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ABSTRACT
JORDAN JASKWHICH ELM. Statistical Approaches for Adding or Switching

Hypotheses in Multi-armed Clinical Trials. (Under the direction of YUKO Y

PALESCH, PhD).

Background: As treatments become ready for testing at staggered times, it is
desirable to have clinical trials that can accommodate different entry and exit
times without prematurely discarding potentially efficacious treatments. In a
group sequential multi-armed clinical trial, one treatment arm could be found to
be superior or inferior at an interim analysis while the remaining arm is
inconclusive. Existing methods address dropping an inferior arm from further
study'?, but do not fully address the handling of an early finding of overwhelming
superiority of one arm (scenario 1). We consider an approach to transition from a
multi-armed superiority trial to a two-armed non-inferiority trial after superiority for
a single arm has been determined. Additionally, the literature does not address
statistical methods for adding another treatment arm into an ongoing trial
(scenario 2). Methods: For these novel scenarios, potential adaptive and non-
adaptive analytical approaches for pairwise comparisons of a difference in
means in independent normal populations are proposed with emphasis on
controlling the type | error rate strongly. Statistical operating characteristics are
compared via Monte Carlo simulation. An example is given using Parkinson'’s
disease data (NET-PD FS1 and FS-TOOQO). Results: For scenario 1, all methods

performed similarly, but power was highest when using an inverse chi-square



adaptive test. For scenario 2, in the presence of a cohort effect, when data were
pooled from before/after the design change, the type | error rate was inflated and
power was reduced. The alternative approaches given were more powerful and
controlled the type | error rate. Conclusions: When two treatment arms are
equally efficacious, it is likely that one, but not the other, will be found efficacious
at an interim analysis. When transitioning into a non-inferiority trial, the adaptive
methods allow for a reduction in total sample size with increased power for
testing non-inferiority (compared to a non-adaptive approach). Both adaptive
and non-adaptive analytical methods are possible when a new treatment arm is
added mid-study. When these methods are applied to real Parkinson’s disease

trial data, the conclusions support the primary trial findings.
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CHAPTER 1 INTRODUCTION

1.1 Clinical Motivation
Parkinson'’s disease (PD) is an age-related, neurodegenerative disease

affecting 1% of the population older than 60 years of age and is thought to
involve a loss of dopamine neurons predominantly in the substantia nigra pars
compacta®*. The National Institute of Neurological Disorders and Stroke
(NINDS) sponsored a Committee to Identify Neuroprotective Agents in
Parkinson’s (CINAPS) to prioritize drugs that are worthy of testing for PD®.
These agents are at different stages of development. Some require first in-
human Phase | evaluation; some require additional safety and putative
efficacy assessment in Phase Il testing, while others are ready for Phase IlI
testing. In 2006, the NINDS Exploratory Trials in Parkinson’s Disease (NET-
PD) initiative recently completed two Phase I clinical trials of four agents with
potential for slowing clinical decline®”. While three of the four drugs were
considered futile to move forward into a phase Ill trial, one drug (creatine) was
found to be worthy of further evaluation. The NET-PD group is now enrolling a
large, long-term Phase Il trial of creatine.

Due to the nature of PD, it is not possible, using current technology, to
evaluate a definitive benefit to the PD rate of progression in a short-term

study. When patients are receiving symptomatic treatment for PD (which is
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usually introduced within a year or less after diagnosis), then five or more
years of follow-up is necessary to evaluate a treatment benefit using the
clinical outcome measures since validated biomarkers or neuroimaging
approaches are not available. The clinical measures currently in use are
insensitive to short-term treatment effects (less than 1 year) and have
considerable variability®. Obviously, the need for long-term follow-up and large
sample sizes for clinical trials in PD impacts administrative, logistical, and
financial resources. The NET-PD investigators continue to pursue Phase Il
trials of additional agents, as the agents are identified by CINAPS and from
other sources, such as pharmaceutical industry sponsored Phase | or Phase |
trials. Information on new agents is available in a staggered fashion.
Therefore, a Phase lll study design that can accommodate adding and
dropping arms at different times is desirable for efficient use of limited
resources. This dissertation considers the statistical operating characteristics

of potential analytical methods when such flexibility of design is necessary.

While there are many symptomatic treatments of PD, there are no
existing treatments with a known neuroprotective benefit. As such, clinicians
are interested in identifying any drug that slows clinical decline. Therefore, the
main interest in multi-arm studies in this context is not to identify the best drug,
but rather, to compare each drug to placebo. This distinction has design

implications. As clinical trials are conducted, if a drug is identified that slows



clinical decline, then it would become the gold standard. Future trials would
compare possible agents to this standard/active control in a non-inferiority
design, since it would be unethical to withhold an available treatment that can

slow clinical progression. Ongoing trials might need to be re-designed.

1.2 Introduction to the problem

The PHRMA white papers define an adaptive design as a clinical study
design using accumulating data to decide to modify the study mid-course,
while maintaining validity and integrity®. They describe adaptation as a “design
feature” to enhance the trial,'not an ad hoc decision to fix poor planning®.
Indeed, the US FDA viewpoint is that for a clinical trial to be conducted with an
adaptive design, it should be “prospectively planned”, that is, all possible
design changes need to be pre-specified in the study protocol®*".

Chow and Chang discuss prospective versus concurrent adaptive
designs. Certain adaptive designs lend themselves to prospective planning
such as adaptive-randomization, interim analyses, and sample size re-
estimation. In contrast, during the course of the study it may become obvious
that other designs changes are needed such as: changes to the inclusion or
exclusion criteria, change in treatment duration, change in hypothesis, or
endpoints. These concurrent design changes necessitate revisions to the
protocol and the statistical analysis plan made prior to unblinding, given

approval by regulatory agencies.'? In the latter case, statistical approaches to



maintain proper control of the type | error rate based on adaptive combination
tests are still of value. Thus, while it would be ideal to anticipate and pre-
specify any design change to be made mid-course, in reality, that is not always
possible. The penalty for making concurrent design changes is the loss of
integrity and persuasiveness of the results obtained, in particular after
substantial changes are made ',

In this dissertation, we consider two scenarios that involve a problem
with the placebo group comparison. In scenario one, consider an ongoing 3-
armed clinical trial of two active treatment arms (A and B) and one placebo
arm where the primary comparison is between each of the active treatment
arms against the placebo arm (i.e. many-to-one (MTO) comparisons, and
therefore, not all pairwise comparisons are of interest). Suppose one active
treatment arm is found to be overwhelmingly efficacious relative to the placebo
arm by a pre-specified interim analysis criterion prior to the end of enroliment.
The other treatment arm is not. It may be unethical to continue to enroll
subjects to placebo. Then, clearly, the remaining active treatment arm cannot
be compared against placebo at a later time point, only against the other
active treatment arm (now the active control) in a non-inferiority hypothesis.
Now the primary hypothesis has changed from one of superiority to one of
non-inferiority and the reference group has changed (from placebo to the

standard). The issue of blinding will be discussed.



In scenario two, a new treatment arm (B) is added to an ongoing clinical
trial (of A versus placebo). The rationale for adding a treatment arm to an
ongoing clinical trial is because multi-armed clinical trials reduce the number of
patients randomized to placebo as compared to two separate trials. However,
when introducing a new treatment arm, the placebo group will be different
before (stage 1) and after (stage 2) the design change. The subjects
randomized to placebo in the first stage receive only the placebo for treatment
A, while the subjects randomized to the placebo group during the second
stage receive placebo for treatment A and treatment B. The placebo groups
from the two stages may not be amenable to aggregation, because of overt
differences. For example, there may be a cohort effect or there may be
increased enthusiasm about the new treatment arm that could bias the results
if the placebos are pooled™.

This dissertation considers statistical approaches of two particular
design changes: 1. dropping the placebo arm from a 3-armed superiority trial
when early efficacy is determined for one treatment and transitioning it to a 2-
armed non-inferiority trial, and 2. adding an arm to an ongoing clinical trial.

The specific aims of this research are:

Aim 1. To propose and compare adaptive and non-adaptive analytical
methods that allow for transitioning from a 3-armed superiority trial

(e.g., active treatment A, active treatment B, and placebo) to a 2-



armed non-inferiority trial when efficacy of one treatment arm (A or B)
relative to the placebo arm is determined at an interim analysis. The
power of all methods and the average sample number for the adaptive
methods (when sample size is re-estimated) will be compared under

Monte Carlo simulation.

Aim 2. To propose and compare adaptive and non-adaptive analytical methods
for the scenario of adding a treatment arm (B) to an ongoing clinical trial
of 2 arms (A versus placebo). Both the single-stage and group
sequential designs will be considered. The Types | and Il error
probabilities of each analysis method will be compared under Monte

Carlo simulation.

Aim 3. To apply the approaches presented in Aim 2 to the analysis of NET-
PD FS1 and FS-TOO clinical trials in PD patients. For the illustration,

these concurrently conducted trials were re-analyzed as one study,

and the testing methods were compared under bootstrapping.



CHAPTER 2. BACKGROUND
Given the aims listed in Chapter 1, we provide here a comprehensive

review of relevant statistical methodology. The following are statistical
methods are reviewed in the context of multi-armed clinical trials: multiple
comparison procedures, group sequential methods, and methods for design

change (adaptive methods).

2.1 Multiple Comparison Procedures (MCPs) for Multi-Armed Trials

Multiplicity refers to the inflation of the pre-specified type | error rate due
to multiple testing. Sources of multiplicity include multiple tests for more than
one endpoint, more than one treatment group, and repeated analyses of
accumulating data (interim analyses). All three aims of this dissertation involve
multi-armed clinical trials, thus, we will review existing methods to control
multiplicity for the primary endpoint. The familywise/experimentwise error rate
refers to the probability of rejecting any true hypothesis from a family of
hypotheses. In most studies, particularly confirmatory clinical trials,
investigators wish to constrain the familywise error rate (FWE) at some pre-
specified alpha (e.g. 0.05 two sided, 0.025 one sided, or 0.10 for a phase | or
Il trial). Weak control of alpha means that the familywise error rate is no more

than the specified overall alpha under the complete null configuration, but not
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all other configurations. Strong control of alpha means that the familywise
error rate is no more than the specified overall alpha under all configurations
of any component null hypothesis.

Most confirmatory multi-armed clinical trials require strong control of
alpha, although it has been argued that this is an unfair penalty for
undertaking to test more than one drug at the same time'®. Thus, depending
on the situation, sometimes only the per-comparison error rate need be
constrained'®.

