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Climate change has led to more frequent and severe extreme weather events which impact critical infrastructure networks 
such as railway and power systems. Although our infrastructure networks are interdependent, the analysis to understand 
the impact of weather events on infrastructure systems is usually performed in sector specific silos. Here we present a 
methodology to examine how the same weather events affect different infrastructure sectors to understand cross-sectoral 
impact of extreme weather for interconnected regional infrastructure.  We use fragility modelling to examine the impact 
of temperature and rainfall on power and rail system failures using the West Midlands as a case study. The results 
demonstrate that the impact of temperature is broadly consistent across both infrastructure networks, showing less impact 
until specific upper and lower thresholds are passed; these thresholds are similar for the different infrastructure networks 
evaluated however railway infrastructure is impacted more from lower temperatures.   A growing correlation between the 
number of faults on power and railway systems is also found for both rainfall and temperature, indicating the value in 
coordinating preparation and planning efforts. For infrastructure operators and owners, regional resilience forums, and 
other decision-makers, this study provides an approach to assess the regional impact of extreme weather across multiple 
infrastructure sectors. The results give useful insight to inform the allocation of resources in response to extreme weather 
events. 

1. Introduction  
 

Climate change is increasing both the frequency and 
intensity of extreme weather events such as high 
temperatures, heavy rainfall, wildfires, and flooding 
(Seneviratne et al., 2021), and the economic damages 
associated with such events (Coronese et al., 2019). For 
example, according to the National Centers for 
Environmental Information, the US has experienced 372 
weather and climate disasters with an adjusted damage 
cost at or above $1 Billion, with total costs exceeding $2.6 
Trillion (NOAA, 2023). These costs included: damage to 
residential, commercial and municipal buildings, public 
assets (roads, bridges), electrical infrastructure, etc. The 
economic cost of weather and climate related extreme 
events in the Europe between 1980 and 2021 is estimated 
at €560 billion (EEA, 2023). Quantification of the impact of 
weather on infrastructure is important to maintain safe 
and reliable operation in this changing climate.  

Within the UK, heavier rainfall events that are 
often associated with infrastructure damage are 
increasing (Cotterill et al., 2021). Moreover, temperature 

extremes are changing at a faster rate than average 
temperatures (Kendon et al., 2023), and in summer 2022 
the maximum temperature exceeded 40°C for the first 
time, causing significant infrastructure disruption (Dooks, 
2023). Extreme temperatures and heavy rainfall cause 
damage and disruption to power and rail systems that are 
the focus of this paper. On the railway network, high 
temperature can cause signalling equipment to overheat 
and cause sagging of the overhead lines which can cause 
the pantograph (that connects the train to overhead 
power) to disconnect (Ferranti et al., 2016).  High 
temperature also causes expansion of structures such as 
rails and railway bridges, while a decrease in temperature 
causes contraction. This expansion and contraction may 
lead to deformation and stress concentrations in the rails, 
which in turn can cause damage and fractures (Lee et al., 
2015). During hot weather events, speed restrictions are 
introduced to reduce the likelihood of track deformation, 
and the impact of any potential derailment event. These 
speed restrictions are also costly, and cause travel 
disruption (Ferranti et al., 2018).  High temperatures also 
have a considerable impact on the electricity distribution 
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network (Li et al., 2013) and are associated with increased 
fault rates  (Abi-Samra et al., 2010). The direct effect of 
increased temperature is to limit or reduce the maximum 
power rating of equipment and increase energy losses 
(Houghton, 2009). In addition, increased temperatures 
lead to increased loads on electrical equipment, which 
increases the risk of equipment overload, a notable cause 
of distribution network failures (Houghton, 2009).  

Considering heavy rainfall, this can lead to 
flooding of railway infrastructure and water damage to 
electrical and communication equipment, while too little 
precipitation can lead to soil drying and cracking that can 
misalign tracks (Palin et al., 2021). Intense rainfall can 
cause landslides to damage rail infrastructure (Liu et al., 
2021).  Intense rainfall may increase the risk of surface 
flooding, which may have direct or indirect effects on the 
power system (Wang et al., 2022). For example, the 
rainstorm that affected China in 2005 led to the collapse 
of more than 60 high-voltage transmission towers (Xie and 
Zhu, 2011). Often, infrastructure repairs and maintenance 
cannot be undertaken until flood water has receded, 
meaning the impact of a flooding event can persist long 
after the rain has finished falling (Ferranti et al., 2017)   

