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Generalised Kreı̆n–Feller operators and gap
diffusions via transformations of measure spaces

Marc Kesseböhmer, Aljoscha Niemann, Tony Samuel, and Hendrik Weyer

Abstract We consider the generalised Kreı̆n–Feller operator Δa,` with respect to

compactly supported Borel probability measures ` and awith the natural restrictions

that ` is atomless, the supp(a) ⊆ supp(`) and the atoms of a are embedded in the

supp(`). We show that the solutions of the eigenvalue problem for Δa,` can be trans-

ferred to the corresponding problem for the classical Kreı̆n–Feller operatorΔa◦�−1
` ,Λ

with respect to the Lebesgue measure Λ via an isometric isomorphism determined

by the distribution function �` of `. In this way, we obtain a new characterisation

of the upper spectral dimension and consolidate many known results on the spectral

asymptotics of Kreı̆n–Feller operators. We also recover known properties of and

connections to generalised gap diffusions associated to these operators.

Key words: Kreı̆n–Feller operator; spectral asymptotics; (generalised) gap diffusion.

Subject classification (MSC2020): Primary: 47G30. Secondary: 35P20; 42B35.
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1 Introduction and motivation

The classical Kreı̆n–Feller differential operator Δa,Λ, where a denotes a non-atomic

compactly supported Borel probability measure on R and where Λ denotes the

one-dimensional Lebesgue measure, was introduced in [Fel57; KK58]; in the case

a = Λ, this operator coincides with the classical second order weak derivative.
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The spectral properties of the classical Kreı̆n–Feller operator have been heavily

investigated by, for instance, Hong and Uno [UH59], McKean and Ray [MR62],

Kac [Kac73], Fujita [Fuj87], Küchler [Küc80], Langer [LPS71], and Kotani and

Watanabe [KW82]. In [SV95] the result of Fujita [Fuj87] was refined by a Dirichlet

form approach and renewal theory. Volkmer [Vol05a; Vol05b] was able to transform

the Kreı̆n–Feller eigenvalue problem to a semi-definite Sturm-Liouville problem

and obtained explicit estimates of the eigenvalues in the case when a is the Cantor

measure. In the case when a has no atoms, it has been established that Δa,Λ is the

infinitesimal generator of a gap diffusion (also known as skip-free diffusion, quasi-

diffusion or generalised diffusion), see for example [Bur83; CHO11; IM74; Eks+13;

Küc80; LPS71; Nob13].

Here, we investigate generalised Kreı̆n–Feller operatorsΔa,` for Borel probability

measures a and ` on the real line with bounded support under the natural assumptions

that ` is atomless and that a is embedded in `, meaning supp(a) ⊆ supp(`) and

the possible atoms of a are disjoint from all boundary points of the individual open

connected components of R \ supp(`). The generalised Kreı̆n–Feller operator, has

been introduced by Küchler [Küc80] in the case that the distribution functions of

` and a are strictly increasing and continuous, for general atomless measures by

Freiberg and Zähle [FZ02], and for generalised signed measures (referred to as the

measure Sturm-Liouville problem) by Volkmer [Vol05a]. The associated Dirichlet

forms have also been studied in [CF11]. Spectral properties of generalised Kreı̆n–

Feller operator have been considered by, for instance Arzt [Arz15], Ehnes [Ehn19],

Freiberg [Fre05], Rastegaev [Ras15], Sheı̆pak [She15], Vladimirov and Sheı̆pak

[VS13], and Kesseböhmer and Niemann [KN22b; KN22c]. For results on spectral

problems for the classical Kreı̆n–Feller operator in higher dimensions we refer the

reader to [Sol94; HLN06; NX21; KN22a; KN22d].

In this article, generalising ideas from [KSW16], we elaborate on the connections

between the generalised and the classical one-dimensional Kreı̆n–Feller operators

by establishing a suitable isometric isomorphism determined by the distribution

function of `. This isometric isomorphism first appeared in [Kan+09, Chapter 2]

under the additional assumption that the distribution function of ` (called scaling

function) is strictly increasing on the convex hull of the support of `. Here, we extend

this to the more general framework, assuming that ` is atomless and a is embedded

in `, and apply this connection to the associated spectral and stochastic properties.

In doing so, we summarise and consolidate the results on spectral asymptotics

scattered in the literature, for instance, in [BS70; Fre05; Fre11; FZ02; KSW16;

MR62; SV95; Vol05a], and give a new perspective concerning gap diffusions as

studied, for example, in [Kni81; Küc80; Küc86; LPS71; LS90].

As a first application of this observation we show that the spectral properties

of the generalised Kreı̆n–Feller operators can be reduced to those of the classical

ones. We determine a general upper bound for the spectral dimension in terms of the

upper Minkowski dimension of the support of the involved measures, and deduce

the strong spectral asymptotics for self-similar measures. Moreover, we obtain a new

proof for those pairs of measures ` and a for which a has an absolutely continuous

component with respect to `. As a second application, we connect properties of the
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associated gap diffusion for generalised Kreı̆n–Feller operators to that of the classi-

cal Kreı̆n–Feller operators. This complements and partially resembles the general

framework established in [Dyn65; Ogu89].

2 Set-up and summary of results

Before we state our main results, we need the following basic setups and standing

hypotheses as stated next.

2.1 Setup and standing hypotheses

Let ` and a denote two Borel probability measures on R with bounded support

such that ` is atomless and a is embedded in `. Without loss of generality we also

assume that supp(`) ⊆ [0, 1]. Denote the distribution function of ` and a by �` and

�a , respectively. Let (�a,` , ‖ · ‖∞) denote the Banach space of continuous functions

with domain [0, 1] and which are linear in scale �` on intervals where �a is constant.

Namely, on each connected component � of [0, 1] \ supp(a) the function 5 is linear

in scale �` , that is 5 (G) = 0��` (G) + 1� for all G ∈ � and some 0� and 1� ∈ R. As

indicated above, we let Λ denote the one-dimensional Lebesgue measure restricted

to [0, 1].

Set S|
≔ !2 (a) andSB

≔ �a,` , where | stands for weak and B stands for strong;

for ∗ ∈ {B, |}, we sometimes write S∗ (`, a) instead of S∗ to stress the dependence

of the underlying measure spaces. In what follows, we will mainly be concerned

with the Banach spaces (S|, ‖ · ‖!2 (a) ) and (SB, ‖ · ‖∞). Letting ∗ ∈ {B, |} be fixed,

a function 5 belonging to the set � ( [0, 1]), of continuous functions with domain

[0, 1], is said to lie in D∗ (Δa,`) if there exist 0, 1 ∈ R and 6 ∈ S∗ with

5 (G) = 0 + 1�` (G) +

∫

[0,G ]

(�` (G) − �` (H))6(H) da(H) (1)

for all G ∈ [0, 1]. By Fubini’s Theorem we have

5 (G) = 0 + 1�` (G) +

∫

[0,G ]

∫

[0,H ]

6(B) da(B) d`(H).

If �` (G) ≠ 0, then by (1)

5 (G) − 5 (0)

�` (G)
= 1 +

∫

[0,G ]

�` (G) − �` (H)

�` (G)
6(H) da(H).

