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77 GHz FMCW Imaging Radar for Low Observable 

and Small Marine Target Detection in Dynamic Sea 

Conditions Based on Combined MIMO and DBS 
 

Anum Pirkani, Member, IEEE, Andrew Stove, Senior Member, IEEE, Dillon Kumar, Mikhail Cherniakov, Marina 

Gashinova 
 

 Abstract— High resolution radar sensing is essential to provide 

situational awareness to small and medium sized marine 

platforms. However, detecting small targets on the sea surface is 

a challenging task for the marine surveillance radars because of 

the weak echoes and relatively low velocity. While there is a 

similarity and significant body of research on high resolution 

radar sensing in automotive environment, the direct translation 

of such techniques to marine sensing is difficult due to 

fundamentally dynamic underlaying sea surface. This paper 

addresses the need of developing novel radar sensing capabilities 

to image and, potentially, classify small marine targets, such as 

paddlers, buoys, flotsam and jetsam, or the incoming large 

waves. Our proposed approach combines Multiple Input, 

Multiple Output (MIMO) and Doppler Beam Sharpening (DBS) 

beamforming techniques with the Ordered Statistics – Cell 

Averaging Constant False Alarm Rate (OSCA-CFAR) for robust 

target detection, Density Based Spatial Clustering of Applications 

with Noise (DBSCAN) for clustering, and an adaptive focusing 

technique. With the developed methodology, multiple small 

‘dynamic’ targets within the marine scene have been imaged and 

detected against substantially suppressed sea background. 

 
Index Terms— Clustering, DBSCAN, digital beamforming, 

Doppler beam sharpening, dynamic targets, high resolution 

sensing, mm-wave, 77 GHz radar, maritime sensing, MIMO, 

MIMO-DBS, beamforming, multiple-input multiple output, point 

spread function, OSCA-CFAR, target detection. 

 

I. INTRODUCTION 

ITH the emergence of small agile sea vessels and 

increased use of recreational crafts, both manned 

and autonomous, there is a growing demand on 

new and robust sensing capabilities to provide a host platform 

with  situational  awareness,  specifically,  an  ability  to detect 

and avoid small ‘uncatalogued’ objects at the background of 

sea clutter. This will aid the navigation in open waters as well 
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as in high density traffic and infrastructure scenarios of ports, 

channels etc. 

Radar is a core sensing modality [1], providing an all-

weather capability. The traditional marine radars, however, are 

hardly suitable for use on small boats being relatively large 

and cumbersome. Secondly, being designed to detect 

relatively large objects such as ships at long ranges, they 

cannot detect small targets, have a dead zone within minimum 

range due to eclipsed pulses, and have a low resolution [2]. 

This prevents them from seeing dangerous flotsam/jetsam, or 

other small objects, which can present a threat, such as sea 

drones able to carry a destroyer payload to even a large vessel, 

or, vice versa, be vulnerable to marine traffic, as in the case of 

sea creatures, swimmers, kayakers etc. Such objects may or 

may not possess additional Doppler shifts with respect to 

(w.r.t.) the sea surface, may be of small radar cross sections 

(RCS), and be non-cooperative (not sharing their location, 

position, and information about their class). 

In addition to the requirement of detecting small objects, 

there is also a need to estimate the profile and direction of 

hazardous swells, so that the craft can plan their path and 

manoeuvre safely. Therefore, there are two conflicting 

requirements – the smaller is the vessel, the smaller are the 

objects which will present a potential danger to it, therefore 

high sensitivity and very high resolution, in particular angular 

resolution, are needed. However, this would require a larger 

physical antenna aperture, limiting its suitability for small 

platforms. 

Several research efforts have been concerned with marine 

sensing intended for the detection and classification of small 

targets. These techniques often rely on the feature detection 

methods exploiting the differences between the characteristics 

of small sea-surface targets with that of sea surface such as 

using feature compression based detector [3], tri-feature based 

detector [4], dual tri-feature based detector [5], graph signal 

processing, where differences in the Doppler characteristics of 

target returns and sea clutter are exploited [6], non-linear time 

series analysis in fractal based detector, where different fractal 

characteristics of target returns and sea clutter are exploited 

[7], principal component analysis for anomaly detection in 

expected sea behaviour where sea clutter and target cells are 

classified in a feature space  [8]. While these methods have 

shown a reasonable performance, they require a long 

observation time (in the order of second). This makes their 

W 
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suitability for real-time path planning of a moving platform 

arguable. Furthermore, as they use limited feature set, they 

may have limited performance in characterising the 

differences between various marine targets and the complex 

sea conditions. 

There is also an emergence of machine learning and neural 

networks based techniques [9], [10] where the networks are 

trained using the sea clutter data to predict the behaviour of 

sea clutter and identify the targets as potential anomalies. 

However, these approaches require vast and diverse datasets, 

collected in various sea conditions, which can be logistically 

impossible to collect. Moreover, the radar returns with targets 

are not used in the training process which might make their 

implementation questionable due to the diversity of small 

targets and their complicated interactions with the waves. 

One of the key sensing technologies which has been 

significantly advanced in the recent years, especially in the 

automotive sensing sector, is the millimetre wave (mm-wave) 

radar, which is able to provide high resolution scene mapping 

[11] and has an ability to classify targets and clutter [12]. 

Indeed, to address the limitations imposed by the physical 

aperture constraints, techniques have been developed to 

enhance radar’s resolution beyond the Rayleigh limit such as 

by forming a virtual aperture with the use of Multiple Input, 

Multiple Output (MIMO) principle [13]. Since MIMO 

operation does not involve scanning the antenna, it gives 

longer integration times and a wider field of view (FoV) as 

each transmit element transmits independently. 

Though mm-wave radar would seem a good fit for the 

small marine vessels, for marine sensing it has been mostly 

researched in the context of understanding of propagation 

characteristics in the layer close to sea surface [14], [15]. The 

reason of limited research on mm-wave radar imaging in 

maritime environment is, probably, in the expected poor 

performance of small wavelength signals in the dynamic sea 

clutter and an associated non-linear target motion along the six 

degrees of freedom. 

Imaging techniques using MIMO principle for marine 

sensing have been discussed in literature such as in [16], [17] 

where numerical simulations have been utilised to evaluate the 

performance of these radars to detect small marine vessels 

with slow-fluctuating RCS, and in [18] where a 24 GHz 

automotive MIMO radar has been used to detect and track 

small marine targets. 

Inevitably, however, digital beamforming in MIMO radars 

leads to higher side lobe level (SLL) due to effective one-way 

antenna pattern formed by the multiplication of transmit and 

receive elements array factors. These sidelobes may 

significantly impede the dynamic range and target detection. 

Several techniques have been proposed to mitigate the issue of 

high side lobes and enhance the resolution beyond the MIMO 

virtual aperture, such as linearly constrained minimum 

variance and minimum variance distortionless response 

(MVDR) beamformers [19], multiple signal classification 

(MUSIC) [20], and array extrapolation [21]. These techniques, 

while effective, are computationally extensive and often 

require prior knowledge of the numbers of targets in the 

environment such as in the case of MVDR and MUSIC 

algorithms.  

Synthetic aperture techniques exploiting the motion of host 

platform are other ways to refine angular resolution [22], [23]. 

