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A B S T R A C T

Human–Robot Collaboration (HRC) is a term used to describe tasks in which robots and humans work together
to achieve a goal. Unlike traditional industrial robots, collaborative robots need to be adaptive; able to alter
their approach to better suit the situation and the needs of the human partner. As traditional programming
techniques can struggle with the complexity required, an emerging approach is to learn a skill by observing
human demonstration and imitating the motions; commonly known as Learning from Demonstration (LfD). In
this work, we present a LfD methodology that combines an ensemble machine learning algorithm (i.e. Random
Forest (RF)) with stochastic regression, using haptic information captured from human demonstration. The
capabilities of the proposed method are evaluated using two collaborative tasks; co-manipulation of an object
(where the human provides the guidance but the robot handles the objects weight) and collaborative assembly
of simple interlocking parts. The proposed method is shown to be capable of imitation learning; interpreting
human actions and producing equivalent robot motion across a diverse range of initial and final conditions.
After verifying that ensemble machine learning can be utilised for real robotics problems, we propose a further
extension utilising Weighted Random Forest (WRF) that attaches weights to each tree based on its performance.
It is then shown that the WRF approach outperforms RF in HRC tasks.
1. Introduction

Over the last decade, there has been significant advancement in
many areas of robotics. For collaborative robots (cobots) an essential
area of improvement has been in safety, with commercial systems now
in operation in many industrial roles. These typically work through
the use of contact sensors (either tactile or force based), which detect
resistance to motion and immediately stop the robot to prevent injury.
Despite these improvements, there is still much to explore in the area.
Although simply halting the robot upon detection of an external force
is safe, it is unsuitable for any task involving direct Human–Robot
Collaboration (HRC). For example, tasks such as holding components
in place for a human to fasten together (i.e. a co-assembly task [1])
or moving heavy objects into a specific place under human guidance
(i.e. a co-manipulation task [2,3], such as shown in Fig. 1), cannot be
achieved if the robot must stop at the first external stimulus.

To overcome this limitation, the external forces provided by the
human must be interpreted to produce the intended motion in a con-
sistent and safe manner. Focusing on the intention to guide robots
using physical contact with a human, the existing literature on human–
robot collaboration can be roughly divided into three main approaches:
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model-based strategies, which depend on designing a control strat-
egy based on an accurate mathematical model of the robots and the
intended task, human-based strategies, which attempt to follow im-
plicit human–human communication standards, and learning-based
strategies, which use Machine Learning (ML) algorithms to attempt
to generate models based on data alone. (Despite the use of this
categorisation, there is overlap between the approaches and there-
fore the literature presented below is organised based on its major
contributions.)

The remainder of this paper is organised as follows: this section
covers the background literature related to HRC. Section 2 presents the
problem statement and Section 3 describes the proposed approach. Sec-
tion 5 describes the experimental setups and data collection. Then, the
experimental results and validation examples are discussed in Section 6.
Finally, the conclusions and future work are presented in Section 7.

1.1. Model-based strategies

Model-based control strategies were commonly used for earlier
examples of HRC. Aside from creating the model, the challenge in
vailable online 4 January 2021
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Fig. 1. Co-manipulation of an object is a common Human–Robot Collaborative task.
In this scenario, the robot is intended to handle the weight of the object and follow
the movements of the human detected through force sensors. The role of the human
operator is to provide guidance, as human perception and understanding of the task
should be far greater.

using this type of control is tuning the parameters to best fit the actual
requirements. As any HRC task includes a human by definition, many
solutions populate the model parameters based on tests with humans.
For example, Ikeura and Inooka [4] proposed an adaptive impedance
controller, where impedance parameters were experimentally deter-
mined by analysing two human operators performing a cooperative
task. This created a model that could adaptively modify its parameters
based on the change in rate of the measured forces, producing a similar
force output as a human. Similarly, [5,6] and [7] proposed various
elements of an admittance control strategy based on the apparent
mechanical impedance of the manipulated object. By detecting the
manually applied input force, the intended motion of the object could
be inferred. This approach was successful in demonstrating a multi-
robot system that could collaborate with a human through contact
forces alone.

This was expanded on in [8], which introduced a two-level control
scheme in which an admittance controller was driven by a higher level
reflex control, triggered using a force-based threshold. As pure admit-
tance controllers perceive any external force as an input command,
the force threshold made the system more predictable as weak forces
did not trigger motion. In addition, overcoming the initial resistance
of the system was shown to better represent the human expectation
of load when working with a collaborative partner. This was further
expanded on in [9], where the control gain of the adaptive impedance
controller was actively modified using gradient descent optimisation.
The differentiation of the force information was also exploited to
estimate the human intention in cooperative tasks and update the
robot velocity control law accordingly. As an additional modification,
motivated by biological studies, the stiffness parameter of the system
was also actively changed to achieve a more human-like motion. These
methods in combination were suggested as being highly effective in
achieving compliant motion during collaboration.

Following this, other methods of adjusting model parameters have
become more popular. Duchaine and Gosselin [10] and Ikeura et al.
[11], proposed to adjust model damping parameters online optimally
by minimising a cost function. Tsumugiwa et al. [12] proposed a
real-time estimation approach, using the known stiffness of human
arms to perform an online adjustment of the robot stiffness coef-
ficients. To allow for a higher degree of compliance during HRC,
Ficuciello et al. proposed a co-manipulation controller which com-
bined impedance modulation (e.g. feedforward control) with the known
kinematic redundancy of the robot [13].

1.2. Human-based strategies

Rather than considering HRC as a task, Klingspor et al. [14] rec-
ommended that human–robot physical interaction is a form of commu-
nication, and that greater co-operation could be achieved if the robot
2

model was designed to follow implicit human–human communica-
tion standards. Accordingly, many studies have designed human–robot
collaborative systems based on human–human collaboration. As out-
lined above, many model-based strategies already attempted to use
human–human interaction in designing the system model. Rahman
et al. [15] introduced a variable impedance control for HRC (specifi-
cally a push–pull task) in which the stiffness and damping parameters
varied based on the analysis of human–human collaborative task (two
humans jointly carrying an object). In a similar setup, Ikeura et al. [11]
presented the use of stiffness parameters that minimise a cost function
based on a human–human collaborative task.

While the aforementioned methods attempted to produce a system
that could interact with humans in an adaptive way, in each case the
actual model does not change, with only the parameters being tuned
to accommodate the human input. As the model is fixed, control-based
strategies are effectively ‘task oriented’, requiring that the controller
be redesigned/reprogrammed should any aspect (object, task, robot or
even user) change beyond what variance can be accommodated by
altering parameters.

Recognising that conventional control strategies were difficult to
apply, Hayashibara et al. [16] proposed that human co-operative be-
haviour could be modelled as a set of co-operative rules. Through
experimentation, a set of rules was established for humans collab-
orating on a lifting task. These rules were then used to create a
control system where the model changed based on the rules, which
was further applied to a prototype collaborative robot. This robot
demonstrated that a rule based approach was valid, albeit with poor
low-frequency performance. This idea was expanded upon in [17],
where the frequency of a repetitive collaborative task was identified in
an effort to correct over time. It was shown that identifying repetition
was sufficient for the controller to predict upcoming motion and act
accordingly, improving the HRC effort.