Since a({0+}) = 0 where 0+ ≔ inf(supp(`)), it follows
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∇` 5 (0) ≔ lim
Gց0+

5 (G) − 5 (0)

�` (G)
= 1 + lim

Gց0+

∫

[0,G ]

�` (G) − �` (H)

�` (G)
6(H) da(H) = 1,

where we used that

∫

[0,G ]

�` (G) − �` (H)

�` (G)
|6(H) | da(H) ≤

∫

[0,G ]

|6(H) | da(H).

which converges to zero as G approaches 0+. In particular, 1 = ∇` 5 (0) depends only

on ` and 5 . To see that 6 is also uniquely determined by 5 , we assume the contrary.

Namely, letting ∗ ∈ {B, |}, we assume that there exist distinct 61 and 62 ∈ S∗

satisfying (1). In which case, for 8 ∈ {1, 2}, we set

�8 (G) ≔ 1 +

∫

[0,G ]

68 da(H),

for all G ∈ [0, 1], and observe by Fubini’s theorem

∫

[0,G ]

�8 (H) d`(H) = �` (G)∇` 5 (0) +

∫

[0,G ]

∫

[0,H ]

68 (I) da(I) d`(H)

= �` (G)∇` 5 (0) +

∫

[0,G ]

∫

[I,G ]

68 (I) d`(H) da(I)

= �` (G)∇` 5 (0) +

∫

[0,G ]

(�` (G) − �` (I))68 (I) da(I)

= 5 (G) − 5 (0).

(2)

Using the condition that a is embedded in `, which implies �8 is continuous at

the boundary points of all complementary intervals of supp(`), the right continuity

of �8 , and the fact that 5 is determined pointwise, one obtains a contradiction to

the uniqueness of densities. This allows us to define the (generalised) Kreı̆n–Feller

operator Δa,` 5 ≔ 6 via (1); we distinguish between the strong and weak operator

depending on the chosen domain. Additionally, from this and (1), one may conclude

DB (Δa,`) ⊆ D|(Δa,`) ⊆ �a,` .

The following example shows that the assumption, a is embedded in `, cannot be

removed in order to define Δa,` .

Example 1. If ` = 2Λ| [0,1/2] and a is the Dirac measure with point mass at 1/2,

then supp(a) ⊆ supp(`), but a is not embedded in `. An elementary computation

shows that the representation in (1) is independent of 6; consequently Δa,` is not

necessarily well defined for such measures.

For W = (U, V) ∈ [0, c/2]2 we consider the eigenvalue problem of Fujita [Fuj87]

with Robin boundary conditions; namely, to classify those 5 ∈ D∗ (Δa,`) and _ ∈ R

for which Δa,` 5 = _ 5 and
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5 (0) cos(U) − ∇` 5 (0) sin(U) = 0, 5 (1) cos(V) + ∇` 5 (1) sin(V) = 0. (3)

The particular case W = (c/2, c/2) is referred to as the Neumann case and the

case W = (0, 0) is called the Dirichlet case. We denote by D∗
W (Δa,`) the set of

5 ∈ D∗ (Δa,`) which satisfy (3). Combining (1) – (2) with Fubini’s Theorem and

our assumptions on a and ` one obtains a Gauss-Green formula; namely, for 5 and

6 ∈ DB
W (Δa,`),

∫
(Δa,` 5 )6 da

= (∇` 5 (1) − ∇` 5 (0))6(0) +

∫
∇`6(H) (∇` 5 (1) − ∇` 5 (H)) d`(H)

= ∇` 5 (1)6(1) − ∇` 5 (0)6(0) −

∫
∇` 5 ∇`6 d`.

(4)

This in tandem with our boundary conditions implies that

∫
(Δa,` 5 )6 da −

∫
(Δa,`6) 5 da

= ∇` 5 (1)6(1) − ∇` 5 (0)6(0) − ∇`6(1) 5 (1) + ∇`6(0) 5 (0) = 0.

Hence, the operatorΔa,` restricted to D∗
W (Δa,`) is symmetric. Further, setting 6 = 5

in (4), and applying our boundary conditions once more, yields that Δ`,a restricted

to D∗
W (Δa,`) is non-positive.

2.2 Summary of results

In Theorem 9 we establish a strong connection between Δa,` and Δa◦�−1
` ,Λ. Indeed,

by utilising the pseudo-inverse

�̌−1
` (G) : G ↦→ inf{H ∈ [0, 1] : �` (H) ≥ G}

of �` , we prove, for ∗ ∈ {B, |} and W ∈ [0, c/2]2, that i : 5 ↦→ 5 ◦ �̌−1
` is an

isometric isomorphism on S∗ with

Δa◦�−1
` ,Λ ◦ i = i ◦ Δa,` and i(D∗

W (Δa,`)) = D∗
W (Δa◦�−1

` ,Λ).

With this at hand, we are able to show the following which consolidates and extends

known results. In particular, that the spectral properties of Δa◦�−1
` ,Λ are inherited

from Δa,` and vice versa.

1. Theorem 15 concerns the exponent of the asymptotic growth rate of the eigen-

value counting function of Δa,` , namely the upper spectral dimension of Δa,` .

For a certain class of self-similar measures, in Theorem 17 we recover the
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asymptotic growth rate of the eigenvalue counting function of Δa,` , which was

first observed in [Fre05]. Both of these results are achieved via an application of

Theorem 9. Here, we also make use of [KN22c] in deriving the upper spectral

dimension, and of [SV95] to treat the spectral asymptotic growth rate in the

self-similar setting.

2. Theorem 19 concerns the asymptotic growth rate of the eigenvalue counting

function of Δf2`+[,` where [ is an atomless Borel measure singular to ` and

f2 is a `-integrable function. This result is proved by combining Theorem 9

and the fact that [ = a ◦ �−1
` is singular to the Lebesgue measure with the

corresponding result for the case ` = Λ as given in [BS70; MR62; Vol05a].

Note, some of the proofs given in [MR62] were pointed out to contain gaps by

Kac [Kac73].

3. Letting (-C )C≥0 denote the gap diffusion with speed measure a ◦ �−1
` , utilising

our correspondence theorem (Theorem 9), we show that (�̌−1
` (-C ))C≥0 is a

Feller process (with respect to an appropriate topology on the state space) and

its infinitesimal generator coincides with the generalised Kreı̆n–Feller operator

Δa,` with Neumann boundary condition; this gives a new outlook on [Kni81;

Küc80; Küc86; LPS71; LS90; Ogu89].

3 Kreı̆n–Feller operators

In this section, we collect some important properties Kreı̆n-Feller operators, starting

with the classical one, where the reference measure is the Lebesgue measure.

3.1 Properties of classical Kreı̆n–Feller operators

We now consider the case ` = Λ, with respect to weak and strong solutions. Most

of these results are nowadays folklore and can be found, for instance, in [LPS71].

Since we could not locate references where all the facts are proved in detail, here we

give an overview and essentially reduce all properties down to two key observations,

namely that, for ∗ ∈ {B, |}, the operator Δa,Λ restricted to D∗
W (Δa,Λ) is symmetric

(a consequence of the Gauss-Green formula), and that Δa,Λ : D∗
W (Δa,Λ) → S∗

W is

surjective, as is shown in the following lemma.

