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Abstract

Fluid-structure acoustic interaction problems are becoming more popular with the recent development
of computational techniques. This work focuses on developing and validating an efficient numerical
method to examine aeroacoustic in fluid-structure interaction problems, such as the noise of flapping
insect wings or vortex-induced vibration of a bluff body. Capturing acoustic waves in a numerical
simulation through the pressure field fluctuations is challenging, as a large spatial domain with high
resolution and extremely small time step are generally required in aeroacoustic simulations. Thus,
selecting an appropriate methodology is critical in aeroacoustic simulations. Here, the efficient lattice
Boltzmann method (LBM), which describes the evolution of mesoscale velocity distribution func-
tions, based on free-streaming and collision is used. The fluid-solid interface is modelled using the
well-established immersed boundary method. There are many different versions of LBM with dis-
tinct collision operators. The recursive and regularized Bhatnagar-Gross-Krook (RR-BGK) collision
operator, which was developed based on higher-order Hermite polynomials, was used to improve the
numerical stability and accuracy. At the outer boundary of the domain, a non-reflective boundary
condition was employed to overcome the reflections of sound waves. Two benchmark cases: flow
past a stationary sphere and sound generated by the flapping wings of an insect in hovering flight,
were conducted as validation studies. Results obtained by the immersed boundary-regularised LBM
showed good agreement with numerical simulations in the literature, demonstrating the capability of
capturing moving boundaries and acoustic propagation.

1 Introduction

The development of computational technologies allows us to examine complex fluid-structure in-
teractions having subtle nature. Noise generation in the flapping motion of an insect wing and the
flow-induced vibration of a flag pole are examples of fluid-structure acoustic interaction problems. It
is interesting to know how big birds like owls and eagles can generate a high lift and thrust to ma-
noeuvre in the sky by maintaining a silent flight. If the mechanism of noise mitigation in bird’s flight
is understood then this knowledge could be used to reduce the annoying noise generated by several
man-made objects, such as unmanned aerial vehicles, helicopters and wind turbine blades. Although
it is an fascinating research topic, only a little research have focused on aeroacoustic. This is mainly
due to the complexity of setting up such a problem experimentally or computationally. Hence, the
focus of this article is on developing an efficient numerical method to examine aero-acoustics in
fluid-structure interaction (FSI) problems, as an initial work.

Capturing subtle pressure fluctuations due to acoustic waves in a numerical simulation is chal-
lenging. A heavy spatial domain with high resolution is required together with an extremely small
time step to capture these soft-acoustic signals in computational aeroacoustic simulations Tam (2004).
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Therefore, it is challenging to simulate acoustics problems using the conventional methods of solv-
ing Navier-Stocks equations, as higher-order accuracy, low-dispersion and low-dissipation spatial
discretisation and time marching schemes are necessary Shao and Li (2019). Nevertheless, the lat-
tice Boltzmann method (LBM), that describes the evolution of mesoscale velocity distribution func-
tions, based on the free-streaming and collision is intrinsically suitable for aeroacoustic simulations.
The simple nature of the LBM, efficiency with parallel simulations, small-time steps than in the NS
method, and large spatial resolutions make LBM more attractive for acoustic simulations Brogi et al.
(2018); Sharma et al. (2020). Hence, LBM was chosen to model the fluid in this study. It is also cru-
cial to select a suitable model for the collision operator. The recursive and regularized BGK collision
model is used, as it was found more suitable for acoustic simulations Brogi et al. (2017).

In the context of LBM, the most popular methods of modelling the fluid-structure interface of FSI
problems are the bounce-back methods and immersed boundary methods. With rigorous analysis,
Chen et al. (2014) revealed that the immersed boundary methods are more appropriate for moving
boundary problems as they produce less disturbing spurious pressure waves. Moreover, Cai et al.
(2018) validated the capabilities of immersed boundary lattice Boltzmann method of acoustic simu-
lations. Immersed boundary methods are widely used to solve a variety of flow problems, as they are
computationally efficient and suitable to handle moving and deforming boundaries Roy et al. (2020).
Therefore, a widely used diffusive interface immersed boundary method integrated with the lattice
Boltzmann method, which is known as IBLBM, was chosen for this study.

