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ABSTRACT

The performance of metal–organic and covalent organic framework materials in sought-after applications—capture, storage, and delivery of
gases and molecules, and separation of their mixtures—heavily depends on the host–guest interactions established inside the pores of these
materials. Computational modeling provides information about the structures of these host–guest complexes and the strength and nature of
the interactions present at a level of detail and precision that is often unobtainable from experiment. In this Review, we summarize the key
simulation techniques spanning from molecular dynamics and Monte Carlo methods to correlate ab initio approaches and energy, density,
and wavefunction partitioning schemes. We provide illustrative literature examples of their uses in analyzing and designing organic frame-
work hosts. We also describe modern approaches to the high-throughput screening of thousands of existing and hypothetical metal–organic
frameworks (MOFs) and covalent organic frameworks (COFs) and emerging machine learning techniques for predicting their properties and
performances. Finally, we discuss the key methodological challenges on the path toward computation-driven design and reliable prediction
of high-performing MOF and COF adsorbents and catalysts and suggest possible solutions and future directions in this exciting field of com-
putational materials science.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0144827
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I. INTRODUCTION

At a first glance, it may appear that water filtration with activated
carbon, sound absorption with metal foams, and water softening using
zeolites in laundry detergents have very little in common. However, all
these processes rely on materials possessing tiny pores—microporous
materials—with diameters in the nanometer range, which is less than
the wavelength of visible light.

Naturally occurring porous materials have been used for a long
time. For example, charcoal is a naturally porous substance, known to
and used by the ancient Egyptians, Greeks, and Romans.1 In the
Naturalis Historia, Pliny the Elder describes the utility of charcoal in
the treatment of “carbuncles.” (A carbuncle is a cluster of boils that
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form a connected area of infection under the skin.) Nowadays, char-
coal is still used in various beauty products. In 1854, John Stenhouse
invented face masks employing charcoal to filter the air, which proved
to be useful in hospitals.2 Since those early discoveries, numerous
porous materials have been developed and manufactured artificially to
address a range of laboratory and industrial needs.

Owing to their structural and compositional diversity and tun-
ability of physical and chemical properties, metal–organic frameworks
(MOFs) and covalent organic frameworks (COFs) are particularly
promising candidates for various applications requiring microporous
materials. MOFs are constructed from polynuclear metal-containing
building units (called secondary building units, or SBUs) joined by
organic linkers into various network topologies. Since demonstrating
permanent porosity in 1994 by Yaghi et al.,3 MOFs have continuously
attracted the attention of researchers worldwide. COFs are promising
organic analogues of MOFs, first described in 20054 and consisting of
elements typical for organic molecules. The ability of MOFs and COFs
to capture, store, and release guest molecules is, arguably, their most
prominent feature, exploited in gas storage,5–7 gas separation,8,9 energy
storage,10 gas adsorption,11–13 catalysis,14–17 sensing,18–20 and biomed-
ical applications.21,22 The nature, behavior, and quantity of absorption
depend on pore size and volume, surface area, chemical environment,
and, in particular, on the host–guest intermolecular interactions.

The ultimate goal of all efforts in materials science is to make bet-
ter materials, either through the discovery of new or the improvement
and repurposing of existing systems. In silicomodeling facilitates these
efforts by elucidating the fundamental mechanisms of action and
establishing the structure–property relationships. An extensive review
by Mancuso et al.23 discusses general electronic structure approaches
to modeling metal–organic frameworks, while Gagliardi and co-
workers discuss modeling techniques of MOFs for catalytic applica-
tions with particular focus on natural gas conversion.24 In 2015, Lee
et al. published an insightful overview article on studying the small-
molecule interactions in MOFs by combined theoretical and experi-
mental approaches.25 More recently, Qiao and co-workers traced the
transition from single simulations to high-throughput screening
(HTS) and machine learning of MOF adsorbents.26 In this Review, we
focus more narrowly on the computational studies of the host–guest
complexes between framework materials and their molecular targets,
exemplifying common simulation techniques and discussing their
advantages and shortcomings. The diversity of framework materials
and their applications requires simulations at various time and lengths
scales. If the objective is an overview of an entire system containing
thousands of atoms, atomistic methods based on parametrized force
fields are the preferred, albeit less precise choice. Electronic structure
methods not only offer more accurate but also more costly means to
identify specific adsorption sites and quantify the host–guest interac-
tions (HGIs). These approaches, either used independently or com-
bined in a multiscale manner, are general and can be applied to study
host–guest interactions in other crystalline and porous materials, such
as zeolites. Finally, up-and-coming machine learning techniques cou-
pled with high-throughput data generation allow rapid screening of
thousands of existing and hypothetical frameworks.

II. ZONE DEFENSE: DYNAMIC BEHAVIOR

The playing field that is comprised by the pore space within
framework materials is a battleground for guests to follow trajectories

related to adsorption/desorption and diffusion. These processes, in
unison, are responsible for the observed performance in guest separa-
tion and storage. For example, a membrane’s separation performance
is dictated by permeability, which is the product of diffusivity and con-
centration, in turn related to diffusion and adsorption, respectively.27

The processes of diffusion and adsorption appear intertwined but they
relate to distinct temporal domains: diffusion is a kinetic property, and
adsorption is an equilibrium property. As a result, distinct computa-
tional strategies are often employed to examine each of these
processes.28–33

Throughout the literature, diffusivity is usually treated with
molecular dynamics (MD) simulations that sample the trajectories of
guests by solving equations of motion for the particles within the sys-
tem, including the forces and potential energies between particles.34

We note that diffusion can also be estimated by Monte Carlo (MC)
simulations and transition state theory.35 Simulating the potential
energy and forces for this application is achieved using classical
approaches to treating guest–guest and guest–framework interactions
that accelerate the simulations permitting the simulation over long
time scales (>1ns), required to accurately describe statistics of diffu-
sion processes. Molecular diffusion in fully flexible models, where both
the guest and the pore walls move, is preferred but only if a suitable
force field is available. A force field is a mathematical model that
describes the interactions between atoms or molecules, and it is crucial
for the accuracy of MD simulations. In recent years, a number of force
fields have been developed specifically for MOFs. One example of a
force field that has been shown to be effective for MOFs is the ZIF-
8 force field developed by Zhang et al.36 Similarly, Wu et al. used a
bespoke force field to simulate CO2 transport diffusion in UiO-66 and
reported a value in good agreement with experimental data.37 It is
important to note that these bespoke force fields are usually not appli-
cable to other materials. Force fields are constantly improved by the
community and can be derived from ab initio data.38 In order to over-
come this limitation, several force fields have been introduced in
recent years that are more universal in their applicability. One such
example is the universal force field for MOFs (UFF4MOF), which is
based on a universal force field for small molecules.39 Addicoat et al.40

and Coupry et al.41 supplemented the original universal force field by
adding new atom types for metal elements to better describe the coor-
dinate bonds in MOFs. With the recent development of more univer-
sal force fields for MOFs, it is becoming possible to study diffusion in
a wider range of materials using MD simulations.

The key quantity measured throughout the molecular dynamics
trajectories is the mean squared displacement of the individual guests
moving throughout the structure. From the mean squared displace-
ments, the self-diffusivity (in three-dimensions) can be computed in
an analogous way to experiments:42

Dself ¼
1
6
lim
t!1

d
dt

r tð Þ � r 0ð Þ
�� ��2
D E

: (1)

Computing self-diffusivity from molecular dynamics trajectories does
require careful analysis to ensure sufficient sampling of diffusion
events. For example, the simulated diffusivity of several gases in MOF-
5 demonstrates that the magnitude of diffusivity is related to the prop-
erties of the guest [Fig. 1(a)].43,44 Self-diffusivity is a useful measure of
diffusion capturing both guest–guest and guest–framework collisions
and enabling a close comparison with experiment, provided an accu-
rate fully flexible model is used for the guests and framework.45
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Adsorption at very low pressures, for example in the Henry’s law
regime, can be sampled by completely random sampling to simply
capture the guest–framework interactions. This random sampling is
employed by Monte Carlo (MC)—a method that focuses on static
properties of systems and does not involve the evolution of systems
over time. In contrast to molecular dynamics (MD), where each state
of the system depends on the previous state, in MC, there is no con-
nection between the snapshots (states) of the system. Most MC algo-
rithms are based on modifying the current snapshot by performing
changes called “moves” and using an “acceptance rule” to determine
whether the new state should be accepted or rejected. However, MC is
rarely applied to chemically complex molecules and frameworks and
has a reputation for being difficult to debug and test. The RASPA soft-
ware is a general purpose classical simulation package for MC and is
used throughout the literature.46 MC can uncover the interaction
strength for the guest in the framework. However, more complex MC
moves correctly sampling the thermodynamics, such as grand canoni-
cal Monte Carlo (GCMC) simulations, are necessary to compute the
loading of guest at a specific pressure, in order to simulate an

isotherm.47 Configurational bias GCMC can be employed to simulate
the flexibility of guests.48 In general, Monte Carlo simulations involve
the sampling of millions of moves that include trial displacement,
insertion, and removal of guest molecules in the framework structure.
The number of guests adsorbed in framework will evolve over the
course of GCMC simulation, and after a period of equilibration, it will
fluctuate around an equilibrium value.46,49 Snapshots from GCMC
simulations are useful to demonstrate how guests may pack in the
porous space [Fig. 1(b)]. This equilibrium imitates the experimental
system, in which the adsorbed phase is at equilibrium with a gas reser-
voir. These approaches allow for the system configuration to sample
the equilibrium case that cannot be sampled efficiently through molec-
ular dynamics simulations.

For even more rigorous quantitative insights, traditional molecu-
lar dynamics simulations can be combined with ab initio modeling,
e.g., at the density functional theory (DFT) level, to simultaneously
sample configurational space, describe the electronic structure of the
host–guest complexes, as well as take into account entropic and
enthalpic effects.50–53 This approach is described as ab initiomolecular
dynamics (AIMD) and is the most accurate method to study the
dynamic behavior of guest molecules in porous materials. With this
approach, one can establish a relation between the electronics of the
host–guest system and its macroscopic properties. It is also well-suited
to treat solid–liquid interfaces. However, AIMD is extremely computa-
tionally intensive, and this often results in limited sampling.
Consequently, AIMD has not been widely applied to guest molecules
in MOFs and COFs, apart from a few notable exceptions where it was
employed to (i) model the uptake and release of gases, determine its
temperature dependence and its effect on structural and electronic
properties of MOFs;54–57 (ii) model breathing and structural flexibility
upon adsorption;58–62 (iii) study the degradation and formation of
MOFs in water;63–67 (iv) investigate proton conduction of guests in
MIL-53;68 and (v) study ferroelectricity and how it is influenced by
trapped water molecules.69

III. ONE-ON-ONE: STATIC BEHAVIOR

The nature and strength of the interactions, established upon the
guest’s diffusion and adsorption in the host’s pore, often determine—
and can, therefore, be exploited to tune—the selectivity and efficacy of
the framework material used to capture, separate, catalytically activate,
and/or transport small molecules. These HGIs occasionally involve
covalent bonding, but are more commonly non-covalent (intermolec-
ular), spanning from very strong interactions (e.g., hydrogen or dative
bonds to metal atoms in MOFs) to relatively weak interactions (e.g.,
van der Waals forces as is the case of inert gases). We note that disper-
sion interactions are the dominate energy contribution to most HGIs
at the short range.