More recently, Reed and Peshkin[18] agreed with the principal that
a collaborative task can be considered a form of communication, and
compared human performance when working alone to collaborating
with a partner; specifically on a task with only haptic feedback. By
adaptively regulating impedance of a robot, it was shown that human
operators could not differentiate between a human partner and a robot
partner, and in both cases completed the task more quickly than when
working alone.

Perhaps the task which best demonstrates how collaboration can
be viewed as a form of communication is ‘handover’, where actors
co-ordinate to transfer control of an object between them. In ad-
dition to the physical transfer of an object, the understanding and
recognition of when control has been passed are also required for
the task to be successful. Strabala et al. [19] identified that humans
are particularly effective at this, capable of achieving handover in
differing conditions, even when it is unexpected. This suggests that
humans share common in-built rules for this procedure, which can be
adapted for human–robot interaction. By studying the physical and
social-cognitive elements of handover (such as the signals and cues
humans rely on) Strabala et al. [19] identified a ‘what, when and where’
approach, in which human establish information to make an exchange.
Human–robot handover based on this approach was then experimen-
tally validated; holding out the robot arm (where), displaying the object
for exchange (what) and waiting the same amount of time as a human
once the other party had grasped the object before releasing control
(when).

1.3. Learning-based strategies

Despite achieving better HRC, simply adjusting model parameters
to better emulate humans can only bring so much improvement. As
a collaborative task is essentially communication based, a traditional
fixed control model is unlikely to be optimal. To properly capture the
complexity of human interaction, recent literature predominantly uses
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ML to generate a model which captures the entire scenario and allows
for enhanced robot capabilities.

There is already a wide range of literature on ML for human–
robot collaboration tasks. A learning-based approach for human–robot
co-manipulation, in which a robot would be guided by human input
force alone was presented in [20]. The controller combined Multi-
Criteria Decision Making (MCDM) with synergy strategies (planning
approaches), and was shown to be capable of correctly interpreting
human intentions when evaluated for both 2DoF and 6DoF contexts.

In [21] a co-operative lifting task was demonstrated in which a
human leader was assisted by a robotic follower, controlled by an-
other human via teleoperation. The remote controls were recorded and
Hidden Markov Models (HMM) were used to encapsulate the robot
motion and the sensed forces. Gaussian Mixture Regression (GMR)
was then used to generate the reference force required to reproduce
collaborative robot behaviours. Not only was ML shown to be capable
of producing a working control system, an additional benefit was
the ability to implement capabilities not easily possible using other
methods; with the robot becoming more proactive as it was further
trained, going beyond simply following the human by incorporating
predictive behaviour. Another interesting probabilistic approach was
introduced by Duque et al. [22], in which a robot successfully carried
out an assembly process using a combination of LfD, Gaussian Mixture
Model (GMM), Task-Parameterised GMM for control, based on data
acquired using machine vision.

Ude et al. [23] specifically sought to create a robot capable of
responding to more extreme examples of a task, which were not pre-
viously encountered within the training set. Working with Dynamic
Movement Primitives (DMPs) (a general approach for representing any
recorded movement as a set of differential equations) the use of local
weighting via Gaussian Process Regression (GPR) was suggested to best
fit the human demonstration of a task, whilst also allowing the robot
to respond to new situations. This highlighted the need for an accurate
clustering approach that determines the desired behaviour in order to
achieve a general solution.

Other solutions have suggested introducing frameworks to extend
the capabilities of a system beyond a single task. Medina et al. [24]
again uses ML to teach a robot collaborative actions. To allow these
actions to be more complex, it proposes segmenting any complex
task into simple elements, each of which can be accomplished more
easily when attempted in isolation. To split the task, each element is
semantically labelled through verbal communication with the human
instructor. Should the robot not understand, it can request the name of
the current task to help isolate the stage in which it should be operating,
as well as further human demonstrations if needed. The demonstrated
tasks were represented by a primitive graph and a primitive tree
using HMMs that were incrementally updated during reproduction. The
proposed framework aimed to improve the generalisation capabilities
of the robot and was shown capable of completing more complex tasks
when steps were attempted individually.

Sheng et al. [25] also presented an integrated human–robot col-
laborative framework. Rather than break each task into stages, the
intention was for two control strategies to work concurrently; a reactive
controller which attempts to steady the system, and a proactive con-
troller which attempts to take proactive actions based on human motion
prediction. This is demonstrated in a co-manipulation task in which
a human works with a humanoid robot to lift a table. Both holding
the table in a steady position (reactive) and manipulating the table
(proactive) were trained through imitation learning. Confidence in the
motion predictor is used to automatically switch between controller
modes, and the results demonstrate that such an approach is successful
for collaborative manipulation.

For HRC tasks with much greater variation, the changes in envi-
ronment must also be modelled. Cui et al. [26] proposed changes in
the environment (such as a larger manipulation object) not only affect
3

how the robot must adapt to the task, but also alter how the human
responds, which the robot must account for. The main idea in this
work was to include variation in the handled object’s size and include
this variation in the final probabilistic model, in order to improve the
generalisation of the model. A learning-from-demonstration framework
was suggested, with training samples of both human and robot move-
ment to finish a task under different environmental conditions. To
encapsulate the additional environmental information, Environment-
Adaptive Interaction Primitives (EAIP) were suggested, which are an
extension to the well-known Interaction Primitives. This was shown to
improve both collaboration and generalisation to new conditions.

As a final consideration, as this work intends to rely solely on
haptic sensors, efforts made to enhance the precision of force detection
are also worth considering. Typically Force/Torque (FT) sensors are
quite sizeable and will reduce the already limited payload of smaller
robots if required for every task. Attempting to mitigate the need for a
dedicated FT sensor, Berger et al. [27] proposed that the inbuilt force
sensors within a cobot could provide a similarly accurate measurement
of force, if ML was used to map the readings of a dedicated FT sensor
to internal force readings. After comparing various inputs and four
different neural networks, the best result is obtained by using Transfer
Entropy (TE) features and the recurrent neural network architecture.
This was shown to have significantly improved the force estimation
when compared to the robot native controller, producing similar accu-
racy to the purpose made FT sensor used for validation. With regards to
the neural network architecture, Suleman et al. [28] have investigated
the most suitable implementation for LfD applications, concluding that
Elman networks and Nonlinear-Autoregressive-Exogenous-Model net-
works have the best performance, regardless of the high computational
requirements.

1.4. LfD for HRC

This paper considers the HRC task of co-manipulation, in which a
human and a robot transport an object from a starting point to a target
point within a known workspace. The intended purpose of the collab-
oration is for the robot to support the weight of the transported load
while simultaneously responding to human guidance. This interactivity
will be achieved by using only haptic sensor data, through which the
human must convey intentions to the robot. To achieve this, a control
approach is required that can interpret the haptic information in the
context of the required action.

As shown in the literature, safe haptic-based HRC could be imple-
mented using classical or adaptive control strategies. However, this
relies on having an accurate model of the human–robot interaction
for each task. Creating such models requires a deep understanding
of the system dynamics and requires assumptions to be made which
may not hold true in practice. In addition to signal noise, hard coding
HRC systems based on haptic information is also difficult due to signal
ambiguity, whereby manual manipulation of the robot will produce
unpredictable force components for the robot to interpret. As human
inputs are imprecise, input signals are unlikely to be exclusive to any
single intended action, making it difficult to determine the intention
of the human. Therefore, a research gap exists in understanding haptic
input signals when the robot is in direct contact with the surrounding
environment [29].

