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ABSTRACT: Caffeine, quinic acid, and nicotinic acid are among
the significant chemical determinants of coffee quality. This study
develops a chemometric model to quantify these compounds in
ternary mixtures analyzed by terahertz time-domain spectroscopy
(THz-TDS). A data set of 480 THz spectra was obtained from 80
samples. Combinations of data preprocessing methods, including
normalization (Z-score, min-max scaling, Mie baseline removal)
and dimensionality reduction (principal component analysis
(PCA), factor analysis (FA), independent component analysis
(ICA), locally linear embedding (LLE), non-negative matrix
factorization (NMF), isomap), and prediction models (partial
least-squares regression (PLSR), support vector regression (SVR),
multilayer perceptron (MLP), convolutional neural network (CNN), gradient boosting) were analyzed for their prediction
performance (totaling to 4,711,685 combinations). Results show that the highest quantification performance was achieved at a root-
mean-square error of prediction (RMSEP) of 0.0254 (dimensionless mass ratio), using min-max scaling and factor analysis for data
preprocessing and multilayer perceptron for prediction. Effects of preprocessing, comparison of prediction models, and linearity of
data are discussed.

1. INTRODUCTION
Coffee is one of the most widely consumed and traded luxury
goods in the world. Coffee plant belongs to the genus Cof fea in
the family Rubiaceae. The most economically important species
are Coffea arabica L., or arabica coffee, and Coffea canephora var.
robusta (L. Linden), or robusta coffee. Coffee is mostly
produced commercially from either species or blends of both.1

Different blends of coffee with different degrees of roast vary by
their body, mouthfeel, astringency, acidity, bitterness, flavors
and aromas, and bioactive qualities.2 These qualities are
attributed to the chemical composition of each cup of coffee.
Caffeine, quinic acid, and nicotinic acid (Figure 1) are among
the major molecular determinants in coffee. The content of
these compounds in coffee can vary significantly in the literature,
depending on cultivar, processing, and method of analysis.
Caffeine, or 1,3,7-trimethyl-xanthine, plays physical, chemical,

and biological roles in determining the strength and body of
coffee, influencing the bitterness of coffee, and being
psychologically active, respectively.3 Caffeine can be found
naturally in coffee beans, tea leaves, and cocoa beans and can be
added to carbonated drinks, energy drinks, and other food and
beverages.4 The caffeine content in coffee beans ranges from 0.6
to 4% by dry mass.3

Quinic acid is one of the determining factors for the taste,
flavor and aroma, and acidity of coffee.5 As one of the major
acids in coffee, it is found in green coffee beans and also derived
from chlorogenic acids (CGAs) during the roasting process.6

The content of quinic acid ranges from 0.33 to 0.85% by mass in
green coffee beans.7 Quinic acid content increases during the
roasting process and is higher in darker roasted coffee due to a
higher degree of CGA degradation. Quinic acid derivatives
formed during the roasting process include bitter-tasting, flavor,
and aroma compounds.5

Nicotinic acid (niacin; vitamin B3) is one of the micro-
nutrients in coffee. It is a water-soluble B vitamin derived from
trigonelline during coffee roasting. Coffee can be a significant
dietary source of bioavailable nicotinic acid.8 Nicotinic acid
content ranges from 2 to 119 ppm by dry mass in coffee brews.9

The amount of nicotinic acid produced varies with the degree of
roasting.
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Terahertz time-domain spectroscopy (THz-TDS) coupled
with chemometric analysis has recently gained attention as a
rapid, nondestructive method of qualitative and quantitative
determination of compounds in food products. The terahertz
regime is in the frequency range of 0.1−10 THz, corresponding
to the wavelength range of 0.03−3 mm. This range is located
between the microwave and infrared ranges. THz spectroscopy
can reveal crucial molecular information of intramolecular and
intermolecular modes caused by hydrogen bonds, van der Waals
energy, torsional modes, and vibrational modes of molecules.10

THzwaves have relatively low photon energy (4meV for 1 THz;
cf. 1.6−3.3 eV for visible light) and nonionizing penetration,
causing minimal damage to biomolecules.11 In addition, THz
waves are resistant to strong scattering12 and fluorescent
substances13 in samples, which are issues arising in infrared
and Raman spectroscopy, respectively. THz-TDS has been used
with chemometric methods, from simple linear regression14,15 to
machine learning models,16−27 to quantify nutritional, pharma-
ceutical, and explosive compounds. Applications of THz-TDS
and chemometric methods in food analysis are summarized in
Table 1.
In this study, ternary mixtures of caffeine, quinic acid, and

nicotinic acid are analyzed by THz-TDS and a chemometric
model for the quantification of these compounds is developed.
Combinations of preprocessing techniques and prediction
models are assessed for their quantification performance.