In these aims, we will consider the case in which it is desirable to
control the familywise error rate strongly for the primary outcome measure.
There are many approaches to adjusting for multiplicity, or multiple
comparison procedures (MCPs). Some approaches adjust the p-value without
regard for the distribution from which it came, such as the single-step methods
(Bonferroni, Sidék”), sequentially rejective/stepwise methods (Bonferroni-
Holms'®, Sidak-Holms, Simes’ Modified Bonferroni'®, Hochberg®, Hommel?',
Rom?%) and closed testing procedures®. If independence of the multiple tests
is assumed (as in the Bonferroni type methods) when dependence actually
exists, these approaches will be conservative (more difficult to reject), and
power will be reduced®. While single-step MCPs can be used to test
hypotheses and accurately compute simultaneous confidence intervals (Cls),
sequentially rejective/stepwise methods and closed testing methods can only

be used to test hypotheses.



The closed testing procedure (closure principle) provides a powerful
method for strong control of the type | error rate for ordered hypotheses”. The
closed testing procedure involves forming the set of all possible intersection
hypotheses among the H; treatment versus placebo comparisons (the closure
of the set). Each intersection hypothesis is tested using an appropriate alpha-
level test, where the appropriate test is chosen based on the type of data and
number of groups to be compared. Any hypothesis H; can be rejected with
strong control of the FWE when: (1) the test of H; is statistically significant; and
(2) the test of every intersection hypothesis that includes H; is statistically
significant. Figure 2-1 gives an example of a closed testing scheme where
there are three treatment arms and a control. Denoting the control group mean

by 4,, the three pairwise hypotheses of interest are H,: u, =1, H, : 1, = 14,
and H,: u, = u,. We can reject the null hypothesis for H, at an alpha level test

if H123 H12 and Hy3 can also be rejected.



Figure 2-1. Closed Testing Procedure for a Trial with Three Treatment

versus Placebo Comparisons (Many-To-One)*

Hiz3
Hiz His Hzs
H4 Ho Hs

MCPs with distributional assumptions are useful for ANOVA and
ANCOVA models. Available methods differ for the balanced or unbalanced
case. In the case of one-way ANOVA, for dependent estimates, we can
compute simultaneous confidence intervals for all pairwise (AP) comparisons
with the Tukey method (based on the Studentized range distribution), or
compare many-to-one (MTO) treatments to control with Dunnet’'s method
(based on the range distribution)?. In general, these methods are slightly less
powerful than the closed testing procedure®. For comparison purposes, in
these aims, we compared analytic methods using Simes’ method'® and the
Closed principle for each case, rather than applying MCPs specific for

ANOVA, restricting our attention to MTO comparisons.



2.2 Group Sequential Methods for Multi-armed Trials

In Aims 1 and 2, the implications for design change in the group
sequential scenario are considered. When repeated tests are conducted on
accumulating data, the overall type | error rate will be inflated?®. Inflation from
this kind of multiplicity (due to interim looks at the data) can be constrained by
applying group sequential test procedures (e.g. O’Brien-Fleming?” or Pocock?®
bounds) or an alpha spending function®. In the classical group sequential
framework, the type | error rate is corrected for multiple looks, but one cannot
change design parameters (e.g. re-estimate the sample size) based on these
looks. |

Classical group sequential methods assume that the number of looks is
pre-specified and are equally spaced. In the O’Brien-FIeming30 method, it is

more difficult to stop early and the critical value for the final analysis is close to

the critical value of that needed if no interim looks had been performed. The
null hypothesis is rejected when |Zk| < CB\/KW where k is the k™ interim
analysis of K planned interim analyses, Z, is the standardized test statistic
using all the data up to the k™ look, and C; is a constant based on the desired

type | error probability o and K. Another popular choice is Pocock’s test. These
boundaries are constant, where the null hypothesis is rejected when

1Z,|<C, where C, depends on o.and K. Pocock’s method is more

conservative at the final analysis. Alpha spending functions®® are more flexible
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in that the number of interim looks need not be pre-specified or equally
spaced.

Methods for multi-armed group sequential clinical trials are still under
development. Jennison and Turnbull®' provide a review of existing
methodology. Simply, one could monitor the study by testing the global
hypothesis (e.g. F-test, chi-squared test). If the global test is significant, MCPs
can be applied to test each arm with strong control of alpha®**®. Tang and
Geller®® give an approach for a clinical trial with multiple endpoints and group
sequential monitoring for early stopping (for overwhelming efficacy). By use of
closed testing methods and a global test, single endpoints are tested in a step-
down procedure. They show how this approach can be modified if there are
multiple treatment arms and a single endpoint.

When several pairwise hypotheses (not just a global hypothesis) are of
interest, a simple approach is to apply Bonferroni adjustments to pre-specified
alpha and then to find the corresponding O’'Brien-Fleming or Pocock type
critical values such that each individual hypothesis can be tested at any
stage’. Follmann, Proschan, Geller' recommend requiring strong control of
alpha and equal amount of evidence for each treatment arm. There are
existing methods for the case in which an arm is found to be inferior at an
early interim look, in which case, it would be dropped from further study.
Follman et al. derive exact critical values for each interim analysis and show

that when one arm is dropped for inferiority, then the remaining looks would
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use a critical value that corresponds to the reduced number of arms. This
sequentially rejective procedure is less conservative than the Bonferroni

approach, and this result holds for up to 4 arms in a trial.

2.3 Mid-Course Design Change

In principle, the key features of a clinical trial design (e.g., hypotheses,
primary outcome, treatment, target population) should not change once the
study has begun. In reality, not all parameters are known when planning a
trial, and if the trial is planned with incorrect assumptions about these
parameters, the chance of success can be diminished. It is possible that the
variance estimate used for sample size calculation is an underestimate of the
variance actually observed. There are existing approaches to re-estimate the
variance mid-study (without estimating the effect size and without unblinding),
and this re-estimated variance can be used to increase the sample size
without inflating the alpha®*>°.

Recently much work has been done on adaptive testing methods which,
in theory, allow one to modify virtually any design parameter. Adaptive designs
began to be developed in the 1990s, but have only recently come into
practical use. In 2006, the FDA (US Food and Drug Administration)
announced their position on adaptive designs, recognizing it as a useful

design tool and their plans to develop a guidance document. In the past

decade the number of published adaptive clinical applications has been
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increasing, primarily from Germany36, and there have been many adaptive
design submissions to the FDA'. At this time, the appropriate use of adaptive
designs remains a topic of debate. A special issue of Biometrical Journal
includes an extensive review of the pros and cons of adaptive designs®’.

In general, adaptations driven by internal information are more
controversial than those driven by external information. See Figure 2-2 for an
overview. The basic idea is that if a mid-course design change is made (based
either internal or external data), then the penalty is the use of non-standard
test statistics which are combination tests of stage-wise p-values (not sufficient
statistics)*®. There are two commonly used adaptive tests®: (1) Inverse Chi-
square (Fisher's) combination test®®>° and (2) Weighted inverse normal

combination test**42,

13



Figure 2-2. How Adaptive Testing Methods can be applied

Planned Interim Analysis:

I_Pre-specify ; — . -S :I' .U.D.\; SR
I Design and C_lll;’l | Trial S Do :

Analysis | in Pr@gress 5 | conduer .
: | Pre-specified =
| Analyses :
_-—— J essenunnnnna®

Internal
Information

Adaptation based on Internal information

When examined at an interim look, information within the study (internal
information) could prompt a change in the design. For example, when a
planned interim look suggests that the effect size is smaller than expected,
then clinical investigators may want to increase the sample size to detect this
smaller effect size. However, when the design change is made based on
observed data, then the type | error for the final (pre-specified) analysis will be
inflated. By applying adaptive methods (e.g. a combination test) then, the pre-

specified alpha can be constrained.

14



Adaptation based on External information

When external information (independent from the study) prompts a
design change for a study that has also a planned interim look, then the
integrity of the study may be questioned because it is difficult to prove that
internal information did not play a role in the design change. Thus, adaptive
methods should also be considered for this situation. An example of an
adaptation based on external information (outside the study) is the change in
primary endpoint based on the development/validation of a new instrument.
The scenario of AIM 2, adding a new treatment arm, is also an example of a

design change based on external information.

2.4 Basic Adaptive Design Principle
Let H, be the null hypothesis of interest to be tested in two stages.

Then p, is the p-value from the first stage and p, is the p-value from the

second separate stage. We will use the terminology Stage 1 to refer to the
time period prior to the design change and Stage 2 to refer to the time period
after the design change. Then the decision for the final analysis is based on a
combination function C(p,, p,), which is continuous and monotonically
increasing. If C(p,,p,) <cthen H, is rejected. We assume that the p-values
p, and p, are independent and uniformly distributed on [0, 1]. Any 2-stage

combination test can also be defined by a conditional type | error function®**4,

A(p).
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2.4.1 Conditional Type | Error method

In 1995 Proschan and Hunsberger®® gave an approach to extend a
study beyond the planned termination time based on conditional power when

the final test is not statistically significant. The overall type | error is preserved

as follows. Let 2( p,) denote the conditional error function: the conditional
probability of rejecting the null hypothesis, given p,, the p-value observed at

stage 1. We reject the null hypothesis for sufficiently low values of p,, given
1 ~

p,-Then o = IA( p,)dp, . The second stage is essentially a second study
z ,

carried out at a significance level ;1( D).
Proschan and Hunsberger introduce the circular conditional type | error

function, :ela-r(p,). Since the overall type | error rate is «, then

1
O = Jﬁ( p,)dp, where
0

0 ifp 2 a,
Aar(p) ={1-®(Jep,’ — (@ (1=-p))  if1-D(cpy) < p <
1 if p, <1-D(c,y)

where ¢, is the critical lower limit for early stopping in favor of the null and

@(+) denotes the cumulative normal distribution function (cdf). Then we

1
choose ¢, and c,, is determined so that jilc,.,_( p)ap, =o.
0

16



A conditional error function can be used to solve simultaneously for an
adjusted critical value and the additional sample size such that the type | error
rate is constrained. This method can be used to make adjustments to the
sample size (e.g. based on variance estimate or effect size), assuming that the
same outcome measure will be used.

Later work shows how this approach can be thought of a combination
rule for the p-values (or test statistics) from the 2 stages. As stated before, any

2-stage combination test can also be defined by a conditional type | error
function®, 1~4(p1). For example, the Prochan and Hunsberger conditional type |

error function can be thought of as a type of combination function*®
C(p,p,)=(@'(1=p)) +(@'(1-p,))’, where C(p,, p,) is a function of the p-

values from stages 1 and 2. Extending the work of Proschan & Hunsberger®,
Denne* uses conditional power to re-estimate the sample size (while
maintaining the type | error) in the framework of an error-spending group

sequential analysis.