The chosen method of bridging this gap is to employ Learning
from Demonstration (LfD) [30]. LfD is an intuitive method of trans-
ferring human knowledge about a task using data directly from human
demonstration. By creating a mapping between the human body and
the equivalent joints of a robot, data captured on human motions
can be fed into a ML algorithm to generate more human-like logic
when performing a task [31]. This approach can be particularly useful
for situations where conventional control strategies struggle. Teramae
et al. [32] proposed using an LfD approach to work with non-linear
systems in scenarios with minimal sensor feedback; specifically to teach

an impact skill (i.e. hammering) to a pneumatically actuated 1DoF



Robotics and Computer-Integrated Manufacturing 69 (2021) 102111A. Al-Yacoub et al.
Fig. 2. Depiction of main forces within HRC task, consisting of the external human
force (𝐹𝑒), internal robot forces (𝐹𝑖) and load force (𝐹𝐿) of the manipulated object.

robot arm. The mapping between human and robot was established
by directly mimicking the human arm motion via a human–robot
interface, effectively creating a form of teleoperation. By having the
human watch the robot arm while controlling the end effector, human-
in-the-loop learning was achieved without the need for external sensors
monitoring the robot. The results demonstrated that the hammering
skill was learnt swiftly, validating the use of LfD for skill transfer.

For this work the intention is to use LfD for HRC, where the taught
skills must not only mimic the human demonstration, but must also
interpret information from co-operating humans. Although LfD has pre-
viously been used in HRC tasks, the majority of the research has focused
on visual or aural data, with minimal work on haptic interaction. As
the robot must interact with a human via physical connection (either
directly or via a shared load), this requires more work on interpreting
the complex force clues and signals that humans rely on.

In this paper we present an ensemble ML approach to learn a
HRC task in a LfD framework. The foundation for this approach is
Random Forest (RF), a popular ensemble learning method due to its
simplicity, robustness under variance, and its capability to generalise
well in novel scenarios. Furthermore, this paper also proposes to extend
the RF approach by identifying better performing trees and weighting
their influence within the final output.

2. Problem definition

To capture a skill using a learning-based approach, the input forces
must be known in the context of the intended reaction. This requires
that the co-manipulation task be demonstrated, with the FT sensor
readings and motion trajectories recorded. Once collected, the data (𝐃)
can formally be expressed as shown in Eqs. (1) and (2):

𝐃 =
{

(𝐟 , 𝐲 ), (𝐟 , 𝐲 ),… , (𝐟 , 𝐲 )
}

= (𝐅,𝐘) (1)
4

1 1 2 2 𝑁 𝑁 { }
𝐟𝑖 =
[

𝑓𝑥𝑖, 𝑓𝑦𝑖, 𝑓𝑧𝑖, 𝑡𝑥𝑖, 𝑡𝑦𝑖, 𝑡𝑧𝑖
]

𝐲𝑖 =
[

𝑦𝑥𝑖, 𝑦𝑦𝑖, 𝑦𝑧𝑖
] (2)

where:

𝐟𝑖 = The 𝑖𝑡ℎ(𝑋, 𝑌 , 𝑍) components of the FT feature vector
𝐲𝑖 = The 𝑖𝑡ℎ(𝑋, 𝑌 , 𝑍) components of targeted trajectory
𝑁 = The number of data points
𝐅 = The input features, such that 𝐅 ∈ R6×𝑁

𝐘 = The target trajectory, such that 𝐘 ∈ R3×𝑁

Fig. 2 shows the forces for a co-manipulation task in which a human
and robot share a load. The human haptic input is modelled as an
external force (𝐅𝑒), with the robot internal forces and load force (𝐅𝑖
and 𝐅𝐿) being compensated for using the method introduced in [33].
Hence, the HRC can be modelled as a spring–mass system, which can
be formalised as shown in Eq. (3):

𝛥�̈� = 𝑲𝑝𝛥𝐘 −𝑲𝑣𝛥�̇� − 𝑭 (3)

Where 𝑲𝑝 is the compliance matrix and 𝑲𝑣 is the damping factor.
As jerky movements are not desirable (especially when a human is
physically interacting with the robot) it was assumed that accelera-
tion 𝛥�̈� is equal to zero for each displacement 𝛥𝐘. Therefore, each
sub-displacement, which is the displacement between two subsequent
samples of synchronised sensory data, has a fixed velocity 𝛥�̇� based on
the human generalised input force 𝑭 .

This allows the problem to be defined as using the input force 𝑭 to
predict the sub-displacement velocity 𝛥�̇� (as shown in Eq. (4)). Within
the context of ML, the 𝐗 vector represents the system observation
and 𝛥�̇� represents the expected output 𝐘. Hence, the formal problem
description can be presented as shown in Eq. (5):

𝑭 → 𝛥�̇� (4)

𝐗 ∶ {𝐹𝑥, 𝐹𝑦, 𝐹𝑧, 𝑇𝑥, 𝑇𝑦, 𝑇𝑧}𝑖 →

𝛥�̇� ∶ {𝛥�̇�𝑥, 𝛥�̇�𝑦, 𝛥�̇�𝑧}𝑖
(5)

Where 𝐗 ∈ R6×𝑁 and 𝛥�̇� ∈ R3×𝑁 .

3. LfD framework

As aforementioned, LfD will be used to capture desired human
capabilities and transfer these skills into an industrial robot. Fig. 3
shows the proposed LfD framework, consisting of both offline and online
phases. The framework begins with the offline phase, where skills are
captured from demonstration. Two different types of demonstrations
Fig. 3. Proposed LfD framework for HRC object manipulation. A velocity controller commands the robot in Cartesian space, with the reference velocity estimated using a ML
model.
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will be used (kinesthetic learning and human–human collaboration)
with both approaches detailed in Section 5.2. In each case, synchro-
nised data will be collected on the system input (i.e. FT) and resultant
output (position/velocity feedback). The ML algorithm is then used to
map the input/output relationship to generate the ML model, all within
Cartesian space.

The online phase can be considered a closed-loop velocity con-
troller. Beginning with input FT data from the sensors, an Internal
Force Compensation (IFC) algorithm models the forces present within
the robot. This is then subtracted from the raw FT input data, to better
estimate the actual human input force 𝐹𝑒. The force data is then passed
to the ML model which outputs the appropriate velocity command.
As a final step, rather than directly feed this command to the robot,
a PI controller is used to regulate the process. This helps to produce
a smoother response and avoid jerky movements caused by sudden
changes in input force. Furthermore, an advantage of this approach is
that the PI gain values can be application specific; switching between
tasks which require large motions and tasks which require delicate
movements, all using the same underlying ML model.

4. Machine Learning (ML)

As the ML model sits at the centre of the proposed framework,
the selection of the algorithm is critical to the systems success. ML
algorithms are essentially a method of determining a function which
maps input variables to an output. Learning a specific task requires
optimising a cost function to identify the models’ parameters that
guarantee the best performance on training and validation datasets.
As different algorithms are only suitable for certain types of data, the
application scenario can often restrict which approaches can be used.