Accurate in silico characterization of the host–guest complexes
generally relies on electronic structure theory in a “so-called” static set-
ting, in which single-point computations are performed on either an
equilibrium structure (partially or fully relaxed) or on an experimental
structure. The choice of the simulation technique is often guided by
the requirements of a specific application: the relative adsorption
strengths of different guests are critical for separation processes, the
exact location and structure of a guest are important for a catalytic
mechanism, and the host–guest interaction type is central to sensing.
Practical applications of framework materials vary depending on the

FIG. 1. (a) Simulated self-diffusivities of various gases in MOF-5 at room tempera-
ture. Reproduced with permission from A. I. Skoulidas and D. S. Sholl, J. Phys.
Chem. B 109, 15760 (2005). Copyright 2005 American Chemical Society.44 (b)
Snapshot of GCMC simulation of o-xylene packing in MIL-47 at 433 K, (left) view
along the channel, (right) side view with the channel 45� rotated around the channel
axis (the line in the center is an edge of the unit cell). Reproduced with permission
from Knoop et al., Mol. Simul. 42, 81 (2016). Copyright 2016 Authors, licensed
under a Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY NC
ND) license.46
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size of the molecular guest relative to the pore space. Small guests are
molecules made up of only a few atoms and occupying a relatively
small portion of the pore volume. Typical examples include gaseous
molecules, such as H2, N2, O2, CO2, H2O, and light hydrocarbons, e.g.,
methane, ethane, ethylene, etc. For these small guests, framework
materials, owing to their controllable and adjustable porosity, struc-
ture, and surface functionalities, are utilized primarily to separate mix-
tures (such as ethane and ethylene, methane and CO2, O2, and N2,
etc.), as well as for capture (particularly CO2) and storage (e.g., H2).

6,8

Larger guests, such as drug molecules, are typically dissolved in sol-
vents and loaded together with the solvent. Their applications often
involve MOFs for catalysis, drug delivery, and sensing.9,24,70 Since
these guest can form more and stronger interactions with the frame-
work, a detailed analysis of these interactions becomes critical.

Two types of structural models are usually considered: periodic
and finite (cluster) models. Periodic computations account for the
crystalline (periodic in three dimensions) nature of the material, but
are computationally demanding, and therefore, often restricted to den-
sity functional theory. In contrast, finite models (clusters), cut out
from the periodic structure and capped with (most commonly) hydro-
gen atoms, can be treated not only at the DFT but also at correlated
wavefunction theory levels, such as coupled cluster and perturbation
theory. Choosing a model is a balancing act between the precision of
the computational method and that of the structural model.

A. Periodic computations

Periodic approaches often use density functional theory methods
from the lower rungs on the Jacob’s ladder, such as the local density
approximation (LDA) and generalized gradient approximation
(GGA). These methods by construction lack the description of disper-
sion, crucial in the host–guest interactions.71 To remedy this

shortcoming and achieve agreement with the experimental data, either
the empirical dispersion corrections, such as Grimme’s D2 and D3 fea-
turing the R6 term72 are added to the “bare” DFT results, or the so-
called van der Waals (vdW) DFT functionals,73 which self-consistently
account for dispersion through non-local correlation, are employed.
Siegel and co-workers benchmarked these methods against experi-
mental enthalpies of CO2 adsorption in four prototypical metal–
organic frameworks: M/DOBDC (M¼Mg, Ni, and Co) and
5Cu-HKUST-1.74 LDA methods alone were found to significantly
overbind, and GGA—to underbind carbon dioxide; addition of D2
dispersion correction notably improved these results both qualitatively
and quantitatively, albeit still underestimating the CO2 adsorption
enthalpies by ca. 7 kJ mol�1 compared to experiment. Nonempirical
vdW density functionals, particularly revPBE, afforded the best agree-
ment (within �2 kJ mol�1) with the reference experimental data (Fig.
2). The same authors later expanded the range of the studied metal
atoms in the two MOFs, i.e., M-DOBDC with M¼Mg, Ca, Sr, Sc, Ti,
V, Mo, and W, and M-HKUST-1 with M¼Be, Mg, Ca, Sr, and Sc,
reaching very similar conclusions regarding the DFT performance.75

LDA and GGA functionals also lack a proper description of the
strong on-site Coulomb interaction of localized d-electrons of metal
atoms. This is especially important for open metal sites (OMSs), which
are formed when solvent is removed from a crystalline metal–organic
framework, and which largely define the interactions with the guest
molecules. To address this issue, DFT methods are appended with an
additional Hubbard term and are consequently denoted as DFT þ U
approaches.76 Investigating the interactions of isostructural metal–or-
ganic frameworks based on M-MOF-74 (where M¼Mg, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, and Zn) with various gaseous and small hydrocar-
bon molecules (including H2, CO2, N2, H2O, H2S, NH3, CH4, C2H4,
etc.), Lee et al. demonstrated that the Hubbard U corrections are nec-
essary to correctly predict not only of the ground-state multiplicity of

FIG. 2. Performance of various DFT methods for computing CO2 adsorption energies in M/DOBDC (M¼Mg, Ni, Co) and HKUST-1. The total column heights represent the
0 K static binding energy, and the dashed segments at the top indicate the sum of zero-point and thermal energy contributions at 300 K (� denotes this contribution for Cu-
HKUST-1 at the PBE-GGA level, equal to �0.5 kJ mol�1). The average experimental DH is given as a horizontal line; the standard deviation in the experimental data is given
by a dashed box. Reproduced with permission from Rana et al., J. Phys. Chem. C 116, 16957 (2012). Copyright 2012 American Chemical Society.74
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the transition metals in MOFs but also of the binding energies in their
host–guest complexes.77 On the other hand, Kim et al. showed that
adding Hubbard U-corrections to PBE-D2 binding energies between
small hydrocarbons and Fe-MOF-74 significantly worsens their agree-
ment with experiment.78 This demonstrates the difficulties faced when
investigating OMSs.

To reproduce experimental heats of adsorption beyond qualita-
tive trends, zero-point vibrational energy and thermal energy correc-
tions must be added to compute electronic energies of the host–guest
binding. This can be achieved by numerical differentiation of the ana-
lytical first derivatives to estimate vibrational frequencies. Heats of
adsorption of N2, CO, and CO2 on Mg-MOF-74, computed in this
manner at the B3LYP-D� level of theory, were shown to be in a rea-
sonably good agreement with the data from variable-temperature
infrared spectroscopy.79 Delle Piane et al. demonstrated that disper-
sion correction is needed to predict spontaneous adsorption of ibupro-
fen on MOF MCM-41 walls (in accordance with experimental
observations), while the lack of dispersion correction lead to positive
values of the free energies of adsorption.80 Vibrational frequencies,
computed using a finite-differences approach to obtain a Hessian
matrix of second derivatives of the total energy, were used by Lee
et al.77 to assess the quantum nuclear zero-point vibrational energies
and finite-temperature thermal energies under the harmonic approxi-
mation at the vdW-D2 þ U2 level of theory. Figure 3(a) clearly dem-
onstrates the need to include these effects to reproduce experimental
heats of adsorption.

While many periodic approaches use ab initio pseudopotentials
and plane-waves (such as the projector augmented wave method),81 a
fully periodic hybrid Hartree–Fock/DFT simulation of CO2 adsorption
on MIL-100(MIII) with MIII¼Al, Sc, Cr, and Fe using instead atom-
centered basis sets was performed by D’Amore et al.82 Specifically,
dispersion-corrected B3LYP and MO6 computations employed a
triple-zeta pob-TZVP/6–311G(d,p) basis set on the metal atoms, a
6–311G�� Pople basis set on the H, C, and O atoms of the framework,
and a TZP basis set on the CO2 molecule. A massively parallel version
of the CRYSTAL code was used in these computations involving over
50 000 basis functions. The computed interaction energies, corrected

for the basis set superposition error, are in reasonable agreement with
experiment.

Computed binding energies can be used to assess the perfor-
mance of diverse MOFs in the separation of gas mixtures. For exam-
ple, Sholl and co-workers considered the M-BTC framework, where
BTC is the 1,3,5-benzenetricarboxylic acid, and M¼Mg, Ti, V, Cr,
Mo, Mn, Fe, Ru, Co, Ni, Cu, and Zn, for the separation of the water,
carbon monoxide, ethane, ethene, and ethyne [Figs. 3(b) and 3(c)],
demonstrating a relationship between binding energies and separation
efficiencies.83 Similarly, Cunha et al. rationalized the impact of the
ligand functionalization on the release of caffeine from functionalized
MIL-53 via binding energies.84 Furthermore, periodic DFT computa-
tions allow elaborating the mechanistic details of, e.g., separation of
C2H4 and C2H6 on ZIF-7,85 conversion of NO into NO2 in Mn-MOF-
74,86 fixation of CO2 in HbMOF1,87 or catalytic hydrogenation of CO2

by a Lewis pair functionalized MOF, UiO-66-P-BF2.
88,89

Apart from structural and energetic considerations, ab initio
modeling allows characterizing the electronic structure of the host–
guest complexes in organic frameworks. Bader charge analysis90 is often
employed to establish the oxidation state of the metal node in MOFs,
and to rationalize the extent of charge transfer between the framework
and the guest.85,91,92 For example, Canepa et al. suggested that a rela-
tionship exists between the charge of the metal ion in M-MOF-74,
where M¼Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr,
Nb, Ru, Rh, Pd, La, W, Os, Ir, and Pt, and the strength of adsorption of
small molecules (H2, CO2, CH4, and H2O) in its pores.93 A similar
observation was also made by Koh et al. for CO2 adsorption on M-
DOBDC and M-HKUST-1, where M¼Be, Mg, Ca, Sr, Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb.75 These findings put for-
ward the metal ion charge as a potential descriptor of adsorption energy
for the high-throughput screening of MOFs (see Sec. VA below).
Jensen et al. simulated the transition dipole moments and the photolu-
minescence spectra for a Zn-based MOF, RPM3-Zn, in the presence of
nitroaromatic guests.94 Computed photoluminescence quenching was
in a good agreement with the experimentally measured one and is
attributed to the shift of the lowest unoccupied molecular orbital
from the framework to the guest. This selective photoluminescence

FIG. 3. (a) CO2 binding enthalpies in M-MOF-74 at 297 K, measured experimentally and computed using PBE, PBE-D2, and vdW-D2 þ U2 (with the inclusion of vibrational
effects; labeled “this work”) levels of theory. Reproduced with permission from Lee et al., Chem. Mater. 27, 668 (2015). Copyright 2015 American Chemical Society.77 (b)
Average PBE-D3 binding energy differences of 10 pairs of molecules for isostructural M-BTC MOFs with 12 metal centers. Molecular pairs are ordered vertically in the order of
decreasing energy difference averaged over all materials. (c) Five types of orderings of computed guest molecule binding energies in M-BTC MOFs. Co and Mg (not shown)
have the same ordering as V; Cr, Mo, Mn, Ni, and Cu (not shown) have the same ordering as Zn. Reproduced with permission from You et al., J. Phys. Chem. C 122, 27486
(2018). Copyright 2018 American Chemical Society.83
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quenching by nitroaromatics potentially enables the sensing of explo-
sives by the studied MOF.