2.4.2 Inverse Chi-square (Fisher’s) combination test
Bauer and Kdhne suggest a two stage combination test that maintains

the type | error rate by combining p-values from the interim and final analysis.
This test is based on Fisher’s criterion which uses the product of the

stochastically independent p-values®®. We reject the null hypothesis if

1
pp,Sc, = exp[—ng (1-a)]

17



where p, is the p-value from stage 1, p, is the p-value from stage 2, and

zi(-a) is the (1-@)-quantile of the central y* distribution with 4 degrees of

freedom. This is based on the result that the natural log of the product of k
random variables distributed uniformly [0,1] form a chi-square distribution with

2*k degrees of freedom*®. Then ¢, is the critical value for the combination test

at the end of the trial.

This method assumes that under the null hypothesis the p-values of the
tests from the two stages are from stochastically independent samples and are
uniformly distributed [0,1]. Thus, unlike in group sequential methods, data from

the second stage are not cumulative (i.e. do not include the data from stage

1).

This approach can be modified to allow the study to stop after stage 1
(with failure to reject the null hypothesis) when little or no effect has been

observed®. We can allow for early stopping for lack of effect by letting ¢,
(¢, £ oy < @) be the critical upper limit and ¢, (o < o, <1) be the critical lower
limit. Then, if p, <, the interim analysis stops to reject the null hypothesis.
Likewise, if p, > ¢, then the trial stops early, with failure to reject the null

hypothesis. The corresponding conditional type | error function is

18



L, p=o
A(p,)=4c,/p,, &, < p, <@, so inorderto constrain the overall alpha to «, we
0, p2g

solve the following for ¢,

%
C
o + J.—"’dp1 =

o 171

whichis ¢, =(a-a,)/In(e,/ @) .

One advantage of the Bauer and Kohne®® adaptive combination method
is that it is not restricted to the normal case, but can be applied to any
continuous test statistic. In addition, the test statistics used for stage 1 and
stage 2 can be different. The loss of power for the adaptive methodology in the
normal case has been shown by Bauer and Kohne®® to be small compared to
the classical test statistic, however, the loss of power with other test statistics

(e.g., non-normal) has not been explored.

2.4.3 Weighted Inverse Normal Method
The weighted inverse normal combination test was developed by

Mosteller and Bush®. Let Z, =®'(1-p,) be the normal Z-value at the k" time

point. Then the weighted inverse normal combination test rejects the null

K
hypothesis if w,Z, +...+w,Z,>®"'(1-a) where ) w; =1. For example, the
k=1

weights can be 142

19



More recently, Cui et al.*", Shen and Fisher*’, and Lehmacher and
Wassmer*? developed adaptive designs based on the weighted inverse

14" and Lehmacher and Wassmer*, this is

normal method. In Cui et a
achieved by weighting the test-statistic with the square root of the original
sample size, instead of with the square root of the inflated sample size.
Specifically, this is accomplished by decomposing the test statistic into the
sum of treatment differences up to the time of sample size adjustment and the
sum after the adjustment is made up to the k" observation, then weighting
these by the square root of the original sample size. If there is no increase in
the sample size, this is exactly equivalent to group sequential methods*'. The
classical group sequential stopping boundaries are still applied*'.

This combination test is a function of the sufficient statistic which is a
desirable property. This approach was developed for k stages and can also be

thought of as a combination rule where the p-values from the k disjoint stages

are combined into a test statistic as

K
C(Pys-s Pi) = ZWI -@7(1 =)
k=1

K K 12
where Y w; =1 and w, =(an] -/n, where n, is the total number of
k=1

k=1
observations at the K" stage. It can be shown that under certain conditions,
this method is identical to the approach of Shen and Fisher*’. The
corresponding conditional type | error function can be shown which

corresponds to the classical group sequential design.**
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2.4.4 Extensions of Adaptive Combination Tests
Kieser, Bauer, Lehmacher combine the adaptive methodology with the

closed testing procedure to control multiplicity from a priori ordered
hypotheses.* Others have shown how adaptive combination methodology can
be applied for modifying hypotheses mid-study, in particular, for the case of
changing the a priori ordering of hypothesis or adding a new hypothesis*. The
adaptive methodology has been applied to multi-armed studies, in particular
for the case of eliminating treatments (compared to control) at stage 1°°.

Others have extended the Bauer and Kohne®® methodology to allow
Lan-Demets®" alpha-spending functions to be applied in this framework®2%,
Posch, Bauer, Brannath®* discuss general adaptive combination tests and
optimal sample size re-estimation techniques. As shown above, they showed
how inverse normal adaptive tests (e.g. Cui et al.*!, Shen Fisher*’) can be
thought of as a combination test of p-values.

Hommel et al. consider the impact of correlated p-values (bivariate
normal test statistics) from different stages on the type | error rate in an
adaptive clinical trial®®. They show that the Simes’ test can be modified to

allow for early stopping for futility. This Modified Simes’ test (MST) is another

type of adaptive 2-stage test where: {p, < }U {o, < p, <o,Np, <a’}where
0<ea <a;<1and 0<a <1.In comparison with Fisher's combination test, the

Modified Simes’ test (MST) achieves similar power with smaller maximum

sample sizes.
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2.4.5 Recursive Combination tests
There is a more general method of adaptation called recursive

combination tests which are based on the conditional type | error function
given by Proschan and Hunsberger**°®. Recursive combination tests are a
method of evaluating k-stages through a series of two-stage adaptive tests
without specifying an error spending function®” '3, Two-stage adaptive
designs and classical group sequential procedures can be thought of as
special cases®®. Branath, Posch, Bauer show how this methodology defines a
p-value function and can accommodate computations of confidence
intervals®. Miiller and Schafer®® use a Brownian motion model to create an
adaptive method within the classical group sequential framework. Their
method allows for the sample size to be changed, interim analyses for early
stopping to be added, the number of interim analyses to be
increased/reduced, change of error spending function, change of test statistic,

or change of outcome measure, while protecting the type | error rate.

2.5 Change of Hypothesis (Non-Inferiority/Superiority)

Adaptive designs have been touted as advantageous because it is
possible to change virtually any feature of the design including the hypothesis
and still maintain adequate control of the type | error rate. In reality, changing
a hypothesis mid-study is not generally acceptable regardiess of the type |

error control, as it suggests a fatal flaw in the design. In the US, the regulatory
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viewpoint is that for a clinical trial to be conducted with an adaptive design, it
should be planned prospectively, that is, all possible design changes need to

1'% However, there are times when

be pre-specified in the study protoco
changing to a related hypothesis, e.g. from superiority to non-inferiority, could
be an option. Such a scenario is addressed in Aim 1. In the context of non-
adaptive designs, Denne and Koch have shown that it is possible to test both
non-inferiority and superiority sequentially without adjusting for multiplicity
because they are nested hypotheses; closed testing methods are applied?>*®.
Also in the setting of a group sequential active controlled clinical trial, Wang et
al give an adaptive design and show how the trial can begin with the non-
inferiority hypothesis and proceed to test superiority, or vice versa®. Koyama
describes a flexible two-stage adaptive design that can control both the type |
and type Il errors for these two simultaneous objectives, non-inferiority and
superiorityeo. Kropf, Hommel, and Schmidt give a procedure for testing
superiority of two treatments compared to standard/placebo and then test for
non-inferiority of the two treatments in the context of a two-stage adaptive

clinical trial, but they do not consider the need to stop the placebo arm after

the first stage or the ethics involved®'.

2.6 Significance of this research
When a multi-armed clinical trial of several treatments to placebo is

conducted and interim analyses are planned for the opportunity of early
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stopping in favor of the alternative for one or more arms, then the possibility
arises that one treatment arm will be found to be superior or inferior at an early
look while the remaining arms will be inconclusive. As described above, there
are methods for the case in which an arm is found to be inferior at an interim
look, and it is dropped from further study’2. This is rather straightforward and
simplifies the trial by reducing the number of future pairwise comparisons.
However, the scenario in which a single treatment arm is found to be superior
and the ethical considerations for continuing the trial have not heretofore been
addressed. Most existing methods consider switching between non-inferiority
and superiority within the context of a two armed trial. Here, we consider this
scenario in a multi-armed trial. In Chapter 3, we give an approach to change
the hypothesis from a multi-armed superiority trial to a 2-armed non-inferiority
trial. Operating characteristics are compared for both adaptive and non-
adaptive analysis approaches.

As treatments become ready for testing at staggered times, it is
desirable to have clinical trials that can accommodate different entry times and
exit times, without prematurely discarding potentially efficacious treatments.
Currently the literature does not address statistical methods for adding a new
treatment arm into an ongoing study. This scenario is addressed in Chapter 4,
and simulation is used to evaluate the operating characteristics of several
analytical methods. In Chapter 5, these analytical methods are applied to

actual data from PD clinical trials. The NET-PD FS1 and FS-TOO are similar
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studies, and are re-analyzed as if the arms from the later study (FS-TOO)

were introduced into the first study (FS1).
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CHAPTER 3: Paper 1. Transitioning from a 3-armed superiority trial to a
2-armed non-inferiority trial when superiority of a single treatment arm is
determined early

Jordan J. Elm, Yuko Y. Palesch, Barbara C. Tilley, Wenle Zhao, Vanessa

Hinson, Bernard Ravina, Gary Koch

Abstract

Background: With group sequential multi-armed clinical trials, there is an
increased chance of finding a single winning treatment before the planned end
of the trial (e.g. before all subjects have completed follow-up) because either
of the treatments could show overwhelming efficacy at an interim analysis.
This scenario has not yet been addressed in the literature. In this case, it may
be necessary to discontinue enrolling patients to the placebo arm for ethical
reasons. Investigators may wish to transition from a 3-armed superiority trial
(e.g., active treatment A, active treatment B, and placebo) to a 2-armed non-
inferiority trial when efficacy of one treatment arm (A) relative to the placebo
arm is determined at an early interim analysis. Assuming there is early
outcome knowledge, this scenario is most suited to the case in which the
interim analysis is conducted while enroliment is still ongoing. Methods:
Analytical methods are proposed for this novel application to a unique clinical
trial case. Monte Carlo Simulation was used to compare the following

statistical methods: (1) t-test with the data pooled across stages (non-

26



adaptive); (2) Inverse Chi-square (Fisher's) adaptive combination test; and (3)
Weighted-Inverse Normal adaptive combination test. The power and average
sample size were compared with and without sample size inflation based on
interim information. Results: Empirical power was highest when using an
inverse chi-square adaptive testing procedure. The other methods performed
similarly. When sample size was allowed to be re-estimated based on the
observed effect size, the adaptive procedure required a sample size
approximately 50-80% of that necessary for a non-inferiority hypothesis based
on the original sample estimates. Conclusions: The adaptive methods allow
for a reduction in total sample size with increased power for testing non-

inferiority (compared to a non-adaptive approach).
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3.1 Introduction

Suppose a multi-armed clinical trial of more than one treatment or dose
arm against a common placebo group is conducted and interim analyses are
planned. When a single active arm is found to be superior at an interim
analysis, we may wish to continue the study for the remaining treatment arms,
since they too could be efficacious. In this case, however, it may be
considered unethical to continue the placebo arm (since a superior treatment
has been found)®. This would particularly be true if this were the second
confirmatory trial for the winning drug. At this point, it may be desirable to
transition into a two-armed non-inferiority study with the newly identified
superior treatment as the standard. This problem can be conceptualized as
changing hypotheses mid-study, where the comparison arm has changed from
placebo to an active control. This scenario is most applicable to the case in
which the interim analysis is conducted while enroliment is still ongoing, i.e.
assuming there is early outcome knowledge.