Returning to the literature, the majority attempt to capture human
demonstration as a series of movements, recording the spatial data over
time. This necessitates ML approaches that can handle sequential data.
However, not all HRC applications are sequential and in this work
the assumption is made that spatial data alone should be sufficient
for haptic HRC. As spatial data can be matched directly to lower-
level data (such as human force input) it may even generalise better
than sequential processes in haptic based tasks. Assuming that only
spatial and force information requires mapping, the problem definition
(stated in Eqs. (4) and (5)) shows that the scenario is a regression
problem. Typically, for regression problems the mapping relationship
between input/output would be determined using either a statistical
model (such as Linear Regression) or a probabilistic model (such as
Gaussian Mixture Regression (GMR)). However, for LfD such methods
can produce models which are over-fitted to the demonstration. For
HRC, an approach is required that can generalise well for changing
conditions, such as new users, objects and uncertainty.

The popular Random Forest (RF) method appears to be a strong
candidate for addressing these problems. RF is an ensemble ML method,
which averages the output from multiple predictors (i.e. decorrelated
decision trees) simultaneously to produce an overall prediction output.
Chandra et al. [34] state that multiple predictors have better formal
and empirical performance in comparison with single predictor models
(in terms of generalisation and robustness against bias) which should
produce more responsive and safer robot behaviour. RF is also simple
to implement, with its only main disadvantage being the increased
computational complexity that comes with using multiple predictors at
once.

Due to its capability to handle high-dimensional data and simplicity
to implement, RF is highly popular. Despite these advantages, to the
authors’ knowledge the ensemble method has not previously been used
to achieve LfD. Accordingly, this paper proposes using RF for the ML
aspect of the framework. The capability of the proposed approach
will be experimentally validated by performing a co-assembly task.
The following section briefly summarises the RF approach within the
context of this work (for more interested readers, the formal definition
5

of RF is described in [35]).
4.1. Random forest regression

Random Forests are so named as they consist of a number of deci-
sion trees, with the overall prediction based on the average prediction
of each individual tree. For standard decision trees, each node is split
using the best split of all variables present at that node. However, this
approach would result each tree being identical, and the overall forest
having the same prediction as each tree. Therefore, the ‘random’ ele-
ment of RF is that each node is split based on the best variable amongst
a randomly chosen subset at each node. This variability (combined with
the subsequent averaging) reduces variance in the final prediction, as
well as giving RF its ability to generalise better than other methods.
To encapsulate the difference between trees, a ‘characterisation’ vector
defines the following for each tree:

• Split variable subset for each node
• Cut-points (thresholds) for each node
• Terminal node size

For this work, the total variable set is shown in Eq. (5). The split
variables are a randomly selected number of features (𝑑) such that
𝑑 ≤ 𝑀 , where 𝑀 is the total number of captured features. The split-
point among the 𝑑 features then defines the nodes in each decision
tree. As the terminal node size prevents subsequent splits when the
remaining feature set becomes too small, it controls the ‘height’ of each
tree. After growing the RF model on the training dataset, predictions
can be made for each new observation, using Eq. (6):

ℎ(𝐨, 𝜓) = 1
𝑇

𝑇
∑

𝑡=1

𝑗=1
∑

𝐽
𝑐𝑗,𝑡𝐼(𝐨 ∈ 𝐑𝑗,𝑡, 𝜓𝑡) (6)

here:

𝑇 = The total number of trees
𝑡 = An individual tree with distinct characterisation
𝜓𝑡 = The characterisation vector
𝑐𝑗,𝑡 = The average output in the given dataset
𝐽 = The number of regions (splits) in the 𝑡𝑡ℎ tree

𝐑𝑗,𝑡 = Region (split) 𝐣 in the 𝑡𝑡ℎ tree
𝐨 = The new observation vector

Finally, 𝐈() is a discrete identity function that returns 1 only if
the new observation (𝐨) belongs to region 𝐑𝑗,𝑡. As the output of any
RF is limited to a single scalar value, separate models need to be
trained for each velocity component (i.e. outputs in X, Y, Z dimensions).
Each model aims to map the generalised force vector into a velocity
component in the Cartesian space R6 → R1.

4.2. Weighted Random Forest (WRF) regression

In a conventional RF implementation, all trees in the forest con-
tribute equally to the final prediction. However as the characterisation
features (𝜓𝑡) for each tree have been specified separately (each tree
is effectively trained on a different bagged dataset) they vary in per-
formance, with some trees consistently outperforming others. As such,
identifying these trees and increasing their weighting has the potential
to improve the overall performance.

In this paper, we present a new weighting mechanism which extends
RF from a collaborative model into a competitor model, since the
output of RF model is the average output of all trees within the RF
model, while the WRF weight each tree based on trees performance on
test dataset. In which, a stochastic weighting approach was employed
to weight trees according to their Root Mean Square Error (RMSE),
with trees that perform better on unseen test data receiving strong
weights. The proposed WRF, unlike the work presented by Booth

et al. [36], Zhang et al. [37] and Winham et al. [38], utilised RMSE
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to calculate the weights at the tree levels after the training of the RF.
On the one hand, Booth et al. [36] proposed to estimate the trees’
weights during the training using an index that combines RMSE and
the Mean Absolute Percentage Error (MAPE) for a regression problem.
On the other hand, Zhang et al. [37] and Winham et al. [38] proposed
weighting mechanisms for classification problem that focus of the data
level(split mechanisms) then use classification accuracy to estimates
some weights. The Weighted Random Forest (WRF) prediction can be
calculated as shown in Eq. (7):

𝑃 ∗(𝐗𝑖) =
𝑀
∑

𝑗=1
𝑤𝑗 ⋅ ℎ𝑗 (𝐗𝑖) + 𝐶0 (7)

where:

𝑃 ∗ = the overall prediction
𝐗𝑖 = the feature observation vector
𝑤𝑗 = the weight of tree 𝑗
ℎ𝑗 = the prediction of tree 𝑗
𝐶0 = a constant term for the forest

As Eq. (7) is a linear equation, the selection of weights can be
seen as a linear regression problem, where the trees prediction vector
𝐇 is the feature vector, and the goal is to find a weighting vector
𝐖 = [𝑤0,… , 𝑤𝑗 ,… , 𝑤𝑇 ] which minimises a cost function 𝐽 (𝐖). A
ommon choice of cost function is the Mean Square Error (MSE), as
hown in Eq. (8), where 𝐘 is the target output:

(𝑊 ) = 1
2
(𝐘 −𝐖𝐇(𝐗))𝐻 (𝐘 −𝐖𝐇(𝐗)) (8)

Finding the optimal weights based on all points in the dataset can
be computationally expensive, especially for online applications. To
overcome this problem, weights can be updated incrementally, based
on one observation point or a batch of observations at one time. The
pseudo code in Algorithm 4.1 defines the implementation of finding
the optimal weights by minimising a cost function, where 𝑤𝑗 ← 𝑤𝑗 +
𝑚𝑖𝑛 ||

|

𝐽 (𝑤, ℎ𝑗 (𝑥𝑖))
|

|

|

. In this pseudo code, there are two loops:

• The outer loop which iterates between 0 − 𝑁 representing the
number of observations in the training dataset

• The inner loop which adjust trees’ weights, so as to iterate over
all the trees in the random forest.