As our infrastructure networks are connected, 
failures can have impacts beyond the location affected by 
extreme weather, particularly when failures occur on 
critical infrastructure. For example, flooding of the railway 
line south of Birmingham in 2012 created knock-on delays 
from Penzance to Edinburgh amounting to 4900 delay 
minutes, along with many cancellations (Jaroszweski et al., 
2021). Similarly, a problem with a pantograph near 
Manchester in 2018 during extreme temperature led to 
19,000 delay minutes as knock on delays affected services 
as far away as London, Glasgow, Cardiff and Newcastle 
(Ferranti et al., 2018). Flooding of an electric power station 
in Lancaster in 2016 led to power loss and the collapse of 
several critical infrastructure systems within the city 
including communication, road and rail, education and 
health (Ferranti et al., 2017). It is therefore imperative that 
infrastructure owners and operators work together to 
manage infrastructure interdependencies, cascade 
failures, and propagating delays.  

Over the last decade, academic and practitioner 
research within the UK has made significant progress in 
understanding weather and climate change risks to 
infrastructure (Jaroszweski et al., 2015).  Several studies 
have also tried to predict infrastructure fault rates 
associated with extreme weather. For example, logistic 
regression prediction model was used for predicting 
distribution transformer faults by analysing the 
correlation between weather data and historical 
distribution transformer fault data (Ko et al., 2020).  
Vulnerability and exposure were used to assess the risk 
posed by current and future weather to railway 
infrastructure (Palin et al., 2021). A number of multiple 
regression models are applied to analyses the impact of 
weather on railway network delays (Brazil et al., 2017). 
Fuzzy Bayesian Reasoning was used to quantify the climate 

risk faced by the railway system, and the results showed 
that heavy precipitation and flooding are potential climate 
threats (Wang et al., 2020). Other studies have considered 
infrastructure fragility for specific weather conditions or 
disasters such as earthquakes. Fragility curves depict the 
likelihood of failure of specific infrastructure, or 
infrastructure within a region, for a particular set of 
conditions. For example, in the power sector, fragility 
curves have been applied to earthquakes, flooding, ice-
storms, lightning, wildfires and windstorms (Serrano-
Fontova et al., 2023). Donaldson et al (2022) use fragility 
curves to explore the regional variation in wind impact on 
power system fault rates and develop unified thresholds 
for fault risk management. Others have developed fragility 
curves for overhead power lines (Dunn et al., 2015, 
Jamieson et al., 2020). In the rail sector, fragility analysis 
been applied to extreme flood events in order to estimate 
the likelihood of railway bridge failures during extreme 
flood events (Lamb et al., 2019, Martinović et al., 2016). 
Martinović et al. (2016) use fragility curves to understand 
how slope vulnerability along railway embankments may 
vary under a changing climate.  

Despite the progress in understanding 
infrastructure risk and vulnerability to weather and 
climate change,  and the need to consider and minimise 
the risks associated with infrastructure interdependencies 
(Ferranti et al., 2017, Rinaldi et al., 2001) the majority of 
weather and climate analysis studies are undertaken in 
sector specific silos. Few studies have considered how 
extreme weather impacts multiple interdependent and 
co-located infrastructure networks. Accordingly, this 
paper presents: (1) A methodology for concurrent 
evaluation of fragility across critical infrastructure for joint 
planning. (2) Demonstration of the methodology using a 
case study for power system faults and railway fault 
events based on weather factors in the West-Midland 
region of the UK. Application of the proposed 
methodology can allow better alignment of the regional 
preparation for infrastructure faults due to weather, 
enabling identification of consistent hazard thresholds to 
provide advance notice of potential risks.  

2. Methodology 
 

The methodology to concurrently assess infrastructure 
fragility to weather includes data collection and pre-
processing, integration of data, fragility curve creation, 
and analysis of cross-sector correlation. This is 
summarised in Figure 1, and each of the core steps are 
detailed below.  