Several authors have addressed the issue of changing from non-
inferiority to superiority hypothesis, or vice versa, in the context of a single
treatment versus placebo study®*®®®”. Denne and Koch have shown that it is
possible to test non-inferiority and superiority sequentially without adjusting for
multiplicity because they are nested hypotheses; closed testing methods are
applied®?®. Also in the setting of a group sequential active controlled clinical

trial, Wang et al. illustrate an adaptive design and show how the trial can begin
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with the non-inferiority hypothesis and go on to test superiority, or vice versa®’.
Koyama describes a flexible two-stage adaptive design that can control both
the type | and type Il errors for the two simultaneous objectives of non-
inferiority and superiority®. Kropf, Hommel, and Schmidt give a procedure for
testing superiority of two treatments and then non-inferiority in the context of a
two-stage adaptive clinical trial, but do not consider the need to stop the
placebo arm after the first stage®'. In this paper we consider the scenario of
changing from superiority to non-inferiority in the context of a multi-armed
study given a single arm wins at interim; statistical analytical methods are
proposed for this novel scenario.

Consider a multi-armed clinical trial with two active treatments and a
placebo in which we have three arms treatment A, treatment B, and placebo
P, K> 1 looks. Treatment A and treatment B may be different doses of the
same treatment. The aim of the trial is to determine whether A and/or B are

superior to placebo rather than identifying the single best treatment. Suppose
the responses are X ~ N(u,0°), i=(A, B, P), j=1,2, ..., n, where a larger
value of X indicates a favorable outcome. Initially, we are testing the following
superiority hypotheses H}” : 11, — 11, =0 and H2" : y1, — 11, = 0 in a group
sequential trial. A maximum of n patients per arm will be enrolled to test for
superiority at the desired power. We will consider the case in which strong

control of the familywise error rate is desired. Follman, Proschan and Geller

recommend requiring equal evidence against any pairwise hypothesis of
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interest in multi-armed clinical trials’. A simple approach to control alpha
strongly is to apply Bonferroni adjustments to pre-specified alpha such that the
overall alpha is split for each individual pairwise hypothesis of interest, and
then to find the corresponding (e.g. O’Brien-Fleming or Pocock type) critical
values such that each pairwise hypothesis can be tested at any stage.

In a group sequential multi-armed clinical trial setting, the possibility
arises that one arm will be found to be superior or inferior at an early interim

analysis while the remaining arms will be inconclusive. If at some look k < K

at information time t, , we reject H;” for one treatment arm, say A, versus
placebo for superiority, such that Z,,, > ¢ (where c is a constant based on the

desired type | error probability o and k) then we have concluded the efficacy
trial of drug A with a positive result. However, it may be clinically desirable to

continue the trial to test H,” : i, — 11, = 0 until n subjects per group are
enrolled or Z,,, > c. At this point, however, it may not be considered ethical to

continue to enroll patients to the placebo arm given that a superior treatment
has now been identified.

If at the outset of the trial, investigators anticipate that one of the arms
will show early superiority, and they wish to show non-inferiority for the second

arm versus the first treatment arm, they may pre-specify that a non-inferiority
test be conducted given H;” or H,” was reject at an interim analysis. From
henceforth, we will refer to the arm that wins first as treatment A. After the k"

interim analysis (where H/": i, —u, =0 was rejected), enroliment to the
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placebo arm is stopped and a test for non-inferiority of B versus the newly

established standard, A is performed. Thus, for the interim analyses >k, the

non-inferiority hypothesis is written as Hf*‘ s — U, < — dWhere Jis some pre-

specified margin of non-inferiority®-°.

Now, both hypotheses H/" and H}* are of primary interest, so that the
overall primary hypothesis is the intersection hypothesis H : H" n H*. Yet

the power to test H.” is reduced since no more placebos are to be enrolled.

It can be pre-planned to increase the sample size to that needed for a non-
inferiority test should one arm be determined superior before the other.

Assuming this is all pre-specified at the outset and independent of the interim

observed effect size, then multiplicity can be easily controlled. The H*
hypothesis is nested within the H,” hypothesis, so closed testing methods
can control multiplicity where H* is tested as an alpha level test if H," is
rejected®. However, given that power may be reduced to test H}", another

appropriate multiple comparison procedure is Simes’ method® for the overall

intersection hypothesis H : H)” nH}*, and if this is rejected then both H ;"
and H." can be tested simultaneously (closure methods).

To test the intersection hypothesis H : H." " H*, we could use a t-test

along with Simes’ method or use an adaptive combination test. For the

adaptive combination test of the intersection hypothesis, the k" stage p-value

corresponds to the p-value for the test of H;” via Z,,, observed at the K"
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look, and the k™+1 stage p-value for the non-inferiority test of H

corresponds to the test statistic using the observations from after the k™ look
only.

Possible adaptive combination tests include Fisher's combination test
(inverse Chi-square) or the Cui et allLehmacher and Wassmer method
(weighted inverse normal method)***2. The combination rule must be pre-
specified. During an interim analysis, the sample size can be re-estimated
based on internal information about the observed effect size. If the inverse
Chi-square (Fisher’'s) combination test is specified as the adaptive

combination test, then the overall intersection hypothesis H : HE ~H# is

rejected if
1 2
E iy B, 1 2 P, B, = eXp[-Esz-a]

where p;,.... p, are the p-values from the first through k" stages of data

and 77, (1-a) is the (1-@)-quantile of the central y* distribution with 2k

degrees of freedom®*°.

If the weighted inverse normal rule is specified as the adaptive

K
combination test, then this can be written as C(p,,...,p, ) = Zwk - ®'(1-p,)
k=1

K K ki
where > w; =1 and w, =[anj .Jn, where n, is the total number of

k=1 k=1
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observations at the k" stage. Then the overall null H is rejected at level alpha
if C(p;,-...p,)>c where cis the usual group sequential stopping boundary®.

If the overall intersection hypothesis H: HY” nHg" is rejected via an

adaptive combination test, then closed testing procedures can be applied to

test HY and H?* at level-alpha tests**®". The individual test of H>* would

use the sample data from stage 2 only, because this hypothesis was not

161

named as one of primary interest at stage 1°'. Combination testing cannot be

used to test H;” because no data are available for Placebo in stage 2. The

test of H:” can only be performed as the usual t-test, using all available data

for B and Placebo, regardless of stage.

3.2 Methodology

The scenario above describes a change in study design from a 3-armed
superiority trial to a 2-armed non-inferiority trial when efficacy of one treatment
arm relative to the placebo arm is determined at an interim analysis. Monte
Carlo simulations were performed to estimate the power and average sample
number (ASN) for several methods when arm A is found to be superior to
placebo after 50% of subjects have been enrolled and the hypothesis is
changed to non-inferiority for arm B versus A (the new standard). If one arm
was found to be superior at the first interim analysis, but the other was not, we

denote the winning arm as treatment A. Then several methods were compared

to test firstly the overall hypothesis H : H” N HZ" and then the individual
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hypotheses H” and H.". Methods compared were 1.) t-test with the data

pooled across stages (non-adaptive), 2.) Inverse Chi-square (Fisher’s)
combination test (ICHI), and 3.) weighted inverse normal combination test
(CWH). See Figure 3-1.

All simulations were done in STATA. The number of replications was
set at 15,000. Samples were drawn from a normal distribution with a common
variance o =1. The true configuration of the relationships between the

treatment means was specified as u, = 1, > 1, where ‘=" denotes

equivalency, >’ indicates superiority. A medium-sized standardized effect size

of g=£2"He _ 042 was arbitrarily selected. To achieve a power of 90%, the
c

maximum sample size needed per group for a two sample superiority t-test of
H;¥ (or HZ") is n=134 given standardized effect size 6 =0.42,

o =0.025 (one-sided). The simulation was conducted for different sizes of the
non-inferiority margin 6 assumed to be a fixed constant equal to

%0, .6, %6, or 0. Foreach value of § the corresponding maximum

sample size was set to M, the sample size needed for a non-inferiority test
(530, 1191, 2118, 3309, respectively).

For adaptive analytical methods it is recommended to perform one-
sided rather than two-sided tests to avoid contradictory decisions when the
stagewise test-statistics go in opposite directions. Thus, for comparison
purposes a one-sided test was performed for all methods. In order to

constrain the familywise error rate to no more than 0.05, o =0.025 was
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allocated for each of the two treatment versus placebo comparisons. Then, an
alpha spending function with Pocock type stopping boundaries (2.157, 2.201)
was applied. An interim analysis was performed using 50% of the sample. To
achieve a common feature for all comparisons, Pocock stopping boundaries
were chosen (rather than the more commonly used O’brien-Flemming
boundaries) because these provided congruous stopping boundaries for the
inverse Chi-square (Fisher's) combination test.

For the inverse Chi-square (Fisher’'s) combination test, ¢, the stopping

boundary for stage 2 is given by o= o, + ca|n~1— which can be solved for
a1

c, =0.00228 given o =0.025, «, =0.0155 (the corresponding Pocock

stopping boundary for stage 1), and there is no stopping in favor of the null

1 '57

hypothesis at stage (If O’brien-Flemming stopping boundaries were used

then ¢, <c,.) It is necessary to select stopping boundaries where «, >c,, .