Periodic computations for MOF–guest systems generally focus
on gaseous guests. On one hand, this is because applications involving
gases, such as hydrogen storage or flue gas separation, are among the
most common ones. On the other hand, this can be attributed to the
difficulty of obtaining good starting geometries for large guests in
MOFs. Starting structures can be based on chemical intuition,95 elec-
trostatic complementarity,80 or modeling using force fields.84,96,97

Although the choice of a starting geometry is crucial for correctly pre-
dicting the final adsorption site, it is often overlooked in the litera-
ture.94,98,99 Devautour-Vinot et al.96 examined the adsorption of
caffeine on functionalized UiO-66(Zr) MOFs with periodic DFT com-
putations. This MOF has tetrahedral and octahedral cages. The
authors found that all starting configurations in the tetrahedral cage
converge to the same geometry and that this adsorption site is pre-
ferred over the ones in the octahedral cage. Despite these difficulties,
there are many reasons why periodic computations are important for
large guests. The more space the guest occupies in the pore, the more
sites are available for its interactions with the host. To describe all these
interactions properly, either very large finite models or periodic com-
putations are required. Moreover, the steric hindrance within the
framework can only be captured in the periodic setting. Finally, and
importantly, periodic computations are necessary to model the long-
range interactions and crystal field effects.

B. Finite models

While periodic models adequately reflect the realistic structure of
the framework material, their sheer size prohibits the use of advanced
ab initio methods, capable of accurately describing static and dynamic
electron correlation, which can be critical in multireference (e.g., con-
taining open-shell metal sites) and weakly bound systems (such as
many host–guest complexes). To capture these effects, density func-
tionals beyond GGA, as well as single- and multireference post-HF
methods can be employed provided the studied system is small
enough to make such computations feasible.100 This is achieved by
“cutting out” smaller, finite clusters out of the periodic structures
(experimental or optimized in silico) of the guest-occluded frame-
works, and “saturating” them with, e.g., hydrogen atoms to preserve
charge. The cluster is typically defined based on chemical intuition
and includes the metal center (in the case of MOFs), the guest mole-
cules, and the parts of the framework interacting with or closest to it
(Fig. 4); to the best of our knowledge, this process is yet to be automa-
tized. Numerous methods and codes are available to analyze the
energy, electron density, and orbitals in the finite setting. For example,
the latter, straightforwardly obtained with finite computations, must
instead be constructed from projections in the periodic case.

Many common exchange-correlation density functionals lack in
their treatment of dynamic correlation, which is the key component of
the attractive interactions between small gas molecules and organic
frameworks. To overcome this limitation, in their studies of N2/CH4

separation in V-MOF-74 and Fe-MOF-74, Lee et al. employed a non-
local Rutgers-Chalmers van der Waals density functional with the
Hubbard U correction (vdW-DF2þU), several Minnesota density
functionals containing the kinetic energy density term (M06-L, M06,
and M11-L), and two wavefunction theory methods: local-pair natu-
ral-orbital coupled cluster theory with single and double excitations

(LPNO-CCSD), and complete active space second-order perturbation
theory with counterpoise corrections (CASPT2-CP).101 DFT computa-
tions were performed on the periodic model and clusters of two sizes:
a “large” cluster containing 88 atoms, including three metal centers,
and a “small” cluster composed of 19 atoms, including one metal cen-
ter [Fig. 4(a)]; the wavefunction theory methods were only feasible for
the finite models. Across all models and methods there is a good agree-
ment in terms of the adsorption preference for H2 vs CH4 on the two
studied MOFs: Fe-MOF-74 does not display any appreciable selectiv-
ity, while for V-MOF-74, N2 binds much stronger than CH4 (Table I).
Similarly, Supronowicz et al. observed an excellent agreement (less
than 2 kJ mol�1 difference) between B3LYP-D3/TZVP and CCSD(T)/
CBS interaction energies of H2O with a Cu2(HCOO)4 finite model of
the HKUST-1 MOF.102 They also showed that increasing the basis set
size from TZVP to def2-QZVPP does not change the qualitative trends
in the binding energies of various gases on the finite model of
HKUST-1, and leads to only minor decrease in their absolute values.
Koukaras et al. also showed that PBE/def2-TZVPP interaction ener-
gies of amino acids (glycine and tyrosine) in IRMOF-14 are in good
agreement with the MP2 results.103

Multiconfigurational wavefunction methods become indispensable
when an accurate description of the open metal sites is required.
Stoneburner et al. investigated interaction energies between various
gases and M-catecholate MOFs for M¼Mg2þ, Sc2þ, Ti2þ, V2þ, Cr2þ,
Mn2þ, Fe2þ, Co2þ, Ni2þ, Cu2þ, and Zn2þ using complete and restricted
active space (CAS and RAS, respectively) formalisms of the self-
consistent field and second-order perturbation theory (SCF and PT2,
respectively), in addition to various flavors of DFT.104,105 Again, a good
agreement was achieved for the overall trends across all tested methods
[Fig. 5(a)]. Importantly, multireference methods not only provide more
accurate energetics compared to the DFT but also yield physical insight
into the host–guest interactions. Bernales et al. turned to multiconfi-
gurational methods in conjunction with the DFT geometries to study
the catalytic mechanism of ethylene dimerization by a cobalt(II) or a
nickel(II) single-site catalyst supported on the zirconia-like nodes of
the NU-1000 MOF [Fig. 4(b)].106 Analysis of the complete active space
molecular orbitals in the rate-limiting transition state allowed explain-
ing superior catalytic activity of the Ni(II) active site compared to Cu.

Depending on the studied system and its application, the size of
the cluster model must be adjusted. For example, a cluster consisting
of only the linker was sufficient to investigate the influence of OH
linker functionalization on the drug delivery performance of IRMOF-
16.107 Pirillo and Hijikata studied how the adsorption properties of
several gases at the open metal site of a rhodium paddle-wheel unit are
influenced by guests adsorbed on the unit’s other side.108 To consider
this effect across a metal–metal bond, a cluster model containing only
the metal node was sufficient. Most cluster models consist of one metal
node and one or several linkers, which allows capturing (to a certain
extent) the interplay between these structural units.109 However, when
multiple adsorption sites in a pore are likely important, the model
must contain a large portion of, or even an entire pore. For instance,
Supronowicz et al. used a model of an entire pore of HKUST-1 to
study the interaction of various biologically important organic mole-
cules with this MOF containing undercoordinated copper centers.110

Ernst and Gryn’ova probed the importance of the appropriate cluster
model choice for the adsorption of 4,40-bipyridine and 1,2-bis(4-pyri-
dyl)ethane on GW-MOF.111 Considering two model clusters for each
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guest, adsorption energies were computed for both the periodic and
the finite models [Figs. 4(e) and 4(f)] at a range of DFT levels; these
were subsequently refined and analyzed using energy decomposition
analyses (EDAs)112 to identify the physical underpinnings of the
host–guest interactions (see Sec. IIID below). Larger clusters including
two metal centers closely reproduced the trends in the interaction
energy from the periodic model, while predictions for the smaller clus-
ters led to qualitatively wrong trends [Fig. 5(b)].

Cluster models are often employed to investigate the mechanisms
of reactions inside the framework materials using density functionals
beyond the generalized-gradient approximation, common in the peri-
odic approaches. For example, the M06-L functional, which includes
short-to-medium-range van der Waals interactions, has been success-
fully applied to study mechanisms of catalytic ethylene hydrogenation
and dimerization by Ir(CO)2 and Ir(C2H4)2 complexes on UiO-66 and
NU-1000 supports [Fig. 4(d)],113 catalytic propane oxidative

FIG. 4. Periodic guest-free and guest-occluded metal–organic frameworks (gray border) and their corresponding finite (cluster) models (no border). (a) Periodic and two cluster
models of V-MOF-74 (element colors: light blue—vanadium, red—oxygen, dark gray—carbon, and white—hydrogen atoms). Adapted with permission from Lee et al., J. Am.
Chem. Soc. 136, 698 (2014). Copyright 2014 American Chemical Society.101 (b) Zr6-based framework of NU-1000 and the corresponding benzoate and formate cluster models
(element colors: gray—carbon, white—hydrogen, cyan—zirconium, red—oxygen). Adapted with permission from Bernales et al., J. Phys. Chem. C 120, 23576 (2016).
Copyright 2016 American Chemical Society.106 (c) HKUST-1 MOF and its molecular cluster models, dicopper tetraformate Cu2(HCOO)4 (top) and dicopper tetrabenzenetricar-
boxylate Cu2BTC4 (bottom), side (left) and top (right) views (element colors: orange—copper, gray—carbon, red—oxygen, white—hydrogen). Adapted with permission from
Supronowicz et al., J. Phys. Chem. C 117, 14570 (2013). Copyright 2013 American Chemical Society.102 (d) UiO-66 MOF and its model cluster representing the Zr6 node from
two views (element colors: gray—carbon, white—hydrogen, cyan—zirconium, red—oxygen). Adapted with permission from Yang et al., J. Am. Chem. Soc. 137, 7391 (2015).
Copyright 2015 American Chemical Society.113 (e) and (f) Crystal packing of GW-MOF occluded with 4,40-bipyridine (e) and 1,2-bis(4-pyridyl)ethane (f) guests, view in c direc-
tion, as well as two cluster models for each complex (element colors: white—hydrogen, gray—carbon, blue—nitrogen, red—oxygen, and yellow—calcium). Adapted with per-
mission from M. Ernst and G. Gryn’ova, ChemPhysChem 23, e202200098 (2022). Copyright 2022 Authors, licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives (CC BY NC ND) license.111
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dehydrogenation by activated Co-SIMþNU-1000 MOF,114 and
carbonyl-ene reaction between encapsulated formaldehyde and pro-
pylene on M3(btc)2 (M¼ Fe, Co, Ni, Cu and Zn).115 Chen et al. used
B3LYP to investigate the catalytic hydrolysis of organophosphate war-
fare agents by MOF NU-1000 after benchmarking HF, M06, M06–2X,
B3LYP, and a modified complete basis set method (CBS-QB3) on the
uncatalyzed reaction.116 Islamoglu et al. used the M06-L functional to
study the effect of amino groups in proximity of metal nodes on the
organophosphate decomposition reaction.117

Complete-active space approaches, CASSCF and CASPT2, can
be employed to refine the DFT energies in multireference systems, as
was done in the study of CH-activation mechanism by MIL
(Materials of Institute Lavoisier) metal–organic frameworks.118 Such

multiconfigurational approaches become indispensable when modeling
optically active systems, such as MOF-based luminescent sensors for
small molecules. Hidalgo-Rosa et al. investigated the luminescence
quenching in a Eu-MOF sensor for aniline119 and a Cd-MOF sensor
for 4-nitroaniline120 at a cluster model level using CASSCF and
NEVPT2 methods in addition to time-dependent density functional
theory, elucidating the energy transfer pathways crucial for the turn-off
luminescence mechanism of these chemosensors (Fig. 6). To investigate
the hydrogen bond between formaldehyde and the luminescent MOF
[Zn(NH2bdc)(bix)]n, Yao et al. also used time-dependent density func-
tional theory (CAM-B3LYP functional) and established that lumines-
cence is due to the ligand-to-ligand rather than ligand-to-metal charge
transfer.121

C. Hybrid models

Instead of choosing between the periodic and finite models, com-
bining them can yield an in-depth insight into the electronic structure
whilst preserving a realistic representation of the system. Such
“hybrid” approaches often employ periodic computations at the LDA
and GGA level with subsequent geometry and energy refinement on a
cluster model at higher-rung DFT and post-HF levels of theory. Dixit
et al. demonstrated that periodic PBE computations adequately
describe the hydrogen adsorption on MOF-5 (M¼ Li, Be, Mg, and Al)
when compared to hybrid DFT and MP2 cluster modeling.122 A
hybrid approach coined MP2:B3LYPþD� was introduced to quantify
the interaction of CO and CO2 with the CPO-27-M metal–organic
frameworks (M¼Mg2þ, Ni2þ, Zn2þ): the structures of adsorption
complexes were generated at the B3LYP-D� level with periodic bound-
ary conditions, and their interaction energies were computed for rep-
resentative clusters using perturbation theory.123 This approach
reproduces the experimental sequence of binding energies for the
metal centers, and yields heats of adsorption within ca. 2 kJ mol�1 of
the experimental values. Similarly, a hybrid MP2:(PBEþD2)

TABLE I. N2/CH4 adsorption energy differences for M-MOF-74 (in kcal mol
�1), com-

puted using periodic and two cluster models. Reproduced with permission from Lee
et al., J. Am. Chem. Soc. 136, 698 (2014). Copyright 2014 American Chemical
Society.101

Level of theory V Fe V Fe

Periodic

6.0 0.4

vdW-DF2þU Small Large

vdW-DF2þU 4.9 0.4 5.8 0.3
M06-L 4.3 0.0 10.1 0.9
M06 4.5 0.1 6.9 0.4
M11-L 4.2 �0.8 5.9 �1.7
LPNO-CCSD/CBS 4.8 0.7 � � �a � � �a
CASPT2 CP 3.8 0.3 2.1 0.3

aImpractically computationally intensive.