2.1 Dataset Collection and Preprocessing 
The first step is to select the region of interest and collect 
historical data for use in assessing infrastructure fragility 
for weather variables of interest. This requires two 
primary data sources: weather data and infrastructure 
faults. The infrastructure data should contain fault 
location, asset type, and the time of the fault. This can 



then be linked spatially with the corresponding weather 
variables such as temperature or rainfall, though the exact 
weather variables of interest will vary depending on the 
climate of the region of interest. The amount of historical 
data necessary will also differ by region and use case, due 
to variations in the number of historical faults and data 
availability. Some general guidance when collecting this 
data is to balance the spatial resolution with the quality of 
the data available. For example, when considering the 
reliability of distribution networks, IEEE Standard 1366 
proposes that from a statistical point of view, the more 
data used to calculate thresholds, the better. However, as 
distribution systems expand, the stochastic processes that 
generate the data change. Using too much historical data 
can dampen the effects of these changes. Five years of 
data provides an appropriate balance between these 
considerations (IEEE, 2022). Similarly, for the methodology 
proposed in this paper, five years is recommended as a 
minimum duration to evaluate cross-sector impacts.  

After the data is collected, it should be screened 
to identify outliers, or other extreme values in the data. 
Rather than removing these values, they should be 
identified for consideration in the later analyses as they 
could provide valuable insight into the response of 
networks under extreme events.  

 
Figure 1. Methodology to concurrently assess critical 
infrastructure fragility to weather related failure.  

2.2 Dataset Integration  
The second step is to combine the collected critical 
infrastructure fault data with the weather data, as follows:  

1) Aggregate faults to match the temporal resolution of 
the weather data. Then determine the best means to 
align the weather data to match the spatial resolution 
of interest. The process will differ depending on 
whether point-based weather station data or gridded 
data is used and the availability of data. Examples of 
both approaches to fragility can be seen from the 
literature with Donaldson et. al. (2022) and Ferranti et 
al (2016, 2018) using data from individual weather 
stations and Wilkinson et. al. (2022) using gridded 
weather data.  

2) Spatially join weather and infrastructure fault time 
series to obtain a complete dataset that contains 
spatio-temporal weather and fault information. In this 
step, the decision must be made whether to use 
specific weather information for each fault location, 
or an aggregation of weather for the entire region. 
Both approaches have advantages and uncertainties. 
When using specific weather information for each 
fault location, weather conditions are included at the 
highest granularity. This may be appropriate for 
rainfall, which can have high spatial variability across 
a region. For temperature, the increased granularity 
may or may not be indicative of the temperature 
associated with asset failure, for temperature can be 
highly localised and individual location factors (e.g., 
tree shade) may be affecting the asset, but not the 
reported temperature (Ferranti et al., 2016), leading 
to false precision. When using aggregated weather 
data for a whole region, the spatial variation in 
weather conditions that may impact the asset (e.g., 
localised heavy rainfall) can be lost in the averaging 
process. However, regional weather information is 
more commonly used for regional decision-making 
(e.g., Resilience Forums, railway maintenance 
sectors), and so analysis employing regional averages 
may be better suited to support decision-makers. This 
is because the analysis output (e.g., fragility curves) is 
at a resolution comparable to the information 
provided for response management. When using this 
approach, taking maximum values of weather 
variables (rather than averages) ensures that localised 
extreme weather conditions (e.g., a heavy rainfall 
event, high wind gust) that are often associated with 
infrastructure failures are part of the aggregation 
process. 

2.3 Fragility Curves  
Fragility curves are commonly used in hazard modelling to 
define the probability of exceeding a given damage state 
as a function of environmental change (Dunn et al., 2018). 
Fragility curves can help distribution network operators 
(DNOs) and railway network operators to predict and 
estimate the number of faults that may occur in their 
service area (Donaldson et al., 2023, Bellè et al., 2022, 



Palin et al., 2021, Quinn et al., 2018, Wilkinson et al., 2022, 
Serrano-Fontova et al., 2023). In this paper, the objective 
is to determine the relationship between weather and 
fault counts, to produce a mathematical model to model 
the fragility function that can be used to compare the 
performance of multiple infrastructure networks exposed 
to the same weather conditions. This is done for each 
weather variable of interest. These variables can either be 
an individual weather variable such as windspeed or 
temperature, or a composite variable that includes a 
combination of several weather factors. 

Extreme events can have a disproportionate 
impact on the overall fault count adversely impacting the 
validity of the resulting fragility function. Although outliers 
may impact the value of the mean, the median is not 
adversely affected and is a robust statistic that can 
effectively cope with outliers in the data. Therefore, to 
reduce the influence of outliers on the overall fragility 
curve, the median of the number of faults for each value 
of weather variable is used to calculate the fragility curve 
as opposed to the average. The number of observations at 
the extrema of the curve will also be limited and can bias 
the curve to the systems performance to a specific event. 
Such extreme event response is of interest but may lead 
to improper conclusions of the overall fragility at these 
values due to the lack of sufficient observations Therefore, 
curves should be produced with and without these values 
to inform the overall performance of the networks. 