Lemma 2. For W = (U, V) ∈ [0, c/2]2 and ∗ ∈ {B, |}, the map

Δa,Λ : D∗
W (Δa,Λ) → S∗

W

is surjective, where S∗
(c/2, c/2)

≔ {6 ∈ S∗ :
∫
6 da = 0} and S∗

W ≔ S∗ for

W ≠ (c/2, c/2). For W = (U, V) ∈ [0, c/2]2 \ {(c/2, c/2)} we have that Δa,Λ

is also injective and its inverse Δ−1
a,Λ

: S∗
W → D∗

W (Δa,Λ) has the following kernel
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representation:

Δ
−1
a,Λ6 : G ↦→

∫
 U,V (G, H)6(H) da(H)

with continuous kernel  =  U,V given, for U, V ∈ [0, c/2), by

 (G, H) ≔ �U,V (1 + tan(V) − H) (tan(U) + G) + 1[0,G ] (H) (G − H),

where �U,V ≔ −1/(1 + tan(U) + tan(V)), and for the remaining cases by

 (G, H) ≔




−(G + tan(U)) + 1[0,G ] (H) (G − H) if V = c/2 and U ∈ [0, c/2),

(H − 1 − tan(V)) + 1[0,G ] (H) (G − H) if U = c/2 and V ∈ [0, c/2).

For the Neumann case, when U = V = c/2, the operator Δa,Λ is not injective with

kernel Δ−1
a,Λ

({0}) = R1. Here, R1 denotes the set of constant functions.

Proof. Let U and V ∈ [0, c/2) and let 6 ∈ S∗ be fixed. For G ∈ [0, 1], set

5 (G) =

∫
 U,V (G, H)6(H) da(H) = 1 tan(U) + 1G +

∫

[0,G ]

(G − H)6(H) da(H)

with

1 =
−1

(1 + tan(U) + tan(V))

(
tan(V)

∫
6(H) da(H) +

∫
(1 − H)6(H) da(H)

)
.

A direct calculation shows that 5 (0) = 1 tan(U), ∇Λ 5 (0) = 1, and

5 (1) = 1 tan(U) + 1 +

∫
(1 − H)6(H) 3a(H) and ∇Λ 5 (1) = 1 +

∫
6(H) da(H).

Hence, 5 ∈ D∗
(U,V)

(Δa,Λ) with Δa,Λ 5 = 6.

Next, let U ∈ [0, c/2), V = c/2 and 6 ∈ S∗ be fixed. For G ∈ [0, 1], set

5 (G) =

∫
 U,V (G, H)6(H) da(H)

= − tan(U)

∫
6(H) da(H) − G

∫
6(H) da(H) +

∫

[0,G ]

(G − H)6(H) da(H).

A direct calculation shows that

5 (0) = − tan(U)

∫
6(H) da(H) and ∇Λ 5 (0) = −

∫
6(H) da(H).

Hence,
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5 (0) cos(U) + ∇Λ 5 (0) sin(U)

= − tan(U)

∫
6(H) da(H) cos(U) + sin(U)

∫
6(H) da(H) = 0.

Further,

∇Λ 5 (1) =

∫
6(H) da(H) −

∫
6(H) da(H) = 0.

Hence, 5 ∈ D∗
(U,V)

(Δa,Λ) with Δa,Λ 5 = 6.

The final case we need to consider is when U = c/2 and V ∈ [0, c/2). As above,

let 6 ∈ S∗ be fixed, and for G ∈ [0, 1], set

5 (G) ≔

∫
 U,V (G, H)6(H) da(H)

=

∫
(H − 1 − tan(V))6(H) da(H) +

∫

[0,G ]

(G − H)6(H) da(H).

A direct calculation shows that ∇Λ 5 (0) = 0, and

5 (1) = − tan(V)

∫
6(H) da(H) and ∇Λ 5 (1) =

∫
6(H) da(H).

With this at hand we obtain

cos(V) 5 (1) + sin(V)∇Λ 5 (1) = − sin(V)

∫
6(H) da(H) + sin(V)∇Λ 5 (1) = 0,

and hence, 5 ∈ D∗
(U,V)

(Δa,Λ) with Δa,Λ 5 = 6.

A direct consequence of Lemma 2 is that only under Neumann boundary condi-

tions, one has an eigenfunction with corresponding eigenvalue equal to zero.

Before proceeding, we recall the following abstract facts of linear operators: Let

us assume � : dom(�) ⊆ � → � is a linear, symmetric and surjective operator

on a Hilbert space �. From this, one may verify that the annihilator of dom(�) is

trivial, that is dom(�)⊥ = {0}, and equivalently, dom(�) is dense in �. Further,

one can deduce that � is also self-adjoint: The inclusion dom(�) ⊆ dom(�∗) holds

by symmetry of �, where �∗ denotes the adjoint of �. For the reverse inclusion,

note that, for a fixed 5 ∈ dom(�∗), there exists, by surjectivity of �, an element

6 ∈ dom(�) such that �∗ 5 = �6. Using symmetry again, for each ℎ ∈ dom(�), we

have 〈 5 , �ℎ〉 = 〈�∗ 5 , ℎ〉 = 〈�6, ℎ〉 = 〈6, �ℎ〉 and by surjectivity of � we conclude

that 5 = 6 ∈ dom(�).

We can apply these observations to our situation, namely, for W ∈ [0, c/2]2,

consider the setting � = S|
W , � = Δa,Λ and dom(�) = D|

W (Δa,Λ) ∩ S|
W . When

W ∈ [0, c/2]2 \ {(c/2, c/2)}, it follows that Δa,Λ restricted to D|
W (Δa,Λ) is a densely

defined self-adjoint linear operator on !2(a). Under Neumann boundary conditions,

namely when W = (c/2, c/2), we have Δ−1
a,Λ

({0}) = R1 and so !2(a) = S|
W ⊕ R1.
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Therefore,

D|
W (Δa,Λ) = { 5 + 0 : 5 ∈ D|

W (Δa,Λ) ∩ S|
W and 0 ∈ R}

is dense in !2 (a). Using this observation, it follows that Δa,Λ restricted to D|
W (Δa,Λ)

is a densely defined self-adjoint linear operator on !2(a). The following proposition

summarises these observations.

Proposition 1. ForW ∈ [0, c/2]2, the densely defined operatorΔa,Λ : !2 (a) → !2(a)

with domain D|
W (Δa,Λ) is self-adjoint, non-positive and, in particular, closed.

Corollary 3. If W ∈ [0, c/2]2 \ {(c/2, c/2)}, then '0 ≔ −Δ−1
a,Λ

: S|
W → S|

W is

compact and self-adjoint.

Proof. Lemma 2 shows that '0 is a Hilbert-Schmidt operator with continuous

(bounded) kernel, and is therefore compact. Further, the symmetry ofΔa,Λ in tandem

with the fact that '0 is bounded, implies that '0 is self-adjoint.

Corollary 4. Let W ∈ [0, c/2]2 be fixed. The operator Δa,Λ with domain D|
W (Δa,Λ)

gives rise to an orthonormal (possibly finite) basis of eigenfunctions with eigenvalues

_= ≤ 0. If !2 (a) is not finite dimensional, then we have a countable number of

eigenvalues with lim=→∞ −_= = ∞, in particular, Δa,Λ is an unbounded operator.

On the other hand, if !2(a) is finite dimensional, then Δa,Λ has a finite number of

eigenfunctions and is bounded.

Proof. For the case W = (U, V) ∈ [0, c/2]2 \ {(c/2, c/2)}, if 5 ∈ D|
W

(
Δa,Λ

)
is an

eigenfunction of Δa,Λ with corresponding eigenvalue _ < 0, then applying Lemma

2 gives, Δa,Λ 5 = _ 5 if and only if _−1 5 = Δ−1
a,Λ

5 . With this at hand, the required

result follows from an application of the spectral theorem for self-adjoint compact

operators.