One of such techniques is Doppler Beam Sharpening (DBS), 

currently being intensively developed for automotive 

applications [24], [25], [26], [27]. DBS takes advantage of the 

fine Doppler resolution and a wide differential Doppler shift 

of scatterers passing through the radar beam to provide high 

azimuth and cross-range resolutions while simultaneously 

lowering the SLL [26]. The performance of MIMO and DBS 

sensing modalities is complementary [27] as MIMO performs 

best for directions close to the boresight, and DBS performs 

best off-boresight due to increased Doppler spread of 

scatterers, which are supposed to remain stationary during the 

synthesis time.  

However, in the case of marine sensor, additional efforts 

are required in order to focus the imagery of targets of interest 

as they might have finite displacement during integration time, 

caused by the movement of underlaying sea surface.  

Thus, the detection of low-velocity small targets, such as 

buoys, small boats, icebergs, swimmers, small UAVs etc. 

remains a difficult problem due to their lower RCS, 

fluctuations in RCS, complex characteristics of sea clutter 

[28], and limited applicability of DBS in scenarios when both 

radar platform and target are moving, making it difficult to 

distinguish the Doppler shift caused by target’s motion and 

that caused by radar’s motion. 

In this paper, the feasibility of MIMO-DBS beamforming 

at mm-wave frequencies is investigated for marine sensing for 

the first time in relation to the detection and imaging of 

multiple moving objects. We will (1) formulate a sensing 

strategy to decompose marine environment into the imagery of 

underlaying “stationary” background and moving targets with 

feature tracking, (2) develop adaptive MIMO-DBS 

beamforming approach to focus multiple dynamic targets, and 

(3) validate the approach by real-world experimentation. 

The remainder of the paper is organised as follows: 

Section II gives the phenomenology of MIMO-DBS 

beamforming. The challenges in radar based maritime sensing 

are discussed in Section III. The signal processing approach 

for single and multi-target detection and focussing are 

discussed in Section IV. The measurement methodology and 

system configuration for the experimental validation of the 

approach developed with different platform dynamics and 

target characteristics are presented in Section V. Section VI 

analyses the results in various measurement scenarios and 

Section VII presents the conclusions and prospects. 

II. PHENOMENOLOGY OF MIMO, DBS, AND MIMO-DBS 

BEAMFORMING 

In this section we will briefly outline the background 

theory to define notation and terminology for the integrity of 

the material presented in the paper.  

DBS utilises the difference in relative Doppler frequency 

shift of scatterers at different angles with respect to the 

moving radar platform to estimate the spatial position of 

target. Based on the Doppler spread of scatterers across the 

radar beam, the physical beam is divided into finer sub-beams, 

as illustrated in Fig. 1. The scatterers located within different 
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sub-beams are resolved after Doppler processing to accurately 

represent the extent of the target. 

In this work, coherent frequency modulated continuous 

wave (FMCW) signal is used with the transmitted waveform 

expressed as: 

 ( ) ( )( )2

Tx T cexpS t A j t Kt  = + +             (1) 

where TA  is the amplitude of transmitted signal, 
c c2 f =  is 

the angular frequency for carrier frequency c ,f  K is the sweep 

rate, and   is the initial phase. As the radar is coherent, initial 

phase will be preserved and hereafter not included in the 

mathematical expressions.  

The signal received by the radar installed on a platform 

moving with speed pv  is expressed as: 

 ( ) ( ) ( )( )( )2

D DRx R cexpS t A j t K t   = − + −      (2) 

where RA  is the amplitude of received signal. Its value 

depends upon the propagation environment between the radar 

and target and the target RCS, ( )D r2 R vt c =   is the two-

way propagation delay between transmitted and received 

signals, R is the distance between the radar and target, 

r p Tcosv v =  is the relative radial velocity of a target, and T  

is the direction to the target w.r.t. radar boresight. The second 

term in the exponential represents frequency modulation, 

hereafter expressed as ( )D .t −  Therefore, the received 

signal can be expressed as: 

( ) ( ) ( )c c p T

Rx R D

2 2 cos
e

j t R c k v t
S t A t

  
 

−
= −         (3) 

where c2k f c=  is the wave number. 

To resolve scattering points representing a target along the 

Doppler or velocity dimension, sequential chirps will be 

integrated within a coherent processing interval (CPI). The 

received signal corresponding to chirp ‘n’ can be expressed as: 

( ) ( )
( )( )c c p T

R D

2 2 cos 1
Rx ,

j t R c k v CRI n
S t n A t e

  
 

− −
= −     (4) 

where CRI represents the chirp repetition interval.   

In MIMO radar, angular refinement is achieved through 

the use of multiple transmit and receive elements while 

maintaining a small physical aperture size. The orthogonality 

of transmit signals allows formation of a virtual array of 

MIMO Tx RxN N N=  elements, where TxN  and RxN  represents 

the number of transmit and receive elements, respectively. The 

received signal at m-th virtual array element is expressed as: 

 ( ) ( ) ( 1)sin
Rx Rx, , , Tjkd m

S t n m S t n e
− −

=             (5) 

where 2d =  is the spacing between virtual elements,   is 

the wavelength, and the phase shift of received signal across 

consecutive array elements is expressed as Tsinkd  . 

( )Rx , ,S t n m  denotes the 3-dimensional radar data with each 

dimensions representing the fast-time, slow-time, and array 

elements, respectively. 

Based on (4) and (5), two steering vectors can be defined: 

1) Steering vector of Doppler frequency, denoted as CPISV , 

representing the phase shift across CPIN  chirps within a 

CPI, expressed as: 

( )  p T CPI p T
T

CPI T
2 cos ( 1)2 cos1 ... jk v CRI jk N v CRISV e e  − − −=   (6) 

2) Steering vector of MIMO array configuration, denoted as 

MIMOSV , representing the phase shift across Tx RxN N  array 

elements, expressed as: 

( )  T Tx Rx T
T

MIMO T
sin ( 1) sin1  ... jkd jkd N NSV e e  − − −=     (7) 

These steering vectors provide two independent means to 

estimate the direction to target, denoted as T , where MIMOSV  

is used for spatial compression in MIMO beamforming and 

CPISV  is used for Doppler compression as the first step in DBS 

beamforming. 

A. MIMO Beamforming 

Using (7), the spatial frequency difference between 

scatterers located at T  and T MIMO +   where  MIMO  is the 

3-dB resolution of virtual array is defined as: 

 
( )( )MIMO T MIMO T

MIMO T MIMO

sin sin

cos

kd

kd

   

  

 = +  −

 = 
          (8) 

where MIMO MIMO 2d N =  is the aperture size of MIMO array. 

The array factor is expressed as [27]: 

 ( )T

MIMO
MIMOMIMOAF  = sinc cos

d
 


             (9) 

To estimate the 3-dB beamwidth, sinc square function 

obtained from (9) is equated to 0.5 and solved with the Taylor 

series expansion, resulting in: 

 
W

T

MIMO

MIMO

1.22

cosd

 




 
                             (10) 

(a) (b) 

Fig. 1. Doppler beam sharpening concept illustration: (a) 

main beam of the physical aperture. 𝑣𝑝 represents the 

platform velocity, 𝜃𝑇 represents the angle to the target, and 

𝜃𝐴𝑧 and ∆𝑅𝑀𝐵 represents the azimuth beamwidth and 

cross-range resolution of the physical aperture, 

respectively. (b) sub-beams formed by utilising the 

Doppler frequency difference of scatterers across the main 

beam. 𝜃𝑇𝑖 represents the angle of scatterer at sub-beam ‘i,’ 

and ∆𝜃𝐷𝐵𝑆 and ∆𝑅𝑆𝐵 represents the 3-dB beamwidth and 

cross-range resolution after DBS processing. 
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Here, we include a factor W  to represent resolution 

coarsening due to applied spectral window before Fast Fourier 

transform (FFT) to suppress angular sidelobes. 

