediction, as shown in Figure 3. The results of Figure 2 and Figure 3 338 

revealed that RF with grid search for Model-4 (model input variables are true colour, turbidity, flow, 339 

FeCl3, PolyDADMAC, and Chlorine) and 1-day time lag provided high reliability in predicting UFRV 340 

(R2=0.98). The DT algorithm with Model-4 and 1-day time lag yielded a weaker performance compared 341 

to those of the RF model (R2=0.90, Figure 2 (a)). Among the SVR algorithms with different kernel 342 

functions (i.e., linear, polynomial, RBF, and sigmoid), the SVR algorithm with the sigmoid kernel 343 

function (SVR-Sigmoid model) provided the lowest performance (R2=0.00). Its performance with both 344 

grid search and random search was even lower than those of the MLR model (Figure 2 (b) and Figure 345 

2 (e)). However, the SVR with RBF kernel functions for Model-4 with a 1-day time lag performed better 346 

than the other SVR algorithms with an RMSE of 33.68 (Figure 3 (b)) and R2 of 0.92 (Figure 2 (b)). The 347 

GPR algorithm with RBF, Laplacian, and Bessel kernel functions provided a good performance based 348 

on the RMSE, and R2 (Figure 2 (c) and Figure 2 (f)). The GPR algorithm with hyperbolic kernel function 349 

provided the poorest performance in this study. Thus, the developed RF algorithm with grid search for 350 

Model-4 with a 1-day time lag performed better than the SVR-based model, the GPR model, and the 351 

DT model, with an RMSE of 31.58 (Figure 3 (a)) and R2 of 0.98 (Figure 2 (a)).  352 
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(a) 

 

(b) 

 

(c) 

 

Figure 3: RMSE of estimated UFRV from different Machine learning algorithms by increasing the 353 
time-lag between UFRV and model input variables (Models-1 to -5) from 0 to 3 days 354 

Figure 4 compared the results of hyperparameter tuning by the grid search and random search 355 

optimisation methods with a 1-day time lag between model output and input variables. Figure 4 shows 356 

that the outcomes from the grid search and random search hyperparameter optimisation methods 357 

were broadly similar in their performance measures that partially reflect previously reported findings 358 

[29]. 359 
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 360 

Figure 4: Comparison between the R-squared values of estimated UFRV from the grid search and 361 
random search hyperparameter optimization methods by the different machine learning algorithms 362 

with a 1-day time lag between UFRV and input variables 363 

Interestingly, the difference in R-squared between the two hyper-parameter optimisation methods 364 

(random search and grid search) is marginal for kernel functions that only have one or two adjustable 365 

parameters (e.g., GPR-RBF). In contrast, there is a large difference in the R-squared of the final UFRV 366 

model between grid search and random search for the kernels in SVR and GPR algorithms with more 367 

than two adjustable parameters (e.g., SVR with a polynomial kernel function). This can be explained 368 

by the additional parameters that are optimised by the polynomial kernel function compared to only 369 

two parameters (γ and C) in the SVR with RBF kernel function. 370 

3.4 Grid Search vs. Random Search 371 

Once the machine learning models were analysed, a comparison to evaluate which model is more 372 

suitable for this dataset was carried out (i.e., the speed at each model converges relatively to the other 373 

selected algorithms). By normalising RMSE against the machine learning algorithm with the highest 374 

RMSE (SVR-Sigmoid in Figure 3) and relatively comparing the training time, Figure 5 depicts a summary 375 

of the performance obtained with different machine learning algorithms including MLR, DT, RF, SVR, 376 

and GPR with different kernel functions for Model-4 with a 1-day time lag between UFRV and model 377 

input variables. In this case, the performance was determined in terms of R-squared (maximum), the 378 

training time (minimum), and normalised RMSE (minimum) by each model. 379 
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Grid Search 

 

Random Search 

 

Figure 5: Performance comparison between machine learning algorithms predicting UFRV with a 1-380 
day time lag between UFRV and model input variables including flow, true colour, turbidity, FeCl3, 381 

PolyDADMAC, and Chlorine 382 

Figure 5 shows that the SVR-sigmoid provided the worst performance in this dataset with the highest 383 

normalised RMSE, lowest R-squared, and the highest relative training time. However, the better 384 

models are RF, SVR-RBF, and GPR with RBF and Laplacian as they reported greater prediction accuracy 385 

in terms of the lowest RMSE and the highest R-squared. In addition, the random search hyper-386 

parameter optimisation technique took less training time than the grid search considerably. For the 387 

