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1. Introduction

Let (ϑ1, . . . , ϑr) be a basis of the finite field

Fqr = {a1ϑ1 + . . . + arϑr : a1, . . . , ar ∈ Fq}

of qr elements over the finite field Fq of q elements.
Motivated by a series of recent outstanding results on integers with restricted digital 

expansion in a given basis, there has also been very significant progress in studying ele-
ments ω ∈ Fqr with various restrictions on their coordinates (a1, . . . , ar) in the expansion

ω = a1ϑ1 + . . . + arϑr ∈ Fqr ,

we refer to [4] for a brief outline of such results (both settings on integers and finite fields), 
some new results and further references, in particular on bounds of various character 
sums over such field elements.

Here, given a set A ⊆ Fq, we consider the set

Sr (A) = {a1ϑ1 + . . . + arϑr : a1, . . . , ar ∈ A} (1.1)

that is the set of u ∈ Fqr whose coordinates are restricted to the set A.
In particular, one of the natural examples is the case of q = 3 and A = {0, 2} which 

leads to a Cantor-like set Sr (A) ⊆ F3r .
The main goal of this paper is to estimate mixed character sums

Sr(A;χ, ψ; f1, f2) =
∑

ω∈Sr(A)

χ (f1(ω))ψ (f2(ω)) ,

with rational functions f1(X), f2(X) ∈ Fqr(X), of degrees d1 and d2, respectively, and 
where χ and ψ are a fixed multiplicative and additive character of Fqr , respectively 
(with the natural conventions that the poles of f1(X) and f2(X) are excluded from 
summation).

We are especially interested in the case when A is of cardinality #A relatively small 
compared to q. In particular, we are interested in obtaining nontrivial bounds in the case 
of small values of the parameter

ρ = log #A
.
log q
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It is well known that such bounds can be used to study, for example, the distribution 
of primitive elements in the values of polynomials on elements from Sr (A) or their 
pseudorandom properties. Since these applications are quite standard, we do not present 
them here.

2. Notation and conventions

Throughout the paper, we fix the size q of the ground field, and thus also its charac-
teristic p while the parameter r is allowed to grow.

We also fix an additive character ψ and a multiplicative character χ of Fqr which are 
not both principal.

As usual, we use Fq to denote the algebraic closure of Fq. It is useful to recall that 
Fq ⊆ Fp.

For a finite set S, we use #S to denote its cardinality.
We denote by log2 x the binary logarithm of x > 0.
We adopt the Vinogradov symbol �, that is, for any quantities A and B we have the 

following equivalent definitions:

A � B ⇐⇒ A = O(B) ⇐⇒ |A| � cB

for some constant c > 0, which throughout the paper is allowed to depend on the degrees 
d, d1, d2, the ground field size q and the integer parameter s � 1 (but not on the main 
parameter r).

For a rational function g(X) ∈ Fp(X) and an element w ∈ Fp we define ordw g to be 
the unique integer so that (X − w)ordw(g)g extends to a rational function which has no 
zero or pole at w.

We also write

ep(z) = exp(2πiz/p).

Finally, we also recall our convention that the poles of functions in the arguments of 
multiplicative and additive characters are always excluded from summation.

3. Main results

We define the following sets of rational functions.

Definition 3.1. For integers d � 0 and n � 2,

• let Qd,n be the set of rational functions g(X) ∈ Fqr(X) of degree at most d, which 
are not an n-th power of some rational function in Fp(X).

• let Rd be the set of rational functions f(X) ∈ Fqr(X) of degree at most d, which 
have at least one pole of order that is not a multiple of p.
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We note that we allow d = 0 in Definition 3.1, that is non-zero constant functions, in 
which case Qd,n = Rd = ∅.

We are now ready to present our main result. We recall our convention that implied 
constants are allowed to depend on the integer parameters d1, d2, q and s.

For an integer s � 1 we define

κs(ρ) = sρ(2ρ− 1) + ρ− 1
4s(sρ + 1) . (3.1)

Theorem 3.2. Let χ and ψ be a multiplicative and additive character, respectively, and 
let f1(X), f2(X) ∈ Fqr(X). Assume that at least one of the following conditions holds

(i) χ is nonprincipal of order n and f1(X) ∈ Qd,n,
(ii) ψ is nonprincipal and f2(X) ∈ Rd.