For the case W = (U, V) = (c/2, c/2), we consider the resolvent operator

'_
a,Λ
≔ (_� − Δa,Λ)

−1 with _ > 0. From the integral representation of the resol-

vent operator '_
a,Λ
≔ (_� − Δa,Λ)

−1 with domain D|
W

(
Δa,Λ

)
given in [LPS71,

§ 1.2], one may conclude that '_
a,Λ

is compact and self-adjoint, see [Küc80, Theo-

rem 1, p. 251]. This in tandem with the spectral theorem for self-adjoint compact

operators yields the required result.

Lemma 5. For W = (U, V) ∈ [0, c/2]2, set

�
W

a,Λ
≔




{
5 ∈ �a,Λ : 5 (0) = 0, 5 (1) = 0

}
if U = V = 0,

{
5 ∈ �a,Λ : 5 (0) = 0

}
if U = 0 and V ∈ (0, c/2],

{
5 ∈ �a,Λ : 5 (1) = 0

}
if U ∈ (0, c/2] and V = 0,

�a,Λ if U and V ∈ (0, c/2] .

The set DB
W (Δa, Λ) is dense in (�

W

a,Λ
, ‖ · ‖∞).
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Proof. This result can be found in [LPS71, Behauptung 2.4] without a detailed proof.

We sketch a proof of this result for the case W = (U, V) ∈ (0, c/2) × [0, c/2); the

other cases follow analogously, using the kernel representation of '0 for the case

W ∈ [0, c/2]2 \ {(c/2, c/2) as stated in Lemma 2, and the kernel representation of

the resolvent operator '_
a,Λ

, for some _ > 0, for the case W = (c/2, c/2), see for

instance [LPS71, Behauptung 2.4]. Let �′
a,Λ

denote the dual space of �a,Λ and fix

Φ ∈ �′
a,Λ

such that, for all 5 ∈ DB
W (Δa, Λ),

Φ( 5 ) =

∫
5 (G) dq(G) = 0,

where q denotes the signed distribution function representing Φ. By definition q is

of bounded variation and local constant on the complement of supp(a). Letting �U,V

be as in Lemma 2, and setting � = −(1 + tan(V))�U,V , from the proof of Lemma 2,

Fubini’s theorem and integration by parts, for all 6 ∈ �
W

a,Λ
, we have that

∫
(� + B �U,V)6(B) da(B)

∫
(tan(U) + G) dq(G)

=

∫ ∫

[0,G ]

(G − B)6(B) da(B) dq(G)

=

∫ (
q(1) (1 − B) −

∫

[B,1]

q(B) dB

)
6(B) da(B).

(5)

Further, by a second application of integration by parts,

∫
(tan(U) + G) dq(G) = tan(U) (q(1) − q(0)) + q(1) −

∫
q(B) dB ≕ �q .

Combining these identities gives

∫ (
� �q + B �U,V �q − q(1) (1 − B) +

∫

[B,1]

q(B) dB

)
6(B) da(B) = 0.

If we consider 6(B) = � �q + B �U,V �q − q(1) (1 − B) +
∫
[B,1]

q(G) dG ∈ C
W

a,Λ
it

follows, that for all B ∈ [0, 1]

∫

[B,1]

q(G) dG = q(1) − � �q − B(�U,V �q + q(1)),

which is only possible if q(B) = �U,V�q + q(1), for all B ∈ [0, 1]. Therefore, Φ is a

Dirac measure in {0} with weight q(0), and by (5), for all 5 ∈ C
W

a,Λ
,

q(0) tan(U)

∫ (
� + B �U,V

)
5 (B) da(B) = 0.
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For the particular choice 5 ∈ C
W

a,Λ
given by 5 : B ↦→ � + �U,V B the above integral

is positive and hence q(0) = 0. Consequently, Φ = 0, and since the annihilator of

DB
W (Δa,Λ) is trivial, this implies that DB

W (Δa, Λ) is dense in C
W

a,Λ
.

3.2 Generalised Kreı̆n–Feller operators and transformations of

measure spaces

In this section we return to the general setting where ` is an arbitrary atomless Borel

probability measure with supp(`) ⊆ [0, 1] and a is embedded in `. The following

two lemmas play a crucial role in the proof of our main result, Theorem 9, which

follows directly after.

Lemma 6. The function �̌−1
` ◦ �` equals the identity a-almost everywhere.

Proof. For G ∈ [0, 1], we have that �̌−1
` (�` (G)) ≠ G if and only if there exists Y > 0

with �` (G − Y) = �` (G). This means, if �̌−1
` (�` (G)) ≠ G, then G belongs to an

interval of constancy for �` . This in tandem with our hypothesis that a is embedded

in ` implies that the countable union of the closure of these intervals has a-measure

zero.

Lemma 7. For ∗ ∈ {B, |}, the mapping i : S∗ (a, `) → S∗ (a ◦ �−1
` ,Λ) defined by

i( 5 ) ≔ 5 ◦ �̌−1
` , is an isometric isomorphism with inverse i−1 ( 5 ) = 5 ◦ �` .

Proof. This is a consequence of Lemma 6 together with the push-forward formula

for measures in the weak case and the definition of �a,` in the strong case.

The following example demonstrates that Lemmas 6 and 7 do not necessarily

hold if the assumption that a is embedded in ` is removed.

Example 8. Define the absolutely continuous measure ` ≔ 2Λ| [1/2,1] and let a

denote the Dirac point mass at 1/2. Note that a is not embedded in `, but that

supp(a) ⊆ supp(`) and a({G ∈ [0, 1] : �̌−1
` ◦ �` (G) ≠ G}) = a((0, 1/2]) ≠ 0.

Further, in the weak setting, since a ◦ �̌−1
` exhibits an atom at zero, but 5 ◦ �̌−1

` is

not defined at zero, the functional i in Lemma 7 would not be well-defined.

Theorem 9. For W ∈ [0, c/2]2 and ∗ ∈ {B, |}, we have that Δa◦�−1
` ,Λ ◦ i = i ◦Δa,`

and i(D∗
W (Δa,`)) = D∗

W (Δa◦�−1
` ,Λ).

Proof. Since a is embedded in `, we have a(�−1
` ({0, 1})) = 0. If 5 ∈ D∗

W (Δa,`),

then, for all G ∈ supp(`),

5 (G) = 0 + 1�` (G) +

∫
1[0,G ] (H) (�` (G) − �` (H))Δa,` 5 (H) da(H),

where 0 = 5 (0) and 1 = ∇` 5 (0). Using Lemma 6 and replacing G with �̌−1
` (G)

gives
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5 (�̌−1
` (G)) − 0 − 1�` (�̌

−1
` (G))

=

∫
1[0,�̌−1

` (G ) ] (H) (�` (�̌
−1
` (G)) − �` (H))Δa,` ( 5 ) (H) da(H)

=

∫
1[0,�̌−1

` (G ) ] (H) (G − �` (H))Δa,` ( 5 ) (�̌
−1
` (�` (H))) da(H)

=

∫
1[0,G ] (�` (H)) (G − �` (H))Δa,` ( 5 ) (�̌

−1
` (�` (H))) da(H)

=

∫
1[0,G ] (H) (G − H)Δa,` ( 5 ) ◦ �̌

−1
` (H) d(a ◦ �−1

` ) (H).