2. RESULTS AND DISCUSSION
A series of 480 measurements of 80 samples with different
compositions were analyzed by THz-TDS. Sample composi-
tions were systematically and randomly determined, as shown in
Figure 2. Replicate spectral measurements were conducted at
different points on the samples. Further details can be found in
Section 4.1.
Examples of the obtained absorbance spectra are shown in

Figure 3. The THz spectra of pure compounds have been
explored using experimental and computational methods and
reported in the literature. The absorption peaks observed in
Figure 3, especially those in the 2.0−3.0 THz range, are in good
agreement with previous THz-TDS studies on caffeine,28 quinic
acid,29 and nicotinic acid.30

The k-fold cross-validation method was used to evaluate the
performance of each chemometric method. Spectra of ternary
mixtures (n = 300) were divided into five parts (each with n =
60), whereby one part is in the test set and the rest are in the
training set of each fold (e.g., part one is the test set of fold one,

part two is the test set of fold two, etc.). Spectra of unitary and
binary mixtures (n = 180) were always in the training sets. This is
to resemble the use of the model in practice, whereby unitary
and binary mixtures set boundaries (or extrema) for the
(potentially nonlinear) interpolation of ternary mixtures. Each
model was assessed using root-mean-square error of calibration
(RMSEC), RMSE for the training set, and root-mean-square
error of prediction (RMSEP), RMSE for the test set.
Multiple chemometric models were examined in this study, as

shown in Figure 4. Absorbance spectra of 540 features or data
points were used as high-dimensional inputs for the models.
Two data preprocessing measures were explored to understand
their effect on the performance of the models. Normalization is

Figure 1. Chemical structure and content of caffeine, D-(−)-quinic acid, and nicotinic acid in coffee.

Table 1. Recent Studies of THz-TDS Coupled with
Chemometric Methods in Food Analysis

compound
sample
matrixa chemometric methodb reference

citric acid, D-(−)-fructose, D-
(+)-lactose

n/a PLSR, ANN ref 16

imidacloprid rice powder PLSR, SVR, iPLS,
biPLS

ref 18

L-(−)-glutamic acid, L-
(−)-glutamine, L-(−)-tyro-
sine

cereal (fox-
tail millet)

PLSR, SVM ref 20

L-(−)-glutamic acid, L-
(−)-glutamine, L-(−)-tyro-
sine

cereal (fox-
tail millet)

TM-stepwise regres-
sion, PLSR, N-PLSR

ref 21

imidacloprid, carbendazim flour PLSR, PCA, SVM ref 22
D-(−)-fructose, D-(+)-galac-
tose, D-(+)-mannose

n/a PLSR, SVR ref 23

benzoic acid flour GRNN, BPNN ref 24
flavanoids n/a PLSR, ANN, PCA,

SVM
ref 25

proteins soybean PLSR, PCA-RBFNN,
ABC-SVR

ref 26

bisphenol A, bisphenol S, bi-
sphenol AF, bisphenol E

n/a SVR ref 27

caffeine, D-(−)-quinic acid,
nicotinic acid

n/a PLSR, SVR, MLP,
CNN, gradient boost

this work

aReported as n/a if pure samples with binder (polyethylene) are used.
bPLSR, partial least-squares regression; ANN, artificial neural
networks; SVR, support vector regression; iPLS, interval partial least
squares; biPLS, backward interval partial least squares; SVM, support
vector machine; TM, Tchebichef image moment; N-PLSR, N-way
partial least-squares regression; PCA, principal component analysis;
GRNN, generalized regression neural network; BPNN, back-
propagation neural network; RBFNN, radial basis function neural
network; ABC, artificial bee colony; MLP, multilayer perceptron; and
CNN, convolutional neural network.
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performed to ensure faster convergence, and dimensionality
reduction techniques were performed to remove noises and only
retain meaningful features. Each preprocessing step (normal-
ization and dimensionality reduction) provides a bypass (no
preprocessing) configuration, so each predictionmodel can have
(1) both normalization and dimensionality reduction, (2) only
normalization, (3) only dimensionality reduction, and (4) no
preprocessing. Three normalization techniques, six dimension-
ality reduction techniques, and five prediction models were
investigated in this study (see details in Section 4.2).
A list of chemometric models (combinations of preprocessing