Otherwise it is illogical to continue the trial and perform a stage 2 test since

p; - p, would always be less than c, if p, < ca.70

The sample size inflation rule was based on achieving a target
conditional power for rejecting the null hypothesis at stage 2 expressed as

Prob(Z,> 2.201|Z, ,,0)=1- f and was bound at M. For the weighted inverse

Py’

normal method (INORM), this expression yields the sample size per group for

20%| 1 1
£ v_v_(2.201-w1z1_p1)-@'1(1-,3) where J is
2

the second stage as n, =
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the non-inferiority margin, 2.201 is the Pocock critical value for the final
analysis, wy and w; are the weights as defined by the inverse normal

combination test, and Z1_p1 is the Z-value from stage 1%, For the inverse Chi-
square (Fisher's) combination test (ICHI) the conditional power expression

yields the sample size per group®’ for the second stage as

2
2
n, = 2—;{2& —@(1- ,3)} . For both testing methods (ICHI and INORM), the
Py

Z-value from stage 1 was replaced with Z,;, the normal Z-value for the test of

the non-inferiority hypothesis at the interim analysis (stage 1) (denoted ICHI1

and INORM1) or Z,, the Z-value for the test of treatment B versus Placebo at

the interim analysis (denoted ICHI2 and INORM2).
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Figure 3-1.
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3.3 Simulation Results

The empirical power to reject H: Hy~ nHy*, Hy” and HZ" (given H;®

was rejected after the first look and enroliment to the placebo arm was
stopped) is shown in Table 3-1. Whether the per group sample size (for
treatments A and B) was increased to M (where M is the sample size required
to achieve 90% power for a non-inferiority test given the original sample size
estimates and 0) or re-estimated based on observed data, all methods

achieved more than 90% nominal power for the overall intersection hypothesis

H:H" nHZ* . For the (cumulative) t-test of H>® power was greater than 85%

regardless of the testing method used for H : H>” N HZ* or the final sample

size. Of note, the ICHI2 and INORM2 adaptive methods used much smaller

sample size than M with only a minor reduction of power for the tests of
H:H nHZ* and H;”.

The methods compared showed different results for the power to reject
HZ$* . The inverse Chi-square adaptive test (ICHI1) achieved the nominal

power to reject H" . In general the inverse Chi-square adaptive tests (ICHI1

and ICHI2) achieved moderately more power to reject HfA than the weight-

inverse normal tests (INORM1 and INORM2), for the respective re-estimation
methods. The (cumulative) t-test did not achieve the nominal power (83% vs
90%). Of note, the whole simulation was repeated (exception for the ICHI

tests) with O’brien-Flemming type stopping bounds and the results were
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similar to those given in Table 3-1 where Pocock bounds were used (results

not shown).
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Table 3-1. Empirical Power (95% Cl) to reject H: H” " H>, HZ and H
given H;” was rejected after the first look and enroliment to the placebo
arm was stopped (12,000 out of 60,000 reps where u, = u, > 11,)

(CP given Zg, )

(0.935, 0.942)

(0.850, 0.860)

Method Sample Size H-HEoH? HE HE
for groups A
and B
t-test (Simes’ na= ng=M 0.943 0.886 0.825
method) (0.940, 0.946) (0.882, 0.891) | (0.820, 0.831)
Inverse Chi-
square (Fisher’s)
combination
ICHI1 | Re-estimated 0.969 0.882 0.869
(CP given ZAB1) (0.966, 0.971) (0.878, 0.887) | (0.864, 0.874)
ICHI2 | Re-estimated 0.942 0.858 0.747
(CP given Z,,) | (0-939,0.945) | (0.853,0.863) | (0.741,0.753)
Weighted-
Inverse Normal
combination
INORM1 | Re-estimated 0.973 0.886 0.867
(CP given Z,g,) | (0-971,0975) | (0.882,0.891) | (0.862, 0.871)
INORM2 | Re-estimated 0.938 0.855 0.690

(0.683, 0.696)

Note: Results based on 12,000 of 60,000 (32%) simulations where one arm
(but not the other) was found to be superior to Placebo at the first interim

analysis (e.g. H," : u, - 14, = 0 was rejected at stage 1). Results averaged

across the non-inferiority margins & The power for H*" : 41, - 4, =0 and

Hg" : g — 1, < — Sassumes that H : H n H* was also rejected. (Closed
testing methods were applied to control for multiple comparisons).
" Hy" is performed via t-test using all available data regardless of method to

test H:H;~ nHg". (Combination testing cannot be used to test H2® because
no data are available for Placebo in stage 2).

Sample size re-estimation was based conditional power (CP) for either Inverse
Chi-square (Fisher’s) combination test (ICHI) or weighted-inverse combination
test (INORM) given Zag 1 or Zgp 1 (ICHI1, ICHI2, INORM1, INORM2

respectively).
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The adaptive combination tests of H* achieved higher power when
sample size re-estimation was based on Z,s; (ICHI1, INORM1) rather than
Zge, (ICHI2, INORM2) regardless of d. For adaptive combination tests

INORM1 and ICHI1 where the sample size was re-estimated using conditional

power given Z, ., then the resultant power was equal to setting the sample

size at M.
The average sample number (ASN) per group after sample size re-

estimation is given in Table 3-2. When Z ., is used to re-estimate the sample
size, then ASN is roughly 80% of M. In contrast, when Zg,, is used to re-

estimate the sample size (ICHI2 and INORM2), the ASN is much smaller

(approximately 50% of M).

Figure 3-4 shows Box and Whisker plots of the sample size per group
after re-estimation based on conditional power for either Inverse Chi-square
(Fisher’'s) combination test or weighted-inverse combination test given Zpg.1 OF
Zgp 1 (ICHI1, ICHI2, INORM1, INORM2 respectively). For the ICHI1 method a
greater amount of the unbounded distribution fell below the gray horizontal line
(representing M the maximum sample size per group) versus the INORM1

method. Thus, ICHI1 more often resulted in smaller sample sizes than

INORM1, yet achieved higher power for the test of HZA

41



Table 3-2. Average Sample Number (ASN) and Maximum Sample Size per
group for Treatment arms A and B after Sample Size Re-estimation
based on Conditional Power (CP

Sample Size - ~ Maximum
Re-estimation|  ASN , per group

8 Method|pergroup|  (bound at M)
%0 ICHI1 2778 3309
ICHI2 1561 3309
INORM1 2843 3309
INORM2 1534 3309

%‘6 ICHI1 1740 2118
ICHI2 1026 2118
INORMH1 1775 2118
INORM2 1012 2118

%6 ICHI1 939 1191
ICHI2 597 1191
INORM1 951 1191
INORM2 585 1191

}/26 ICHI1 401 530
ICHI2 303 530
INORM1 395 530
INORM2 298 530

dis the non-inferiority margin assumed to be a fixed constant equal to
Y0, Y,6, %0, or %6, where 6 =0.42 is the standardized effect size. The

maximum sample size for the complete study was bound at M per group for
Treatment A and Treatment B. The Placebo arm is stopped at n=67 after
stage 1. Sample size re-estimation was based conditional power for either
Inverse Chi-square (Fisher's) combination test (ICHI) or weighted-inverse
combination test (INORM) given Zag 1 or Zgp 1 (ICHI1, ICHI2, INORM1,
INORM2 respectively).
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Figure 3-4. Box and Whisker plots of sample size re-estimation
(unbounded)
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o'is the non-inferiority margin assumed to be a fixed constant equal to
Y0, Y.0, %0, or %6, where 6 =0.42 is the standardized effect size. Gray

horizontal line represents M (maximum sample size per group) for each &.
Sample size re-estimation was based on conditional power for either Inverse
Chi-square (Fisher's) combination test or weighted-inverse combination test
given Zag,1 or Zgp1 (ICHI1, ICHI2, INORM1, INORM2 respectively).

3.4 Discussion
These simulations show that if we allow for an interim look in a multi-

armed study using Pocock type stopping boundaries, there is a 32% chance
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that only one of the arms will be found to be superior to placebo at the first

look (given 1, = 1, > i1, ). Simulations under the same parameters as above

except with O’'Brien-Flemming (rather than Pocock) stopping bounds indicated
that there is a 25% chance that at least one of the arms (but not the other) will

be found to be superior to placebo at the interim analysis (given My = Ug > Uy,

complete results not shown). Thus, when multi-armed studies are conducted
in a group sequential design, there is a nontrivial chance that we could be
discarding a potentially effective treatment just because one treatment was
found to be superior to placebo sooner and the trial was stopped early. Hence,
it is important to consider the methods that will be used for this scenario.

In this paper, we consider ways to continue the trial to compare B vs
Placebo and B vs A (for non-inferiority), when the placebo arm is dropped for
ethical reasons (e.g. because treatment A is clearly established as superior to

placebo). It is necessary to increase the sample size from the original size
needed for Hy”, if HZ* is to be adequately powered. If we were to continue
the study of A and B, stopping the placebo arm but without increasing the

original sample size, then the power to reject H>" is around 50% and power to

reject Hy* would be less than 10%.

In this scenario, non-inferiority was only tested if drug A was found to
be superior to placebo at the interim analysis. However, the interim estimate of
drug A must be greatly superior to placebo to win at an interim analysis. For

the non-adaptive approach performing a t-test for the non-inferiority
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hypothesis, then the data from patients in Treatment A (selected as extreme)
are later used to form the test of Hy*. The selection of the extreme data at
stage 1 has an additional effect of making it harder to reject the non-inferiority
hypothesis H;" at the final analysis.

This can be seen in Table 3-1 where we were unable to achieve the
nominal power with the (cumulative) t-test of Hy* (empirical power was 83%
rather than 90%) when n=M. Thus, an extreme result for drug A will make it
somewhat less likely that B will be found non-inferior to A at the final analysis
(even when u, = 1, ). For the adaptive testing procedure, the non-inferiority
hypothesis is added mid-course when the test statistic for drug A versus
placebo is significant, and the stage 1 data are not used to test Hg’A since this

hypothesis was not specified as primary at the outset. Thus, the adaptive
tests outperformed the non-adaptive testing scheme in these simulations.

It is well known that sequential testing produces bias in the usual (MLE)
point estimation”". Future research could address applying a bias correction to
the test statistic (correcting for the selection of the winning arm in stage 1) and
address bias-adjusted point estimation (such as where the estimate is

conditioned on the number of stages performed)’.

For both adaptive methods, the chance of rejecting H : HY” N H?* and

Hg"~ while failing to reject H*, occurs rarely (with ICHI1 and INORM1) or

occasionally (with ICHI2 and INORM2). However, the re-estimated sample

size is substantially smaller than M (particularly when the re-estimation is
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based on Z,, ). These simulations were conducted across a range of non-
inferiority margins o=(% 6, %6, %6, %6). While %6 may seem like a large
non-inferiority margin, it may be appropriate for this situation®'. Considering
that the original primary aim was to show that treatment B was better than
placebo, then treatment B could be considered efficacious compared to
placebo if it is more than one-half of that between reference (treatment A) and
placebo®. Albeit 6 is the clinically important difference, not the actual
difference between reference and placebo.