This implies that 5 (0) = 0 = 5 (�̌−1
` (0)), ∇` 5 (0) = 1 = ∇` 5 (�̌

−1
` (0)),

5 ◦ �̌−1
` ∈ D∗(Δa◦�−1

` , Λ) and

Δa◦�−1
` , Λ ( 5 ◦ �̌

−1
` ) = Δa, ` 5 ◦ �̌

−1
` .

On the other hand, if 6 ∈ D∗
W (Δa◦�−1

` ,Λ), then by Lemma 7, there exists an 5 ∈

S∗ (a, `) such that 5 ◦ �̌−1
` = 6, and so, if G ∈ supp(`) with �` (G − Y) < �` (G) for

all Y > 0, then

5 (G) − 2 − 3�` (G) = 5 (�̌−1
` (�` (G))) − 2 − 3�` (G)

=

∫
1[0,�` (G ) ] (H) (�` (G) − H)Δa◦�−1

` ,Λ ( 5 ◦ �̌
−1
` ) (H) d(a ◦ �−1

` ) (H)

=

∫
1[0,�` (G ) ] (�` (H)) (�` (G) − �` (H))Δa◦�−1

` ,Λ ( 5 ◦ �̌
−1
` ) ◦ �` (H) da(H)

=

∫
1[0,G ] (H) (�` (G) − �` (H))Δa◦�−1

` ,Λ ( 5 ◦ �̌
−1
` ) ◦ �` (H) da(H),

(6)

where 2 = 6(0) = 5 (�̌−1
` (0)) and 3 = ∇Λ6(0) = ∇Λ 5 (�̌

−1
` (0)). However, if

G ∈ supp(`) with �` (G − Y) = �` (G) for some Y > 0, then this implies that G lies in

an interval of constancy of �` . Since �̌−1
` ( [0, 1]) is equal to the set

({0} ∪ supp(`)) \ {G ∈ [0, 1] : G right endpoint of an interval of constancy of �`},

we may modify 5 so that 5 is constant on each interval of constancy of �` while retain-

ing the chain of equalities given in (6). In other words, given a 6 ∈ D∗
W (Δa◦�−1

` , Λ),

and letting 5 ∈ S∗ (a, `) with 5 ◦ �̌−1
` = 6, we have 5 (�̌−1

` (0)) = 2 = 5 (0),

∇Λ 5 (�̌
−1
` (0)) = 3 = ∇` 5 (0), 5 ∈ D∗ (Δa,`) andΔa◦�−1

` ,Λ ( 5 ◦ �̌
−1
` ) ◦�` = Δa,` ( 5 ).

All that remains is to verify the boundary conditions. The above with Lemma 6

yields
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∇` 5 (1) = ∇` 5 (0) +

∫
Δa,` 5 (H) da(H)

= ∇Λ 5 (0) +

∫
Δa,` 5 (�̌

−1
` (H)) da ◦ �−1

` (H)

= ∇Λ 5 (0) +

∫
Δa◦�−1

` , Λ ( 5 ◦ �̌
−1
` ) da ◦ �−1

` = ∇Λ ( 5 ◦ �̌
−1
` ) (1),

and similarly that

5 (1) = 5 (0) + ∇` 5 (0) +

∫
(1 − �` (H))Δa,` 5 (H) da(H)

= 5 (�̌−1
` (0)) + ∇Λ 5 (�̌

−1
` (0)) +

∫
(1 − �` (H))Δa,` 5 (�̌

−1
` ◦ �` (H)) da(H)

= 5 (�̌−1
` (0)) + ∇Λ 5 (�̌

−1
` (0)) +

∫
(1 − H)Δa,` 5 (�̌

−1
` (H)) da ◦ �−1

` (H)

= 5 (�̌−1
` (0)) + ∇Λ 5 (�̌

−1
` (0)) +

∫
(1 − H)Δa◦�−1

` ,Λ ( 5 ◦ �̌
−1
` ) (H)) da ◦ �−1

` (H)

= 5 ◦ �̌−1
` (1). �

Corollary 10. For W = (U, V) ∈ [0, c/2]2, set

�
W
a,` ≔




{
5 ∈ �a,` : 5 (0) = 0, 5 (1) = 0

}
if U = V = 0,

{
5 ∈ �a,` : 5 (0) = 0

}
if U = 0 and V ∈ (0, c/2],

{
5 ∈ �a,` : 5 (1) = 0

}
if U ∈ (0, c/2] and V = 0,

�a,` if U and V ∈ (0, c/2] .

The set DB
W (Δa, `) is dense in (�

W
a,` , ‖ · ‖∞).

Proof. This follows from Lemma 5, Lemma 7 and Theorem 9.

Corollary 11. For each W ∈ [0, c/2]2, the operator Δa, ` with domain D|
W (Δa,`) is

densely defined and self-adjoint.

Proof. Denseness follows by combining the results Proposition 1, Lemma 7 and

Theorem 9. To show that Δa, ` with domain D|
W (Δa,`) is self-adjoint, let us assume

the setting of Proposition 1. For 5 ∈ D|
W (Δa,`) by Lemma 6 and Theorem 9,

6 ↦→ 〈 5 ,Δa,`6〉!2 (a) = 〈 5 ◦ �̌−1
` ,Δa◦�̌−1

` ,Λ (6 ◦ �̌
−1
` )〉!2 (a◦�−1

` )

defines a continuous linear functional on D|
W (Δa,`). Combining Proposition 1 and

Theorem 9 we may deduce that 5 ◦ �̌−1
` ∈ dom(Δ∗

a◦�̌−1
` ,Λ

) = D|
W (Δa◦�̌−1

` ,Λ), and

consequently that 5 ∈ D|
W (Δa,`).
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By taking into account that Δa,` with domain D∗
W (Δa,`) has a probabilistic

interpretation as infinitesimal generator of a Markov process, one may also obtain

the above corollary via an application of [Dyn65, Theorem 10.13].

Corollary 4 implies that Δa◦�−1
` ,Λ with domain D|

W

(
Δa,Λ

)
gives rise to an or-

thonormal basis of eigenfunctions with non-positive eigenvalues. In the case that

supp(a) is infinite, we have (_=)=∈N with lim=→∞ −_= = ∞; otherwise there are

only finitely many eigenvalues. Using the one-to-one correspondence established in

Theorem 9 to relate the spectral properties of Δa,` with those of Δa◦�−1
` , Λ, we obtain

the following.

Corollary 12. For fixed W ∈ [0, c/2]2, the operators Δa◦�−1
` ,Λ with domain

D|
W (Δa◦�−1

` ,Λ) andΔa,` with domain D|
W (Δa,`) have the same eigenvalues (_=)=∈N.

Further, if 5 is an eigenfunction ofΔa,` , then 5 ◦ �̌−1
` is an eigenfunction ofΔa◦�−1

` , Λ,

and if 5 is an eigenfunction of Δa◦�−1
` ,Λ, then 5 ◦ �` is an eigenfunction of Δa,` . In

particular, if ( 5=)=∈N denotes the orthonormal basis consisting of eigenfunctions of

Δa◦�−1
` ,Λ, then ( 5= ◦ �`)=∈N forms an orthonormal basis comprising of eigenfunc-

tions of Δa,` .

Corollary 12 can be seen as a generalisation of the results of [KSW16] where

Δ`,` was considered.