FIG. 5. (a) Computed DFT and PT2 electronic binding energies (in kcal mol�1) of O2 and N2 to cat–M
2þ systems. M06-L results are absent for Mn–N2, V, and Cr because of

convergence failures. Inset: structure of NO bound to the cat–M complex. Adapted with permission from S. J. Stoneburner and L. Gagliardi, J. Phys. Chem. C 122, 22345
(2018). Copyright 2018 American Chemical Society.104 (b) Host–guest interaction energies in periodic (per guest molecule, i.e., DE/4, as there are four guest molecules per
unit cell) and cluster models of the studied systems, computed using a range of density functionals. Reproduced with permission from M. Ernst and G. Gryn’ova,
ChemPhysChem 23, e202200098 (2022). Copyright 2022 Authors, licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY NC ND) license.111
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þDCCSD(T) method, in which PBE-D2 is used to optimize the
adsorption complexes and compute their anharmonic frequencies,
and the accurate electronic energies of cluster models are computed at
the MP2 level with a correction for higher-order correlation effects at
the CCSD(T) level, was used to estimate the adsorption energies of
CO on CPO-27-Mg.124 The computed adsorption isotherms are in
close agreement with experiment, with only �1 kJ mol�1 deviation in
Gibbs free energies. Nachtigall and co-workers introduced a so-called
DFT/CC approach, in which a correction term, computed for a cluster
model using DFT, CCSD(T) and DMP2 extrapolation to complete
basis set limit, is added to the periodic PBE/PAW results to approxi-
mate the CCSD(T)/CBS accuracy (Fig. 7).125,126 When applied to

model CO2 adsorption on CuBTC MOF, this method yields a very
good agreement with experiment.127 Finally, Yu et al. developed an
MP2-based QM/MM method to compute the binding energy of CO2

on CPO-27-M (M¼Mg, Mn, Fe, Co, Ni, Cu, and Zn).128 As in the
previous examples, the adsorption complex geometries were first
relaxed using periodic DFT (PW91 functional), and subsequently used
to cut out finite clusters. Geometries of these clusters were further
refined at the B3LYP/6-31þG(d,p) level, and their energies computed
at the MP2/6-31þG(d,p) level of theory. These finite-model ab initio
adsorption energies were then corrected to account for the periodicity
of the real system using molecular mechanics (Dreiding and Universal
force fields). This approach afforded good agreement with experimen-
tal heats of adsorption (Table II).

D. In-depth analysis of the host–guest interactions

A good tactic in football involves understanding the interaction
between the players and the ball in detail. Likewise, a good tactic for
designing MOFs and COFs requires detailed insight into the host–
guest interaction mechanism and type. Diverse approaches to analyz-
ing the non-covalent interactions are well established for molecular
chemistry and reactivity,129,130 biomolecular complexes,131,132 molecu-
lar crystals,133,134 but are somewhat less common in MOF-guest sys-
tems. Among these approaches, energy decomposition techniques
discern the energetic contributions to the total interaction energy and
the physical forces behind the interactions, while analysis of canonical
and/or localized orbitals, as well as electron density and its derivatives
allow localizing, quantifying, and visualizing the interactions.

Energy decomposition analyses (EDAs) yield quantitative parti-
tioning of the interaction energy into physically meaningful compo-
nents, e.g., electrostatic, Pauli repulsion, polarization, orbital mixing,
and dispersion term. Tsivion et al. used absolutely localized molecular
orbital energy decomposition analysis (ALMO-EDA) to study the
interaction of hydrogen molecules with typical MOF linkers.135

While interactions with the non-metalated linkers are driven by dis-
persion and weak charge transfer, they range from significant charge
transfer to mostly electrostatic in metalated linkers depending on their
polarity. Similarly, the ethylene dimerization by fluorinated organic

FIG. 6. (a) Structural model of the dimer building unit [Eu2(PmBC)4(NO3)2H2O)6] (labeled here “Eu-MOF”) of the EuL MOF consisting of Eu3þ metal centers and 4-(pyrimidin-
5-yl) benzoate (PmBC) linkers. (b) Energy transfer pathway for the sensitization and emission of the Eu-MOF system. All states were determined at the CASSCF/NEVPT2
level of theory with an active space of CAS(8,8) for the PmBC, CAS(8,8) for the PmBC-aniline, and CAS(6,7) for the europium fragment. IC—internal conversion, ISC—
intersystem crossing, ET—energy transfer, and BET—back energy transfer. Reproduced with permission from Hidalgo-Rosa et al., J. Comput. Chem. 41, 1956 (2020).
Copyright 2020 Wiley-VCH GmbH.119

FIG. 7. The interaction energy of H2O with the Cu2(HCOO)4 cluster model
(depicted in the inset) as a function of the RCu�OH2 distance computed at different
levels of theory (element colors: yellow—copper, red—oxygen, orange—carbon,
and white—hydrogen). Reproduced with permission from Grajciar et al., J. Phys.
Chem. Lett. 1, 3354 (2010). Copyright 2010 American Chemical Society.126
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ligand on palladium MOF catalysts109 and the H2 adsorption on a
vanadium MOF136 were analyzed with the ALMO-EDA approach.
The Kitaura–Morokuma-Ziegler EDA was used to explain the selective
adsorption of certain gas molecules on rhodium and copper paddle
wheel nodes,108 and to examine the interactions of H2, CH4, C2H4,
C2H6, CO2, and CS2 with a Hofmann-type MOF, modeled by a gas
molecule sandwiched between two pyrazine molecules.137

Furthermore, the Morokuma–Ziegler EDA, the natural orbitals for
chemical valence (NOCV) approach, and the non-covalent interac-
tions index (NCI) were employed to investigate the charge transfer
channels between MOF [Zn2(OBA)4(BYP)2] and nitrobenzene, and
between MOF [Cd2(H2L)2(H2O)5]0.5H2O explaining the turn-off
mechanism of luminescence in these chemosensing MOFs.120,138

Symmetry-adapted perturbation theory (SAPT) revealed dispersion
and electrostatics as main forces behind the sorption of H2 on the
open metal sites of HKUST1-MOF, while dispersion and induction
were found to be the main contributors to the selective adsorption of
krypton over xenon in an ultramicroporous MOF [Ca(C4O4)(H2O)]
[Fig. 8(a)].139,140

Koukaras et al. investigated IRMOF-14 and IRMOF-16 for the
delivery of an anticancer agent tamoxifen.141 Organic linkers of the
two MOFs were modified by inserting a hydroxyl group to enable
hydrogen bonding with tamoxifen. Based on the spin-component
scaled second-order Møller–Plesset perturbation theory [SCS(MI)-
MP2] computations, OH-IRMOF-16 has a higher binding affinity
toward tamoxifen than OH-IRMOF-14. To further analyze the inter-
actions responsible for this preference, the non-covalent interaction
index method was applied to the cluster model of hydroxy-
functionalized IRMOF-16. NCI confirmed the strong attractive
hydrogen bonding interaction between the nitrogen atom of tamoxi-
fen and the hydroxyl unit of the MOF linker [Fig. 8(b)]. Tan et al.
used DFT and NCI to explain the experimentally observed high
adsorption selectivity for methanol and ethanol over other volatile
organic compounds on DPPB-2 (the amorphized form of MOF
DPPB-1).142

Ernst and Gryn’ova compared SAPT and Bickelhaupt–Baerends
EDAs, as well the NCI and density overlap regions indicator (DORI)
tools for two types of cluster models of the GW-MOF hosting 4,40-
bipyridine or 1,2-bis(4-pyridyl)ethane. Both EDA methods yielded the
same qualitative results (Fig.9), whilst both NCI and DORI confirmed
that the host–guest interactions are dominated by hydrogen bonds.111

IV. TEAM PLAY: THE MACROSCOPIC PROPERTIES

So far, this review focused on the host–guest interactions in the
context of capture/adsorption, storage, transformation, and release of
the guests. However, guests can also affect the macroscopic bulk prop-
erties of the MOFs. A prominent example is the breathing effect of cer-
tain MOFs possessing a dynamic framework. In their pioneering
work, Loiseau et al. investigated the structural basis for the large
breathing effect observed for MIL-53 upon hydration. The water

TABLE II. Computed CO2 binding energies (in kJ mol�1) and experimental heats of adsorption Qst (in kJ mol�1). Reproduced with permission from Yu et al., Chem. Sci. 4,
3544 (2013). Copyright 2013 Royal Society of Chemistry.128

MOF
LDA GGA LSDA B3LYP MP2 QM/MM

Qst
aperiodic periodic cluster cluster cluster periodic

Mg �54.3 �23.9 �63.0 �23.9 �40.5 �48.2 42.0, 47, 39, 73, 42
Mn �38.4 �13.3 �43.2 �12.1 �30.3 �37.2 31.9
Fe �38.1 �9.4 �36.6 �4.48 �24.2 �32.2 34.3
Co �42.5 �10.6 �43.2 �7.70 �29.7 �37.0 34.5, 37
Ni �43.1 �12.5 �52.9 �11.2 �31.2 �39.1 38.7, 41
Cu �31.0 �6.0 �27.4 �3.49 �16.2 �23.9 24
Zn �40.2 �12.4 �50.4 �11.8 �29.7 �37.0 30.6

aBy convention, the isosteric heat of adsorption is a positive quantity; please see Ref. 112 for the sources of the experimental data.