In computational studies, a truncated domain is used, even in the simulations of open boundary
problems, like flapping insect wings. Although this can be easily rectified by a correct choice of
boundary condition for non-acoustic simulations, special techniques are required in acoustic sim-
ulations to avoid non-physical acoustic wave reflections from the boundaries to the computational
domain. Characteristics boundary conditions and absorbing boundary conditions are two widely used
non-reflective boundary condition approaches. Testing six different non-reflective boundary condi-
tions Kam et al. (2007) found that the overall performance of the absorbing boundary layer condition
was the best. In the framework of LBM, Shao and Li (2019) claimed that absorbing boundary layer
conditions have better non-reflective performances than characteristic boundary conditions. In the ab-
sorbing boundary conditions, a layer of nodes/cells is added to the domain to absorb the sound waves
before they reach the outer boundary. The perfectly match layer (PML) condition is the most popu-
lar absorbing boundary layer approach. As the name implies, the governing equations of the added
layer match perfectly with the fluid domain at the interface Najafi-Yazdi and Mongeau (2012). Con-
sequently, this method produces the minimal reflection of sound waves from the fluid and absorbing
layer interface. Thus, PML was used to avoid the non-physical sound wave reflections.

The work presented in the paper is the initial work of developing an efficient and stable numer-
ical method to examine complex fluid-structure acoustic interaction problems. The structure of the
paper is as follows: next, section 2 describes the numerical methods developed in detail; then, sec-
tion 3 presents a couple of validation studies to show the capabilities of the numerical method; finally
concluding remarks are given in section 4.

2 Numerical Methodology

This section presents the numerical methods developed to solve complex fluid-structure-acoustic
interaction problems. The lattice Boltzmann method is used to model the fluid. Since LBM is based
on the evolution of mesoscale velocity distribution function, f = f (xxx,ξ, t), it can be directly used to
observe acoustics waves without solving an additional equation. Thus, it’s far more efficient than the
conventional methods of solving Navier-Stokes equations. The LBM is based on solving the simple
lattice Boltzmann equation
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∂ f
∂t

+ξα

∂ f
∂xα

+
Sα

ρ

∂ f
∂ξα

= Ω( f ), (1)

where ρ is the density, ξ is the particle velocity, S is the body force, Ω is the collision operator, and
α ∈ {x,y,z}. The simple and vastly used Bhatnagar-Gross-Krook or BGK collision operator,

Ω =−1
τ
( f − f eq), (2)

relaxes f towards the local d-dimensional equilibrium, f eq = ρ

(2π)(d/2) e
− (ξξξ−uuu)2

2 , at a rate determined by
the relaxation time, τ. Here uuu is the fluid velocity.

Using the Hermite series, the velocity distribution function can be expand as

f (xxx,ξξξ, t) = ω(ξξξ)
∞

∑
n=0

1
n!

aaa(n)(xxx, t) : HHH(n)(ξξξ), (3)

where ω() is the weight function, HHH(n) and aaa(n) are the nth order Hermite polynomials and their co-
efficients in d-dimensions, respectively and “:” denotes the full contraction. The Hermite polynomial
coefficients are calculated by

aaa(n)(xxx, t) =
∫

f (xxx,ξξξ, t)HHH(n)dd
ξ. (4)

In LBM, the velocity space, ξξξ, is discretised using the Gauss-Hermite Quadrature rule, and the veloc-
ity sets used for 2D and 3D simulations are D2Q9 and D3Q19, respectively.

The standard LBM is developed by descritizing f eq using Hermite polynomials upto 2nd order,
as it is sufficient to reproduce the relavant physics. Nevertheless, the recursive and regularized BGK
collision operator introduced by Malaspinas (2015) with higher order terms is used for this study.
Brogi et al. (2017) showed that it is more suitable for acoustic simulations, as it improves the stability.

2.1 Recursive and Regularized Lattice Boltzmann Method

The full derivation process of the recursive and regularized collision operator was detailed in
Malaspinas (2015), and only a brief description is given here. In this collision operator, both equilib-
rium and non-equilibrium components of the distribution function are considered, i.e., f = f eq+ f neq

(Coreixas et al., 2017). The equilibrium and non-equilibrium distribution functions can be expand
with the Hermite series with coefficients aaa(n), eq and aaa(n), neq, respectively. Although, aaa(n), neq van-
ishes for n = 0 and 1, it is non-zero for n≥ 2.