Corollary 13. For W ∈ [0, c/2]2 and _ > 0, letting '_
a,` = (_ − Δa,`)

−1 denote the

resolvent operator of Δa,` with domain D∗
W (Δa,`), for all 5 ∈ S∗,

'_
a,` ( 5 ) ◦ �̌

−1
` = '_

a◦�−1
` ,Λ

( 5 ◦ �̌−1
` ). (7)

In particular, we have that

‖'_

a◦�−1
` ,Λ

‖!2 (a◦�−1
` ) = ‖'_

a,` ‖!2 (a) and ‖'_

a◦�−1
` ,Λ

‖�
a◦�−1

` ,Λ
= ‖'_

a,` ‖�a,`
.

Proof. The resolvent '_
a,` is well defined for all _ > 0, as by Proposition 1 the

operator Δa,` is non-positive, and for 5 ∈ S∗, we have

Δa,` ('
_
a,` ( 5 )) = _'

_
a,` ( 5 ) − 5 and '_

a,` ( 5 ) ∈ D∗
W (Δa,`).

Theorem 9 gives

Δa◦�−1
` ,Λ ('

_
a,` ( 5 ) ◦ �̌

−1
` ) = Δa,` ('

_
a,` ( 5 )) ◦ �̌

−1
` = _'_

a,` ( 5 ) ◦ �̌
−1
` − 5 ◦ �̌−1

` ,

proving the first part. This in tandem with Lemma 7 yields (7).

Corollary 14. For W ∈ [0, c/2]2, the operator Δ`,a with domain DB
W (Δa,`) is an

infinitesimal generator of a strongly continuous semi-group of contractions on �
W
a,` .

Proof. It is well-known that the result hold for the classical Kreı̆n–Feller operator,

see [LPS71, Behauptung 4.1]. This in tandem with the Yosida-Hille Theorem, see

for example [MR92, Theorem 1.12], and Corollary 13, yields
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‖'_

a◦�−1
` ,Λ

‖�W

a◦�−1
` ,Λ

= ‖'_
a,` ‖�W

a,`
≤ 1/_,

for all _ > 0. By Corollary 10, the operator Δ`,a with domain DB
W (Δa,`) is densely

defined, and since convergence in ‖ · ‖ implies convergence in ‖ · ‖!2 (a) , Proposition

1 implies that Δ`,a with domain DB
W (Δa,`) is closed. Thus, a second application of

the Yosida-Hille Theorem yields the required result .

4 Applications

In this last section, some applications to the spectral asymptotics of the Kreı̆n-Feller

operators and to the associated gap diffusion are given.

4.1 Spectral asymptotics

In this section, let us begin to link Theorem 9 to the result of [KN22c]. For this we

require the following. For a and ` satisfying our standing assumptions, we define

the upper spectral dimension Ba,` of the generalised Kreı̆n–Feller operator Δa,` by

Ba,` ≔ lim sup
G→∞

ln(#
W
a,` (G))

G
,

where #
W
a,` (G) denotes the number of eigenvalues of −Δ`,a with domain D|

W (Δa,`)

not exceeding G ∈ R. For @ > 0 and [ a compactly supported measure on R, we

denote by

V[ (@) ≔ lim sup
=→∞

1

= ln 2
ln

(∑

:∈Z

([ ((:2−=, (: + 1)2−=]))@

)

the !@-spectrum of [ and let @[ ≔ inf{@ > 0 : V[ (@) < @}. Further, we let

dim" (�) denote the upper Minkowski dimension of a bounded set � ⊆ R.

Theorem 15. For a and ` satisfying our standing assumptions, we have that

Ba,` = @a◦�−1
`

≤
dim" (supp(a ◦ �−1

` ))

1 + dim" (supp(a ◦ �−1
` ))

.

Proof. This follows from Theorem 9 in combination with [KN22c, Theorem 1.1 and

Corollary. 1.7].

Next, we review the asymptotic growth rate of the eigenvalue counting function

of −Δa,` for certain classes of self-similar measures. With the help of Theorem 9,
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we show how the results in [Fre11] can be deduced from [SV95], and hence, how

the asymptotic results of [Fre05] would follow from [Fuj87]. Let us begin by giving

our standing assumptions on the self-similar measures. These assumptions are less

restrictive than (A.1) – (A.4) of [Fre05], in the sense that our contractions are allowed

to be both order-preserving and order-reversing.

Assumptions 16. Let " ≥ 2 be an integer and let

Φ = ((8 : [0, 1] → [0, 1] : 8 ∈ {1, . . . , "})

denote a family of affine contractions fulfilling the open set condition (OSC) with

feasible open set (0, 1), that is, (8 ((0, 1))∩( 9 ((0, 1)) = ∅, for all 8 and 9 ∈ {1, . . . "}

with 9 ≠ 8. Let a denote the self-similar measure associated with Φ and with

probability weight vector (?1, . . . , ?" ) ∈ (0, 1)" , namely, the Borel probability

measure uniquely determined by

a(�) =

"∑

8=1

?8a((
−1
8 (�))

for all � ∈ B( [0, 1]) and whereB( [0, 1]) denotes the Borel f-algebra on [0, 1]. For

a fixed (f1, . . . , f" ) ∈ (0, 1)" with
∑"

8=1 f8 ≤ 1, let ` denote an atomless Borel

probability measure with supp(a) ⊆ supp(`) and such that `((8 (�)) = f8`(�), for

all � ∈ B( [0, 1]) and 8 ∈ {1, . . . , "}. For : ∈ {1, . . . , "}, we set 2: ≔ − ln(f: ?:),

and distinguish the following two cases.

1. The arithmetic case: When the set {21, . . . , 2" } is a subset of a discrete subgroup

of (R, +), that is, there exists a real number ! > 0 such that 2: ∈ !N for all

: ∈ {1, . . . , "}.

2. The non-arithmetic case: When 2:/2; is irrational for some : and ; ∈ {1, 2, . . . , "}.

Theorem 17. Assume the setting of Assumption 16. Let W ∈ [0, c/2]2 be fixed and

let D ∈ (0, 1) be the unique real number satisfying
∑"

8=1 (f8 ?8)
D = 1. Let (_=)=∈N

denote the increasing sequence of eigenvalues of −Δa,` with domain D|
W (Δa,`) and

denote by #
W
a,` the associated eigenvalue counting function. In the non-arithmetic

case, there exists a positive constant : such that

lim
=→∞

=−1/D_= = : and lim
G→∞

G−D#
W
a,` (G) = :

−D .

In the arithmetic case, there exists an !-periodic function k bounded and separated

from zero, such that

lim
G→∞

G−D#
W
a,` (G)/k(ln(G)) = 1.

Proof. For 8 ∈ {1, . . . , "}, let sgn((8) denote the sign of the affine transformation

(8, that is, if (8 is order preserving, then sgn((8) = 1, and otherwise sgn((8) = −1.

With this at hand, we observe that
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f8�` (G) = f8`( [0, G]) = `((8 ( [0, G])) = sgn((8) (�` ((8 (G)) − �` ((8 (0))),

for all G ∈ [0, 1] and 8 ∈ {1, . . . , "}. Setting (̃8 (G) = sgn((8)f8G + �` ((8 (0)), for

G ∈ [0, 1] and 8 ∈ {1, . . . , "}, we obtain �` ◦ (8 = (̃8 ◦ �` , and hence, for all

� ∈ B( [0, 1]), that

"∑

8=1

?8a(�
−1
` ◦ (̃−1

8 (�)) =

"∑

8=1

?8a((
−1
8 ◦ �−1

` (�)) = a(�−1
` (�)).