The outer loop convergence condition can be satisfied by either
reaching the maximum number of iterations 𝐾𝑚𝑎𝑥 or when the pre-
diction error is less than a pre-defined tolerance value 𝐶𝑡ℎ. The main
advantage of this method is that it can converge quickly, as well as
allowing for a larger threshold to prevent over fitting.
Algorithm 4.1 Stochastic weighted RF

1. Find Weights 𝐻(𝐗),𝐘,𝛼,𝐾𝑚𝑎𝑥, 𝐶𝑡ℎ
2. Input: 𝐻(𝐗): RF model prediction for the given features 𝐗, 𝐘:

target output,𝐾𝑚𝑎𝑥 is the maximum number of iteration and 𝐶𝑡ℎ
is the cost threshold

3. 𝑘 = 0 % where 𝑥 is the number of iterations
4. While 𝑘 ≤ 𝐾𝑚𝑎𝑥 OR 𝐽 (𝐖) ≤ 𝐶𝑡ℎ do :
5. 𝑘 = 𝑘 + 1
6. Calculate cost 𝐽 (𝐖) using Equation (8)
7. For 𝑖 = 1 to 𝑁 do:
8. For 𝑗 = 1 to 𝑇 do :
9. Calculate𝑤𝑗 ← 𝑤𝑗 + 𝛼(𝑌 (𝑥𝑖) −𝑊𝐇(𝑥𝑖))ℎ𝑗 (𝑥𝑖)

10. Return: 𝑊

It is noticeable from the pseudo code in Algorithm 4.1 that the first
nput is a prediction for the features of 𝐗. For this reason WRF is only

an extension to RF, as a full Random Forest model is a prerequisite.
6

Furthermore, as the weight selection is performance-based, using the
same dataset for both RF and WRF creation would likely bias the
model [39]. To overcome this problem, it is recommended to use
separate datasets for each phase.

Matching the RF input and output stated in Eq. (5) the WRF input
feature vector is (𝐗) and the output considered as 𝛥�̇� which is the
velocity in 𝑥, 𝑦 and 𝑧 directions. As with RF, the output is limited
to a single scalar value. Hence, three different models need to be
trained for each velocity component, with each model aiming to map
the generalised force into a velocity component in the Cartesian space
R6 → R1.

In this section, a new WRF approach was proposed for LfD appli-
cation. The proposed approach is designed for robots LfD to capture a
co-manipulation task. Finally, the methods mentioned above were used
to model the co-manipulation task and compared with the proposed
WRF.

5. Experimental setup

The following section covers the experimental setup used for prac-
tical elements of the work; including the demonstration scenarios for
training, the assessment scenarios used for model validation, and the
data collection methods used throughout.

5.1. Data collection

As previously stated, this paper aims to use a LfD framework to
capture human co-manipulation skills and replicate them using an
industrial robot. In order to encapsulate the demonstration of the skill
by a human, an experimental setup was required that could capture
data for both the haptic input (using FT sensors) as well as the resultant
trajectories of the object being manipulated. For both demonstration
and validation, the setup centred around a PC workstation running
Ubuntu 14.04. The Robot Operating System (ROS — specifically ROS-
Industrial Indigo) was used as a framework for communication and
processing. All other test equipment (robot controller, tracking system
and the FT) were connected to the PC via Ethernet. The PC workstation
was also responsible for data collection (for both training and testing)
as well as controlling the robot manipulator during task execution.

A Schunk FTD-Delta SI-660-60 – a rigid 6-axis FT sensor1 – was
used to capture all haptic input data throughout. For human–human
collaboration each side of the FT sensor was fitted with a handle,
allowing a pair of humans to demonstrate the task, as shown in Fig. 4
In comparison, Fig. 5 shows the FT sensor mounted on an industrial
robot arm for HRC validation. This particular setup also shows how the
assembly parts are attached to the robot end effector, with the intention
of validating the generalisation capability of the proposed approach
in a collaborative assembly task. Fig. 6 better illustrates the assembly
process, showing both the components and operator handle connected
to the robot end effector.

The Motoman SDA10D dual-arm robot2 was chosen as a suitable
industrial robot collaborator. This was primarily due to its high Degrees
of Freedom (DoF), which allows the robot to replicate human motion
without being overly-restricted by joint limits. In addition, each arm of
the robot is capable of lifting a 10 kg payload, which represents a mass
heavy enough that robot assistance could be necessary.

During the task demonstration, an asymmetric marker was mounted
on the FT sensor and the Cartesian position was captured using a VICON
tracking system with 8 Vantage cameras.3 Training the system using

1 https://www.schunk.com/sg_en/gripping-systems/product/30876-ftd-
elta-si-660-60/.

2 https://www.motoman.com/en-us/products/robots/industrial/assembly-
andling/sda-series/sda10d.

3
 https://www.vicon.com/products/camera-systems/vantage.

https://www.schunk.com/sg_en/gripping-systems/product/30876-ftd-delta-si-660-60/
https://www.schunk.com/sg_en/gripping-systems/product/30876-ftd-delta-si-660-60/
https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/sda-series/sda10d
https://www.motoman.com/en-us/products/robots/industrial/assembly-handling/sda-series/sda10d
https://www.vicon.com/products/camera-systems/vantage
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Fig. 4. Data capture setup for human–human collaboration.

Fig. 5. Motoman SDA20D Dual-arm robot with 15 𝐷𝑜𝐹 . (7 𝐷𝑜𝐹 per arm and 1
additional 𝐷𝑜𝐹 for the body rotation).

Fig. 6. Diagram of assembly components used in the HRC co-assembly task.

the external tracking system allowed the human–human trajectory to
be accurately recorded. However, the collected position and orienta-
tion data of the tool were in the VICON coordinate system. As robot
commands must be in the robot’s coordinate system, transformation
between the two systems was required. This was achieved using a
second marker, mounted in a fixed position relative to the robot’s base
coordinate. The transformation between the VICON coordinate system
was calculated and used to project all position/velocity data into the
robot’s coordinates, as shown in Fig. 7. The same tracking system was
also mounted on the robot end effector to monitor position during
validation of the HRC tasks.

5.2. Training scenarios

To learn co-manipulation behaviour, data was collected using two
different demonstration methods:

• human–human
• Human–Robot (kinesthetic).

For both methods, five separate demonstrations were conducted in
which the force, torque, position and velocity data were synchronised
and recorded. Shown in Fig. 8, each demonstration simply consisted
of performing 6 motions, in which the load moved along each of
the cardinal directions of the workspace (−𝑥,+𝑥,−𝑦,+𝑦,−𝑧,+𝑧) before
returning to the origin. To prevent the follower anticipating the up-
coming movement (and to ensure the movements were decoupled as
7

Fig. 7. Transformation between robot base and VICON base frames. 𝑇𝐹1 is the
estimated homogeneous transformation matrix, 𝑃𝑣𝑖𝑐𝑜𝑛 is the object position in the VICON
origin frame and 𝑃𝑟𝑜𝑏𝑜𝑡 is the calculated object position in the robot base frame, which
can be calculated as 𝑃𝑟𝑜𝑏𝑜𝑡 = 𝑇𝐹1 𝑃𝑣𝑖𝑐𝑜𝑛.