To translate the individual points into a fragility 
curve, a polynomial regression model is used as 
polynomial regression models are flexible and can be 
adapted to different forms of data (Ostertagová, 2012). 
The use of higher order polynomial regression may face 
disadvantages such as overfitting and increased model 
complexity, while making it difficult to interpret the 
meaning of each coefficient in the model. In this paper, 
second-order polynomials are used. The equation for 
polynomial regression is:  

𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥
ଶ +⋯+ 𝛽௡𝑥

௡ + 𝜀 (1) 

where 𝑦  is the dependent variable ， 𝑥௡  is the 
independent variable ， 𝛽௡  is the coefficient of the 
regression equation, representing the weights of the 
different power terms and 𝜀  is the unobserved random 
error. 
2.4 Analysis of Cross Sector Impacts 
After production of individual fragility curves for each 
infrastructure sector, the resulting curves are plotted for 
the same period and weather variable for visual 
comparison of the shape, magnitude, and trend. This 
provides for a qualitative comparison. In addition to this 
qualitative evaluation, the correlation between 
infrastructure layers for intervals of each weather 
parameter provides a quantitative measure of the 
relationship. This is done using Pearson correlation 
coefficient (Sedgwick, 2012). 

3. Case study and results 
 

For this analysis, a fault constitutes an asset failure either 
on the power system logged by Western Power 
Distribution (WPD, now NGED) or on the railway logged by 
Network Rail's Fault Management System (FMS). The FMS 
is a central data repository managed by Network Rail. (CGI, 
2013). To demonstrate the proposed methodology, a case 
study is conducted for the West Midlands region of the UK, 
considering two critical infrastructure sectors: railway and 
electrical power distribution. The UK electricity network 
consists of two main components: the high voltage 
transmission network and the low voltage distribution 
network, with the DNO (Distribution Network Operator) 
operating the low voltage distribution network and 
delivering electricity from the high voltage transmission 
network to homes and businesses  (nationalgridESO, 
2022). As can be seen from Figure 2, the study area covers 
seven districts within the West Midlands, Birmingham, 
Gloucester, Hereford & Ludlow, Stoke-on-Trent, Telford, 
Tipton, and Worcester, respectively. To conduct a unified 
assessment, railway system faults are collected for the 
same area from Network Rail. Following the process 
outlined in Section 2, data logged by Western Power 
Distribution (WPD, now NGED)  and Network Railis 
collected including all power system faults and all railway 
fault events in the West Midlands from 1st April 2009 to 
31st March 2014. A total of 73,286 electric power 
distribution and 45,153 railway faults are considered in 
the analysis. 

 
Figure 2. Great Britain Distribution Network Operators 
(DNOs) with the West Midlands area of National Grid 
Electricity Distribution (NGED, show in red) and location of 
districts used in the analysis.  



Meteorological data (Maximum daily 
temperature and total daily rainfall) on a 12-km grid for 
the period April 1, 2009, to March 31, 2014, were obtained 
from the HadUK-Grid gridded climate observations 
provided by UK Met Office (MetOffice, 2022). As the 
weather data contains the maximum daily temperature 
and rainfall value on a 12km grid over the locations of the 
faults, first the fault data is aggregated to daily counts of 
faults for each of the two infrastructure sectors. For this 
case study, the intended application is to provide initial 
insight into decision-making for a wider region where local 
authorities may not have access to granular outage 
location information but rather aggregated data. To 
reflect this, the weather data for the region is averaged 
over the study area to form a single weather series against 
which to compare the regional infrastructure performance. 
More granular resolution could also be utilised to evaluate 
more localised impacts, which would involve taking the 
weather variables from the 12km square in which the fault 
occurred.  

The historical faults are plotted to provide insight 
into the dispersion of the number of faults in power 
system and railway system across temperature and rainfall 
(as shown in Figures 4 and 6). Each grey point corresponds 
to the number of faults occurring on a single day and the 
corresponding maximum temperature. The median 
number of faults is shown in black. Error bars are produced 
which reflect the standard deviation in faults for each 
value of the weather variable. Plotting the standard 
deviation shows that the fit is well constrained in for some 
temperature ranges, but much less so for low temperature 
extremes. 