In this study, we used Hermite series terms up to 4th order to improve the accuracy and stability.
By considering the recursive and orthogonal properties of Hermite polynomials only some of the
higher-order terms are used to obtain f eq

i and f neq
i , here i is the velocity direction. For the D2Q9

model of 2D simulations, they are as follows:

f eq
i ≈ ωi

ρ+
aaa(1),eq : HHH(1)

c2
s

+
aaa(2),eq : HHH(2)

2c4
s

+
ρ

(
u2

xuy H(3)
i,xxy +uxu2

y H(3)
i,xyy

)
2c6

s
+

ρ u2
xu2

y H(4)
i,xxyy

4c8
s

 , (5)

f neq
i ≈ ωi

aaa(2),neq : HHH(2)

2c4
s

+

(
a(3),neq

xxy H(3)
i,xxy +a(3),neq

xyy H(3)
i,xyy

)
2c6

s
+

a(4),neq
xxyy H(4)

i,xxyy

4c8
s

 . (6)
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The computation of aaa(n),eq can be linked to the hydrodynamics moments of the velocity field. The
elements of coefficients aaa(2),neq are approximated by taking the second moment of fi − f eq

i , i.e.,
a(2),neq

αβ
≈ ∑i ξαξβ( fi− f eq

i ) for α,β ∈ {x,y,z}. The elements of aaa(3),neq and aaa(4),neq can be obtained
using the recursive property, see Coreixas et al. (2017) for more information. The body force term
Sα

ρ

∂ f
∂ξα

in equation 1 is decomposed into the ith velocity direction using the Hermite expansion of 4th

order by

Si(x, t)≈ ωiSα

(
H(1)

α +uβ H(2)
αβ

+
1
2

uβuγ H(3)
αβγ

+
1
6

uβuγuδ H(4)
αβγδ

)
. (7)

A second-order accurate discretization scheme is derived by changing variables; f̄i = fi−(Ωi+Si)/2,
f̄ neq
i = f̄i− f eq

i +Si∆t/2, and τ̄ = (2τ+∆t)/(2∆t) to solve the lattice Boltzmann equation as

f̄i(x+ξi∆t, t +∆t) = f eq
i (x, t) +

(
1− 1

τ̄

)
f̄ neq
i (x, t) +

∆t
2

Si(x, t). (8)

This equation is solved in two steps: collision step computes the right-hand side of the equation
and streaming step streams the collided distribution function to neighbouring nodes according to the
velocity model used.

2.2 Diffusive Immersed Boundary Method

Immersed boundary methods are widely used in numerical studies to handle the fluid-structure
interface with a non-deforming grid. These methods were developed with Eularian and Lagrangian
systems representing the fluid and the fluid-structure interface, respectively. As the interface is im-
mersed in the fluid, it needs to satisfy two conditions to have a continuous governing equation: 1.
the velocity of the interface should match the velocity of the surrounding fluid and 2. the momentum
exchange between the interface and fluid should match. For the fluid to be aware of the presence of
the fluid-structure boundary, the body force term, S(x, t), is added to the LB equation.

As we wish to consider complex geometries in future, like flexible wings of birds, the simple
diffusive interface method is considered with an iterative algorithm to couple the Eulerian and La-
grangian systems. Our iterative penalty force algorithm is similar to the multi-direct forcing algo-
rithm of Kang and Hassan (2011). The only difference is we calculate the Lagrangian force density
by FL = α∗((uuuB−uuuL), while they computed it using FL = 2ρ((uuuB−uuuL)/∆t, where uuuB and uuuL are the
desired and calculated velocity of the boundary, respectively, and α∗ = 30.

2.3 PML Condition to Minimize Acoustic Reflections

The perfectly matched layer condition is used to minimize the acoustic wave reflection into the
domain from the outer boundaries. It is an absorbing boundary condition in which a layer of nodes is
added outside of the interior fluid domain to absorb acoustic waves as they travel through this region.
PML condition is developed based on the evolution of a linear hyperbolic system, where waves decay
exponentially within the PML without reflection from the PML/interior domain interface. Najafi-
Yazdi and Mongeau (2012) implemented it in the framework of LBM as an additional collision term,
ΩPML determined for 2D simulations by

ΩPML =−σ(2 f̃ eq + σQ+ξ ·∇Q), (9)

whre σ is the dampling coefficient, f̃ eq = f eq− f̄ eq and f̄ eq are the pertub and mean components of
f eq, and ∂Q

∂t = f̃ eq. The damping coefficent is related to the distance from the current node to the open
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Re = 1200 Re = 2000

Re = 300 Re = 800

Figure 1. Visualization of the wake of flow past a sphere at Re = 300, 800, 1200 and 2000.