Fig. 8. human–human demonstration: two human operators holding a common object.
The human operator on the right guides the demonstration by moving in each principal
direction, in a random order.

much as possible), the order in which the motions was performed was
randomised each time.

In the human–human demonstration, one operator knows the de-
sired trajectory of the object (master), and the other operator does not
(follower). The intention was to capture the behaviour of the follower,
while they attempt to interpret the haptic clues and try to move accord-
ingly. In the human–robot demonstration, the roles remained the same
with the only difference being that the follower was acting through the
robot via teleoperation based on the leader’s verbal commands.

Due to the robot’s rigidity, it is believed that the FT features
collected using the robot will be more relevant for the learning process.
This should result in a better co-manipulation task, in comparison
with using the data from the human–human demonstration alone.
This is mainly due to the robot’s rigidity effectively acting as a low-
pass filter, removing the high frequency position fluctuation typical in
humans attempting to hold an object in a static position. However, by
also capturing the human follower behaviour, the hypothesis is that
the robot will imitate human-like compliant behaviour more closely,
making both sources of data equally important.

Both RF and WRF models were fitted using the data from the
demonstrations in an off-line phase, which mapped the FT information
onto velocity in the Cartesian space. This can be represented as 𝐹 → 𝑉 ,
where 𝐹 ∈ 𝐑6 and 𝑉 ∈ 𝐑3. Returning to Eq. (3), this mapping
represents 𝑲𝑝 and 𝑲𝑣, which allows 𝛥𝐘 (the required input to the robot
velocity controller) to be calculated.

Previously highlighted in Section 4.2, WRF is an extension to RF and
therefore requires a full RF model as a prerequisite. As continuously
using the same training data could bias the output, the WRF model
should ideally be trained using a different dataset to that which was
used for the RF model. In repeating each demonstration five times, the
intention was to provide entirely separate datasets for this purpose. As
shown in Fig. 9, the role of each dataset was as follows:

1. Train the decision trees for the original RF.
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Fig. 9. Training process for both RF and WRF models, using Datasets 1–4.

Fig. 10. The start point and goal position for the co-manipulation task.

2. Validate the RF and tune parameters.
3. Generate scores and weighting for each of the original decision

trees in order to produce the WRF model.
4. Validate the WRF and tune parameters.
5. Test and compare the performance of the two approaches.

Once fitted, both RF and WRF models were compared and evalu-
ated. As a final point, the weightings of each tree within WRF could
alternatively be calculated online, making incremental changes based
directly on the human–robot interaction. However, this has not been
explored in this paper and remains a topic for future exploration.

5.3. Validation scenarios

To assess whether the skill has been captured successfully, both
the RF and WRF approaches were validated experimentally. Despite
both models only being trained on data from co-manipulation demon-
strations, the assessment consisted of both co-manipulation and co-
assembly tasks. This was intended to assess the hypothesis that the
proposed approach can generalise well when compared to other ML
approaches. The validation scenarios were:

1. A co-manipulation task that involves moving a heavy object
between two points in the robot workspace; intended to validate
the reproduction of the demonstrated skill.

2. A co-assembly task that involves attaching a movable compo-
nent to a static component; intended to test the generalisation
capabilities of the proposed approach.

In the co-manipulation task, a human operator was asked to work
collaboratively with the robot to move an object between two known
points in the workspace. The operator’s goal was to guide the robot
such that the object (a box) would come to be placed upon another box
fixed to a workbench, as shown in Fig. 10. The role of the robot was
to share the weight of the object, while following a trajectory based on
the operators’ input force. For validation purposes, the starting point
was a fixed location known to the robot controller, allowing the same
position at the beginning of each trial.

For the co-assembly task, the human operator was again asked to
guide the robot from a random starting point in the robot workspace
to a fixed target location, with the robot responding in a similar way.
8

Fig. 11. Components used for co-assembly task: (𝐴) A 3D printed plate with four
cylindrical holes of 28mm diameter. (𝐵) A 3D printed plate with four pegs each of
25mm diameter.

However, this task included the additional physical constraint of align-
ing two interlocking components. Fig. 11 shows the two components,
consisting of a rectangular plate with four pegs (attached to the robot)
and a reciprocal rectangular plate with four holes. The target state for
this task was more specific, requiring the full insertion of all four pegs
into their respective holes.

As previously stated, a PI controller was used to refine the output
from the RF and WRF models and regulate the velocity command
sent to the robot. For the co-manipulation task, the same values were
used throughout. However, for the co-assembly task, the gain values
were actively switched between values optimised for gross movements
and values for fine control. Switching between the gains occurred
automatically, based on a threshold distance of 20 mm in the 𝑋𝑌 2D
plane (i.e. vertical separation was not considered). The PI gain values
were empirically determined and are shown in Table 1, with far smaller
values used for the fine motion control. The co-manipulation task used
the gross gains throughout.

5.4. Assessment criteria

Three different factors were used to assess the success of each
approach:

• The time required to complete the task,
• The interaction force required to guide the robot, and
• The similarity in the generated trajectory to the demonstration.

The overall smoothness and responsiveness to human input are
important for collaborative tasks. These are most easily assessed by the
execution time and interaction forces that occur. The execution time
(i.e. the total duration of the HRC task) indicates controller response,
with shorter times being preferable. The interaction force (i.e. the force
needed for the human to guide the robot 𝐅, as shown in Eq. (3)), implies
how smooth the robot behaviour is under the fitted model, with less
force showing less work for the operator.

In addition, a strong indicator of successful skill capture is how
similar the output is compared to the original demonstration. In this
case, the trajectory generated by the robot should be compared to the
trajectory of a manual demonstration. As the previously defined train-
ing scenarios consist of collaborative efforts designed to encompass a
wide range of input/output conditions, they do not provide an optimal
example of any one motion. Therefore, a human-operator was asked to
manipulate a load in a series of straight lines (independently along each
of the 𝑋, 𝑌 and 𝑍 axes) to produce a reference for comparison. The
predicted trajectory can then be compared against the demonstration
trajectories using the Normalised Root Mean Square Error (NRMSE).



Robotics and Computer-Integrated Manufacturing 69 (2021) 102111A. Al-Yacoub et al.

6

s
t
u
t
7
b
d
b
a
0
m

r
t
r
h
m

f
f
f
p

p
d
g
a
m
e
r
b
s
f

t
c
r
e
R
s
t
s

b
i
d

Table 1
The PI controller parameters used for gross and fine
motion control in the co-assembly task.

P I

Gross motion 41.0 0.5
Fine motion 2.5 0.0

Table 2
human–human demonstrations.

Demo Number of samples Max force
𝑁

Max speed
m s−1

1 10,967 81.39 0.134
2 11,707 70.25 0.126
3 10,894 72.18 0.139
4 14,604 76.39 0.06
5 7494 74.96 0.066

6. Results and discussion

The following section presents the results of this work, beginning
with an analytical assessment of the RF and WRF models. This includes
a review of the data captured for demonstration, as well as a com-
parison between the model-predicted results and actual data from an
unseen demonstration dataset (as explained in Section 4.2. Following
this, the capabilities of the models are experimentally validated through
two representative HRC tasks, as defined in Section 5.3). Finally, the
straight line performance of the models is investigated.