As shown in (10), MIMO beamformer provides fine 

resolution close to the boresight and the resolution degrades 

with off-boresight angles. 

B. DBS Beamforming 

The sub-beams, illustrated in Fig. 1 (b), are synthesised 

within a CPI over which range-Doppler processing is 

performed. The directional angle of scatterer in each sub-beam 

is estimated as: 

 ( )D

p

T arccos = 1 :
2

i
i

f
i N

v


 = ,                  (11) 

where Dif  represents the Doppler frequency within sub-beam 

‘i’ and N denotes the number of sub-beams. 

Using (6), the spatial frequency difference between two 

scatterers located at T  and T DBS +   where DBS  is the 

Doppler resolution is defined as:    

 
( )( )p F T DBS T

p F T DBS

2 cos cos

2 sin

kv T

kv T

   

  

 = +  −

 = 
        (12) 

where F CPIT N CRI=   represents the frame interval for 

Doppler processing. In Time Division Multiplexing (TDM) 

MIMO radar, equivalent CRI, hereafter expressed as MIMO 

frame repetition interval (MFRI), is Tx .MFRI CRI N=   MFRI 

represents the period from the beginning of one TDM-MIMO 

frame to the next. This gives F DT N MFRI=   and 

D CPI TxN N N=  represents the number of chirps over which 

Doppler processing is performed. 

Similar to the array factor in MIMO configuration, the 

array factor after DBS beamforming will also follow a sinc 

function that can be simplified to estimate the 3-dB 

beamwidth as: 

 
( ) 

W

 

 

pF TDBS DBS

DBS
pF T

2
AF  = sinc sin

1.22

2 sin

T v

T v

 

 






 
 

            (13) 

Therefore, the resolution after DBS beamforming primarily 

depends on the platform velocity and frame interval over 

which Doppler processing is performed. The higher the values 

of these parameters are, the finer is the resolution due to 

expected wider Doppler spread from the scatterers. This 

however comes with challenges which will be discussed in 

Section III. 

A comparison of (10) and (13) shows opposite trends of 

azimuth refinement with the off-boresight angles in MIMO 

and DBS processing, respectively. 

C. MIMO-DBS Beamforming 

Thus, to achieve a high-resolution wide scene imagery in 

both forward-looking and off-boresight directions, and to 

resolve the angular ambiguity on either side of the platform 

velocity vector, inherent for DBS, combined MIMO-DBS 

beamforming is applied by sampling the independent DBS and 

MIMO processed data at points where MIMO and DBS angles 

are equal. Due to different sampling densities in the azimuth 

and Doppler domains, we use spline interpolation to give 

common angular sampling.  

From the array factors in (9) and (13), the 3-dB roll-off 

points after MIMO-DBS processing are estimated from the 

following expression. 

( ) ( )2 2MIMO
T MIMO-DBS F p T MIMO-DBS

2 1
sinc cos sinc sin

2

d
T v   

 
   =

 (14) 

where MIMO-DBS  is the angular sub-beam resolution after 

MIMO-DBS processing. Solving (14) with the Taylor series 

expansion gives: 

 

( )
W

22

MIMO
 

MIMO-DBS

p
T T

1.22

cos sin
vd

v




 



 

 
+   

      (15) 

where F2v T =  is the velocity resolution. 

Fig. 2 shows the 3-dB resolutions of each beamformer: 

MIMO, DBS, and MIMO-DBS, with the latter two shown for 

two platform speeds of 5 m/s and 10 m/s. The plots are 

theoretically estimated for the configuration of INRAS 

Radarlog sensor [29] which has been used in the 

measurements, fully described in Section V. The radar 

configuration parameters and expected performance are 

presented in Table I. 

 

TABLE I 

CONFIGURATION PARAMETERS FOR INRAS RADARLOG. 
 

 
 

 
Fig. 2. Comparison of the resolution of MIMO, DBS, and 

MIMO-DBS beamformers. 
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The resolution refinement factor after MIMO-DBS 

processing, denoted as MIMO-DBS , is estimated as the ratio of 

(15) and (10), and expressed as: 

 
( )

22
pMIMO

 T  T

MIMO-DBS

MIMO  T

cos sin

cos

vd

v

d

  





 
+  

 
=       (16) 

MIMO-DBS  is plotted in Fig. 3 as a function of the direction to 

the target w.r.t. radar boresight, denoted as T , for 3 platform 

speeds of 2 m/s, 5 m/s and 10 m/s. The point spread functions 

of each beamformer are estimated from their array patterns, 

and the respective range cuts are shown in Fig. 4 for a point 

target positioned at 5° and 20°. As expected, MIMO-DBS  improves 

as the angle to the target increases. 

From the aforementioned discussion, we should emphasise 

three important aspects of the MIMO-DBS technique:  

 

 

Fig. 3. Resolution refinement factor, denoted as 
MIMO-DBS , after 

MIMO-DBS processing.  

 

 
   (a) 

 
    (b) 

Fig. 4. Range cuts of the point spread functions after MIMO, 

DBS, and MIMO-DBS beamforming; (a) 5°, (b) 20°. 

1) With combined MIMO-DBS beamforming, resolution 

refinement in obtained that depends upon the platform 

speed and the direction to the target. 

2) While there is minimal improvement of the angular 

resolution at forward-looking direction, DBS still allows to 

reduce the side lobes significantly, and  

3) With DBS angular refinement, the sub-beams are not 

evenly distributed over the main antenna beamwidth due to 

cosine relationship between the azimuth angle and Doppler 

shift.  

This results in unequal cell sizes of the radar map, and for 

image processing, re-meshing is required [27]. 

D. Velocity Ambiguity and DBS Field of View 

One of the major impediments in MIMO radars is the 

limited unambiguous velocity due to an increase in the 

equivalent MFRI, which is calculated as: 

 max

4
v

MFRI


=


                                 (17) 

This leads to the issue of velocity aliasing, which if not 

accounted for leads to an incorrect mapping of the velocity to 

DBS angle as shown in (11). 

To mitigate the ambiguities associated with signal aliasing, 

we precisely re-define the velocity vector within the range: 

max bin2p pv v v v−   . The velocity bins are then transformed 

according to the following: 

             ( )
( ) ( )

bin

bin bin bin

max bin bin

                                     if 

               if 

2  if 

p

p res

p res

v i

v v i v i

v v i v i


 

 

=

= − − 

− + − 





            (18) 

where, bin 1, ..., Di N=  is the bin index and pv v =  . The 

radar data is then rearranged according to (18) across the 

slow-time dimension allowing us to accurately map the 

velocity to DBS angle. 

Due to the rearrangement of velocity vector in (18), the 

effective FoV after DBS processing is limited to: 

 
FoV-MIMO p max

1FoV -DBS max

p

              if 

2
cos 1  otherwise

v v

v

v



 −




=   −   

              (19) 

where, FoV-MIMO  is the FoV after MIMO processing defined by 

the antenna element pattern and FoV-DBS  represents the FoV 

after DBS processing. To mitigate this effect, we replicate the 

radar datacube along the Doppler dimension after applying 

(18) to expand the FoV, as discussed in [30]. 