Then for any fixed integer s � 1, we have

Sr(A;χ, ψ; f1, f2) � (#A)r q−rκs(ρ).

Clearly for any ρ > 1/2 we have κs(ρ) > 0 for a sufficiently large s.
In particular, with

ρ = log 2
log 3

taking s = 5 in Theorem 3.2 we have the following nontrivial bound for a “Cantor-like” 
set in finite fields.

Corollary 3.3. Let q = 3 and A = {0, 2}. Under the conditions of Theorem 3.2 we have

Sr(A;χ, ψ; f1, f2) � 2γr

where

γ = 1 − log 3
log 2 · κ5

(
log 2
log 3

)
= 0.99128 . . . .

We remark that both Theorem 3.2 and Corollary 3.3 apply to Kloosterman sums
∑

ω∈Sr(A)

ψ
(
aω + bω−1) , (a, b) ∈ Fqr × F∗

qr ,

over elements of Sr (A).
We note that unfortunately Theorem 3.2 does not apply to polynomials f2 if either χ

is principal or f1 /∈ Qd,n. Hence, we introduce another class of functions which actually 
originates from [4].
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Definition 3.4. Let Pd be the set of rational functions f(X) ∈ Fqr(X) of degree d such 
that for any ω ∈ F∗

qr the function

fω(X) = f(X + ω) − f(X)

is not of the form

fω(X) = α (g(X)p − g(X)) + βX

for some rational function g(X) ∈ Fq(X) and α, β ∈ Fq.

We refer to [4] for examples of functions from Pd.
For a function f2 ∈ Pd, we are only able to obtain a version of Theorem 3.2 with 

s = 1, and hence we save only

κ1(ρ) = 2ρ2 − 1
4(ρ + 1) .

Theorem 3.5. Let χ and ψ be a multiplicative and additive character, respectively, and 
let f1(X), f2(X) ∈ Fqr(X). Assume that ψ is nonprincipal and f2(X) ∈ Pd. Then, we 
have

Sr(A;χ, ψ; f1, f2) � (#A)r q−rκ1(ρ).

Note that κ1(ρ) > 0 only for

ρ > 2−1/2 = 0.707106 . . . > log 2
log 3 = 0.63092 . . . ,

and hence unfortunately Theorem 3.5 does not apply to the setting of Corollary 3.3.

4. Ratios and linear combinations of shifts of rational functions

Various versions of the following results have been well-known, see, for example, the 
proof of [1, Theorem 1] or of [5, Theorem 1].

It is convenient to introduce the following notation. Given a vector v = (v1, . . . , v2s) ∈
Fp

2s and a rational function f ∈ Fp(X), we set

Pv,f (X) =
s∏

i=1

f (X + vi)
f (X + vs+i)

. (4.1)

The implied constants in this section may depend only on d = deg f and s, but are 
uniform with respect to other parameters, including q, and most importantly n, r and 
V .
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Lemma 4.1. Let f(X) ∈ Qd,n for some integers d � 1 and n � 2. For any set V ⊆ Fp of 
cardinality V , for each integer s � 1 we have

#
{
v = (v1, . . . , v2s) ∈ V2s : Pv,f (X) /∈ Q2ds,n

}
� V s.

Proof. Without loss of generality, we can assume that all zeros and poles of f are of 
order less than n, that is,

f(X) =
h∏

j=1
(X − αj)uj ,

where αj ∈ Fp are pairwise distinct and uj ∈ {±1, . . . , ±(n − 1)}, j = 1, . . . , h.
If v1, . . . , v2s ∈ V are chosen so that there exist some integers k and � with 1 � k � 2s

and 1 � � � h so that

vk − α� �= vi − αj

for all (i, j) �= (k, �) then for β = α� − vk we have

ordβ

s∏
i=1

f (X + vi) /f (X + vs+i) ≡ u� �≡ 0 (mod n)

and thus, the above rational function is not an n-th power.
Let E be the number of v = (v1, . . . , v2s) ∈ V2s for which Pv,f (X) /∈ Q2ds,n. Then for 

each choice of 1 � i � 2s there is some index k �= i, 1 � k � 2s, such that vi−vk belongs 
to the difference set of the set {α1, . . . , αh} and thus can take at most h(h − 1) + 1 � d2

values. In particular, the components of v can be partitioned into at most s groups such 
that differences of elements within each group belong to the above difference set. This 
immediately implies that E � V s and concludes the proof. �

We use Lemma 4.1 to control sums of multiplicative characters. To control sums of 
additive characters we need its appropriate analogue for linear combinations instead of 
products as in (4.1). Namely, given a vector v = (v1, . . . , v2s) ∈ Fp

2s and a rational 
function f ∈ Fp(X), we set

Lv,f (X) =
s∑

i=1
(f (X + vi) − f (X + vs+i)) . (4.2)

Definition 4.2. We define the set E of exceptional rational functions as the set of rational 
functions f(X) ∈ Fpr (X) such that there exists α, β ∈ Fp and h(X) ∈ Fp(X) so that 
f(X) = α(h(X)p − h(X)) + βX.

Then we have the following additive analogue of Lemma 4.1.
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Lemma 4.3. Let f(X) ∈ Rd for some integers d � 1. For any set V ⊆ Fp of cardinality 
V , for each integer s � 1 we have

#
{
v = (v1, . . . , v2s) ∈ V2s : Lv,f (X) ∈ E

}
� V s.

Proof. Clearly, all functions from E have a pole of order that is a multiple of p. It is also 
clear that if f1, . . . , fn ∈ Fp(X) are such that f1 has a pole at α ∈ Fp of order u � 1 and 
f2, . . . , fn have no poles at w then f1 + . . . + fn has a pole at α of the same order u.

This implies that if Lv,f (X) ∈ E then for each choice of 1 � i � 2s there is some 
index k �= i, 1 � k � 2s, such that

vi − vk ∈ {α− γ : γ is a pole of f}.

Indeed, otherwise, that is, for other choices of (v1, . . . , v2s) ∈ V2s, if α is a pole f ∈ Fp(X)
of order ordα f �≡ 0 (mod p), then f(X + vi) has a pole β = α − vi of the same order 
and which is not a pole of any other function involved in Lv,f . Hence

ordβ Lv,f = ordα f �≡ 0 (mod p),

and therefore Lv,f /∈ E . We see that the number of such choices of (v1, . . . , v2s) ∈ V2s is 
at most

2s
(

2s
s

)
dsV s � V s

and the result now follows. �
5. Character sums over linear subspaces

We need is [4, Lemma 3.2] which follows instantly from the Weil bound for mixed char-
acter sums with rational functions due to Castro and Moreno [2] (see also more general 
results of Fu and Wan [3, Theorem 5.6]) and the orthogonality of additive characters.

Lemma 5.1. Let χ and ψ be a multiplicative and additive character, respectively, and let 
g1(X), g2(X) ∈ Fqr(X) be rational functions of degrees at most d. Assume that at least 
one of the following conditions holds

(i) χ is nonprincipal of order e and g1(X) ∈ Qd,e,
(ii) ψ is nonprincipal and g2(X) /∈ E.

Then for any affine subspace L ⊆ Fqr we have
∑

χ(g1(λ))ψ (g2(λ)) � qr/2.

λ∈L
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The following result is our main technical tool.

Lemma 5.2. Let χ and ψ be a multiplicative and additive character, respectively, and let 
g1(X), g2(X) ∈ Fqr(X) be rational functions of degrees at most d. Assume that at least 
one of the following conditions holds

(i) χ is nonprincipal of order e and g1(X) ∈ Qd,e,
(ii) ψ is nonprincipal and g2(X) /∈ E.

Then for a linear space L ⊆ Fpr of dimension t and arbitrary set U ⊆ L and V ⊆ Fpr of 
cardinalities U and V , respectively, for each fixed integer s � 1 we have

∑
u∈U

∣∣∣∣∣
∑
v∈V

χ(g1(λ + v))ψ(g2(λ + v))

∣∣∣∣∣ � U1−1/(2s)
(
qt/(2s)V 1/2 + qr/(4s)V

)
.