Each of the steps in the asset fragility curves 
analysis are shown in Figure 3. Figure 5(a) shows the 
fragility curves for power and railway with respect to 
temperature. Evaluation reveals that the number of power 
system faults and railway fault events are approximated 
by a straight line in the interval of 8°C-25°C. In this 
temperature range, the number of faults in the power 

system is about 38 per day and the number of railway 
faults is about 25 per day. Below 7°C (including 7 °C), the 
number of faults increases as the temperature decreases. 
For each degree Celsius decrease in temperature, the 
number of power system faults increases by 2.1 and the 
number of railway system faults increases by 6.1. After 
26°C (including 26°C), the number of faults increases as 
the temperature rises. For each degree Celsius rise in 
temperature, the number of power system faults 
increases by 2.4 and the number of railway fault events 
increases by 2. The fragility functions that map the 
relationship between infrastructure (power and railway) 
faults and temperature are shown below: 

𝑓௣(𝑇) = 0.064𝑇ଶ − 1.581𝑇 + 43.47 (7) 
𝑓௥(𝑇) = 0.0923𝑇ଶ − 3.124𝑇 + 46.32 (8) 

where 𝑓௣ is power system faults fragility function and 𝑓௥ is 
railway fault events fragility function. 𝑇 is temperature. 

 
Figure 3. Steps in asset fragility curves analysis 

  
      (a)                                                                                               (b) 



Figure 4. (a) Number of all power system faults (grey points) and median number of faults (black points) recorded at different 
temperatures (max) at all locations. (b) Number of all railway fault events (grey points), and median number of faults (black 
points) recorded at different temperatures at all locations. 

 
        (a)                                                                                              

 
(b) 

Figure 5. (a) Fragility curves of power system and railway system fault counts with temperature. (b) Correlation coefficient for 
power vs railway system faults at different temperatures.

Figure 5(b) provides the correlation between 
power and railway faults at each value of temperature 
using the Pearson correlation coefficient. Apart from 
extreme temperatures, it can be observed that as the 
temperature increases, the strength of the correlation 
between the number of rail and power faults increases 
with correlation ranging from 0.2 to 0.8 after 25 degrees. 
The average correlation between rail and power for all 
faults occurring at 25 degrees or above is 0.5 with a p-
value of 0.03. This indicates a moderate correlation that is 
statistically significant.  Figure 5(b) also indicates that 

power system faults and railway system faults are mainly 
concentrated in the range of 1°C-30°C (Figure 5(a)).  

Similar to Figure 5(a), Figure 9 shows the 
distribution of the number of failures for different rainfall 
amounts. It should be noted that the number of power 
system faults is mainly concentrated in the range of 0mm-
43mm of rainfall; there was only one day with more than 
43mm of rainfall with a fault during the study period 
(figure 6(a)).  For railway faults, there is only one day of 
data per rainfall point on average after more than 43 mm 
of rainfall (figure 6(b)). This illustrates the scarcity of data 
at high rainfall levels. For power and railway system faults 



under different rainfall amounts, they are mainly 
concentrated between 0 mm – 29 mm (Figure 7). 
Accordingly, data from days where rainfall exceeds 30 mm 

will not be used for analysis. The result after removing the 
days with a scarcity of data is shown in Figure 8. 

  
   (a)                                                                                               (b) 

Figure 6: (a) Number of all power system faults (grey points) and median number of faults (black points) recorded at different 
rainfall (mm) at all locations (including outliers). (b) Number of railway fault events (grey points), and median number of faults 
(black points) recorded at different rainfall (mm) at all locations (including outliers). 

 
Figure 7: Correlation coefficient for power vs railway system faults at different rainfall.  

  



(a)                                                                                                (b)  
Figure 8: (a) Number of all power system faults (grey points) and median number of faults (black points) recorded at different 
rainfall (mm) at all locations. (b) Number of railway fault events (grey points), and median number of faults (black points) 
recorded at different rainfall (mm) at all locations. 

 
Figure 9: Fragility curves of power system and railway system faults counts with rainfall. 