E. Platform Kinematics 

DBS requires a knowledge of platform kinematics, 

including velocity, acceleration, and rotation expressed as a 

roll (rotation along direction of motion), pitch (rotation 

perpendicular to direction of motion), and yaw (rotation along 

vertical axis). In this work, these parameters are estimated 

using an inertial  measurement unit (IMU).  The  methodology 

to obtain platform speed from these parameters, which will be 

later used in the measurement  section, is  discussed  here. The 

illustration of a marine platform with platform kinematics is 

shown in Fig. 5. 

Firstly, the rotations including roll, pitch, and yaw are used 

to define the Euler angles. From these angles, a rotation matrix  
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Fig. 5. Platform kinematics required for DBS. Red dot 

represents the sensor installation point and zv  is in the 

outward looking direction. 

 

is generated, denoted as iR . This provides the direction of 

travel at each time instant. For example, if the direction of 

travel at t = 0 is od , then directional vector at each 

consecutive time stamps is 
2

=i i i-1d R d  where 2|| . ||  is an 

operator representing the second norm. The speed at each time 

instant is then estimated as in [31]: 

 i i2
t t= + + = + +i i-1  i i i-1 i i-1 i i iv v A R d ψ v A d ψ      (20) 

where it  is the time difference between two time stamps, ,iv  

,iψ iA  are the velocity, angular velocity, and acceleration 

vectors along x, y, and z directions, respectively. The first two 

terms in (20) account for the velocity change due to 

translational motion of platform and the last term accounts for 

the effect of rotation on platform velocity. The norm value of 

iv  is used for DBS processing. 

III. CHALLENGES IN MARITIME SENSING 

One of the major limitations on radar sensing in maritime 

conditions is imposed by the dynamic sea surface (due to the 

longitudinal and transversal motion of wave particles [32], 

[33]), making clutter returns from the water surface to be 

essentially non-stationary. The backscatter from surface have 

similar behaviour as the echoes from real targets [34], which 

can often mask the targets with relatively small RCS. The non-

stationary marine environment impedes the performance of 

radar sensing, which is discussed in this section. 

A. Effect of Wave Motion on Target 

While the actual motion of water particles is complex and 

depends on many parameters, such as depth, pressure, wind 

etc., their general behaviour as the wave propagate in a 

medium, can be presented as a clockwise circular motion [32], 

illustrated in Fig. 6.  

Based on this motion, two primary modes of mechanical 

wave can be defined, which are: (1) longitudinal mode, where 

particles displace along the direction of wave propagation, and 

(2) transversal mode, where particles oscillate up and down, 

perpendicular to the direction of propagation. The amount of 

vertical displacement depends upon the wave amplitude, 

whereas     horizontal     displacement     depends     upon    the 

  

   
Fig. 6. Wave motion and target displacement. 

wavelength. For example, near the shore, due to smaller 

wavelength [35], horizontal displacement is smaller compared 

to a fully developed sea where larger wavelength causes a 

larger horizontal displacement. 

Consequently, targets on the surface of water, particularly 

small targets, would sway with the wave in a similar manner, 

potentially moving through several resolution cells during the 

integration time of the radar. This might result in their non-

zero Doppler frequency shift w.r.t. the radar. 

B. Sea Surface Modelling and Characteristics 

To estimate the expected displacement and velocity of a 

point target due to wave motion, we use sea surface modelling 

considering the amplitude and phase characteristics of the 

wave spectrum. The two distinct parts of a full directional 

spectrum are as follows [36]: 

1) Empirical point (uni-directional) energy spectra, denoted 

as ( )PM fs , which we model for a fully developed sea 

based on the Pierson-Moskowitz formulations [37], 

calculated as: 

 

( )
( )

4
5 m2

4

PM 4 5

4
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s f e
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
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=

                  (21) 

where, f and mf  represents the frequency and modal 

frequency, respectively, g is the gravitational constant, and 

19.5U  is the wind speed at 19.5 m above the sea surface. For 

example, to model a sea state of 1 (according to Douglas 

scale [38]), α = 0.0081, β = 0.74, and 19.5U = 2.8 m/s [38]. 

2) Energy spreading function, denoted as ( ),D f , defines 

the angular distribution of waves,  which  we model based 

on the Longuet-Higgins spreading formulation [39], 

estimated as: 
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 +
=
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=

            (22) 

where   represents the spreading angle and 10U  is the 

wind speed at 10 m above the sea surface which is 

considered as 2.6 m/s for a sea state 1 [38].  

Under certain atmospheric conditions, the relationship 

between 19.5U  and 10U  can be expressed as 19.5 101.076U U=  

[40]. 

The modelled surfaces for a sea state 1 and 5 are shown in 

Fig. 7 (a) and (b), respectively, and the displacements and 

velocities of a target positioned at 20 m from the radar during 

1 s time span are presented in Fig. 7 (c) and (d), respectively 

for sea states 1 – 5. 

The expected velocity of target for all the sea states is 

greater than the velocity resolution according to the 

parameters stated in Table I. This indicates that the target 

might traverse  across  several Doppler (velocity)  bins  during  

𝒗𝐱 

𝒗𝐲 

𝝍 
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                                 (a)                                                         (b) 

  
                          (c)                                                          (d) 

Fig. 7. Modelled sea surface and target motion: (a) sea surface 

for a sea state 1, (b) sea surface for a sea state 5, (c) expected 

displacement of target, (d) expected velocity of target. 

 

signal processing. The expression of radial velocity can 

therefore be modified as following: 

 ( )r p t Tcosv  =  v v                          (23) 

where tv  represents the target motion and   accounts for the 

platform and target motion due to wave dynamics. Both tv  and 

  are unknown at the platform end, therefore, to account for 

such a complex motion, an adaptive process of mutual speed 

estimation will be used and presented in Section IV. 

At higher sea states, the expected displacement and 

velocity will also increase. Nevertheless, these considerations 

are valid for the points of sea surface displacement, as well as 

for floating targets to some degree. Depending on the target 

weight and shape, it might have different motion parameters. 

When considering an integration of returns from a target using 

moving platform, the mutual motion is much more complex 

and primarily defined by the dynamics of platform movement 

on the sea. For example, in the case of a speed boat, that has 

been used in the measurements described in Section V, the 

boat encounters and rides over the peaks of waves, resulting in 

a ‘jumpy’ motion. This causes randomly varying relative 

velocity during the integration time. 

C. Range Migration and Doppler Smearing 

Higher speed causes a wider Doppler spread from the 

scatterers and, therefore, a larger resolution refinement after 

DBS, while a higher CPI improves the signal to noise ratio 

(SNR) [41]. Both these factors enhance the imaging 

performance of the radar. However, if the Doppler shift 

changes across a MIMO frame repetition interval (MFRI), or 

range changes across the CPI, Doppler smearing and range 

migration, respectively, are expected to happen after range and 

Doppler compressions. This causes target defocusing along 

with a reduction in SNR.  

