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Abstract
In 2012 Lau and Ngai, motivated by the work of Denker and Sato, gave an example of an isotropic Markov chain
on the set of finite words over a three letter alphabet, whose Martin boundary is homeomorphic to the Sierpiński
gasket. Here, we extend the results of Lau and Ngai to a class of non-isotropic Markov chains.

Setting and construction of the Markov chain

Let ϑ denote the empty word, Σ0 := and Σ := {1, 2, 3}. We consider Σ∗ :=
⋃

n∈N0
Σn,

the set of all finite words over the alphabet Σ. Analogously, let Σ∞ be the space of all
infinite words. Furthermore, for n ∈ N let V n := {1n, 2n, 3n} and Σ̃n := Σn \ V n.

Let K denote the Sierpiński gasket. The standard projection π : Σ∞ → K is de-
fined by π(x) = limn→∞ Si1 ◦ · · · ◦ Sin(x0) for x = i1i2 . . . ∈ Σ∞, x0 ∈ R2 arbitrary. Two
states x,y ∈ Σ∞ are called π-equivalent, denoted by x ∼π y, if π(x) = π(y).

Let p ∈ (0, 1/2) and q := 1− 2 p. We define the transition matrix P : Σ∗ × Σ∗ → [0, 1]
by

P (u, v) :=



p if u = ωijn−k ∈ Σ̃n, v ∈ Σn

and u ∼π v or v = ωijn−k−1i for distinct i, j ∈ Σ,

q if u = ωijn−k ∈ Σ̃n, v ∈ Σn

and v = ωijn−k−1l for pairwise distinct i, j, l ∈ Σ,

1/3 if u ∈ V n and v = ui for i ∈ Σ,

0 otherwise.

We denote by (Xn)n∈N0
the Markov chain with origin ϑ, state space Σ∗ and transition

probability matrix P . For p = 1/3, the above Markov chain coincides with the one in
[5].
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Figure 1: Transition probabilities of the Markov
chain.

If the chain
• starts at a word in Σ̃n, then it walks to

one of its three neighbours with prob-
ability p or q.

• hits an element u ∈ V n, then it moves
to one of its kids on the next level with
probability 1/3.

Hitting probabilities

We denote the probability, conditioned on starting at a state x ∈ Σ∗, to eventually
arrive at a state y ∈ Σ∗ by

ρ(x, y) := P( ∃ k ∈ N0 : Xk = y |X0 = x).

We are concerned with computing the probability to be absorbed by in, i ∈ Σ, when
starting at some x ∈ Σn. To this end we define ρ : Σ∗ → [0, 1]3 by

ρ(x) := [ρ(x, 1n), ρ(x, 2n), ρ(x, 3n)].

For n ≥ 2 define

αn := ρ(12n−1, 1n),
βn := ρ(12n−1, 2n),
γn := ρ(12n−1, 3n),

and
an := ρ(1n−12, 1n),
bn := ρ(1n−12, 2n),
cn := ρ(1n−12, 3n).

Figure 2 shows the above hitting probabilities for n = 2 and n = 3.
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Figure 2: Hitting probabilities an, bn, cn and αn, βn, γn for n = 2 and n = 3.

Furthermore, define

A(1)
n :=

 1 0 0
αn βn γn
αn γn βn

 , A(2)
n :=

βn αn γn
0 1 0
γn αn βn

 , A(3)
n :=

βn γn αn

γn βn αn

0 0 1

.
The matrix A

(i)
n contains the probabilities that the process, starting in one of the three

vertices of one of the three subgraphs of Σn, reaches V n.

Denote the standard i-th row unit vector of R3 by ei and let x = i1 . . . in ∈ Σn.
With the above, we can express the hitting probability vector ρ(x) as a matrix
product, namely,

ρ(x) = einA
(in−1)
2 · · ·A(i1)

n . (1)

Theorem 1: Limits of the hitting probabilities, [5, 3]

lim
n→∞

(αn, βn, γn) = (2/5, 2/5, 1/5) and lim
n→∞

(an, bn, cn) = (1, 0, 0).

Interestingly, the limits of these sequences are independent of the chosen parameter
p ∈ (0, 1/2) and are equal to the ones obtained in the isotropic case considered in [5].

With these limits we can
• prove that the random matrix product in (1) converges.
• use a representation of the Martin kernel in terms of these hitting probabilities to

extend the kernel to the infinite words.
• prove that the Martin metric can also be extended to the infinite words.
• find an analogue of the (1/5)-(2/5)-rule for the P -harmonic functions.

Main results

The main results are the following.

Theorem 2: Sierpiński gasket as Martin boundary, [5, 3]

The Martin boundary M of (Xn)n∈N0
is homeomorphic to the Sierpiński gasket K.

Theorem 3: Minimal Martin boundary, [5, 3]

The minimal Martin boundary Mmin of (Xn)n∈N0
is homeomorphic to {1∞, 2∞, 3∞}.

Theorem 4: Space of P -harmonic functions, [5, 3]

The P -harmonic functions on the Martin boundary coincide with the canonical
harmonic functions of [4, 6], the space of P -harmonic functions on the Sierpińki
gasket K is three-dimensional.

Future work

It would be of interest to investigate
•what happens if one rotates the directions of the transition probabilities p and q.
• to prefer a clockwise or anti-clockwise direction in the subgraphs on each level.
• to choose different probabilities for each direction.
• a modified trasition operator such that the minimal Martin boundary can be an

arbitrary Borel subset.
Simulations indicate that for the first three points the same results as in Theorem 1
may hold.
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