It is worth noting that the choice of the non-inferiority margin should be
clinically based and pre-specified prior to the start of trial. Herel, we defined the
non-inferiority margin as a fixed constant. The non-inferiority margin could
have been defined as a percent retention of the (observed) active control
effect®®®". In this example, the maximum sample size was increased by x25
when the smallest non-inferiority margin was chosen. This substantial increase
would argue for keeping the placebo arm in the study (if ethically possible) or
choosing a larger non-inferiority margin.

As with all multi-armed studies, multiplicity is an important
consideration. In this simulation we split the alpha for the two arms and then
applied an error-spending function for the two interim analyses. Exact methods
would increase power over the Bonferroni adjustment, but are computationally
more complex. The sequentially rejective procedure given by Foliman et al.
was developed for when one arm is dropped for inferiority'. With this

procedure, exact critical values are derived for each interim analysis such that
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the remaining looks would use a critical value that corresponds to the reduced
number of arms. This sequentialiy rejective procedure is slightly less
conservative than the Bonferroni approach and holds for up to four arms’.
However, Hellmich (2001) has shown that the sequentially rejective procedure
may fail to strongly protect the type | error rate if the arm is dropped for some
reason other than statistical inferiority?. Thus, in the case where the placebo
arm is dropped due to statistical superiority of treatment arm A, the critical
value should be based on the original number of arms, not the reduced
number of arms.

Adaptive methodology allows for much flexibility of clinical trials, yet the
planning of such trials is more involved. Some advise to pre-specify all
possible scenarios in the protocol of an adaptive study and to perform
simulations at the planning stage'®°. Often, adaptive designs are used to
control the type | error rate when the study sample size is re-estimated using
the observed data. The rule used to re-estimate the sample size (e.g.
conditional power) is independent of our ability to control the type | error rate;
rather, it is the use of internal data that will inflate alpha if the test statistic is
not adjusted”. However, if the study sample is increased to M based solely on
the rejection of the primary hypothesis for arm A (and without looking at the
effect size for arm B), then the type | error rate will not be inflated for the
treatment B comparison. This would be the case even if the treatment arms
are two doses of the same drug, since it is the use of internal information

(rather than a pre-specified M) which inflates the alpha. One limitation of the
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adaptive testing procedure is the restriction to one-sided testing, as
confirmatory clinical trials are frequently conducted as two-sided tests.
However, one solution may be to perform doubly one-sided tests developed by
Wassmer (publication in German)”.

The finding of overwhelming efficacy for a single treatment at an interim
analysis of a multi-armed clinical trial may not be entirely straightforward. For
instance, while treatment A may be efficacious, it may be difficult to tolerate or
be very costly for the patient, while treatment B may be inexpensive and/or
better tolerated. For such reasons, it may be clinically worthwhile to continue
the study of treatment B in the hopes that it may be non-inferior to A®". If A is
greatly superior to Placebo at interim, then in order for B to have a chance at
being non-inferior to A at the end, B would have to be close to the stopping
boundary at interim. In that case it makes sense to assess the conditional
power for B versus Placebo at the interim analysis to decide whether to
continue at all. Incorporating rules such as early stopping for futility (e.g. based
on conditional power of 50% for treatment B) would help dictate whether to
stop the whole study where A would be the only winner.

From a regulatory perspective, it is necessary to show efficacy of a drug
in two independent confirmatory (phase lll) trials in order for that drug to be
considered for regulatory approval of indication®. In the absence of this, the
FDA may not view treatment A as a standard after the interim results. A

protocol with a plan to transition into a non-inferiority trial upon finding a
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winning treatment may not meet FDA approval, unless there was a prior
successful confirmatory trial.

As with all non-inferiority trials conducted without a concurrent placebo
arm, there is the assumption of constancy of the historical control estimate. A
cohort effect is an important consideration for any type of design change,
particularly when the placebo rate is not well established or is known to shift
over time'®. One would need to account for this in the analysis. Another
possible approach not considered in these simulations that would allow one to
adjust for the stage or cohort effect is regression based approach. Specifically,
a four parameter model including an intercept, an indicator for cohort, an
indicator for treatment A and an indicator for treatment B could be fit. If there
are covariates that account for a cohort effect, such as differences in
inclusion/exclusion criteria or a time effect, these covariates could also be
included in the model'. Such a model may be more powerful than the
pairwise t-tests presented here. A comparison of such methods is beyond the
scope of this paper.

When an interim analysis is conducted, there is the issue of who
becomes unblinded. Because a one-sided test is performed, it is necessary to
have a fully unblinded statistician to perform the analysis. It may be possible
for the DSMB to discontinue one arm (e.g. the placebo arm) without
announcing the results of the interim analysis. This could be achieved if all
possible scenarios were pre-specified in the protocol such that a protocol

amendment was not required to drop an arm. Logistical issues and
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ramifications of any major of design change should be carefully considered
and are reviewed by Geller and Pocock (1987)"°.

This design is suitable for a clinical trial where the enrolliment is
relatively slow as compared to the length of follow-up such that there are
patients remaining to be enrolled at the time of the interim analysis. If
enrollment has been fully completed by the time of the first interim analysis,
then transitioning into a non-inferiority trial would necessitate re-starting
enrollment. In this case, the ethical concerns of continuing to enroll new
patients to the placebo arm are moot. However, handling of some placebo
subjects who have yet to complete the protocol-specified treatment will remain
an issue.

An example of an ongoing PD clinical trial in which this design would be
well-suited is the ongoing NIH-funded trial, "Effects of Coenzyme Q10 in
Parkinson Disease-Phase 3 (QE3)". This is a multi-armed trial of several
doses of Coenzyme Q10 and placebo where 600 patients are to be follow-up
for 16 months. Given the desired sample size, it is likely that the speed of
enroliment will be relatively slow compared to the length of follow-up. If a
higher dose of CoQ10 is found to be efficacious at an interim analysis, it would
still be of interest to consider the non-inferiority of a lower dose arm.

Long-term clinical trials generate more ethical dilemmas. If an interim
analysis finds a superior drug (A), yet the trial is to continue for drug B, what is
to be done with the subjects already enrolled on placebo who have not yet

completed follow-up? Switching placebo subjects to the winning drug (with or
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without their knowledge) and thereby using their data may or may not be an
option. The increase in sample size could outweigh the possible dilution of the
treatment effect. However, this is likely to be true only for chronic disease
types. Progressive diseases (such as Parkinson’s disease) may have
irreversible worsening over time such that introducing the winning treatment a
long time after baseline (rather than just after diagnosis) would not be
efficacious.

One implication of conducting multi-armed group sequential clinical
trials is the increased chance of having a single winning treatment arm at
interim. If switching to a non-inferiority hypothesis is meaningful, then the
adaptive methods are more powerful at a smaller sample size to declare

treatment B non-inferior to A.
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Appendix 3-1. Empirical Power to reject H: H>" nH", H” and H* given

H;” was rejected after the first look and enroliment to the placebo arm
was stopped (15,000 reps)

non-inferiority margin (&) | %60 | %6 | %6 | %6
M 3309 | 2118 | 1191 530
t-test H:HE ~HE 0.968 0.958] 0.942] 0.902
HEP 0.919 0.909] 0.884 0.832
0
HEA 0.855 0.837] 0.818 0.791
0
Inversg Chi-square H:ngm HéBA 0.974] 0.973] 0.964] 0.964
(Fisher’s)
comibination HEP 0.91] 0.903[ 0.875 0.841
i e HE* 0.888) 0.877 0861 0.848
ICHI1 H:H ~H 0.974] 0.973] 0.964 0.964
HEP 0.91] 0.903[ 0.875 0.841
0
HEA 0.888] 0.877| 0.861| 0.848
e : 1 0
ICHI2 H:H® ~HB 0.945 0.946] 0.937] 0.941
‘ HEP ‘ 0.883] 0.876 0.85( 0.821
0
HEA 0.749] 0.747| 0.737] 0.753
0
Weighted-Inverse H:prm HéBA 0.976| 0.977[ 0.97] 0.969
Normal
Coidbination - HEP 0.913] 0.006] 0.88] 0.846
INORM n=M HoBA 0.887| 0.875 0.859| 0.846
INORM1 H:HE A HE 0.97¢] 0.977] 0.97] 0.969
HEP 0.913] 0.906 0.88 0.846)
0
HEA 0.887| 0.875] 0.859( 0.846
0
INORM2 H: H® ~HE 0.941] 0.941] 0.933 0.938
HEP 0.881] 0.874 0.847| 0.82
0
HEA 0.691| 0.696/ 0.674 0.698
0

Note: Results based on simulations where one arm (but not the other) was
found to be superior to Placebo at the first interim analysis (e.g. H;" was

rejected at stage 1). J is the non-inferiority margin assumed to be a fixed
constant equal to %6, %60, %6, or %6, where 8 =0.42 is the standardized

effect size. HY" @ flg - 1, =0 and HZ* : g — p, < - 6.
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CHAPTER 4: Paper 2. Flexible Analytical methods for Adding a
Treatment Arm Mid-study to an Ongoing Clinical Trial

Jordan J. EIm, Yuko Y. Palesch, Barbara C. Tilley, Wenle Zhao, Vanessa

Hinson, Bernard Ravina, Gary Koch

Abstract

Background: It is not uncommon for clinical trialists to have experimental
drugs under different stages of development (Phase |, Il, lll). For some
diseases (such as Parkinson’s disease), confirmatory clinical trials require a
large number of subjects followed long term in order to identify a clinically
meaningful treatment effect. Multi-armed clinical trials maximize efficiency by
requiring smaller number of subjects receiving placebo as compared to
separate trials. Methods are proposed for use when another treatment arm
(B) is to be added mid-study to an ongoing clinical trial (of treatment A vs.
Placebo). Methods: For this novel scenario, potential analytical approaches
considered for pairwise comparisons of a difference in means in independent
normal populations include 1.) a linear model adjusting for the design change
(stage effect) or 2.) the use of an adaptive combination test. Monte Carlo
simulation was used to compare the power and type | error rate for these
approaches. Results: In the presence of intra-stage correlation, simply

pooling the data will result in a loss of power for both treatment group
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comparisons and will inflate the type | error rate. The linear model approach is
more powerful, but the adaptive method allows for more flexibility in terms of
re-estimating the sample size. Conclusions: The flexibility to add a treatment
arm to an ongoing trial will allow for cost savings (in terms of sample size as
compared to two separate trials) as treatments that become ready for Phase
[l testing can be added to ongoing large, long-term studies in PD. Either linear

model methods or adaptive combination testing methods may be applied.
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4.1 Introduction

Statistical analytical methods for adding a new treatment arm to an
ongoing clinical trial have not been addressed in the literature. Consider the
scenario of a randomized, double-blind parallel arm clinical trial of Treatment A
versus Placebo. This study may be large and long-term. At some point after
randomization has begun, but prior to the end of enroliment, a new Treatment
B showing promise is identified. Investigators and Sponsor desire to add
Treatment B to the ongoing study in order to reduce the number of placebo
subjects that would be needed if two separate clinical trials were to be
conducted. It would be prudent logistically and economically to add Treatment
B to the ongoing study. Thus, without re-randomizing previously enrolled
subjects, the decision is made to randomize all new patients to one of three
arms: A (with Placebo for B), B (with Placebo for A), or Placebo for A and B.