The number of range bins traversed by a target during CPI, 

and the number of Doppler bins traversed by a target during 

MFRI are estimated as [42]: 

      
                                                            (a) 

 
                                                           (b) 

Fig. 8.  Effect of platform speed ( )pv and coherent processing 

interval on range migration and Doppler smearing before and 

after spectral windowing with MFRI = 1 ms. (a) Range bins 

and Doppler bins traversed as a function of pv . (b) Range bins 

traversed as a function of CPI for different platform speeds. 

 

 
p T

R

RW

cosv CPI
N

R




=

 
                              (24) 

 
pD

Dop

D DW

2 cosvf MFRI
N

f



 
= = 


                  (25) 

where 2R c B =  is the range resolution for a bandwidth B, 

D 1f MFRI =  is the Doppler resolution within a MIMO 

frame interval, RW  and DW  denotes the range and Doppler 

resolution degradations due to the applied spectral windows. 

Notably, in MIMO radars due to a larger equivalent chirp 

repetition interval, Doppler smearing increases compared to 

the traditional phased arrays.  

SNR at a specific velocity v, denoted as vSNR , is given as: 

 
Static

Dop Range

v
SNR

SNR
N N

=


                          (26) 

where StaticSNR  is the SNR for a scene with stationary radar 

and target. Therefore, with increase in the range migration and 

Doppler smearing, SNR is expected to reduce. 

The effects of platform speed and CPI on range migration 

and Doppler smearing are presented in Fig. 8 whereas their 

effect on SNR are presented in Fig. 9. The results are 

modelled for a MIMO radar with 4 transmit elements and 1 ms 

MFRI. The results do not consider additional range/ Doppler 

bins traversed due to wave motion, nor a potential vertical 

component of the platform velocity, which, if accounted 

would lead to a larger spread. SNR is estimated for a 

stationary point target of -10 dBsm RCS positioned at 20 m, 

20o  angle  from  the  boresight  of radar  installed on a moving  
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                               (a)                                                          (b) 

Fig. 9.  SNR analysis. (a) Effect of platform speed ( )pv  on 

SNR. (b) Effect of coherent processing interval on SNR. 

 

platform. Radar configuration parameters are given in Table I. 

With the defined parameters, range resolution is 7.5 cm and 

cross-range resolution at 20 m from the radar is 7.3 cm. A 

Blackmann Harris window is used before range processing 

and Hann window is used before range-Doppler processing, 

giving RW 1.9 =  and DW 1.2 =  [43].  

As expected, increase in both the platform speed and CPI 

makes the effect of range migration and Doppler smearing 

more critical with a significant reduction in SNR. The factor 

MFRI stays same with increase in CPI therefore, the number 

of traversed Doppler bins do not vary by changing CPI.  

The processed radar images for three example cases are 

presented in Fig. 10. In the range-Doppler, different relative 

speeds are due to different aliasing factors, whereas FoV in the 

MIMO-DBS beamformed results is different due to a different 

platform speed as discussed in [44].  

Range cuts corresponding to the range bin with maximum 

SNR for the cases discussed in Fig. 10 are shown in Fig. 11. 

The following key observations are made from Fig. 8 – Fig 11. 

1) Doppler smearing, observed from the range-Doppler map, 

and range migration, observed from the beamformed plots, 

increase at higher speeds and CPI. 

2) SNR reduces with an increase in the platform speed and 

CPI, which is a consequence of range migration and 

Doppler smearing. 

The aforementioned factors limit the performance of MIMO-

DBS beamformer as angular resolution improves with increase 

in both platform speed and CPI (shown in (15)).  

As a trade-off to optimise both SNR and angular resolution 

after DBS processing, 128 ms CPI is used in the measurement 

results, after which SNR starts to decrease (shown in Fig. 9). 

Techniques such as in [45] have been investigated for range 

migration compensation. This, however, is beyond the scope 

of presented work. 

 

(a) 

(b) 

(c) 

Fig. 10. Range Doppler, MIMO, and MIMO-DBS images for example cases. (a) 128 ms CPI and 2 m/s . (b) 128 ms 

CPI and 10 m/s . (c) 512 ms CPI and 10 m/s .  
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    (a) 

 
   (b) 

Fig. 11. MIMO and MIMO-DBS range cuts: (a) CPI = 128 

ms, (b) CPI = 512 ms. 

IV. SIGNAL PROCESSING 

The block level representation of data processing chain 

used in this work is presented in Fig. 12. It is mainly divided 

into two steps. In the first step, high resolution imagery of 

stationary environment is generated using traditional MIMO-

DBS algorithm discussed in Section II. In the second step, an 

adaptive MIMO-DBS approach is used to detect and focus 

multiple dynamic targets whilst achieving a high resolution. 

Range and Doppler compressions on radar data along the 

fast-time and slow-time, respectively are applied to generate 

range-Doppler profile. This is followed by spatial compression 

on the data collected across array elements for MIMO 

beamforming. Using platform kinematics, DBS beamforming 

is applied after range-Doppler processing. The DBS and 

MIMO angles are then interpolated to the common grid for 

MIMO-DBS beamforming. To account for the Doppler 

frequency shift within a MIMO frame due to different 

transmission time of each transmit element (time division 

multiplexing (TDM) configuration), motion compensation as 

discussed in [27] is applied prior to MIMO and DBS 

beamforming. A symmetric four-term Blackmann Harris 

window is used before range processing and Hann window is 

used before Doppler processing and MIMO beamforming to 

reduce spectral leakage caused by FFT process. 

To address the challenge of simultaneously detecting and 

focusing multiple ‘dynamic’ targets, we use a combination of 

adaptive thresholding for target detection, clustering, and 

adaptive MIMO-DBS (AMDBS) processing. This allows us to 

predict the relative velocity between the moving radar 

platform and dynamic targets to apply MIMO-DBS. 

 
Fig. 12. Block level representation of data processing. OSCA-

CFAR represents ordered statistic cell averaging – constant 

false alarm rate. 
 

A. Target Detection 

Firstly, we perform target detection from the MIMO 

beamformed imagery using ordered statistic cell averaging 

(OSCA) CFAR. In OSCA-CFAR, the detection threshold is 

adapted based on the order of power levels of cells in a 

reference window. This makes it robust to variations in the 

power levels and is particularly suitable in the case of multiple 

‘extended’ targets with varying RCS values [46], [47]. 

For each azimuth bin, one-dimensional OS-CFAR is first 

applied to sort the range bins according to their magnitude, 

shown in (27), such that , , 2, 1,m n k n n nX X X X     . 

( )

1,1 1,2 1,

2,1 2,2 2,

Sorted

,1 ,2 ,

,1 ,2 ,

       

      

            
,

     

            

     

n

n

k k k n

m m m n

X X X

X X X

X m n
X X X

X X X

 
 
 
 

=  
 
 
 
  

                     (27) 

where m and n represent the range and azimuth bins, 

respectively in the reference window. For a k-th order OS-

CFAR, the k-th range bin is selected and CA-CFAR is applied 

along the azimuth dimension. The threshold, denoted as 

OSCA-CFART , is estimated as: 
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A
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i
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=

=                         (28) 

where AN  represents the number of azimuth cells in CA-

CFAR window and   is a scaling factor calculated as:   

 
( )FA

1

ln
k

j

P

m k j


=

−
=

− +

                              (29) 

where FAP  is the probability of false alarm. 