RF algorithm, the relative training times using the grid search and random search optimisation 388 

techniques were similar, but the grid search method provided a higher R-squared value and a lower 389 

RMSE. Hence, the machine learning algorithms with top performance in terms of training time and 390 

prediction accuracy were RF with grid search, SVR-RBF with random search, GPR-Laplacian with 391 

random search, and GPR-RBF with random search, respectively. 392 

3.5 ROC Analysis 393 

The ROC-AUC curve analysis was carried out to find out whether developed machine learning models 394 

that have better performance than the others (RF, SVR-RBF, GPR-Laplacian, and GPR-RBF) could also 395 

predict extreme water quality events. The UFRV threshold for such events was determined by studying 396 

the changing relationship between discharge and UFRV of filters (hysteresis) during an individual 397 

storm event in February 2020. The hysteresis between discharge and UFRV is presented in Figure 6, 398 

and the UFRV threshold for such events was set to be 150 m3/m2 as the UFRV during an extreme 399 

rainfall event (high flowrates) was less than 150 m3/m2. Figure S2 in the Supplementary Information 400 

document shows the ROC curve for the extreme weather events (UFRV <150 m3/m2) using RF, SVR-401 

RBF, GPR-Laplacian, and GPR-RBF algorithms and a 1-day time lag between UFRV and model input 402 

variables. 403 
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 404 

Figure 6: The hysteresis plot associated with the UFRV of filters 405 

Model-5 with GPR-Laplacian algorithms yielded maximum AUC values of 0.86, while the RF, SVR-RBF, 406 

and GPR-RBF algorithms yielded AUC values of 0.83, 0.85, and 0.85, respectively (see Table 5). The 407 

results of AUC values indicate that machine learning algorithms with top performance in this study 408 

(i.e., RF with grid search, SVR-RBF with random search, GPR-Laplacian with random search, and GPR-409 

RBF with random search), not only can predict UFRV with high prediction accuracy and lowest relative 410 

training time, but they can also provide high reliability in forecasting events with low UFRV (AUC was 411 

over 0.8, above the random level, as shown in Table 5). 412 

Table 5: The ROC-AUC curve analysis results for the extreme weather events (UFRV < 150 m3/m2) 413 
using RF, SVR-RBF, GPR-Laplacian, and GPR-RBF algorithms 414 

AUC-ROC 
Machine Learning Algorithm 

Random Forest SVR-RBF GPR-Laplacian GPR-RBF 

Model-1 0.78 0.75 0.76 0.73 

Model-2 0.78 0.77 0.78 0.73 

Model-3 0.79 0.80 0.80 0.74 

Model-4 0.83 0.83 0.84 0.81 

Model-5 0.83 0.85 0.86 0.85 

4 Conclusion 415 

In this study, eleven machine learning regression algorithms were applied to estimate the filter 416 

performance from water quality and operational data. The required input parameters were 417 

determined using an exhaustive feature selection technique, and two separate hyperparameter 418 

optimisation methods (grid search and random search) to optimise the parameter set. The key findings 419 

arising from the study are: 420 
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• A 1-day time lag between input variables and unit filter run volume as model output resulted 421 

in better predictions than time lags of 0, 2, and 3 days.  422 

• The developed random forests algorithm with grid search using true colour, turbidity, flow, 423 

FeCl3, PolyDADMAC, and Chlorine as model input variables, and considering a 1-day time lag 424 

performed better than the SVR-based model, the GPR model, and the DT model, with an RMSE 425 

of 31.58, and R2 of 0.98.  426 

• In terms of extreme wet weather events UFRV prediction, the UFRV threshold for such events 427 

was set to be 150 m3/m2 from the hysteresis between discharge and UFRV. The machine 428 

learning algorithms with top performance in terms of the training time, prediction accuracy, 429 

and forecasting events with low UFRV (AUC over 0.8) were RF with grid search, SVR-RBF with 430 

random search, GPR-Laplacian with random search, and GPR-RBF with random search, 431 

respectively.  432 

In conclusion, the estimated UFRV of DMG filters in a direct filtration plant were in agreement with 433 

the actual measured values observed using machine learning-based algorithms with optimised hyper-434 

parameters. Overall, this study showcases the potential of the machine-learning approach to utilise 435 

influent water quality and operating data to predict the filter performance in a water filtration plant.  436 
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