Repeated here for clarity, a total of 12 models have been created for
this work, which fulfil each configuration of the following attributes:

• Approach: Random Forest (RF) and Weighted Random Forest
(WRF)

• Dataset: human–human and Human–Robot demonstrations
• Axis: 3 separate models for robot control in each cardinal axis of

Cartesian space (i.e. X, Y and Z)

.1. Analytical assessment

Tables 2 and 3 show the respective statistical properties of demon-
trations for human–human and human–robot collaboration. In each
able, the first four demonstrations are used for training, with the fifth
sed for validation as an unseen dataset. In Table 2, it can be seen that
he resulting force (𝐹𝑒) between two human participants varies between
0.25𝑁 and 81.39𝑁 , whereas Table 3 shows that the interaction force
etween the human and the robot is almost ∼ 300 times greater. This
ifference can be explained as a result of the more compliant human
ody, with the robot being much more rigid and slower to respond. In
ddition, despite the maximum human–human speed varying between
.06 m s−1 and 0.134 m s−1, the maximum human–robot speed is far
ore consistent due to an imposed safety limit of 0.06 m s−1.

From these results, it can be concluded that despite attempting to
eplicate the capabilities shown in the human–human demonstration,
he physical constraints of the robot will likely limit how closely it can
eplicate the human motion. As such, model predictions based on the
uman–robot demonstrations are likely to better reflect the actual robot
otions.

To test this and assess if the models produce suitable outputs, the
inal demonstration in both datasets was kept ‘unseen’ (i.e. not used
or training), allowing the captured force data to be used as an input
or each of the 12 models. The models are used to produce ‘predicted’
osition and velocity values (𝑌 ) which can be compared to the true

values captured during the test (𝑌 ). As the motions in each dataset were
performed with human operators, the number of sample points and
range of motions differ between demonstrations. To make comparison
9

Table 3
Human–Robot demonstrations.

Demo Number of samples Max force
𝑁

Max speed
m s−1

1 3770 211.00 0.060
2 5640 275.77 0.061
3 4596 235.81 0.061
4 4272 294.97 0.061
5 4780 273.67 0.061

easier, the Normalised Root Mean Square Error (NRMSE) has been
chosen as the metric to compare the results. This is defined in Eq. (9):

𝑁𝑅𝑀𝑆𝐸 =

√

𝑀𝑆𝐸
𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛

(9)

where:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑌𝑖 − 𝑌𝑖)2 (10)

Figs. 12 and 13 show the velocity prediction of each model com-
ared to the actual data over time. Beginning with the human–human
ata in Fig. 12, it is noticeable that the RF prediction not only has
reater error overall, but also features substantial instances of rapid
cceleration. WRF prediction has a smaller error and tends to accelerate
ore gradually. For the human–robot data in Fig. 13, it is immediately

vident that both models perform better using this dataset. These
esults confirm that models trained on the human–robot data perform
etter than those trained on the human–human data. As previously
tated, this is likely due to the human–robot model being a better fit
or the experimental setup.

Fig. 14 shows the NRMSE results for each fitted model, based on
heir respective datasets. As expected, it can be seen that the WRF
onsistently outperforms the RF in all cases. For the human–human
esults, the WRF is noticeably better, significantly outperforming RF
specially in the 𝑋-axis. By comparison, for the human–robot data the
F and WRF results are far closer. Although the WRF prediction also
eems to be smoother and closer to the real data in Figs. 12 and 13,
he similarity between the two would seem to indicate the WRF is not
ignificantly better than RF in this case.

The reason for this similarity between RF and WRF can be explained
y returning to the structure of the Random Forest approach. Variation
n RF performance is introduced during training by the use of ran-
omised subsets of the overall dataset (i.e. bagging). This forms the basis

for tree weighting in WRF, as variables with better correlation between
the input and output will tend to outperform other trees. However, for
the human–robot demonstration, the rigidity of the robot will filter out
much of the output variation, and allow the human to apply a more
consistent input force. This increase in consistency results in similar
bagged data for many of the trees. With many trees in the Random
Forest being created with near identical data, applying weighting based
on performance will not greatly improve the final result.

6.2. Validation scenario results

As described at the beginning of this section, a total of 12 models
were created for this work. For the analytical results above, all 12 mod-
els were of interest; allowing comparison between the model predicted
and actual results in all 3 axes. By contrast, the experimental validation
scenarios (as described in Section 5.3) involve unconstrained move-
ment in all axes to achieve a goal, without any other data for direct
comparison. As such, the control models per axis will not be considered
independently, instead contrasting the effects of dataset and ML model.
With only the modelling approach and dataset being evaluated, the
total number of models being tested is effectively reduced to just four:

𝐇𝐇𝐑𝐅 = Human–Human dataset - RF
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𝐇𝐇𝐖𝐑𝐅 = Human–Human dataset - WRF
𝐇𝐑𝐑𝐅 = Human–Robot dataset - RF

𝐇𝐑𝐖𝐑𝐅 = Human–Robot dataset - WRF

Each of these four models were applied to both the co-manipulation
nd co-assembly tasks, as previously described in Section 5.3. To in-
rease the number of results, two human operators were asked to
erform each task with each model twice (i.e. 4 models, 2 tasks, 2
perators and 2 attempts at each), for a total of 32 trials.

As described in Section 5.4, the performance of the fitted models in
he validation scenarios were assessed on the time required to complete
ach task, as well as the interaction force between the human operator
nd the robot; with faster and less forceful results indicating better
ollaboration. For each trial, the force components (𝐹𝑥, 𝐹𝑦 and 𝐹𝑧) and
orque components (𝑇𝑥, 𝑇𝑦 and 𝑇𝑧) were recorded directly from the FT
ensor, while position and velocity data were captured using the VICON
racking system.
10

m

Fig. 15 depicts the average interaction forces and total execution
imes of each co-manipulation trial, as well as the average value for
ach ML model. Beginning with the force data, WRF approaches can
e seen to have lower average interaction forces than the RF models
or both datasets, with only a single example of WRF forces exceeding
he minimum RF force. The lowest single-trial average interaction force
as ∼ 14𝑁 achieved using a HRWRF model, whereas the highest

single-trial average interaction force was ∼ 55𝑁 which occurred when
sing a HRRF model.

By contrast, it is more difficult to draw any conclusion about
he performance of the models based on dataset, with both the best
nd worst performing models being trained using the human–robot
emonstration data. Looking at the execution time required to complete
ach trial, the HRRF model had the shortest execution time of only 24
whereas the HRWRF had the longest execution time, which lasted

round 37 s. Despite this difference, when looking at the averages per
odel the execution time is very similar for all methods. From the co-
anipulation trial alone, it can be said that the WRF approach does
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Fig. 13. Comparison of recorded and model-predicted velocity data for both RF and WRF methods on the human–robot dataset.

Fig. 14. NRMSE for RF and WRF models, for both human–human and human–robot datasets. The error is based on Cartesian offset in all 3 axes, with each bar (i.e. X, Y, Z)
representing the control model specific to that axis.
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Fig. 15. Human–Robot interaction force and task execution time for all co-manipulation trials, including average results per ML model.
Fig. 16. Human–Robot interaction force and task execution time for all co-assembly trials, including average results per ML model.
how some advantage, but that the datasets have had minimal influ-
nce. As the co-manipulation scenario is closest to the demonstration
atasets, this similarity may simply be due to all models performing
ell.