It should be noted that the estimation presented in (29) 

assumes Gaussian statistics for the background clutter. Such 

statistics, though not representative for diverse range of sea 

clutter models, was however a good fit for our measured data 

recorded within the lake environment, where we observed a 

high signal to clutter plus noise ratio (SCNR). This is further 

elaborated in the subsequent sections. Nonetheless, at higher 

sea states, the clutter demonstrates non-Gaussian statistics. 

This, however, is outside the scope of presented work and will 

be investigated in our future work. 

B. Clustering 

In the next step, we cluster OSCA-CFAR detections to 

estimate the number and extent of targets. For this, we use 

Density Based Spatial Clustering of Applications with Noise 

(DBSCAN) [48] where clusters are generated based on the 

distance between detections. DBSCAN is particularly useful 

in maritime environment due to: 1) presence of arbitrary 

shaped targets such as buoys, swimmers, boats etc., and 2) 

appearance of potential outliers caused by the backscatter 

from sea surface and/or MIMO sidelobes. 

The parameters required for DBSCAN are discussed next. 

a) Search radius 

All the detections within a search radius are assigned to the 

same target. To estimate this, we use an iterative algorithm 

based on the expected minimum and maximum number of 

detections per cluster. These are defined considering the 

dimensions of marine targets and the extent of clusters. For 

each value, DBSCAN is applied and the Euclidean distance 

between detections is used as a metric to assign detections to a 

cluster. The distances between all detections within a cluster 

are then sorted in an increasing order and the search radius for 

which number of required detections within a cluster increase 

significantly puts an upper limit on its value.  

An example is demonstrated in Fig. 13 for expected 

number of detections per cluster (X) ranging from 3-7. Here, 

X = 6 will be used as an optimum value for the search radius. 

With DBSCAN, described in Algorithm 1, the closely 

spaced targets with a different motion are assigned to different 

clusters. This is essential to focus them properly after 

AMDBS. An example would be a paddler with an oar, shown 

later in Fig. 18. 

b) Performance evaluation of clustering 

The Silhouette coefficient, denoted as iS , is used as a 

metric to evaluate the clustering performance i.e., how well-

separated the clusters are. iS  estimates the similarity of a 

detection  to other detections in its own cluster, compared to 

those in other clusters, and is calculated as: 

 
Fig. 13. Search radius for DBSCAN algorithm. 
 

 
 

 

 
( )

i i
i

i imax ,

b a
S

a b

−
=                                (30) 

where ia  is the mean distance from i-th detection to other 

detections in its own cluster and ib  is the minimum mean 

distance from i-th detection to detections in a different cluster, 

minimised over the clusters. iS  value closer to 1 indicates 

good clustering performance i.e., well-separated clusters. 

After generating clusters, the mean position of detections 

within each cluster gives the centroid of a cluster (target). 

C. Adaptive DBS Methodology 

To focus each target, we use an iterative algorithm where 

the velocity, '
tv , is varied in the increments of velocity 

resolution and MIMO-DBS beamforming is applied for each 

value. The limits of '
tv  are defined based wave speed due to 

sea state, denoted as sv , margin according to the expected 

target motion, denoted as RDv , and pv . This gives: 

       '
p s RD t p s RDv v v v v v v− −   + +                        (31) 

Within the integration duration of 128 ms (MIMO-DBS frame 

time) used in our work, we can assume near constant values of 

most of the parameters, for instance, the displacements and 

velocities, to give accurate enough estimates in (31). 
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For each value of '
tv , mean power is estimated within the 

bounding box defined around the centroid of each cluster. The 

dimensions of bounding box are determined according to the 

extent of cluster. The value of '
tv  for which mean power is 

maximum i.e., maximum SCNR is used to focus the target 

after AMDBS beamforming, calculated as: 

 ( ) ( ) 
bound

bound 1

' '

t t t

1

1
argmax

T
N

i t

v v P
N

v
= =

=                (32) 

where T represents the total number of targets (clusters) and 

boundN  represents the number of resolution cells within the 

bounding box.  

By changing the value of '
tv , the corresponding DBS angle 

is also changed (see (11)) and SCNR is maximised when 

independent MIMO and DBS angles coincide after combined 

MIMO-DBS beamforming. This is illustrated in the modelled 

results in Fig. 14 for a stationary target positioned at 10 m, 

50𝑜 from the radar configured according to INRAS Radarlog. 

The platform velocity is 3 m/s. Point spread functions for 

MIMO and MIMO-DBS processes with different '
tv  are shown 

in Fig. 14 (a) whereas range cuts at 10 m from the radar are 

shown in Fig. 14 (b) for each case. It can be seen that with a 

0.3 m/s mismatch between the actual and assumed speeds, 

there is approximately 40 dB drop in the power which causes 

target defocusing after MIMO-DBS processing. 

In the next step, MIMO-DBS maps generated after 

focusing each target are overlaid to obtain a coarse MIMO- 

DBS map. Due to overlaying, Doppler sidebands appear in the 

radar image which causes false targets. Sidebands are removed 

by performing OSCA-CFAR detection on the coarse MIMO-

DBS map and the intersecting cells with the detection map 

obtained after  applying OSCA-CFAR on MIMO beamformed 

imagery are retained to obtain a fine AMDBS map. It is to be 

noted that the performance of AMDBS might degrade if 

detections of targets with a different motion are not assigned 

to separate clusters. This will be discussed in Section VI. 
 

 
(a) 

 
 (b) 

Fig. 14. Effect of 𝑣t
′ of SNR. (a) Point spread functions for a 

point target after MIMO and MIMO-DBS beamforming; (b) 

Range cuts at 10 m for MIMO and MIMO-DBS beamformers. 

 

V. MEASUREMENTS 

To validate the presented approach, a measurement 

campaign was conducted at the Coniston Water in the UK. 

While the lake water can be quite rough in strong winds, 

during the measurements the weather was relatively calm. 

Based on wave heights, the lake condition can be estimated as 

equivalent to sea state 1 by the Douglas scale. Consequently, 

the clutter was rather low, giving a high SCNR. This allowed 

near ‘laboratory’ conditions to test the MIMO-DBS and 

AMDBS algorithms. 

The sensing suite which was used to gather the data 

comprised a 77 GHz automotive FMCW-MIMO INRAS 

Radarlog operating in TDM MIMO mode with an equivalent 

virtual array of 61 elements, and a fibre optic gyro IMU [49] 

used to record platform kinematics [50]. The MIMO frame 

interval is 1 ms, where 4 chirps are sequentially transmitted, 

one from each transmit element of the radar. Each MIMO-

DBS frame duration is 128 ms, composed of 512 chirps 

collected by the radar. In the DBS processing, 128 chirps have 

been used for Doppler processing for each Tx element of the 

radar, resulting in 0.015 m/s velocity resolution. 

The sensing suite was installed on an inflatable motorboat 

in two different orientations: forward-looking from the nose of 

the motorboat, and backward-looking from the aft of the boat. 

The mean platform speed varied from 0.5 – 10 m/s during the 

measurements. The test scenario and the sensor suite setup are 

shown in Fig. 15 and the radar configuration parameters and 

expected performance are given in Table I. The radar and IMU 

were configured to record timestamped data for data fusion at 

the post-processing stage. 
 

  
              (a)                                      (b)                                       (c) 

Fig. 15. Measurement setup, (a) aerial photo of the test scene, 

(b) automotive MIMO radar, (c) sensor suite. 