One example where such a scenario may be applied is the NINDS
Exploratory Trials in Parkinson’s Disease (NET-PD) initiative. This program
funds a series of clinical trials®’ of potentially disease modifying agents. These
agents are at different stages of development; some require Phase Il testing,
while others are ready for Phase lll testing. The NET-PD group is concurrently
conducting a large, long-term phase Ill trial and continues to pursue Phase Il
trials of additional agents, as new agents are identified. Since information on
new agents is available in a staggered fashion, a Phase Il study design that

can accommodate adding arms at different times is desirable.
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While there are many symptomatic treatments of PD, there are no
existing treatments that have been shown to slow disease progression. As
such, clinicians are interested in identifying any drug that is better than
placebo (i.e. any drug that slows clinical decline). Therefore, the main interest
in multi-arm studies in this context is not to identify the best drug, but rather, to
identify any and all drugs that are better than placebo.

When an arm is added to an ongoing trial there are several statistical
considerations. Here, we focus on the family-wise type | error rate, power,
sample size, and the choice of statistical analytical methods. It is assumed that
it is possible to ensure adequate blinding, that re-randomization of existing
subjects cannot and will not be done, and the optimal allocation ratio will be
applied. (The allocation scheme would be unequal after the new treatment arm
is added and would minimize the time to total enroliment.) In this paper,
analytical methods for both single-stage and group sequential designs are
addressed for this novel scenario. The power and type | error rate are
compared for several analytical methods for a single-stage (fixed sample)

design.

4.2 Methodology

Single-stage design
The choice of test statistic to be applied depends on the original design

of the comparison of A versus P, and the potential for a cohort or study effect.
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Let A A,.....and P,P,,.... be sequences of independent observations receiving

Treatment A and placebo, respectively, in a two armed clinical trial. Restricting
our attention to the test of normal means, assume their respective means are

U, and u, with variance unknown. The null hypothesis of interest for a test of
two normal means with variance unknown is H,:6, <0, where i, — 1, = 6,

and a positive difference represents a treatment benefit. Later, a new

Treatment B is added (B,,B,,....), where the null hypothesis of interest
isHg : 6, <0. We will restrict our attention to one-sided testing because it is

advisable in the adaptive setting to perform one-sided tests to avoid conflicting
decisions based on the test statistics going in different directions at each

stage. Now we have the new overall null hypothesis H,; : H, N H;.

There are several methods that could be used to test H,, : H, N H;. We

will use the terminology stage 1 to refer to the time period prior to the design
change and stage 2 to refer to the time period after the design change. Firstly,
one could ignore that the subjects randomized to placebo in stage 1 did not
receive the placebo for drug B, and then naively pool the data across stages.
Then, two 2-sample t-tests would be computed. Alternatively, a linear model
adjusting for a stage/cohort effect (as a fixed effect) could be applied. The

regression model can be specified as follows:

Yik = :Bo + :H1X1 + ﬂzxz + ﬂaxs + &y
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for i=1,2,...,n subjects within k=1,2 stages, where f, is the effect for treatment

A, B, the effect for treatment B, £, the stage (cohort) effect and ¢; is the

random effect distributed normal (0, ). A third approach would be to apply
an adaptive combination rule for the data from the two stages. By using this
method, we are penalizing ourselves for the adaptation and ensuring that the
pre-specified type | error rate is not compromised (even though the design
change was externally driven).

Given another arm is added mid-study, multiple comparison procedures
must be utilized in order to control the family-wise error rate (FWE) at the pre-
specified rate. Although it has been argued that those performing multi-armed
studies are penalized by having to maintain the FWE rate at alpha while two
separate studies could each be performed at level alpha'®, we will restrict our
attention to methods for controlling the FWE rate strongly, as this is standard
practice for confirmatory clinical trials. Either all pairwise comparisons or
many-to-one comparisons could be of interest, but we will restrict our attention
to many-to-one comparisons. A simple approach valid for any test is the
Bonferroni-adjustment, although other approaches such as Holmes'®,

23,62

Hochberg®, or stepwise closed testing methods may be less conservative.

Adaptive Procedure
When an arm is added to an ongoing trial, a change has been made to
the study design. The primary hypothesis changes from a pairwise test of A

versus placebo to a global (intersection) hypothesis of two pairwise tests (or to
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an F- test). An adaptive design may be well suited for this application, as a
way of splitting the study into two stages (before and after introduction of the
new arm). In this situation, the decision to add another arm is likely based on
external information (rather than based on an interim analysis). Adaptive

combination tests, such as the two-stage Inverse Chi-square (Fisher’s)

t39 t40

combination test™ (ICHI) and weighted inverse normal combination tes

(INORM), can be used to combine data across the two stages. The
combination rule must be pre-specified at or before the time of the design
change.

If Inverse Chi-square (Fisher's) combination test (ICHI) is specified as

the adaptive combination test, then H,; is rejected if

1
C(p,.p,)= PP, <C, = exp[—§z§(1 - a)]
where p, is the p-value from stage 1 and p, is the p-value from stage 2

and y; (1- o) is the (1-a)-quantile of the central y* distribution with 4

degrees of freedom™®.

If the weighted inverse normal (INORM) rule is specified as the

adaptive combination test, then this can be written as

2
C(p,,p,) =w,@7'(1- p,) +w,®'(1- p,) where Y w? =1 and
k=1

2 -1/2
w, = (anj \/Fk_ and n, is the total number of observations at the k"

k=1
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stage. Then the null intersection hypothesis H,; is rejected at level alpha if

C(p,,p,) > @' (1- ) 40|t is advisable to perform one-sided rather than two-

sided tests to avoid conflicting decisions when the intermediate test-statistics
(for each stage) go in different directions.

The test of H,; is as follows. We denote the intermediate p-values as
.., for k=1, 2 stages and m=A, B, AB hypotheses. For stage 1, the H, null
hypothesis would be tested via the usual one-sided, two-sample t-test, using
all observations from stage 1 to obtain the intermediate p-value p, ,. Using
the observations from stage 2 only, the intermediate p-value for H, the test of
treatment A versus Placebo is p, , obtained via a one-sided, two-sample t-test.

Likewise, the intermediate p-value p,, for H, (the test of treatment B versus

d19,20 |

Placebo) is obtained. The stage 2 p-value for H,; using Simes’ metho s

defined as p, ,, = min[2min(p, ,,p,,), max(p,,.p,,)]. Finally, the intermediate p-
value from stage 1 and the (multiplicity-adjusted) intermediate p-value from
stage 2 form a combination test of H,; : H, N H;.

Several authors have shown the usefulness of closed testing (closure)
methods for controlling multiplicity in complex adaptive designs*®*°. Closed
testing methods are applied to test H, and H, across stages. By closure
methods, any individual hypothesis can be rejected at global level alpha if the
set of all possible intersections is rejected at an appropriate alpha-level test.

Thus, H, can be rejected given H,; is also rejected, where H,;, and H,are
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both rejected via combination tests over stages 1 and 2. Similarly, H, is
rejected at global level alpha if H,, and H, are both rejected®, where H, is
tested using just the stage 2 data via P,z (since there is no data for treatment

B in stage 1).

Adaptive Procedure within Group Sequential setting

Assume the same design as above, except now the null hypothesis H,

was originally planned to be tested at k interim looks using classical group
sequential methods (e.g. O’Brien-Fleming, Pocock, or an error-spending
function) to allow for early stopping in favor of the alternative hypothesis.

Then, to add treatment arm B and test H,, : H, N H, via an adaptive

combination test, one must select an adaptive test that incorporates the
existing group sequential framework such as the Cui et al weighted inverse
normal method*!. Optionally, the interim conditional power can be computed
(either for the next interim look or for the whole study), and the sample size
can be increased accordingly based on internal information about the effect

size observed at an interim analysis.

Hypothetical Example of Adaptive Procedure within Group Sequential setting
Assume a phase lll clinical trial of Treatment A versus Placebo is
ongoing with an interim analysis planned after 50% of subjects have

completed follow-up. Assuming an alpha spending function with O’Brien-
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Flemming type stopping boundaries for a one-sided test of alpha=0.05, the
planned maximum sample size is 200 per group. After 40 subjects per group
have been enrolled (20% of the total sample size), then a new drug B
becomes ready for phase I testing and the study sponsor would like to add it
to the ongoing trial. The protocol is amended to include Treatment B, and the
planned sample size is increased to 600 total (200 per group) assuming the
original design parameters for A versus Placebo. The weighted inverse normal
adaptive combination rule given by Cui, Hung, Wang (1999) is pre-specified*’.
Multiple comparison procedures will be applied to control the FWE rate
strongly at alpha=0.05.

At the first interim analysis, the data are subset into stages 1 and 2
(before and after the design change). Using the stage 1 data, the p-value for

the test of H, is p, ,=0.20 and the p-value for the test of H, is not available.
So the p-value for H,, at stage 1 is Pi5= Py 4 =0.20.

Using the stage 2 data at the first interim analysis, the p-value for the

test of H, is p,,=0.15 and the p-value for the test of Hg is p,;=0.06. Then
using Simes’ method the p-value for H,; at stage 2 is
P, 45 = min[2min(p, ,,p, ), max(p, ., P,,)]1=0.12.

Then the combination test for H,, at the first interim analysis using
weights proportional to the original sample size is

C(PragsP2ps) = 0.4 * @7(1-p, 1) +30.6 * D (1= p, ) = 1.442
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where 1.442 < 2.538 the O’brien Flemming stopping boundary when the
information time is 0.50.

Since the overall null hypothesis H,, is not rejected, we continue the

trial. Optionally, the sample size can be re-estimated by computing the

conditional power for H, and H, and the sample size can be inflated this as

needed. Then, using the data from after the first interim analysis only, the p-

value for the test of H, is p, ,=0.2 and the p-value for the test of H, is

P;5=0.03. So the p-value for H,, at look 2 is

p3vAB = min[zmin(ps,A’pS,B)’ max(p:;,,q:pa,s)] =0.06.