With increased rainfall, the number of power 
system faults also increases (Figure 9). The number of 
power system faults increases by one for every one mm 
increase in rainfall. However, the number of failures on the 
railway system remained essentially the same as the 
amount of rainfall increased. The fragility functions 
between power system faults and railway fault events and 
rainfall are shown below: 

𝑓௣(𝐹) = 0.023𝐹ଶ + 0.022𝐹 + 32.73 (9) 
𝑓௥(𝐹) = 0.003𝐹ଶ − 0.077𝐹 + 24.00 (10) 

where 𝑓௣ is power system faults fragility function and 𝑓௥ is 
railway fault events fragility function. 𝐹 is rainfall value. 

Table 1. Coefficient of determination for power system 
and railway system for weather factors 

Weather factors Power System Railway System 

Rainfall (mm) 0.76 0.10 

Temperature (°C) 0.83 0.66 

Through figure 5(a) and figure 9 it can be 
observed that there is a difference in fragility curves of 
power system and railway system faults counts with 
temperature and rainfall. Fragility curves of power system 
and railway system faults counts with temperature have a 
minimum value at medium temperature and increase at 
both ends (higher/lower temperature). However with 
increase in rainfall the faults are increased for power 
system, but the railway system may be less directly 
affected by rainfall. Overall, this shows that the trend of 

the fragility curves for the power system and the railway 
system is the same for different temperatures, which 
implies that the critical infrastructure failures are similar 
for temperature factors. However, for the rainfall factor, a 
different trend is presented, with power system faults 
showing an incremental trend with increasing rainfall, but 
rail system faults are largely unaffected by increasing 
rainfall. 

Table 1 shows the coefficients of determination 
(𝑅ଶ ) for the power system and the railway system for 
different weather factors. The number of faults in the 
power system have a relatively high goodness of fit of the 
regression with rainfall, with an 𝑅ଶ of about 0.76, and a 
high goodness of fit of the regression with the 
temperature factor, with an 𝑅ଶ  of about 0.83. The 
goodness of fit statistics between temperature and 
number of faults in the railway system is more moderate, 
with 𝑅ଶ  about 0.66, while the goodness of fit with the 
rainfall factor is lower, with 𝑅ଶ  only 0.10. These results 
show that temperature has a clear influence on power 
system and the railway system fault rates. The relationship 
between fault rates and rainfall is less clear. 

4. Discussion  
 

This study shows that temperature and rainfall impact 
power and railway systems in similar ways through 
qualitative evaluation of the fragility curves. Temperature 
has a stronger explanatory strength for both power 
system and railway faults ( 𝑅ଶ  = 0.83; 𝑅ଶ  = 0.66, 
respectively) with rainfall showing weaker impact (𝑅ଶ  = 
0.76; 𝑅ଶ = 0.10, respectively). However, this paper sets up 
a time frame spanning five years for this comparison, and 



accordingly data is sparse for lower frequency more 
extreme weather events such as very heavy rainfall and 
high extreme temperatures. Future work could consider 
analysis of more time frames, i.e., analysing the effects of 
temperature on power system faults and railway system 
faults over multiple five-year ranges. One other trade-off 
present in the case study was the aggregation of weather 
parameters for regional decision-making. While this may 
be suitable for temperature, for rainfall there is much 
more spatial uncertainty and as such, using the regional 
maximum daily rainfall over a region may not be suitable 
for localised fragility evaluation. This may contribute to 
the lower 𝑅ଶ   values for rainfall. Future research should 
use longer time periods to increase the variety of 
meteorological conditions to which the infrastructure 
assets are exposed. Alongside evaluation of more 
historical data, variation of the spatial resolution should 
also be explored to better understand the trade-offs 
between regional aggregation for decision-making and the 
granularity of measurement necessary for accurate 
fragility modelling. Sensitivity testing would identify the 
most useful and robust approach to combining 
infrastructure fault data with weather data. Moreover, the 
most appropriate approach may vary for different regions, 
different infrastructure fault sets, and for different 
infrastructure decisions.  Increasing the resolution of 
weather data used may also improve the strength of the 
correlation. 