FIG. 8. (a). Intermolecular interactions (0.00155 a.u. isovalue) in Kr@UTSA-280
(left) and Xe@UTSA-280 (right), visualized using the independent gradient model
analysis. In these isosurfaces, blue represents a strong attraction, green—van der
Waals interaction, and red—strong repulsion over the electron density range of
�0.05 < q(r)< 0.05 a.u. Reproduced with permission from Xiong et al., J. Phys.
Chem. C 124, 14603 (2020). Copyright 2020 American Chemical Society.140 (b)
Partial view of the structures of tamoxifen (TAM, left) and the hTPDC organic linker
(right), and the reduced density gradient isosurface (s¼ 0.5 a.u.) for the region
between the NTAM and the HOhTPDC. The blue color of the surface corresponds to a
negative sin(k2)q and indicates a strong and attractive noncovalent, acid–base
interaction. Reproduced with permission from Koukaras et al., J. Phys. Chem. C
118, 8885 (2014). Copyright 2014 American Chemical Society.141
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molecules in the one-dimensional channels of this highly flexible
MOF form hydrogen bonds with the framework, causing a substantial
change in the pore size whilst preserving the topology.143 The breath-
ing effect influences not only the pore size but also the magnetic144

and mechanical145 properties of MOFs.
Dong et al. evaluated the elastic tensors of MOF-901 free of sol-

vent and occluded with 5.7 and 11.4wt. % methanol. According to
DFT (PBE) computations of the unit-cell compression, the stability of
MOF-901 increases with increasing methanol content, likely due to
methanol molecules filling the pores and leading to greater structural
stability.146 Canepa et al. computed the elastic constants, bulk, shear,
and Young’s moduli of empty MOF-74-Zn and loaded with H2, CO2,
CH4, and H2O using the vdW-DF functional.147 The incorporation of
the adsorbates generally leads to a substantial increase in the elastic
constants, indicative of the loss in the MOF’s flexibility. The largest
increase is induced by water, which was also found to have the stron-
gest interaction with the framework. Furthermore, the adsorbate-
induced changes to the MOF’s heat capacity, computed from the ab
initio phonon frequencies, were found to be related to the host–guest
interaction energy: the larger the energy, the larger the heat capacity
[Fig. 10(a)]. Specifically, the largest heat capacity among the studied
guests were found for water, in line with the interaction energies:
�73.9 kJ mol�1 for H2O, �52.4 kJ mol�1 for CO2, �40.1 kJ mol�1 for
CH4, and only�20.9 kJ mol�1 for H2.

Water molecules in the pores also affect the electric properties of
MOFs. Using a combination of periodic DFT computations, imped-
ance measurements, accurate X-ray diffraction measurements and
charge density modelling, Scatena et al. showed that the dielectric con-
stant of HKUST-1 differs substantially depending on whether its pores
are empty, half-filled, or filled with water molecules [Fig. 10(b)].148 For
the same MOF, it was shown that introducing 7,7,8,8-tetracyanoqui-
nododimethane (TCNQ) guest molecules leads to a six orders of mag-
nitude increase in the electrical conductivity.149 Ab initio calculations
suggest that every TCNQ guest molecule bridges four copper paddle

wheel units. This guest molecule introduces an additional empty band
into the band gap of the MOF, resulting in a new charge transfer band.
Similarly, guests have been shown to affect the framework’s magnetic
properties. For example, periodic vdW-DFT computations were
employed to investigate the spin-crossover transition temperature in
empty and guest-occluded {Fe(pyrazine)[Pt(CN)4]} MOF.150 Crystal
orbital displacement curves were computed to analyze the stabilization
or destabilization due to the host–guest interactions and the charge
transfer between the host and the guest.

Luminescent MOFs find potential application in light-emitting
diodes, lasers, and as chemical sensors.99 When used as the latter, their
fluorescence (and phosphorescence) is selectively turned on or off by
guest molecules based on their type and/or quantity and tuned by the
host–guest interactions. Yang and Yan studied the fluorescence of
4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran
(DCM) incorporated into stilbene-MOF and IRMOF-8. DCM is a
laser dye with red fluorescence, while these MOFs show blue emission
under UV irradiation. The incorporation of DCM into them resulted
in a blue/red two-color emission. Periodic DFT computations demon-
strated that an energy transfer from the MOF to the DCM molecule
occurs during the excitation process. Furthermore, the authors probed
the luminescence response of the host-guest systems when volatile
organic solvents were added. This affected the emission wavelength
and the intensity ratio of the blue to red emission, which demonstrates
that these MOF-DCM systems could be useful ratiometric lumines-
cence sensors. The phosphorescence of two Zn-terephthalate (TPA)
MOFs, 1-DMF and MOF-5, upon treatment with a pyridine solution
was also investigated.151 Frontier orbital analysis revealed that in the
empty MOF the HOMO is mainly located on Zn2O8 metal nanoclus-
ters, while the LUMO is primarily located on the TPA ligands.
Pyridine guest introduces intermediate energy levels participating in
the photoemission process and shifting the wavelength of the emis-
sion. Hidalgo-Rosa et al. rationalized the selective fluorescence
quenching in [Zn2(OBA)4(BPY)2] MOF by nitrobenzene but not by

FIG. 9. Energy decomposition analyses in two cluster models, (a) and (b), of GW-MOF complexes with 4,40-bipyridine and 1,2-bis(4-pyridyl)ethane. Reproduced with permis-
sion from M. Ernst and G. Gryn’ova, ChemPhysChem 23, e202200098 (2022).Copyright 2022 Authors, licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives (CC BY NC ND) license.111
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toluene using time-dependent DFT and finite models.119 They showed
that the fluorescence emission is due to a linker-to-linker charge trans-
fer involving p-type orbitals. DFT geometry optimizations revealed
that the absorption of nitrobenzene leads to the formation of host-
guest hydrogen bonds. In this system, the LUMO is now located on
nitrobenzene, from which the energy dissipates through the nonradia-
tive transition resulting in the turn-off of the fluorescence. Instead,
toluene does not introduce a LUMO between the HOMO and LUMO
of the empty MOF.

V. TALENT SCOUTS: INSIGHT FROM ARTIFICIAL
INTELLIGENCE
A. High-throughput screening

Given the enormous number of possible metal–organic frame-
works, selecting the structure most suited to a specific application (i.e.,
a specific guest molecule) necessitates efficient and rapid techniques to
explore this vast chemical space. High-throughput screening (HTS)
approaches benefitting from continuously increasing computer power
and improving simulation algorithms enable searching thousands of
structures according to target criteria. These approaches typically
involve either constructing a new or utilizing an existing database
of MOFs, such as the Computation-Ready, Experimental (CoRE)
metal–organic framework database,152 computing their relevant
physico-chemical properties (descriptors) using an appropriate, i.e.,
simultaneously sufficiently accurate and computationally feasible
method, and ranking the structures so as to identify the most promis-
ing candidates.153,154

In 2012, the Snurr research group constructed an extensive data-
base of hypothetical MOFs (ca. 138 000 structures) from the building
blocks of existing frameworks;155 this hMOF database is available at
http://hmofs.northwestern.edu. Since then, it has been repeatedly
employed to search for MOFs with desirable adsorption properties,
and to identify the relevant structure–property relationships. In the
seminal publication,155 the hMOF database was screened for methane-
storage capacity. The most promising candidate, NOTT-107, was then
synthesized and shown to outperform the best material for CH4 stor-
age at the time, PCN-14. Improved materials were discovered in the
hMOF database for Xe/Kr separation,156 and for many other applica-
tions by identifying the relevant screening criteria. For example, a clear
correlation was established between purely structural (e.g., pore size,
surface area, and pore volume) and chemical features (such as func-
tional groups) of MOFs and their gas adsorption properties (Fig.
11).157 To rapidly identify MOFs with superior hydrogen storage
capacity, a simple metric—the binding fraction, i.e., the fraction of the
unit cell volume within a given distance of the framework—was intro-
duced and shown to reliably reflect the gas storage capacity of the
framework.158 The ratio of Henry’s law constants between CO2 and
H2O was used to identify MOFs with high CO2 selectivity under high
humidity conditions.159

The Grand Canonical Monte Carlo method is among the most
frequently used simulation techniques in high-throughput workflows
due to its relatively low computational cost. GCMC high-throughput
screening allows estimating typical adsorbent selection criteria, such as
adsorption selectivity, adsorbent performance score (APS), sorbent
selection parameter, working capacity, and regenerability of MOFs.
Candidate structures are generally ranked according to a combination
of these metrics. This approach was used to discover frameworks with
high CO2/CH4 selectivity and total loading above 0.5mol kg�1 among
ca. 3000 existing MOFs,160 candidates for separating the dibranched
hexane isomers from their linear and monobranched counterparts out
of 12 351 existing MOFs,161 and frameworks for CH4/H2 separation
among almost 55 000 structures from the Cambridge Structural
Database.162 In the latter example, a simple mathematical model was
also proposed to predict the CH4/H2 selectivity.

Density functional theory computations, either in a periodic or in
a finite fashion, can be included at the later stages of a high-
throughput screening workflow to refine the predictions from GCMC

FIG. 10. (a) Constant volume heat capacity, C�, for an empty MOF-74-Zn and
loaded with H2, CO2, CH4, and H2O, computed from ab initio frequencies omitting
phonon frequencies below 500 cm�1 (top) and computed from experimental IR fre-
quencies between 500 and 3800 cm�1 (only for CO2 and H2O, bottom).
Reproduced with permission from Canepa et al., J. Mater. Chem. A 3, 986 (2015).
Copyright 2015 Royal Society of Chemistry.147 (b) Real (er0) and imaginary (er0 0)
dielectric constant for HKUST-1 as-synthesized (filled with H2O and MeOH), mea-
sured in air after activation (partially filled with H2O), and measured in N2 after acti-
vation (empty). The inset highlights the differences between activated samples
measured in different atmospheres. Reproduced with permission from Scatena
et al., J. Am. Chem. Soc. 141, 9382 (2019). Copyright 2019 Authors, licensed under
an ACS AuthorChoice license.148
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or other semi-empirical models for selected candidates. Demir et al.
screened the CoRE MOFs database for O2 and N2 binding using
GCMC for the initial selection, and periodic and cluster DFT to com-
pute accurate binding energies.163 To find the best candidates from the
same database for propane/propene separation by diffusion,
Pramudya et al. combined molecular dynamics, nudged elastic band
(NEB) with the classical UFF-FM force field, and DFT computations
in a high-throughput workflow.164 DFT was particularly necessary
when modeling MOFs with long flexible linkers, as the NEB UFF-FM
method could not provide reliable energy barrier estimates for these
systems. Periodic DFT simulations were also used to obtain accurate
geometries of 936 anion-pillared MOFs prior to GCMC simulations of
Xe and Kr adsorption in the high-throughput screening of MOFs for
Xe/Kr separation.165

The entire screening procedure can be performed at the ab initio
level instead of classical simulations, typically using the LDA or GGA
density functionals. For example, Canepa et al. investigated the
adsorption of H2, CO2, CH4, and H2O in MOF-74-M (M¼Be, Mg,
Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Ru, Rh, Pd,
La, W, Os, Ir, and Pt) using periodic vdW-DF computations, and dis-
covered that only a few noble metals afford selective adsorption of
CO2 over H2O [Fig. 12(a)].93 Rosen et al. developed a fully automated,
high-throughput periodic density functional theory workflow and
applied it to screen the CoRE database for MOF catalysts for methane
activation.166 Periodic PBE-D3(BJ) computations revealed that the
oxidation of the open metal site, and not the C–H bond activation in
CH4, is the rate determining step, suggesting that improved MOF het-
erogeneous catalysts can be achieved with low-valence, redox-active
open metal sites. Extending this work, the authors screened 60 MOFs
for the catalytic activation of methane and demonstrated that the
active site formation energy is a reliable descriptor of both the thermo-
dynamic stability of the metal-oxo active site and the framework’s abil-
ity to activate the C–H bonds [Fig. 12(b)].167 Furthermore, Rosen et al.
screened a series of MOFs comprised of 6 MOF families (MOF-74,
MOF-74-S, MIL-88B, MIL-88B-OH, and MAF-X, where
MAF¼metal-azolate framework, X¼ bridging anion, e.g., l-Br–, l-

Cl–, l-F–, l-SH–, or l-OH–) and diverse metals (V2þ, Cr2þ, Mn2þ,
Fe2þ, Co2þ, Ni2þ, Cu2þ, and Zn2þ cations for MOFs with M2þ bind-
ing sites, and Sc3þ, Ti3þ, V3þ, Cr3þ, Mn3þ, Fe3þ, Co3þ, and Ni3þ cati-
ons for MOFs with M3þ binding sites) for O2 and N2 adsorption.