Re = 300 Re = 500
Study CD CL St CD CL St–2
Present 0.657 0.092 0.140 0.552 0.064 0.189
Kim et al. (2001) 0.657 0.067 0.137 - - -
Johnson and Patel (1999) 0.656 0.069 0.137 - - -
Poon et al. (2014) - - - 0.56 0.05 0.15
Rajamuni (2018) - - - 0.57 0.06 0.18

Table 1. Comparison of computed time-averaged drag coefficient, CD, time-averaged lift coefficient, CD, and
Strouhal number, St, of flow past a stationary sphere.

boundary in the PML region as σ = σmax n2/n2
max, where σmax = 0.06, n is the minimal distance from

the current node to the outer-boundary, and nmax = 120 is the width of the PML region.

3 Validation Studies

This section presents two validation studies to show the capabilities of 2D and 3D solvers devel-
oped for fluid-structure interaction problems.

3.1 Validation Study 1: Flow Past a Stationary Sphere

To check the performances of the 3D solver developed, we studied flow past a stationary sphere
for the Reynolds numbers range 100≤ Re≤ 2000. As found in the literature, the flow was steady at
Re = 100 and 250 and unsteady with hairpin loop vortex shedding for Re≥ 300. Figure 1 illustrates
the visualisation of the wake behind the sphere. As can be seen, the vortex shedding was axisymmetric
at Re = 300, irregular at 800, and chaotic at 1200 and 2000. This agrees well with the findings of
the literature. Table 1 compares the calculated time-averaged drag and lift coefficients, CD and CL
respectively, and the Strouhal number, St. Our predictions match well with the literature for both
Re = 300 and 500. Many studies reported that CD ≈ 0.46 at Re = 1000. We found that CD decreased
from 0.48 to 0.44 with the increment of Re from 800 to 1200. All these results validate the capabilities
of the solver of 3D flow simulations.
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Figure 2. Schematic of the modelled flapping motion. The circle in the middle represents the centre body,
while the two ellipses represent two wings.

(a) (b)

Figure 3. Comparison of the time variation of the lift force coefficient, CL at (a) a wing and (b) centre body
with the literature. Our results match well with the findings of Seo and Mittal (2011) and Wang et al. (2020).
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Figure 4. Comparison of the acoustic field generated by the modelled flapping motion: (a) current prediction
and (b) findings of Seo and Mittal (2011) of the instantaneous acoustic field, and (c) comparison of the root-
mean-square of fluctuating pressure measured at a distance of 50L.

Figure 5. Instantanious vorticity contuors: (a) Present and (b) Seo and Mittal (2011).
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3.2 Validation Study 2: Sound Generated by a Flapping Motion

To validate the capabilities of the solver in handling moving boundaries and acoustic, an insect in
hovering flight is considered. A simple 2D geometry of a circle and two ellipses was used to represent
the centre body and two wings of the insect, see figure 2 for the schematic of the setup. The two wings
flap symmetrically, and the flapping motion of the wings is prescribed by

θ̇ =
Umax

rtip
sin
(

2πt
T

)
, (10)

where Umax is the maximum wing tip velocity at rtip = 1.5L, L is the length of the wing, and T is the
flapping period. The Reynolds number is set to 200, the Mach number based on Umax is fixed at 0.1,
and the Strouhal number is set to L/TUmax = 0.25. A computational domain of 326.4L× 326.4L is
used for the simulation with six multi-block grid refinements leading to the smallest grid spacing of
0.02L. This grid consists of 766625 lattice nodes, and it took 1.5 hrs to simulate 24 flapping cycles
when run parallel in 8 cores.

As can be seen from figure 3, our predictions of the lift coefficient at a wing and the centre body
matches well with the findings of Seo and Mittal (2011) and Wang et al. (2020). The current method
also showed a good performance in capturing acoustic waves, see figure 4. In addition, the instan-
taneous flow field visualized by the vorticity field was similar to that of Seo and Mittal (2011), see
figure 5. This validates numerical method presented in section 2 is suitable to examine fluid-structure-
acoustic interaction problems.

4 Conclusions

An efficient and stable numerical method is developed to examine fluid-structure-acoustic interac-
tion problems. The widely used immersed boundary lattice Boltzmann method is used to model the
coupled fluid-structure system. To improve the stability of the numerical simulations, 4th order recur-
sive and regularized BGK collision operator was implemented. The reflection of the sound waves into
the fluid domain was minimized by applying the perfectly matched layer boundary condition. Two
studies were performed with 2D and 3D solvers developed and found that the method performs well
in handling moving boundaries and capturing acoustic waves. In future, this method will be used to
examine acoustic generation by the flapping motion of flexible wings.
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