Proof. Let

S =
∑
λ∈U

∣∣∣∣∣
∑
v∈V

χ(g1(u + v))ψ(g2(u + v))

∣∣∣∣∣ .

Applying the Hölder inequality, we derive

S2s � U2s−1
∑
λ∈U

∣∣∣∣∣
∑
v∈V

χ(g1(u + v))ψ(g2(u + v))

∣∣∣∣∣
2s

� U2s−1
∑
λ∈L

∣∣∣∣∣
∑
v∈V

χ(g1(λ + v))ψ(g2(λ + v))

∣∣∣∣∣
2s

= U2s−1
∑
λ∈L

∑
v=(v1,...,v2s)∈V2s

χ (Pv,f (λ))ψ (Lv,f (λ))

= U2s−1
∑

v=(v1,...,v2s)∈V2s

∑
λ∈L

χ (Pv,f (λ))ψ (Lv,f (λ)) ,

where Pv,f (X) and Lv,f (X) are defined by (4.1) and (4.2), respectively.
We now see that if at least one of the above conditions (i) or (ii) holds that by either 

Lemma 4.1 or Lemma 4.3 we can apply Lemma 5.1 to the inner sum over the linear 
space L for all but O (V s) vectors v ∈ V, for which we estimate the inner sum trivially 
as qt. Hence

S2s � U2s−1
(
qtV s + qr/2V 2s

)
,

and the result follows. �
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6. Proof of Theorems 3.2 and 3.5

We recall the definition (1.1) of the set Sr (A), and some real positive parameter 
τ ∈ [0, 1] and set t = 
τr�, to be chosen later, we define the sets

U = {a1ϑ1 + . . . + atϑt : a1, . . . , at ∈ A} ,
L = {a1ϑ1 + . . . + atϑt : a1, . . . , at ∈ Fq} ,
V = {at+1ϑt+1 + . . . + arϑr : at+1, . . . , ar ∈ A} ,

of cardinalities

U = qρt � qρτr, L = qt � qτr, V = qρ(r−t) � qρ(1−τ)r,

respectively. We can now write

Sr(A;χ, ψ; f1, f2) =
∑

ω∈Sr(A)

χ (f1(ω))ψ (f2(ω))

=
∑
u∈U

∑
v∈V

χ (f1(u + v))ψ (f2(u + v)) .

Thus

|Sr(A;χ, ψ; f1, f2)| �
∑
u∈U

∣∣∣∣∣
∑
v∈V

χ (f1(u + v))ψ (f2(u + v))

∣∣∣∣∣ .

Under the conditions of Theorem 3.2, by Lemma 5.2 and the above cardinality esti-
mates we have

Sr(A;χ, ψ; f1, f2) � U1−1/(2s)
(
qt/(2s)V 1/2 + qr/(4s)V

)

� qρτr(1−1/(2s))+τr/(2s)+ρ(1−τ)r/2 + qρτr(1−1/(2s))+r/(4s)+ρ(1−τ)r

= qr(τρ(1−1/(2s))+τ(1/(2s)−ρ/2)+ρ/2) + qr(τρ(1−1/(2s))+ρ(1−τ)+1/(4s)).

Hence we have

Sr(A;χ, ψ; f1, f2) � qrΔs,ρ(τ) (6.1)

where

Δs,ρ(τ) =
(

1 − 1
2s

)
ρτ + max

{
τ

2s + ρ(1 − τ)
2 ,

1
4s + ρ(1 − τ)

}
.

To minimise Δs(τ) we choose
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τ0 = 2sρ + 1
2(sρ + 1)

to equalise the terms inside of the above maximum and compute

Δs,ρ(τ0) =
(

1 − 1
2s

)
ρτ0 + 1

4s + ρ(1 − τ0)

= ρ + 1
4s − 1

2sρτ0 = ρ− 1
4s(2ρτ0 − 1) = ρ− κs(ρ),

where κs(ρ) is given by (3.1), which together with (6.1) concludes the proof of Theo-
rem 3.2.

To prove Theorem 3.5, we note that for s = 1, the above argument still applies for 
f2 ∈ Pd, and the result follows.
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