This shows that a ◦ �−1
` is the unique self-similar measure for the family of contrac-

tions ((̃8 : 8 ∈ {1, . . . , #}) and probability weight vector (?1, . . . , ?"). Additionally,

since supp(a) ⊆ supp(`) and since

(̃8 ( [0, 1]) = [�` ((8 (0)) + (sgn((8) − 1)f8/2, �` ((8 (0)) + (sgn((8) + 1)f8/2]

= [min{�` ((8 (0)), �` ((8 (1))},max{�` ((8 (0)), �` ((8 (1))}],

((̃8 : 8 ∈ {1, . . . , "}) satisfies the OSC given that ((8 : 8 ∈ {1, . . . , "}) satisfies

the OSC with feasible open set (0, 1). Therefore, we can apply the classical result

from Solomyak and Verbitsky [SV95] for the spectral asymptotics of Δa◦�−1
` , Λ with

domainD|
(0,0)

(Δa◦�−1
` , Λ). The spectral asymptotics for the Robin case W ∈ [0, c/2]2

follows by well-known estimates of the eigenvalue counting function, see for example

[Fuj87, Lemma 3.1]. Combining this with Corollary 12 completes the proof.

Example 18. Fix # and " ∈ N with 2 ≤ " ≤ # . For 8 ∈ {1, . . . , #}, we let

(8 : [0, 1] → [0, 1] be defined by (8 (G) = B8G + 18 , where B8 and 18 are non-negative

real numbers with B8 + 18 ≤ 1, and such that ((8 : 8 ∈ {1, . . . , #}) fulfils the OSC

with feasible open set (0, 1). Let X# and X" be the unique positive real numbers

satisfying

#∑

8=1

B
X#
8

= 1 and

"∑

8=1

B
X"
8

= 1.

Denote by a, the unique self-similar measure determined by the family of contractions

((8 : 8 ∈ {1, . . . , "}) and probability weight vector

(?1, . . . , ?") ≔ (B
X"
1
, . . . , B

X"
"

),

and let ` be the unique self-similar measure determined by the family of contractions

((8 : 8 ∈ {1, . . . , #}) and probability weight vector (B
X#
1
, . . . , B

X#
#

). In which case,

supp(a) ⊆ supp(`),

a ◦ �−1
` (�) =

"∑

8=1

?8a((
−1
8 ◦ �−1

` (�)),
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and hence, via an application of Theorem 17, we find that the exponential growth

rate of the eigenvalue counting function of −Δa,` is X"/(X# + X"). Additionally,

we note that, according to the Moran–Hutchinson formula dim" (supp(`)) = X#
and dim" (supp(a)) = X" .

The estimates on the upper spectral dimension of the classical Kreı̆n–Feller oper-

ator, as described in [KN22c, Corollary 1.8], sheds new light on Example 18. Indeed,

if ` is X`-Ahlfors regular (as in Example 18), which in the one-dimensional context

means that �` is X`-Hölder continuous, then

dim" (supp(a ◦ �−1
` )) = dim" (�` (supp(a))

≤
dim" (supp(a))

X`
=

dim" (supp(a))

dim" (supp(`))
.

Here, we have also used that X` = dim" (supp(`)) which follows from the defining

property of Ahlfors regularity and the equivalent definitions of the upper, and the

lower, Minkowski dimension given by centered X-packings, and X-covers, respec-

tively. So, by Theorem 15, if ` is Ahlfors regular, then

Ba,` ≤
dim" (supp(a))

dim" (supp(a)) + dim" (supp(`))
.

In this respect, fixing ` and supp(a), the upper spectral dimension Ba,` is maximal

in our example. We emphasise that the upper Minkowski dimension, and not the

Hausdorff dimension, is the relevant quantity in this estimate. For further interesting

connections of the the !@-spectrum of a compactly supported measures a with its

quantization, i. e. its approximations by finitely supported measures, we refer the

interested reader to [KNZ23].

As a third application of our main result, we provide a simple proof of the folklore

result that the absolutely continuous part of a with respect to ` is dominating the

spectral asymptotic, see [Vol05a] for an alternative approach in a slightly more

general setting.

Theorem 19. Let ` and [ denote two finite atomless Borel measures on R such that

we have supp([) ⊆ supp(`) ⊆ [0, 1] and [ is singular to `, and let f ∈ !2 (`) be

non-negative. Assuming both a ≔ f2` + [ and ` are probability measures, then for

W ∈ {(0, 0), (c/2, c/2)},

lim
G→∞

#
W
a,` (G)

G1/2
= c−1

∫
f d`.

Proof. For G ∈ R and W ∈ {(0, 0), (c/2, c/2)}, by Corollary 12,

#
W

f2`+[,`
(G) = #

W

f2◦�̌`
−1
Λ+[◦�−1

` ,Λ
(G).
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By our hypothesis there exists a Borel set � ⊆ [0, 1] with [(�) = 0 and `(�) = 1.

By an application of Lemma 6,

[ ◦ �−1
` ((�̌−1

` )−1�) = [(�−1
` ((�̌−1

` )−1�)) = [((�̌−1
` ◦ �`)

−1�) = [(�) = 0

and

Λ((�̌−1
` )−1�) = ` ◦ �−1

` ((�̌−1
` )−1�) = `((�̌−1

` ◦ �`)
−1�) = `(�) = 1.

Hence, the measure [ ◦ �−1
` is singular to Λ, and thus, by [BS70, Theorem 5.1], or

alternatively the results of [Vol05a], we obtain, for W ∈ {(0, 0), (c/2, c/2)},

lim
G→∞

#
W

f2◦�̌−1
` Λ+[◦�−1

` ,Λ
(G)

G1/2
= c−1

∫ (
f2 ◦ �̌`

−1
)1/2

dΛ = c−1

∫
f d`. �

4.2 Gap diffusion

In this section we define generalised a-`-gap diffusion via a time change of a fixed

Brownian motion and a state space transformation given by �̌−1
` . Making use of

known basic properties for gap diffusion and our general approach, we show that the

infinitesimal generator of the generalised gap diffusion coincides with a generalised

Kreı̆n–Feller operator. Our standing assumptions for this section are as follows.

For a measurable space (Ω,F ) and for some G ∈ Ω, we consider the tuple

(Ω,F , (FC )C≥0, (\C )C≥0, PG) where PG denotes the probability measure such that,

(FC )C≥0 is the right-continuous completed natural filtration and (\C )C≥0 is the shift-

operator. The expectation with respect to PG is denoted byEG , and we call a stochastic

process (�C )C≥0 a Brownian motion if:

1. PG (�0 = G) = 1

2. For 0 ≤ B0 < · · · < B= with = ∈ N, the increments �B1
− �B0

, . . . , �B= − �B=−1
are

stochastically independent.

3. For B and C ∈ R with B > C ≥ 0 the distribution of the increment �B − �C follows

a Gaussian distribution with variance B − C and mean 0.

Further, we let (!CG)C≥0,G∈R be the jointly continuous version of the local time of the

Brownian motion (�C )C≥0, see [RY13, Chapter VI], and let < be a probability Borel

measure on [0, 1].

We define, for C ≥ 0, the time-change function

ΦC ≔

∫
!CG d<(G)

and the right-continuous inverse of ΦC ,
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Φ̂
−1
C ≔ inf {B ≥ 0: ΦB > C} .

For G ∈ supp(<), the process (-C )C≥0 ≔ (�
Φ̂−1

C
)C≥0, defined with respect to the

filtration (F
Φ̂−1

C
)C≥0 and probability measure PG , is called a gap diffusion with speed

measure < and starting point G.