Unlike the co-manipulation data, the co-assembly data shown in
ig. 16 are more clear, with the WRF outperforming RF in nearly all
rials. This is especially true for the models based on the human–human
ataset, with WRF requiring 40% less input force, whilst also complet-
ng the task 64% quicker on average. Although less pronounced, the
RWRF was also 14% quicker and required 25% less force on average

han the RF model trained on the human–robot dataset. This reinforces
he conclusion that selectively weighting trees within the random forest
an improve performance.

Fig. 16 also shows that the models trained on the human–human
ataset outperform those trained on the human–robot data. On average,
he models fitted using the human–human dataset require 42% less
nteraction force and complete the task 36% quicker when compared
o the models based on the human–robot dataset. It is believed that
his difference is caused by the rigidity of the robot, which requires a
ertain force threshold to be met before the robot will start moving.
ot only does this require a greater level of input force, but will also

ncrease the length of the trial as the robot will not move until the
uman operator overcomes this initial force requirement. As the ML
odels try to capture the compliance of the follower (human or robot),
odels fitted on the human–human demonstration will start moving

t a much lower interaction force in comparison with models fitted
n the human–robot demonstration, thus achieving better compliance
nd collaboration. As could be expected, the HHWRF results have both
he lowest average interaction force and execution time, as well as the
ndividual trial with the best results (at ∼ 15𝑁 and 29.57 s).

In summary:

• WRF models typically have lower interaction forces and shorter
execution times representing more compliant behaviour.

– Controlling the robot using WRF models during the assem-
bly task requires less effort in comparison with RF models.

– The WRF models have a better performance during fine
12

motions compared with RF models. They result in lower
Fig. 17. Comparison of overall RMSE error for each model and dataset, as well as
the human–human reference, with respect to the reference trajectory and the shortest
possible trajectory between the start and finish points.

interaction forces during gross motions, as shown in the
co-manipulation example.

• The human–human dataset captured collaboration using far less
input force than is required to overcome the robot rigidity, re-
sulting in more compliant (human-like) behaviour for the co-
assembly scenario.

6.3. Straight line performance

As stated in Section 5.4, the final indicator of successful skill capture
is if the trajectory generated by the robot is very similar to the trajec-
tory of a manual demonstration. As the previously covered validation
scenarios do not provide any clear example of a single repeatable
motion, an additional task was undertaken in which the two human-
operators were asked to collaboratively manipulate a load in a series
of straight lines (independently along each of the 𝑋, 𝑌 and 𝑍 axes) to
produce a reference for comparison. Following this, one of the human
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Fig. 18. Captured trajectory information for human–robot collaboration, performing a straight-line trajectory in 𝑋, 𝑌 and 𝑍 directions for each model. Each trajectory is presented
ith equivalent straight line trajectories, as well as a human–human collaboration reference.
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perators was asked to perform the same task in collaboration with the
obot, using each of the models for control.

Fig. 18 shows the trajectories captured during collaboration, as
ell as the human–human reference trajectories. To help compare the
uman–human and human–robot results, for each trial the optimal
hortest line between the start and finish points for that test (shortest
rajectory), and the closest axial straight line to the test (reference
rajectory) are also shown. For all graphs within this figure the axes are
resented to maximise visibility, and therefore scale is not consistent
etween axes or graphs.

As expected, the human trajectories captured for reference are not
ptimal, due to the limitations of human perception and muscle control.
owever, they do tend to be smooth and relatively straight and provide
suitable reference for visual comparison. Similarly, it can be seen that

he motion along the X axis was similarly smooth for all control models,
ith only the HRRF model showing a minor deviation. In comparison,

he Y and Z motions are less straight, featuring recurring oscillation.
13

s

his is likely due to the robot not being responsive enough for the
uman to precisely stop the overshoot.

Fig. 17 shows the RMSE values for WRF and RF models on both
atasets, with respect to the reference and shortest trajectories. In
eneral, the trajectories reproduced using models fitted on the human–
obot dataset have lower RMSE values in comparison with trajectories
eproduced using models fitted on the human–human dataset, with
he HRWRF model achieving the lowest error overall. This is likely
ue to the fact that systems trained on data which is more similar
o the actual use-case will outperform those trained for general use.
he models trained on the human–robot dataset also outperform two
umans working in collaboration, likely due to the rigidity of the robot
aking the task easier to perform.

In comparison, the human–human reference and the robot trained
n the human–human dataset did not perform as well. However, de-
pite the increased error, the similarity between the human and the
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robot suggests that the modelling approach has successful captured the
skill.

7. Conclusions

This paper focused on methods of transferring human skills to an
industrial robot, using a Learning from Demonstration (LfD) frame-
work. Two demonstration datasets were created (human–human and
human–robot) and skill capture was achieved using the Random Forest
(RF) ensemble learning approach. An extension to RF was proposed
and tested, in which trees in the RF are weighted based on their
performance, to improve the generalisation capabilities of the method.

Both RF and WRF models were created based on each dataset, and
the models were evaluated using three different methods; an analytical
assessment based on prediction error using data from an unseen demon-
stration trial, an experimental assessment using validation scenarios,
and a final practical assessment of the models ability to co-manipulate
an object along a straight line. It was found that our proposed method
of WRF improves the prediction by ≈ 20% in comparison with un-
changed RF models. In addition, this performance increase is notably
better than achieved in other literature (being ≈ 2% in [37], ≈ 2.5%
in [38] and ≈ 10% in [36]).

The validation scenarios used in the experimental assessment had
two goals; the co-manipulation task was intended to directly validate
the fitted models’ competence in reproducing the demonstrated skill,
whereas the co-assembly task was intended to validate the generalisa-
tion capabilities of the proposed approach.

Collectively, the results show that the ensemble ML method can be
used for agile Human–Robot Collaboration, with the proposed WRF ex-
tension generally outperforming the original RF implementation. As hu-
mans themselves are often suboptimal, models based on human–human
datasets were often shown to be less accurate, with the human–robot
trained models requiring lower interaction forces whilst producing
smoother trajectories, more suitable for fine motion. However, the
models created using the human–human dataset were shown to feature
a faster response, allowing them to be more easily applied to scenarios
outside of the training dataset.

7.1. Future work

Looking forward, we plan to extend this research to include online
weight estimation for WRF. This would require RF models to be actively
adjusted during the human–robot co-manipulation, allowing them to
generalise better than fixed weight approaches. This should also allow
the fast response of human–human collaboration to be transferred more
easily, without the loss of accuracy. This could be achieved using off-
line batch learning to incrementally refine the data-driven models, after
deployment to a robot.

Furthermore, there is also scope for improving collaboration by
isolating human haptic inputs from other forces. Although the human
operator is the only input during co-manipulation, during co-assembly
the frictional interaction between components can affect the trajectory.
For this work, the assembly parts were designed with a small clear-
ance to weaken these disturbance forces during the co-assembly task,
however this is impractical for real-world applications. Instead, this
limitation should be addressed by distinguishing between haptic inputs
from the operator and those generated by the process itself. Therefore,
this is also an area to be explored, either through including an external
source of information, or more intelligent interpretation of the force
input.
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