168

The MOF unit cell shapes and volumes were optimized at the periodic
PBE-(D3)BJ level of theory with Hubbard U correction, and the
atomic positions and adsorption energies were obtained at the M06-L
level. Gas molecules were systematically placed inside the pores using
the MOF adsorbate initializer program,166 and the adsorption modes
were analyzed using the CrystalNN bonding topology algorithm.169

This study elucidated the effect of the bridging anion on the gas
adsorption strength and demonstrated how this effect can be utilized
to develop more selective MOF adsorbents. Finally, Fumanal et al.
based their high-throughput screening of MOF photocatalysts on two
energy-based descriptors: the UV-vis light absorption capability and
the band energy alignment.170 Both descriptors were derived from the
electronic structure features (bandgap, ionization potential, etc.)
assessed at the periodic PBE and (selectively) PBE0 levels of theory.

Apart from physical and chemical descriptors, the topology of
the framework itself can be used in the high-throughput screening, as
was demonstrated by First et al. for the separation of gases (O2/N2,
CO2/N2, CO2/CH4, and CO2/H2) and chemicals (propane/propylene,
ethane/ethylene, styrene/ethylbenzene, and xylenes) in MOFs.171 1690
frameworks were assessed based on the shape selectivity criterion,
which considers the minimum-energy pathway of a guest molecule
through the material and is evaluated using the MOFomics code.172

High-throughput screening generates extensive sets of structural
and computed data; thus, tailored approaches are needed to analyze it,
to discover promising candidates, and to arrive at practical material
design guidelines. Moghadam et al. developed an interactive visualiza-
tion tool, which assists in analyzing the multidimensional structure–
property plots, obtained in the HTS, and identifying the relationships
between structural properties and adsorbent performance.173

Applying this technique in combination with the GCMC and DFT
computations to a database of 2932 existing MOFs, the authors identi-
fied UMCM-152 MOF as a promising candidate for O2 storage (Fig.

FIG. 11. Exemplary structure–property relationships derived from simulated CO2, CH4, and N2 adsorption in over 130 000 hypothetical MOFs. Clear relationships can be dis-
cerned between (a) CO2 working capacity (DN1) and surface area, (b) CO2 uptake (N1) at 2.5 bar and CO2 heat of adsorption (Qst), and (c) selectivity of CO2 over N2 (aads12 )
and maximum pore diameter. Qst values are determined from CO2 adsorption at the lowest simulated pressure (0.01 bar). Each plot is divided into 50� 50 regions that are
represented by a filled circle if more than 25 structures exist within the region. The color of each circle represents the average (d) helium void fraction of all structures in that
plot region. Reproduced with permission from Wilmer et al., Energy Environ. Sci. 5, 9849 (2012). Copyright 2012 Royal Society of Chemistry.157
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13); this prediction was confirmed experimentally, resulting in a
world-record performance, 22.5% over the best performing system at
the time. The interactive 5D visualization tool for comprehensive data
mining is accessible at http://aam.ceb.cam.ac.uk/mof-explorer.

B. Machine learning

While high-throughput screening certainly offers a relatively
rapid means to map the large structure–property space of the frame-
work materials, the computational and time costs of the commonly
employed GCMC and DFT methods remain a major bottleneck when
applied to databases featuring more than 100 000 materials. Moreover,
large amounts of data, generated in high-throughput workflows, are,
on one hand, challenging to analyze, but, on the other hand, attractive
for big-data approaches. This is where machine learning (ML) can
accelerate materials discovery by as much as 2–3 orders of magnitude,
offering efficient ways to predict the material properties, analyze the
structure–property relationships, and even reverse-design new mate-
rial architectures. Applying machine learning to materials discovery

generally entails (i) preparing a sufficiently large and representative
training set containing material structures and computed (e.g.,
through high-throughput screening) or measured properties, (ii)
selecting an appropriate machine-readable representation of a mate-
rial, (iii) choosing an efficient machine learning model (architecture),
and (iv) visualizing and analyzing the results of the ML prediction. In
the past 4 years, several review articles have been published on this
topic, both focusing on specific applications in gas storage and separa-
tion,174–176 and providing a more general overview of ML methods in
this field of research.177–179 Below we highlight recent and innovative
ML approaches to the prediction and design of framework materials
hosting molecular guests.

1. Datasets

In addition to the sets of existing and hypothetical MOF struc-
tures, for which various properties have been computed with the
grand-canonical Monte Carlo and/or density functional theory in a
high-throughput manner (see Sec. VA), a set containing experimental
and DFT-computed data for 15 713 MOF, entitled QMOF, has been
developed by the Snurr group with the specific goals to train and test
machine learning models, and to facilitate the discovery of newmateri-
als.180 Using the SOAP similarity kernel for unsupervised dimension-
ality reduction with a uniformmanifold approximation and projection
(UMAP) algorithm, the authors constructed an insightful structure
(experimental crystal structures)—property [PBE-D3(BJ) computed
band gaps] map of QMOF (Fig. 14).

2. Feature selection

Choosing the right descriptor of the material structure and chem-
istry is crucial to obtain reliable ML predictions for a reasonably sized
training set. In 2013, the Woo research group developed an atomic
property weighted radial distribution function (AP-RDF) descriptor181

specifically tailored to gas adsorption in MOFs. The AP-RDF score
employs Gasteiger’s radial distribution functions, popular in chemoin-
formatics, and weights them according to atomic electronegativity,
polarizability, and van der Waals volume, thus capturing geometric
and chemical features simultaneously. Approximately 58 000 struc-
tures from the hMOF database were evaluated for their CH2, N2, and
CO2 uptake capacity. Both the principal component analysis (PCA)
and the quantitative structure–property relationship (QSPR) method
using AP-RDF scores were able to correctly identify the high-
performing MOFs, with R2 values for the predicted uptake capacity
above 0.7. A webserver implementation of the AP-RDF scores using
multilinear regression (MLR) and support vector machine (SVM)
learning models for predicting the uptake capacities called MOFIA
(MOF Informatics Analysis) was also developed. This tool was subse-
quently used to discover MOFs with high methane storage capacities
based on the interplay of two structural parameters—dominant pore
size and void fraction—using a nonlinear support vector machine
model [Fig. 15(a)].182 Similarly, Halder and Singh found the void frac-
tion to be the most significant factor defining the C2H6/C2H4 selectiv-
ity when screening the hMOF database,183 while Yang and co-workers
identified the pore limiting diameter, followed by the largest cavity
diameter and porosity, as most important for the gas separation effi-
ciency of existing MOFs using principal component analysis.184 For
the selective adsorption of p-xylene over o- and m-isomers in MOFs,

FIG. 12. (a) Magnitude of the adsorption energy of CO2 relative to H2O in MOF-74-
M. Positive values correspond to CO2 binding more strongly than H2O. Reproduced
with permission from J. Mater. Chem. A 1, 13597 (2013). Copyright 2013 Royal
Society of Chemistry.93 (b) Computed barriers of C–H bond activation of methane,
Ea,C–H, as a function of the metal-oxo formation energies, DEO. The best-fit line
has r2¼ 0.94 and a mean absolute error of 0.09 eV. MOFs with Ea,C–H < 1 eV are
classified as being reactive toward C–H bond activation (based on Ea,C–H values for
cation-exchanged zeolites that can activate methane), and MOFs with Ea,C–H < 0—
as having thermodynamically favored active sites when using O2 as the reference
state. Symbol color refers to the group number of the metal in the periodic table,
while the symbol shape indicates the formal oxidation state of the metal site prior to
oxidation as 1þ (�), 2þ (�), or 3þ (�). Reproduced with permission from Rosen
et al., ACS Catal. 9, 3576 (2019). Copyright 2019 American Chemical Society.167
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the pore limiting diameter and largest cavity diameter were again
found to me the most important performance descriptors.185 AP-RDF
descriptors were also utilized to screen MOFs for CO2 capture in con-
junction with a classifier machine learning model.186 Specifically,

instead of training ML to predict the absolute uptake capacities, an
SVM with the AP-RDF scores was trained to classify whether a given
MOF has low or high CO2 uptake capacity. Out of 292 050 tested
MOFs, only ca. 10% were selected by the classifier for subsequent

FIG. 13. Top-performing materials for oxygen storage. (a) Oxygen volumetric and gravimetric deliverable capacities (at 140 bar storage and 5 bar release pressures) for 2932
MOF structures at 298 K, color-coded by void fraction. Arrows represent common MOFs and promising materials identified in this work. (b) The crystal structure (supercell
2� 2� 1) for the top material identified for volumetric oxygen storage, UMCM-152. Main cavity is represented by a purple sphere. Reproduced with permission from
Moghadam et al., Nat. Commun. 9, 1387 (2018). Copyright 2018 Authors, licensed under a Creative Commons Attribution (CC BY) license.173

FIG. 14. Compound space of QMOF-14482 database, based on unsupervised structural dimensionality reduction using UMAP and SOAP average similarity kernel of the unre-
laxed structures. The PBE-D3(BJ) band gaps of the DFT-optimized structures, Eg,DFT, are overlaid on the UMAP. Selected MOFs in the projection are highlighted. Reproduced
with permission from Rosen et al., Matter 4, 1578 (2021). Copyright 2021Authors, licensed under a Creative Commons Attribution (CC BY) license.180
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high-throughput screening, thus greatly diminishing the associated
computational effort. In another study, three AP-RDF descriptors
were combined with six geometric descriptors in a gradient boosted
trees regression (GBTR) to predict CO2 working capacities and
CO2/H2 selectivities of 358 400 hypothetical MOFs with R2 values of
0.944 and 0.872, respectively [Fig. 15(b)].187 This approach allowed
identifying the 1000 best performingMOFs for CO2/H2 separation.

In 2017, Pardakhti et al. appended typical structural descriptors
of MOFs (such as density, maximum and dominant pore diameter,
void fraction, and gravimetric surface area), computed using Monte
Carlo approaches, with various descriptors of the framework’s atomic
composition, extracted from crystallographic data.188 These include

the type and number of each atom, degree of unsaturation, ratios of
the quantities of different atoms, electronegativity, and metallic per-
centage. Across all tested ML models, a combination of structural and
chemical descriptors leads to better prediction of the methane uptake
compared to models using descriptors of only one class (Table III).
The best results—an R2 of 0.98 and a mean absolute percent error of
about 7%—were achieved with the random forest algorithm, which
took approximately 2 h on a single personal computer to train the
model and predict adsorption capacity of 130 398 MOFs. The
Froudakis group employed a similar concept of ML descriptors for
MOFs, based on the types of atoms in the material rather than its
building blocks, and also achieved the best performance in predicting
methane and carbon dioxide adsorption capacities of 137 953 hypo-
thetical MOFs with a combination of geometric and atom type
descriptors.189 Moreover, a model, trained on MOFs only and using
the atom types in addition to the structural descriptors, was able to
accurately predict the methane adsorption capacity in 69 839 covalent
organic frameworks (Table IV).