MIMO MIMO-DBS 

𝑣𝑡
′= 3 m/s 

MIMO-DBS 

𝑣𝑡
′= 3.3 m/s 

IMU 
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VI. RESULTS AND PERFORMANCE ANALYSIS 

The measured results in different scenarios are discussed in 

this section. The effects of range migration and Doppler 

smearing are negligible due to comparatively lower platform 

speed, lower sea state, and 128 ms CPI selected to have 

minimal range migration (Fig. 8). The raw sensing suite data 

corresponding to which measured results are shown is 

available at [51]. 

A. Single Target Scenario – Boat 

In this scenario, an anchored ‘quasi stationary’ boat was 

imaged with the sensor suite installed in: a) backward-looking 

orientation with the platform moving away from it, and (b) 

forward-looking orientations with the platform moving 

towards it. Relative speed between the platform and the target 

is 3.1 m/s and 5.2 m/s for the two cases, respectively.  

Fig. 16 and Fig. 17 shows the measured results for these 

cases, respectively. Output of MIMO beamformer is extracted 

from the Doppler cell containing the strongest signal. 

Significant returns at closer ranges in Fig. 16 (b) and (c) 

corresponds to the strong wake at the back of the boat.  

 

 
 (a)  

   
                          (b)                                                            (c) 

 
(d) 

Fig. 16. Imagery of the boat with sensor suite installed in 

backward-looking orientation. (a) Image of the target, (b) 

output of MIMO beamformer, (c) output of AMDBS 

beamforming, (d) azimuth cross section of MIMO and 

AMDBS beamformers at 9.3 m range cut corresponding to the 

strongest reflector on the boat. The relative speed between 

platform and boat is 3.1 m/s. 

 
(a) 

   
                           (b)                                                           (c)  

 
(d) 

Fig. 17. Imagery of the boat with sensor suite installed in 

forward-looking orientation. (a) Image of the target, (b) output 

of MIMO beamformer, (c) output of AMDBS beamforming, 

(d) azimuth cross section of MIMO and AMDBS 

beamformers at 25.6 m range cut corresponding to the 

strongest reflector on the boat. The relative speed between 

platform and boat is 5.2 m/s. 
 

In both the cases presented in Fig. 16 and Fig. 17, 

sidelobes after MIMO beamforming masks the scattering 

points on the boat thereby, reducing the dynamic range of 

radar. In contrast, AMDBS leads to significantly lower SLL, 

thus improving the SCNR, along with an improvement in the 

cross-range resolution to detect the scattering point of boat 

with high precision. This leads to a substantial improvement in 

the radar’s ability to resolve the structure of boat.  

Next, the SCNR and 3 dB resolutions of the two cases are 

estimated for the strongest reflector on the boat. In the first 

case, this corresponds to 9.3 m range cut (Fig. 16 (d)) with 

reflector at 25.4
o
, whereas in the second case, this corresponds 

to 25.6 m range cut (Fig. 17 (d)) with reflector at 29.7
o
. The 

results are presented in Table II. For each reflector, the 

background clutter to noise ratio (CNR) is estimated within a 

5 m range and cross-range, centred on the reflector. 

Theoretical MIMO and AMDBS resolutions are estimated 

from (10) and (15), respectively. 

As expected, with a larger speed, the resolution refinement 

factor also improves according to (16). The theoretical and 

measured resolutions in Table II have a close agreement for 

both  the cases.  The  differences  between  resolutions  can  be 

Platform motion 

Platform motion 
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TABLE II 

SCNR AND RESOLUTIONS OF MIMO AND AMDBS 

BEAMFORMERS. 

 Case 1 

𝑣p = 3.1m/s, 𝜃T = 25.4𝑜 

Case 2 

 𝑣p = 5.2m/s, 𝜃T = 29.7𝑜 

 MIMO 
Theoretical 3.04𝑜 3.16𝑜 

Measured 3.2𝑜 3.3𝑜 

SCNR (dB)                 24                 31 

 AMDBS 

Theoretical 0.9𝑜 0.49𝑜 

Measured 0.82𝑜 0.54𝑜 

SCNR (dB)                 32                 43 

Resolution Refinement Factor 

                  4                  6 

SCNR Improvement (dB) 

                  7                 11 
 

accounted  to multiple factors  such  as  the  accuracy of  speed 

estimation and beam smearing due to array calibration factor 

applied to mitigate the effects of propagation path delay 

between multiple array elements [52]. As expected in the lake 

environment, the SCNR is also reasonably high. 

B. Single Target Scenario - Paddler 

In this scenario, two measurements were conducted with 

different relative positions of the paddler and the oar. The 

radar was installed in forward-looking orientation and the 

platform was moving towards the paddler. 

1) In the first measurement (Case 1), the platform speed is 

1.35 m/s and the strongest reflector on the oar is separated 

by 1.3 m from the paddler. The outputs of MIMO 

beamformer, OSCA-CFAR, and DBSCAN are shown in 

Fig. 18 (a), (b), and (c), respectively. For OSCA-CFAR, 
6

FA 10P
−

=  and two-dimension reference window size is 20 

x 25 bins across range and azimuth directions, respectively 

with a 15-th order OS-CFAR applied along the range axis. 
 

 
                                                 (a) 

     
                    (b)                                                       (c) 

Fig. 18. Target detection and clustering on the paddler. (a) 

Output of MIMO beamformer, (b) output of OSCA-CFAR 

detector, (b) output of DBSCAN. 

Due to both: different relative velocity and spatial separation 

of the paddler and the oar, they are assigned to different 

clusters with a mean Silhouette coefficient of 0.83. Each 

cluster is focused with a separate velocity '
tv  in AMDBS 

process. The ground truth and beamformed results for this 

scenario are shown on the left side plots in Fig. 19. 

2) In the second measurement (Case 2), the platform speed is 

1.4 m/s and the oar and paddler are closer to each other. 

The corresponding ground truth and beamformed results 

are shown on right side plots in Fig

For both measurements, AMDBS focuses the scattering 

points of target having different relative speed w.r.t. the 

moving platform. Doppler sidebands that appear after 

traditional MIMO-DBS [53] are also suppressed. 
 

    
                      (a)                                                  (b) 

 
                       (c)                                                    (d) 

 
                       (e)                                                    (f) 

 
                        (g)                                                     (h) 

Fig. 19. Measured results of the paddler. (a) Ground truth: 

scene 1, (b) ground truth: scene 2, (c) MIMO beamforming: 

scene 1, (d) MIMO beamforming: scene 2, (e) AMDBS 

beamforming after step (c) in Algorithm 2: scene 1, (f) 

AMDBS beamforming after step (c) in Algorithm 2: scene 2, 

(g) output of AMDBS beamformer: scene 1, (h) output of 

AMDBS beamformer: scene 2. 

Paddler 

Oar Oar 

Paddler 

 Case 1  Case 2 

MIMO: Case 1 MIMO: Case 2 

MIMO-DBS: Case 1 MIMO-DBS: Case 2 

1.5 m/s 

1.32 m/s 

AMDBS: Case 1 

1.57 m/s 

AMDBS: Case 2 
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SCNR improvement for the paddler in the discussed cases 

is approximately 15 dB after AMDBS beamforming. Due to 

relatively smaller platform speed and squint angle, resolution 

refinement factor is not significant, which is expected from the 

results presented in Fig. 3. Nevertheless, sidelobes are 

significantly reduced to enhance the radar’s dynamic range. 