Infrastructure owners are actively working to 
improve their resilience and ensure they can adapt to the 
challenges of higher temperatures (Dooks, 2023).UK 
Electricity DNOs have collaborated on research and 
development over the years in a variety of activities, 
including climate change impacts on assets and asset 
design or rating work (Powergrid, 2015). Network Rail is 
also involved in various climate change risk assessments 
and has developed a weather risk management policy to 
provide infrastructure that can operate effectively in a 
changing climate (Rail, 2011). In July 2022, temperatures 
within the West Midlands exceeded 38.7°C for the first 
time, and climate projections indicate that these summer 
temperatures will be increasingly common in the future 
(Mike Kendon, 2022). Furthermore, high temperatures 
tend to affect a wider area than other climate factors such 
as flooding.  NGED noted in the Adaptation to Climate 
Change-Second Round Report that temperature increases 
are progressive, and they found that 11,000-volt and 
33,000-volt wood pole lines are most vulnerable to 
temperature changes of among all pole line types. In 
response to projected future high temperatures, NGED 
has been designing new overhead lines since 2011. Now, 
most poles are now used that are 0.5 m-1.0 m taller than 
previous designs, which allows these devices to operate at 
temperatures up to 55 °C, thus reducing the impact of 
temperature increases on their ratings 
(WesternPowerDistribution, 2015). With climate change, 
rail failures associated with cold temperatures are 
expected to decrease, while the effects of high 

temperatures will increase (NETWORKRAIL-LIMITED, 
2021).  High temperatures can cause rail buckles, 
Temporary Speed Restrictions (TSRs), overheated 
electrical components. To reduce temperature-related 
impacts, London North East and East Midlands Route have 
replaced 51 km of jointed track with continuously welded 
rail (CWR) to avoid buckling in extreme hot temperature 
and consider temperature when installing signalling and 
telecommunications and electrical equipment in buildings 
(NETWORKRAIL-LIMITED, 2021).  

Based on the results of this study, there are two 
key points for infrastructure owners and operators. Firstly, 
the fragility curves calculated in this work show that 
without adaptation, the number of power system and 
railway faults will increase in the future. Resilience can be 
increased via increase maintenance of assets, increased 
capacity to respond to during an emergency, and “building 
back better”, i.e., when updating infrastructure assets, 
using those which are designed for future warmer 
climates. Secondly, this study demonstrates that fragility 
curves provide a transferable means to compare 
infrastructure resilience to different weather parameters 
at a regional level across different infrastructure sectors. 
Extreme weather rarely impacts one system in isolation, 
and interdependencies exist between infrastructure 
systems. Aside from the ability to predict an extreme 
event, the correlation analysis for temperature and rainfall 
indicates that days which have high number of faults are 
correlated across these sectors and the correlation grows 
at extremes of temperature and rainfall. As a result, 
organisations with regional responsibility for resilience 
such as Local Resilience Forums, Lead Local Flood 
Authorities or Combined Authorities could work with 
infrastructure operators to develop regional fragility 
curves for different weather types or climate indices and 
thereby provide a consistent regional approach to 
understanding vulnerability to extreme weather. This 
would support the management of cascade failures, often 
linked to energy supply (Ferranti et al., 2017, Guo et al., 
2020, Liu et al., 2022) by allowing all operators within the 
region to have a shared understanding of the potential 
impact of different types of weather on the systems with 
which they are interdependent. This would also feed into 
emergency response and recovery planning for 
infrastructure failures such as power faults, 
communication interruption, or traffic disruptions caused 
by extreme weather events. 

5. Conclusion and Future Work  
 

This paper presents a process for the concurrent 
evaluation of the fragility of infrastructure to weather 
related failure. The methodology is demonstrated using a 
case study that examines the effects of temperature and 
rainfall on power and rail systems in the West Midlands, 
UK. Specifically, for this region, joint analysis indicates that 
power and rail are both adversely affected by temperature 
extremes and more importantly that the daily number of 



faults across these areas show correlation. Therefore, 
collaboration across sectors is necessary to ensure 
successful adaptation and planning for such events. They 
are anticipated to become more frequent in the future due 
to the changing climate.  

More broadly, this study demonstrates the 
continued need for government agencies, distribution 
network operators, rail operators, urban planners, and 
other relevant stakeholders to continue to monitor and 
understand the relationship between weather and 
infrastructure faults. The resulting fragility curves show 
that although the failure modes may differ across 
infrastructure types, such as railway and power 
distribution systems, the response to rainfall and heat can 
have similar relationships. This highlights the importance 
of inter-operator collaboration to develop appropriate 
policies and measures to ensure the sustainability and 
resilience of critical infrastructure. 

While, this paper focused on temperature and 
rainfall impacts across power distribution and railway 
networks, future studies could investigate concurrent 
fragility curves for other meteorological parameters such 
as wind (Donaldson et al., 2023), different climate indices 
such as warm nights, warm days, heatwave days, hot days 
(Greenham et al., 2023) or other related critical national 
infrastructure.  
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