3. ML models

Machine learning models come in many flavors.190 The tree-
based methods, such as decision trees (DTs), regression trees (RTs),
and random forests (RFs), recursively split the training sample accord-
ing to simple decision rules. Kernel-based methods, e.g., support vec-
tor machines (SVMs), kernel ridge regression (KRR), and Gaussian
process regression (GPR), non-linearly transform the inputs into a

FIG. 15. (a) Two-dimensional response surfaces of the SVM models for methane
storage in various MOFs at 100 bar using void fraction and dominant pore size.
The blue dots represent the GCMC simulated uptake values. The color of the sur-
face represents the methane storage value, from blue (the lowest value) to red (the
highest value). Blue and red arrows indicate maxima on the response surface.
Reproduced with permission from Fernandez et al., J. Phys. Chem. C 117, 7681
(2013). Copyright 2013 American Chemical Society.182 (b) Heatmaps of GBTR-
predicted CO2 working capacity plotted against GCMC-simulated CO2 working
capacity (left), and GBTR-predicted CO2/H2 selectivity plotted against GCMC- simu-
lated CO2/H2 selectivity (right) for the 358 400 MOFs in the test set. The GBTR
model was built using the normalized AP-RDF descriptors weighted by electronega-
tivity, hardness, and van der Waals volume, and 6 geometric descriptors. The col-
ors of the heatmaps correspond to the number of MOFs: red is high and blue is
low. Reproduced with permission from Dureckova et al., J. Phys. Chem. C 123,
4133 (2019). Copyright 2019 American Chemical Society.187

TABLE III. Evaluation of predictive performance (R2 values) of mass-based methane
uptake in various MOFs using only structural, only chemical, and both structural and
chemical predictors. DT—decision tree, SVM—support vector machine, P—Poisson
regression, and RF—random forest. Reproduced with permission from Pardakhti
et al., ACS Comb. Sci. 19, 640 (2017). Copyright 2017 American Chemical
Society.188

Predictor type DT SVM P RF

Structural only 0.75 0.81 0.84 0.88
Chemical only 0.34 0.42 0.42 0.65
Structural and chemical 0.84 0.90 0.92 0.97

TABLE IV. Evaluation of predictive performance (R2 values) of methane and carbon
dioxide adsorption capacities for various nanomaterials. The descriptors used by the
ML algorithm were either the structural features of the nanomaterials, alone (second
column) or combined with the atom types (third column). In the ML algorithm either
the MOFs and COFs databases were used, separately (first two rows) or combined
(third row). Finally, the results in the last row were computed by using only MOFs for
the training of the ML algorithm, while the obtained ML model was used for predic-
tions in COFs. Reproduced with permission from Fanourgakis et al., J. Am. Chem.
Soc. 142, 3814 (2020). Copyright 2020 American Chemical Society.189

Database R2 (struct.) R2 (struct. þ atom types)

MOFs 0.907 0.960
COFs 0.969 0.981
MOFs þ COFs 0.933 0.965
COFs (from MOFs) 0.581 0.878
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higher dimensional space. Finally, artificial neural networks (NNs) are
repeated compositions of simple functions, typically arranged in con-
secutive layers. To identify the best ML model for a specific type of
data and chemical problem, several models are often compared in
terms of their learning speeds and prediction accuracies. Yang et al.
evaluated four ML algorithms—DT, RF, SVM, and backpropagation
neural network (BPNN)—for predicting the gas separation perfor-
mance of 6013 computation-ready, experimental metal–organic
framework membranes (CoRE-MOFMs) using fivefold cross-
validation.184 Wu and co-workers compared the predictive power of
support vector machine, random forest regression, and gradient boost-
ing regression tree models for methane adsorption in 130 397 hypo-
thetical MOFs.191 In both studies, the random forest algorithm
outperformed all other considered ML models. For the training set
based on experimental results of CO2 fixture with MOF catalysts from
approximately 100 published papers, SVM, stochastic gradient descent
(SGD), and NN models performed better than decision trees and K-
nearest neighbor classification models (Fig. 16).192 Finally, the back-
propagation neural network was shown to outperform the partial
least-square (PLS) method in predicting the adsorption capacity of
organic sulfur gases in 4764 CORE-MOFs after being trained on the
hMOF database.193

In 2020, the Froudakis group addressed the problem of the model
choice by adapting an Automated Machine Learning (AutoML) archi-
tecture to train statistical and ML models and estimate their predictive
performance for MOFs’ chemical properties.194 This approach allows
tuning the hyper-parameters of the ML models and avoids the com-
mon issue of overfitting, accurately assessing predictive performance
even for relatively small (less than 100 datapoints) sets of experimental
data. The pipeline is implemented in the Just Add Data Bio, or
JADBio tool, and an illustrative prediction of CO2 and CH2 adsorption
under various thermodynamic conditions is available at https://app.
jadbio.com/share/86477fd7-d467-464d-ac41-fcbb0475444b.

Very recently, Van Speybroeck and co-workers developed an
approach for constructing machine learning potentials (MLPs) for
MOFs.195 In contrast to other MLP construction techniques that

require costly molecular dynamics trajectories at the density functional
theory level as training data, this new incremental learning scheme
employs machine learning potentials to generate the training data,
metadynamics to ensure broad sampling of the phase space, and a
message passing neural network for efficient on-the-fly learning. In
this manner, accurate and transferrable ML potentials for MOFs can
be generated from as little as a few hundred single-point DFT
computations.

4. Screening and design workflows

Automated workflows combining high-throughput screening
with machine learning prediction offer unparallel speed of materials
discovery. For example, Wand et al. combined hierarchical screening
of the CORE-MOF database based using GCMC simulations with the
crystal graph convolutional neural networks algorithm to develop a
predictive model of methane adsorption (Fig. 17).196 This model was
transferred to randomly selected covalent organic frameworks and
zeolitic imidazolate framework materials, as well as to the hMOF data-
base, in which a material with the maximum working capacity close to
the Department of Energy’s 2015 target was discovered. Reverse design
of a metal–organic framework for efficient CO2 capture in humid con-
ditions was achieved by Zhang and co-workers.197 27 combinations of
metal nodes and framework topologies were screened using a combi-
nation of Monte Carlo tree search (MCST) and recurrent neural net-
work (RNN) using three performance descriptors: high adsorption
performance, experimental accessibility, and good hydrophobicity.
Several newly designed systems were found to display a good trade-off
between adsorption selectivity and uptake capacity whilst being suffi-
ciently hydrophobic and synthetically viable. Very recently, Chen and
co-workers screened several experimental and hypothetical databases
in search of MOFs with open Cu sites for efficient isobutene/isobutane
separation.198 Configuration-bias Monte Carlo was used to simulate
adsorption, and molecular dynamics—diffusion of the hydrocarbons
in MOFs. The generated data were then used to train five ML models
in conjunction with seven physical descriptors to predict the separa-
tion performance of MOFs. Finally, a materials-genomics strategy was
applied to identify the best-performing genes (nodes and linkers) and
cross-assemble them into novel MOFs. On this basis, five MOFs—four
from the screened databases and one newly assembled—were found to
have high thermal stability, isobutene uptake, and isobutene/isobutane
selectivity. Stable adsorption configurations of these candidates were
verified using GGA and hybrid DFT computations.

VI. YOUTH LEAGUE: COVALENT ORGANIC
FRAMEWORKS

Covalent organic frameworks are relatively recent, metal-free
analogues of MOFs, offering a number of advantages over their
famous ancestors while retaining the large internal surface area,
ordered pores, structural diversity, tunable functionalization, and the
ability to absorb, store, and release guest molecules. Compared to
MOFs, COFs are more lightweight, environmentally sustainable, and
thermally stable. Whereas MOFs can form relatively strong interac-
tions with guest molecules via their empty metal sites, the host–guest
interactions in COFs are exclusively non-covalent. Many COFs consist
of 2D layers of covalently connected nodes and linkers, which are
assembled in the third dimension via non-covalent interactions. The
stacking of the 2D layers is crucial for the properties of the COF199 yet

FIG. 16. Accuracy scores of five ML algorithms on training and test sets for meth-
ane adsorption in MOFs. Adapted with permission from Li et al., J. Materiomics 7,
1029 (2021). Copyright 2021 Authors, licensed under a Creative Commons
Attribution-Non Commercial-No Derivatives (CC BY NC ND) license.192
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is difficult to determine.200,201 While the x-ray diffraction is the pre-
dominant method to structurally characterize COF crystals, the dif-
fraction peaks represent an average over the measured portion of the
crystal and, therefore, random layer offsets are difficult to determine
and to distinguish from eclipsed stacking. The structural characteriza-
tion of COFs is further complicated by the difficulty of growing single
crystals suitable for single crystal x-ray diffraction. Thus, they are often
characterized with powder XRD. Even more challenging is the struc-
ture determination of COFs encapsulating guest molecules.
Consequently, even though a few experimentally determined host-
guest structures exist for MOFs, to the best of our knowledge, none
have been reported for COFs.

Methodological approaches to the modeling of host–guest inter-
actions in COFs are fairly similar to those used for MOFs, e.g., density
functional theory and other ab initio methods, molecular dynamics
and Monte Carlo simulations, as well as their multiscale combina-
tions.202 The absence of the metal atoms has several important impli-
cations for the modeling of COFs. On the one hand, it alleviates the
need to employ relativistic and Hubbard U-corrections. On the other
hand, the choice of the cluster model is less intuitive than in MOFs
and requires cleaving covalent single and even double bonds.203,204

Classical molecular dynamics simulations, often combined with
periodic DFT modeling, were employed to investigate the interactions
of COFs with anticancer drugs 5-fluorouracil205 and quercetin,206 pol-
lutant bisphenol A [Fig. 18(a)],207 to rationalize the separation of CO2/
N2 mixtures in a 2D-COF,208 and to explain the ultrahigh adsorption
affinity for dispersed anionic pollutants in a new three-dimensional
framework, 3DCOF-g-VBPPh3Cl [Fig. 18(b)].209 Ab initio molecular

dynamics simulations are often evoked to elucidate the interaction
sites and to estimate the temperature- and pressure-dependent loading
capacities of COFs, particularly for hydrogen storage applications [Fig.
18(c)].210–212

Grand canonical Monte Carlo simulations remain the method of
choice for modeling the dynamical behavior of COFs upon guest cap-
ture and/or release. Tong et al. combined GCMC and configurational
bias MC with cluster and periodic DFT computations to investigate the
structure–property relationships across a diverse set of 46 COFs for
CO2 capture.