techniques and prediction models) with their respective RMSE
values can be found in the Supporting Information. Preprocess-
ing techniques resulting in the lowest RMSEP in each prediction
model are shown in Table 2. Note that the best-performing
PLSR (linear model) utilizes a nonlinear dimensionality
reduction method. The nonlinear effect is further explained in
Section 2.3. The lowest RMSEP of 0.0254 was achieved with the
combination of min-max scaling, FA, and MLP prediction. The
prediction performance of this model is visualized in Figure 5.
The physical interpretation of parameters is not explicit in most
of the investigated models due to the multiple layers of
processing. A spectral feature may seem significant in a layer, yet
be discarded in subsequent layers.
2.1. Effect of Preprocessing.Data preprocessing measures

are performed to improve the performance of predictionmodels.

However, these techniques might not always improve the
prediction performance. In some instances, they can remove
useful features and correlations that are beneficial to the
prediction model. As shown in Table 2, the CNN and gradient
boosting models performed best without dimensionality
reduction. The best CNN prediction was achieved when
coupled with Mie baseline removal, with an RMSEP value of
0.0293. The CNN model without data preprocessing, on the
other hand, resulted in a slightly higher RMSEP value of 0.0302.
This shows how prediction models like CNN may already be
able to extract useful features and data correlations without the
need for data preprocessing, especially when the sample size is
sufficient.
The effects of different data preprocessing methods on

prediction performance are examined. The RMSEPs of models
with one or more preprocessing techniques (normalization and/
or dimensionality reduction) were compared to the correspond-
ing combination with one of the techniques not applied. For
example, to examine the effect of the min-max scaling
normalization technique, the RMSEP of each model with no
normalization is subtracted from the RMSEP of the model with
the min-max scaling and the same dimensionality reduction and
prediction models. A negative value of this difference signifies a
reduction in RMSEP, hence an improvement in the prediction
performance. Mean differences for each model are reported in
Table 3. RMSE values of models with no preprocessing and plots
of differences can be found in the Supporting Information.
PLSR with PCA preprocessing is among the most widely used

chemometric model. In this study, implementing PCA
preprocessing with PLSR led to a mean RMSEP reduction of
0.0026, compared to the PLSR model with no dimensionality
reduction. This improvement can be attributed to how PCA
maximizes the covariance among the input data, while PLSR
maximizes the covariance between the input and output. PCA
can be perceived as a filtering layer that discards noise, which can
aid the covariance maximization of PLSR. Nevertheless, other
nonlinear dimensionality reduction techniques like FA and ICA
resulted in greater RMSEP reduction for PLSR models.
Therefore, it can be beneficial to explore less common
preprocessing techniques to improve the performance of
prediction models. For normalization techniques, Mie baseline
removal performs relatively well on average for all models.
Data preprocessing techniques resulted in reductions as well

as increases in RMSEP. The increases can be attributed to how,
in some instances, preprocessing can discard useful features that
compromise the performance of prediction models. It is

Figure 2. Ternary diagram of 80 sample compositions analyzed by
THz-TDS. To read the mixture compositions (dimensionless mass
ratio), the key on the top right can be placed on a point, extending the
lines to the axes or triangle edges. Preparation methods are described in
Section 4.1.

Figure 3.THz absorption spectra of pure caffeine, quinic acid, nicotinic acid, and a ternary mixture before (left) and after (right)Mie baseline removal
(a.u. = arbitrary unit).
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important to select the right combinations of preprocessing
techniques and prediction models to enhance the effectiveness
of each process and optimize the prediction performance.

2.2. Prediction Model. The combinations of data
preprocessing methods resulting in the best prediction perform-
ance for each model are shown in Table 2. PLSR is a widely used

Figure 4. Pipeline of chemometric methods. See the list of abbreviations in Table 4.