Now we recall some important facts for gap diffusion relevant for our considera-

tions.

Fact 20 ([Eks+13, Lemma 3.1]). For all C ≥ 0, we have PG-almost everywhere, that

-C ∈ supp(<).

Fact 21 ([Bur83, Satz 2.4.1, Satz 2.4.6]). The tuple

((-C )C≥0, (FΦ̂−1
C
)C≥0, (\Φ̂−1

C
)C≥0, (PG)G∈supp(<) )

defines a Feller process with state space � ≔ supp(<) equipped with the Euclidean

topology g. Namely, (-C )C≥0 is a strong Markov process such that, for all 5 from

the set �1 (�) of bounded continuous function with domain � , the function G ↦→

EG [ 5 (-C )] belongs to �1 (�) and for every G ∈ � we have

lim
Cց0
EG [ 5 (-C )] = 5 (G).

We now want to make explicit a connection between generalized Kreı̆n–Feller

operators and the infinitesimal generator of transformed gap diffusions. To this end,

let ` and a denote two Borel probability measures satisfying our standing assump-

tions given at the start of Section 2.1, and let (-C )C≥0 denote a gap diffusion with

speed measure a ◦ �−1
` . We call the stochastic process (�̌−1

` (-C ))C≥0 a (generalised)

a-`-gap diffusion with speed measure a and scale measure `. We will see below that

by [Dyn65, Vol. I, § 6, Theorem 10.13] this latter stochastic process is again strong

Markov. It should be noted that the fact that �` is continuous is essential to ensure

that (.C )C is a strong Markov process (see also [Ogu89] for a counterexample if �`
is not continuous).

Definition 1. Let (/C )C≥0 denote a Markov process with state space (�, g). A func-

tion 5 ∈ �1 (�) is said to belongs to the domain D(�) of the infinitesimal generator

� of (/C )C≥0 if

� 5 (G) = lim
Cց0

(EG [ 5 (/C )] − 5 (G))/C

exists with respect to ‖ · ‖∞.

We are now in a position to compute the infinitesimal generator of a a-`-gap

diffusion. To this end, let (-C )C≥0 denote a gap diffusion with speed measure a ◦�−1
`

and, for C ≥ 0, set

.C ≔ �̌−1
` (-C ).

Note, the state space of -C is given by � ≔ supp(a ◦ �−1
` ) = �` (supp(a)) equipped

with the subspace topology g induced by the Euclidean topology, and the state space
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of .C is equal to �̃ ≔ �̌−1
` (�) equipped with the final topology g̃ induced by �̌−1

` ,

i. e. g̃ ≔ {$ ⊆ �̃ : (�̌−1
` )−1 ($) ∈ g}.

Lemma 22. The map �̌−1
` : � → �̃ defines a homeomorphism, where � and �̃ are

respectively equipped with the topologies g and g̃.

Proof. Note that �̌−1
` is strictly increasing and hence bijective, and that by definition

of the final topology, also continuous. To see that �̌−1
` : � → �̃ is a homeomorphism

we apply the universal property of the final topology and the fact that �` ◦ �̌−1
` is

the identity.

An application of this lemma yields

�a◦�−1
` ,Λ → � (�) : 5 ↦→ 5 |� and �a,` → � (�̃) : 5 ↦→ 5 |

�̃

are bijective, and thus allows us to identify � (�) with �a◦�−1
` ,Λ and � (�̃) with

�a,` . As an aside, we remark that the topology g̃ can also be described as the initial

topology on �̃ with respect to
{
5 |

�̃
: 5 ∈ �a,`

}
. Further, for all 5 ∈ � (�̃), we have

5 = 5 ◦ �̌−1
` ◦ �` .

Letting �- be the infinitesimal generator of (-C )C≥0 on D(�-) ⊆ �a◦�−1
` ,Λ, for

5 ∈ D(�. ) ⊆ �a,` and G ∈ � , we have 5 ◦ �̌−1
` ∈ �a◦�−1

` ,Λ and therefore it follows

lim
Cց0

(EG [ 5 (�̌
−1
` (-C )) − 5 (�̌−1

` (G))])/C = lim
Cց0

(E�̌−1
` (G ) [ 5 (.C ) − 5 (�̌−1

` (G))])/C

= lim
Cց0

(E�̌−1
` (G ) [ 5 (.C ) − 5 (.0)])/C.

As in [Dyn65, Vol. I, § 6, Theorem 10.13 & 1st Remark], this implies that (.C )C is a

strong Markov process and

5 ◦ �̌−1
` ∈ D(�-) ⇐⇒ 5 ∈ D(�. ) and �- ( 5 ◦ �̌

−1
` ) = �. ( 5 ) ◦ �̌

−1
` , 5 ∈ D(�. ).

From [Bur83, p. 49], we have D(�-) ⊆ D
(
Δa◦�−1

` ,Λ

)
⊆ �a◦�−1

` ,Λ and for all

6 ∈ D(�-) we have 2�- (6) = Δa◦�−1
` ,Λ (6) and ∇`6(0) = ∇`6(1) = 0. Now,

Theorem 9 together with Lemma 22 yields for 5 ∈ D(�. )

2�. ( 5 ) = 2�. ( 5 ) ◦ �̌
−1
` ◦ �` = 2�- ( 5 ◦ �̌

−1
` ) ◦ �`

= Δa◦�−1
` ,Λ ( 5 ◦ �̌

−1
` ) ◦ �` = Δa,` ( 5 ),

and ∇` 5 ◦ �̌
−1
` (0) = ∇` 5 ◦ �̌

−1
` (1) = 0. Hence, the Neumann boundary conditions,

given in (3), are satisfied.

Example 23. In the following, we consider the case ` = a. The occupation formula

of the local time yields for C a non-negative real number
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ΦC =

∫
!CG da ◦ �−1

` (G) =

∫
!CG dΛ(G) =

∫

[0,C ]

1[0,1] (�B) dΛ(B).

A simulation of a `-`-gap diffusion Brownian path when ` is the Bernoulli measure

with probability weight vector (1/2, 1/2) supported on the middle third Cantor set

is given in Figure 1. In order to generate a `-`-gap diffusion path we begin with

a simulation of a standard Brownian path �C , as depicted in Figure 1 (a), and the

corresponding time-change function ΦC with respect to Λ, see Figure 1 (b). From

this, we can generate the associated gap diffusion path �
Φ̂−1

C
with speed measure Λ,

as shown in Figure 1 (c). The image of �
Φ̂−1

C
under �̌−1

` establishes a realisation of

a `-`-gap diffusion path, see Figure 1 (d). Note, despite the (Euclidean) jumps, this

path is continuous with respect to the final topology g̃ on �̃ .

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0
.0

0
.5

1
.0

(a) Simulation of a Brownian path �C .

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

(b) The time-change function ΦC with respect

to the Brownian path �C and speed measure Λ.

0.0 0.1 0.2 0.3 0.4

0
1

(c) Λ-gap diffusion path �
Φ̂−1

C
.

0.0 0.1 0.2 0.3 0.4

0
1

(d) `-`-gap diffusion path �̌−1
` (�

Φ̂−1
C
) .

Fig. 1: Simulation of a path of a generalised gap diffusion.
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In conclusion, we observe one can interpret the strong generalised Kreı̆n–Felller

operator Δa,` with twice the infinitesimal generator of the a-`-gap diffusion, and

that this generalised diffusion is connected to the classical gap diffusion via the

transformation given by �̌−1
` .
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