208 Large “adsorbility” of adsorbates was put forward as a
promising descriptor of the framework’s separation performance. Using
a similar multiscale approach, Das and Mandal explained the selectivity
of a triazine-based benz-bis(imidazole)-bridged COF (TBICOF) toward
CO2 over N2 and CH4 [Fig. 19(a)], and toward benzene over cyclohex-
ane.213 Chen and co-workers supplemented periodic DFT and GCMC
simulations with the extended transition state—natural orbitals for
chemical valence (ETS-NOCV) analysis to study the selectivity of a
diamond-topology covalent organic framework, COF-300 (dia-c5),
toward various C4 hydrocarbons [Fig. 19(b)].214 Diverse topological
parameters of the framework were found to be useful in tuning the
selectivity and predicting the material’s synthesizability. Metropolis
Monte Carlo together with periodic DFT were used to investigate the
adsorption of environmental pollutants—polybrominated diphenyl
ethers—in a reticulated framework, TAPT-DMTA-COF.215

Several databases of COF structures have been published to
enable the high-throughput screening of these materials for specific
applications. In 2017, the Zhong group introduced216 and in 2018
updated217 a computation-ready, experimental covalent organic

FIG. 17. Design algorithm for application-specific metal–organic frameworks. Target application and type of metal node and net are the inputs, organic linkers generated by
ChemTS combining the MCTS and RNN are the outputs. A new MOF constructed using Zeoþþ undergoes a performance check for the target application; internal parame-
ters in MCTS are then updated. Reproduced with permission from Wang et al., ACS Appl. Mater. Interfaces 12, 52797 (2020). Copyright 2020 American Chemical Society.196
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framework (CoRE COF) database, which includes almost all existing
experimental structures. A year later, the database was updated with
new structures. The solvent-free and disorder-free structure files of
over 280 COFs in 12 topologies are publicly available online at https://
core-cof.github.io/CoRE-COF-Database/. Evaluating the structures in

the CoRE COF database for CH4 delivery, the authors showed that the
top performing systems have large volumetric surfaces and the pore
channels are passable in three dimensions.217 Aksu et al. screened
CoRE-COF for CO2/H2 separation by evaluating the CO2 and H2 per-
meabilities and selectivities of COF membranes using a combination
of MD and GCMC.218 Materials with narrow pores and low porosities
were found to be best for separating CO2 from H2, while COFs with
the opposite characteristics efficiently separate H2 from CO2. Using a
similar computational setup, this research group also demonstrated
that COFs outperform conventional adsorbents (zeolites and activated
carbons) in terms of selectivity of CO2 separation from flue gas and
offer better working capacities than MOFs.219 In 2019, the Smit group
went beyond the “CoRE” approach, introducing a set of over 300
CURATED (Clean, Uniform, and Refined with Automatic Tracking
from Experimental Database) COFs together with DFT geometries
and point charges, available at https://www.materialscloud.org/dis-
cover/curated-cofs.220 A workflow for screening this database for
promising CO2 adsorbents was also developed and encoded in the
Automated Interactive Infrastructure and Database for Computational
Science (AiiDA).221

In 2018, the Smit group presented a database of 69 840 hypo-
thetical covalent organic frameworks built from 666 organic linkers
and four established synthetic routes.222 The database was screened
for methane storage capacities with GCMC, resulting in a top per-
former, composed of carbon-carbon bonded triazine linkers in the
tbd topology, with a deliverable capacity beating the best existing
methane storage materials. Optimal values for several topological
features of the frameworks, including density and surface area, were
proposed to achieve the best adsorbed natural gas storage perfor-
mance (Fig. 20). This database was also screened by the Smit group
for carbon capture using parasitic energy as a key performance
descriptor.223 Out of over 69 000 hypothetical COFs, more than 70
outperformed the best experimental COFs, and several performed
similarly to Mg-MOF-74. Finally, Lan and co-workers presented a
methodology for a high-throughput construction of covalent organic
frameworks based on the materials genomics strategy mimicking
their natural growth processes.224 From a library of 130, a database
of ca. 470 000 COFs with known and ten new topologies was con-
structed. Two three-dimensional COFs with a novel ffc topology
were successfully synthesized.

In 2023, a Ready-to-use and Diverse Database of Covalent
Organic Frameworks with Force field based Energy Evaluation
(ReDD-COFFEE) was published and made freely available via
Materials Cloud (https://doi.org/10.24435/materialscloud:nw-3j).225

It contains 268 687 DFT-optimized hypothetical COF structures
together with bespoke force field parameters for each framework.
The structures were generated from 279 diverse secondary building
blocks, arranged in 1114 distinct two- and three-dimensional topol-
ogies; only structurally stable and likely synthesizable systems were
included in ReDD-COFFEE. System-specific periodic force fields
were obtained from cluster force fields, derived in turn for each SBU
by fitting to ab initio data, and were shown to outperform a popular
generic UFF in describing the crystal structures of several experi-
mentally characterized COFs. Finally, a subset of 10 000 structures
from ReDD-COFFEE was screened using GCMC for vehicular
methane storage, yielding candidates with outstanding volumetric
deliverable capacities.

FIG. 18. (a) The differential charge density of bisphenol A on the surface of TpND
COF (top) and MD simulation of adsorption of 10 bisphenol A molecules onto
TpND COF at 200 ns (bottom). Reproduced with permission from Wei et al., J. Mol.
Liq. 301, 112431 (2020). Copyright 2020 Elsevier B.V.207 (b) A snapshot from MD
trajectories of ReO4� adsorption in 3DCOF-g-VBPPh3Cl (left) and computed aver-
age binding energies of 3DCOF-g-VBPPh3Cl with the four anions in aqueous solu-
tion (right). Reproduced with permission from Wang et al., Adv. Funct. Mater. 32,
2205222 (2022). Copyright 2022 Wiley-VCH GmbH.209 (c) Ab initio molecular
dynamics trajectories (in white) of H atoms of a single H2 molecule within COF-1 at
150 K, top (left) and side (right) views. Reproduced with permission from
Srepusharawoot et al., J. Phys. Chem. C 113, 8498 (2009). Copyright 2009
American Chemical Society.212
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VII. CONCLUSIONS AND OUTLOOK

In silico modeling of the host–guest complexes between organic
framework materials and their molecular guests, such as gases, small
hydrocarbons, and therapeutics, offers valuable insight into the
dynamic and static, structural and electronic aspects of the host–guest
interactions, which can be used to rationalize experimental observa-
tions and identify the best performing systems (Fig. 21). Molecular
dynamics and Monte Carlo methods allow modeling guest diffusion
through and adsorption in the framework’s pores, simulating the
adsorption isotherms and evaluating the loading capacities. Periodic
density functional theory with dispersion, Hubbard U (for MOFs),
and thermal corrections provides refined structures and heats of
adsorption, while cluster models treated with more accurate DFT,
post-HF, and multireference methods yield information about the pre-
cise physical nature of the interactions, reaction mechanisms, and
response properties of the framework–guest complexes. Interaction
analysis and partitioning schemes deliver a fundamental understand-
ing of the role of the framework’s building blocks and functionaliza-
tion. Employing some of these modeling techniques in a multiscale

manner, high-throughput screening and machine learning are per-
formed on the databases of existing and hypothetical framework mate-
rials to not only rank the candidates according to their performance in
a given application, but also to elucidate the structural parameters
determining performance, thus opening the doors toward tuning of
the known and reverse-designing the newMOFs and COFs.

If computational modeling is so powerful, then why have not the
best (most stable, lightweight, sustainable, high-capacity, responsive)
organic frameworks been already developed for applications in molec-
ular capture, separation, transport, storage, catalysis, etc.? For one, this
area of research is plagued by the common dilemma of in silicomodel-
ing: realistic representation of the system vs accuracy of the theoretical
approach. No method is capable of describing large, periodic frame-
works hosting numerous guest molecules under relevant conditions
(solvent, pH, pressure, temperature, irradiation, etc.) across practically
relevant timescales whilst fully taking into account static and dynamic
correlation, non-adiabaticity, relativistic effects, and many other chal-
lenging aspects of the electronic structure. Whether all these factors
are important, and to what extent, strongly depends on the

FIG. 19. (a) B3LYP/6-31Gþ(d,p) optimized geometries of the benz-bis(imidazole) repeating unit of TBICOF with CO2, N2, and CH4 (left), and simulated and experimental load-
ing amounts in TBICOF in a mixed gas phase (right). Reproduced with permission from P. Das and S. K. Mandal, Chem. Mater. 31, 1584 (2019). Copyright 2019 American
Chemical Society.213 (b) The most contributing NOCV orbitals (0.03 a.u. isovalue) in the host–guest interaction between isobutene and COF-300 (left) and the energy decom-
position analysis of the host–guest interactions between C4 hydrocarbons and COF-300 (dia-c5, right). Adapted with permission from Chen et al., Green Energy Environ. 7,
296 (2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution-Non Commercial-No Derivatives (CC BY NC ND) license.214
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investigated host-guest system. Cluster models address some of these
methodological problems but sacrifice realistic system representation
and necessitate cluster selection—a procedure so far lacking well defined
rules and automatized implementations. With a few notable excep-
tions,226–230 energy decomposition and density and wavefunction

partitioning schemes, helpful in understanding the intricacies of the
host–guest interactions, remain limited to these finite and relatively
small cluster models. Similarly, predictions of the influence of guest
occlusion on the solid-state properties of the frameworks, such as their
band structures and densities of states, remain scarce. Large realistic

FIG. 20. Computed deliverable capacities at 298 K and 65 bar for methane storage in hypothetical 2D COFs, plotted as a histogram (left) and vs the framework densities
(right). Color key: blue¼ amide, red¼ amine, orange¼ imine, green¼C–C, gray¼mixed. Reproduced with permission from Mercado et al., Chem. Mater. 30, 5069 (2018).
Copyright 2018 Authors, licensed under an ACS Author Choice license.222

FIG. 21. Key questions, addressed by the modeling of the host–guest interactions in framework materials, and the corresponding in silico approaches.
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models are treatable with molecular mechanics force fields and GGA
and LDA DFT methods; however, using these “cheaper” approaches
often leads to compromised numerical accuracy. Since it is rarely
computationally feasible to perform accurate high-level electronic
structure theory computations on large, realistic models, the
reliability of the various approximations can only be verified against
experimental data. The latter is generally limited, preventing across-
the-board validation of these methods. For the same reason, high-
throughput screening and machine learning predictions utilize
computational rather than experimental data and are, therefore, sub-
ject to the same error bars as the underlying in silico methods.
Moreover, databases of experimental structures, fed into HTS and
ML, are often biased toward high-performance materials. Insufficient
sampling in the regions of chemical space containing low-
performing and experimentally overlooked organic frameworks com-
promises the reliability of machine learning when it is used to predict
the properties of novel and unconventional materials. Finally, the dis-
connect between theory and experiment is perhaps most pronounced
in the practical viability of in silico predicted materials, which are
often “good on paper” (in a computer), but are unstable, hard or
impossible to manufacture, especially at scale, etc.

In the light (or, more appropriately, the gloom) of the previous
paragraph, is there no hope for the computationally designed break-
through for organic frameworks supporting tailored interactions with
molecular guests? In this Review, we have collected illustrative, suc-
cessful recipes from the literature for addressing the aforementioned
challenges. Individual simulation techniques, restricted to specific sys-
tem sizes and timescales at a given accuracy, are combined in multi-
level and multiscale approaches balancing large system sizes with
reliable predictions. Computations on thousands of framework mate-
rials using multiple codes are facilitated by automated workflows, and
their results are shared freely and openly via community-ran reposito-
ries. Together with unbiased databases of hypothetical MOF and COF
structures, published in open access, they are actively used in training
machine learning models, which can predict not only the interaction
features and performance metrics, but even the synthesizability of the
frameworks.231–234 With accurate quantum-chemical insight on one
side and big-data analysis on the other, precise design guidelines based
on the compositional and topological parameters of the frameworks
are elucidated. Ultimately, they yield predictions of candidate materials
with outstanding performances, at times overtaking the best systems
in use at the time. Occasionally, these predictions are subsequently val-
idated by experiment.

Which challenges should be tackled next? In our opinion, auto-
mated cluster selection will substantially facilitate the computational
analysis of the host–guest interactions in organic frameworks and is
likely to benefit greatly from cross-disciplinary approaches.
Furthermore, community standards for in silico generated data,
including metadata records, will enable post-processing and reuse of
these data in future high-throughput and machine learning studies,
significantly saving computational resources and time whilst simulta-
neously expanding the training sets in size and heterogeneity.
Similarly, more experimental data, especially measured on a range of
systems under identical conditions, as well as reporting of the “failed”
experiments, will allow broader benchmarking of the methods and
development of more universally applicable predictive models.
Ultimately, the key to the continuing success in the rapidly growing

field of metal–organic and covalent organic framework adsorbents, fil-
ters, catalysts, and delivery agents is in communication between the
main players—method developers, computational materials scientists,
and experimentalists.
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