Table 2. Highest-Performance Preprocessing Technique by RMSEP for Each Prediction Model and Their Respective Optimal
Hyperparametersa

model normalization dimensionality reduction RMSEC RMSEP

MLP min-max scaling FA 0.0213 0.0254
#neurons: 4, activation fn: logistic, solver: lbfgs 27 components
SVR Mie baseline removal PCA 0.0262 0.0260
type: NuSVR, nu: 0.5, C: 1.0, iterations: 2000, kernel: rbf, γ: auto multifactor 27 components
CNN Mie baseline removal none 0.0276 0.0293
activation fn: sigmoid multifactor (with factor

concatenation)
gradient boosting Mie baseline removal none 0.0214 0.0316
learning rate: 0.01, max depth: 5, min child weight: 2, γ: 0, subsample: 0.3,
colsample_bytree: 0.6, num_round: 10,000

multifactor

PLSR Mie baseline removal LLE 0.0312 0.0283
with prescale, 3 components multifactor modified with 14 components,

30 neighbors
aAbbreviations are listed in Table 4. RMSEC and RMSEP values are reported as dimensionless mass ratios.

Figure 5. Performance of MLP with min-max scaling and FA preprocessing: predicted vs actual (dimensionless) mass ratio of caffeine (red), quinic
acid (green), and nicotinic acid (blue) in ternary mixtures (point colors are proportional to their associated predicted composition�see Figure 2).
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machine learning model, and PCA is among the most common
dimensionality reductionmethods used with it. According to the
results, Mie baseline removal and LLE preprocessing resulted in
the best-performing PLSR prediction with an RMSEP of 0.0282,
while Mie baseline removal and PCA preprocessing resulted in a
higher RMSEP of 0.0292. Thus, according to this study, PLSR
prediction can be optimized by data preprocessing of Mie
baseline removal and LLE modified with 14 components and 30
neighbors.
2.3. Linearity of Data. The linearity between the input

(spectral data) and output (mixture composition) was
investigated. This was done bymodifying the activation function
in the hidden layer and output layer (“tanh” function for
nonlinear model and “identity” function for linear model) of the
MLP model. Linear and nonlinear MLP models with no
preprocessing are compared. The best nonlinear MLP model
has a 14% lower RMSEP compared to the linear model (0.0270
vs 0.0316). The prediction performances of these models are
visualized in Figure 6. The MLP nonlinear models resulted in
lower RMSEP values than those of the linear models in most
cases. (see the Supporting Information). This suggests a
nonlinear relationship between our input data and mixture
composition.

3. CONCLUSIONS
In this study, ternary mixtures of caffeine, quinic acid, and
nicotinic acid with varying compositions were analyzed by THz-
TDS, and chemometric models were investigated for their
performance in the prediction of mixture compositions. The
performance of different prediction models, as well as the effect
of different data preprocessing techniques on the performance,

was explored. Among all models, MLP with the preprocessing
techniques of min-max scaling and factor analysis (with 27
components) had the best prediction performance with a
dimensionless mass ratio RMSEP of 0.0254. The widely used
PLSR predictionmodel achieved its best prediction results when
Mie baseline removal and LLE dimensionality reduction were
performed. In addition, a nonlinear model resulted in better
prediction performance than the linear model, using MLP as a
model method.
The developed chemometric models can serve as a stepping

stone for further investigation in food, pharmaceutical, and
cosmetic products containing these compounds, such as coffee,
energy drinks, and supplements. Additional practical consid-
erations should be taken into account when applying the
techniques to the products.

4. MATERIALS AND METHODS
4.1. THz-TDS Spectroscopy. All chemicals used are

analytical grade (>98% purity) and in their anhydrous forms.
Caffeine was purchased from LobaChemie; D-(−)-quinic acid
and nicotinic acid were obtained from Sigma-Aldrich. A high-
density polyethylene (HDPE) powder purchased from Sigma-
Aldrich was used as the binder for all sample mixtures. All
chemicals were used as received without any further purification.
The mixture compositions shown in Figure 2 include 60 and

20 systematically and randomly determined compositions,
respectively. The systematically determined compositions
include 10 points evenly spaced on each of the three edges
and three medians of the ternary diagram (triangle). Each
sample was mixed with HDPE at a 20:80 mass ratio and ground
to avoid aggregates and heterogeneous clusters. Each mixture