C. Multi-Target Scenario 

In the third scenario, a scene with multiple dynamic targets 

is imaged where each target has a different relative motion 

w.r.t. the moving platform. The ground truth images obtained 

from multiple consecutive camera frames (timestamped with 

radar) representing the whole scene are presented in Fig. 20 

and the measured results are shown in Fig. 21. The radar is 

installed in backward-looking orientation with 1.63 m/s 

platform speed. 

All the targets within radar FoV in Fig. 20 are focused 

using a separate velocity in AMDBS approach. The velocities 

used to focus each target in this case are: paddler 1: 2.1 m/s, 

paddler 2: 1.3 m/s, wake: 2.8 m/s, white boat: 1.63 m/s, 

motorboat: 1.62 m/s, and red boat: 1.54 m/s. 

The SCNR of the imaged targets after the application of 

MIMO and AMDBS beamformers have been shown in Table 

III. For the scenario when a target is represented by multiple 

reflectors, its SCNR is estimated for the strongest reflector. It 

is worth noting, due to integration time required for DBS 

formation, some spikes expected from the sea surface, being 

uncorrelated, are expected to be averaged out. The impact of 

target’s RCS on the observed SCNR is not addressed within 

the scope of this paper. 
As discussed previously, sidelobes are suppressed along 

with the removal of Doppler sidebands (Fig. 21 (b)) resulting 

in a significant increase in the SCNR. As expected from (15), 

the targets off-boresight such as paddler 1, paddler 2, and the 

red boat have a larger resolution refinement compared to the 

targets closer to radar boresight (motorboat and white boat). 

 

TABLE III 

SCNR OF IMAGED TARGETS IN A MULTI-TARGET SCENARIO. 
 MIMO 

(dB) 

AMDBS 

(dB) 

SCNR Improvement 

(dB) 

Wake 13 27 14 

White Boat 26 64 38 

Motorboat 21 48 27 

Red boat 33 53 20 

Paddler 1 7 27 20 

Paddler 2 8 28 20 

 
                                                   (a) 

 
                                                   (b) 

      
                                                          (c) 

Fig. 21. Measurement results in the multi-target scenario. (a) 

Output of MIMO beamformer, (b) coarse MIMO-DBS map 

showing the appearance of Doppler sidebands. (c) Fine 

AMDBS map focusing each target. 

White Boat 

Motorboat 

Red Boat Paddler 1 

Paddler 2 

Platform Motion 

Wake 

Fig. 20. Ground truth for multi-target scenario presented as a series of camera frames.  
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D. Extended Target Imagery 

With the provided resolution of MIMO sensor used for the 

measurements and with further refinement in the resolution 

using adaptive MIMO-DBS beamformer, nearly all the targets 

appear as extended, as discussed in the previous results. In this 

case, each target is represented by multiple scattering points. 

Additionally, by exploiting the potential sensitivity of mm-

wave frequencies to the texture, we have imaged the full 

extent of maritime scene, which is demonstrated in Fig. 22. 

The full extent of shore, a stationary background, is 

imaged, with a mean SCNR of 22 dB, using the platform 

speed obtained from IMU with is 2.5 m/s in this case. The 

boat is imaged using AMDBS algorithm with a relative speed 

of 2.62 m/s. The strongest reflector on the boat has a SCNR of 

53 dB whereas the weakest imaged reflector has a SCNR of 23 

dB. The high-resolution imagery of shore is suitable for the 

applications such as docking. Moreover, a superposition of 

stationary scene and dynamic targets allows a better 

understanding of the surroundings and provides useful 

information to target tracker and platform path planner. 

VII. COMPUTATIONAL COMPLEXITY 

It is worth mentioning that to provide situational awareness 

to small and medium sized marine platforms, the practical sea 

states to take into considerations would be sea states 1 - 4. For 

these states, majority of the targets will either be floating with 

a small speed correlated with the speed of wave within the 

integration duration (order of ms) as in Fig. 7b or moving with  

a relatively small speed, such as swimmers, paddlers. In this 

scenario,  the platform speed will be a dominant contributor to 
 

 
                                                         (a) 

          
                                                      (b) 

Fig. 22. Extended scene imagery: (a) ground truth, (b) output 

of AMDBS beamformer. 

the relative speed between the platform and the moving 

targets. Nevertheless, as we use the bulk velocity as a 

reference to tune the relative velocity in (31), the required 

number of iterations (M) are significantly reduced. 

In terms of time consumption of DBS itself, we can 

potentially compare it with the time required to perform back 

projection in focussed synthetic aperture radar (SAR) case. 

One of the major advantages of DBS beamforming is that it is 

traditionally based on FFT with a computational complexity of 

( )2O logNP NP  [54] for N-point FFT along fast-time and P-

point FFT along slow-time, while for back-projection (BP) in 

SAR, the number of operations will be ( )O NPN  [55], 

defining a significant processing time advantage for DBS.  

In our work, with the same computer platform and 

MATLAB environment, the DBS processing takes a few ms 

while back-projection requires several minutes. With modern 

processors and the use of FPGAs, computational speeds can 

be further significantly increased with signal processing done 

at higher rates to enable real time imagery and even image 

segmentation [12] with statistical inference. 

In the adaptive DBS process, for M required iterations to 

tune the velocity of TN  targets, the computational complexity 

can be expressed as ( )2O logTM N N P NP   . As 

,TN N P  the complexity of DBS is defined as: 

( )2O logMNP NP  making the same processing time 

advantage with respect to BP if similar adaptive search of 

correct velocity is undertaken. 

VIII. CONCLUSION 

An approach to focus and enhance the resolution of 

multiple dynamic targets in a maritime environment is 

presented which combines traditional MIMO-DBS with 

adaptive detection, clustering, and adaptive focusing. It is 

shown that despite the dynamic nature of water surface, 

reasonable resolution refinement and SCNR improvement can 

be obtained through the application of DBS in a maritime 

environment using compact ‘automotive’ radar sensors. The 

finer resolution gives a potential for substantially superior 

target detection and classification and ultimately, reliable path 

planning. 

The focus of this work is to provide superior imaging 

capability to the radar which will act as a pre-requisite for 

target classification. Target detection and clustering defines 

the "image of target" which can be used for classification of 

the class of object, but importantly it can be used as a two-

class binary classification - normative (sea) vs anomalous 

(target). Classification itself is beyond the scope of this paper.  

Future work will involve conducting measurements at 

higher sea states and higher platform speeds to test the 

performance of adaptive MIMO-DBS beamformer in more 

challenging environments. In these conditions, a varying 

SCNR is expected which will give rise to false alarms with 

clutter represented by non-Gaussian statistics. Such conditions 

will certainly affect target detectability but also importantly 

influence the mutual trajectories and dynamics of both 
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platform and the target. Currently we are developing 

simulation models to evaluate comprehensive mechanisms 

which can potentially affect imaging performance within the 

sea scene. We will also investigate phase alignment and 

entropy minimisation to improve target focusing. The 

effectiveness of OSCA-CFAR will be analysed and if needed, 

appropriate target detection techniques will be developed. 

Using high resolution imagery of marine targets obtained in 

various sea conditions, we will exploit the contrast between 

their returns in image segmentation and classification to 

generate results much closer to the camera imagery. Finally, 

target tracking and trajectory estimation will be developed for 

path planning applications. 
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