Table 3. Mean Change in RMSEP for Each Prediction Model by Different Preprocessing Methodsa

mean change in RMSEP

preprocessing technique PLSR SVR MLP CNN gradient boost

normalization Mie baseline removal −0.3326 −0.1252 −0.0063 −0.0087 −0.0071
min-max scaling −0.0866 0.3918 0.0088 0.0144 0.0130
Z-score 0.0732 1.0256 0.0282 0.0273 0.0240

dimensionality reduction FA −0.0047 −0.3354 −0.0109 0.0249 0.0055
ICA −0.0037 −0.3356 0.0312 0.0443 0.0114
isomap 0.0229 0.6478 0.0108 0.0316 0.0239
LLE −0.0021 −0.4042 0.0305 0.0080 0.0097
NMF 0.0001 −0.4179 0.0118 0.0129 0.0080
PCA −0.0026 0.9325 −0.0050 0.0133 0.0119

aRMSEP values are reported as dimensionless mass ratios.

Figure 6. Prediction performance of nonlinear (blue) and linear (red) MLP models for (dimensionless) mass ratios of caffeine, quinic acid, and
nicotinic acid in ternary mixtures. The left vertical axis is shifted up with respect to the right vertical axis for ease of comparison.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03808
ACS Omega 2022, 7, 35783−35791

35787

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c03808/suppl_file/ao2c03808_si_001.zip
https://pubs.acs.org/doi/10.1021/acsomega.2c03808?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03808?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03808?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03808?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


was transferred to a hydraulic press to be formed into disc pellets
at 7 tons for 5min. Each disc pellet had an approximately 100mg
of weight, 13 mm of diameter, and 0.850−0.950 mm of
thickness. In addition to the samples, pure HDPE was prepared
to be used as a blank (reference).
Six spectral measurements of each composition were

performed for a total of 480 spectra. Each measurement was
performed at different points on the samples. Four measurement
points were arranged in a square shape, and two measurement
points (the first and the last) were placed in the center of the
square, 1.0 mm apart from the other four.
Absorption spectra of the range 0.3−3.0 THz were obtained

from a THz-TDS system (TeraFlash, TOPTICA Photonics AG,
Germany), as shown in Figure 7. The source of radiation is a
photoconductive switch generated by a femtosecond laser at 780
nm. The experiment was conducted at an air-conditioned room
temperature (25 ± 2 °C). The acrylic chamber with a nitrogen-
purged atmosphere (relative humidity ≤5%) was custom-made
by researchers at the National Electronics and Computer
Technology Center (NECTEC), Thailand. The spectra were
acquired at a 5 GHz resolution, optimized, and formed a time-
domain data set {xi, yi | xi ∈ R4001, yi ∈ R3, i = 1, 2, ···, n} of n
samples, where each sample contained vector xi and target
concentration yi. Each time-domain spectrum was obtained

from a 2000-sample moving average. For background
compensation, frequency-domain data were subtracted from
the reference spectra.
4.2. Chemometric Models.Data preprocessing methods of

normalization (three techniques) and dimensionality reduction
(six techniques) and five predictionmodels were explored in this
study, as described in Table 4. An exhaustive investigation of
hyperparameters for each preprocessing technique and
prediction model was conducted to identify the optimal
hyperparameters reported in Table 2. A total of 4,711,685
combinations of preprocessing techniques and models were
explored. Additionally, a novel Mie baseline removal method in
the form of convex optimization is proposed and used in this
study, as described in Table 4.
Source codes were implemented using Python and the scikit-

learn,31 Keras,32 and XGBoost33 Python libraries. Jupyter
notebook was used as the integrated development environment.
Optimization of hyperparameters was performed on ray.io. All
data and source codes are available in the Supporting
Information. The total runtime for our computational
investigation described in the paper is approximately 3 days
on AWS Graviton 2 (256 cores, 1 TB RAM). However, an
individual model can be computed locally on a standard
workstation (4 cores, 8 GB RAM) in less than 1 hour.

Figure 7. Custom-made THz-TDS system at NECTEC, Pathum Thani, Thailand. The photoconductive antenna transmitter and receiver are labeled
as Tx and Rx, respectively. Off-axis parabolic mirrors are labeled as #1, #2, #3, and #4.
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