Then the combination tests at the final analysis are as follows:

FOr Hag, C(P1 g Py 48:P3 p8) = V0.5 * C(Py g Py ap) +¥/0.5 * &7'(1= py 1) = 2.119
where 2.119>1.6621

For Hy, C(PyaPy0P34) = 0.5 * C(p, ,p,,,) + /0.5 * @7'(1- p, ) =1.539
where 1.539<1.6621

For Hy, C(P,5.055)=0.5*®7(1-p, ) +/0.5 *@7(1- p, ;) = 2.429

where 2.429>1.6621

Since the overall null hypothesis H,, is rejected, we go on to test H,
and H,, via combination tests. For H,: 8, <0, we fail to reject the null

hypothesis since the Z-statistic for the combination test, 1.539 is less than
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1.6621 (the O’'Brien-Flemming type stopping boundary when 100% of the

subjects have completed follow-up). For H, : 8, <0 we reject the null

hypothesis, since 2.429 is greater than 1.6621. In this example, treatment A
fails, but treatment B is superior to Placebo. For one arm to stop early, one

would have to reject H,, and then H, or H,. The trial can still continue the

other arm. If only H,,is rejected, but not H, or H, the trial can still continue.

In order to ensure that the familywise type | error rate is strongly
controlled, the following sources of multiplicity must be constrained. In this
example, multihlicity due to treatment groups within stage was adjusted via
Simes’ test. Multiplicity due to the interim looks was controlled via the
(O'Brien-Flemming type) alpha-spending function. Multiplicity due to treatment
groups across stages was controlled via closed testing methods. Multiplicity
due to the sample size readjustment was controlled via the adaptive

combination test. See Figure 4-1.
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4.3 Simulations

Simulation Study
Monte Carlo simulation was used to compare the power and type | error

rate for testing H,;, H,, and H,in a single-stage (fixed sample) clinical trial.

The following statistical analysis approaches were compared: 1. two-sample t-
test with the data pooled across stages; 2. Linear model adjusting for a fixed
stage/cohort effect; 3. Inverse Chi-Square (Fisher's) adaptive combination
test®: 4. Weighted-Inverse Normal adaptive combination test*. See Figure 4-
2,

Samples were drawn from the multivariate normal distribution assuming

that

A ~N(u,,0°), i =1,...m
A ~N(u,,0°), j=m+1...,n
B, ~ N(ug,0%), k=1,...,n

P, ~ N(ttp,0®)
P, ~ N(ttp,0°)
A/
A, o’ +o’ o’
Y~MVN(w2), Y=|B | Z= :
P, o’ o’ +o’
Pk

where A;and A; are the observations from treatment group A from stage 1 and
stage 2 respectively, By are the observations from treatment group B from

stage 2, P; and P; are the observations from Placebo group from stage 1 and
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stage 2, respectively, n is the sample size needed per group for a two sample
t-test of H, or Hy, and o is the covariance between observations clustered

within the same stage (i.e. cohort effect). The sample size per group was set

to n=120 for detecting an effect size 6 =0.38, at « = 0.05(one-sided) and
power=0.90. The data were simulated assuming different sizes of o2
{0,)46,%,6, 6} and t, {0.1, 0.3, 0.5}, where 0 <t, <1 is the time that the

design change is made in terms of the fraction of the sample size. One
analysis is performed at the end of the study (with no interim analyses). For
the adaptive combination tests, at the end of the study the data were subset
into stages 1 and 2 prior to forming the combination test.

For all approaches closed testing multiple comparisons procedures
were applied, as this approach is more powerful than single-step approaches,
but do not provide confidence intervals®®. For consistency across methods,
Simes’ Modified Bonferroni procedure’® was used to obtain an adjusted p-
value for the global null hypothesisH ;. All simulations were done in STATA.
The number of replications was set at 6000. With 6000 replications, a two-
sided 99% CI around the expected type | error rate of 0.025 will extend

+0.005, and a two-sided 99% CI around for the expected power of 0.90 will

extend +0.01.
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4.4 Results

Table 4-1 shows the results for the type | error rate for the four

methods. For all methods the familywise type | error rate is controlled strongly

when covariance crf =0. However, the t-test (with data pooled) results in

anticonservative p-values when ¢2>0, as high as 0.24 when the design

change is made after 50% of the sample size for arms A and Placebo have

already been enrolled. The inflation of the familywise error rate is due to the

Treatment B versus placebo comparison, rather than the Treatment A

comparison (results not shown).

Table 4-1. Family-Wise Type | error rates for the 4 Methods (Fixed

Analysis) results of 6000 simulations (x, = 1, = 1)

Inverse .
~ Linear | Chi-Square | Weighted
- - Model Combination | Inverse Norm

| ~ ttest | (adjusting |  test | Comb Test

- Tp | Covariance | (Pool Data) | for cohort) | "(|CHI) , (INORM)
0.1 0-5 =0 0.047 0.047 0.051 0.045
O-UZ >0 0.06 0.048 0.046 0.047
0.3 o= 0.044 0.046 0.046 0.045

u

0-5 >0 0.155 0.047 0.046 0.046
0.5 o2=0| 0.046 0.046 0.044 0.043
0-5 >0 0.242 0.046 0.044 0.044

NOTE: FWE= Probability of rejecting any component null hypothesis H s H,,
or Hy given they are all true. ¢>>0 is averaged across 02={0,1.6,%6, 6}
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Figures 4-3, 4-4, and 4-5 give the results for the empirical power when
both treatments are superior to placebo. In general, when the time at which
Arm B is added in terms of the fraction of the sample size is early (tp=0.1),

then all methods obtained nearly 90% power (the nominal level). When there

is no stage effect (o7 =0), then the pooled method has the highest power for
both H, and H,. The linear model method loses power as tp increases for the
test of Hg, but is still superior to the two combination tests. Fisher’s

combination test (ICHI) performs worst for both H, and Hj. (See Figure 4-3.)

Figure 4-3. Power for tests of H,, H, when o =0, u, = u, > i,, Na=ng=np

DI e ——

0.8 4

Empirical Power

0.7

0.6

0.5 1
77—
0.1 0.3 0.5

Tp

Pool data t—test HA
Linear model HA
ICHI HA

INORM HA

=== == Pool data t—test HB
Linear model HB
ICHI HB

INORM HB
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Figure 4-4. Power for tests of H,, H, when o> >0, u, =y, > i, Na=Ng=np
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When the within stage (intracluster) covariance o7 > 0, then the pooled
method performs worst for both H, and H, across all time points (tp), while

the linear model approach is superior. (See Figure 4-4.) Averaging across all
time points (tp), the amount of covariance does not affect the power for the
linear model or the combination tests, but power decreases as covariance

increases for the pooled method. (See Figure 4-5.)
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Figure 4-5. Power by Covariance for tests of H,, H, averaged across
different Tp when u, = 1, > 1., na=ng=np
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4.5 Conclusions

Adding an arm to an ongoing clinical trial is a savings in sample size
because fewer patients are randomized to placebo compared to two trials with
separate placebo groups (A vs. Placebo and B vs. Placebo). When there is no
correlation among the observations within stage, then power is highest when
the data are simply pooled (from before and after the addition). When a new
treatment arm (B) is added to an ongoing clinical trial (of A versus placebo),
the placebo group will be different before and after the design change. The
whole Placebo group received Placebo for drug A. However, this is not the
case for the B versus Placebo comparison. The placebo group in the first

stage receives only the placebo for treatment A, while the placebo group in the
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second stage receives placebo for treatment A and treatment B. Thus, it is
questionable whether it would be appropriate to pool the placebos from before
and after the design change, since not all Placebo subjects received the
Placebo for B. This may not be a concern when Treatment B is an increased
dose of Treatment A (given the placebo looks the same and is taken in the
same daily frequency). However, given the situation in which Treatment B
looks different than A, there may be ambiguity about the conclusions if the
data are simply pooled. There is the potential that the original treatment versus
placebo comparison could be perturbed due to enthusiasm over the new drug
or a cohort effect®.

From a statistical standpoint, these simulations show that pooling the
data without any adjustment for stage is unadvisable. When the observations
within stage are correlated, then pooling the data across stages will result in a
loss of power for both treatment group comparisons, but particularly for the
treatment B comparison. Furthermore, pooling the data ignores the intra-stage
correlation and will inflate the type | error rate, since the estimate of the
variance of the mean is underestimated.

When there is no intra-stage correlation, the power for the linear model
approach and the weighted-inverse normal adaptive combination tests were
only slightly less than the nominal level for the test of Treatment A. Since the
adaptive tests are not based on sufficient statistics, this small loss of power

was expected.
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In all cases Fisher's combination test is outperformed by the weighted-
inverse normal combination test. Both the fixed-effect linear model method
and the adaptive method control the type | error rate in the presence of a
random stage effect. When the design change is made after only a small

proportion of subjects have been enrolled, t,, (e.g. 10%), then the weighted-

inverse adaptive method has similar power to the linear model approach.

However, both of these methods lose power for testing H,, as t, increases,

especially the adaptive test (INORM). For both the linear model and the
adaptive methods, these results show that the sample size for the Treatment B
versus placebo comparison would need to be increased in order to achieve

the desired power. For the test of H,, the linear model is more powerful, but

adaptive allows for more flexibility to re-estimate the sample size mid-study.

At what point do the cost savings of introducing a new treatment arm
into an ongoing trial rather than starting a new trial become negligible? These
simulations did not consider the case when more than 50% of patients have
already been enrolled. As we have seen, there is a loss of power by as high as

15 percentage points (75% rather than 90% power) for the test of H, as the

proportion of patients already enrolled increases to 50%, when an adaptive
combination test is applied (regardless of the covariance).

The reduction in power we observed in these simulations is partially
due to the use of non-standard test statistics (adaptive methods), but primarily

due to the use of unequal sample sizes since only the stage 2 placebo is used
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to test H;. One solution to attain the desired power for the linear model or

adaptive approaches is to enroll n new patients into the stage 2 placebo
group. Further simulations (see Appendix 4-2) indicate that this will mitigate

the loss of power for the INORM and linear model approaches as t;
increases. We can see that enrolling t, xn+ n subjects into the placebo group

is still less than the 2xn subjects enrolled into placebo across two separate
trials. While it is undesirable to have a total number of subjects enrolled into
placebo greater than either treatment arm, the probability of being allocated to
the placebo group need not be greater than the chance of allocation to a
treatment arm at any point in time. Further research is needed to adequately
address approaches to increase the sample size, including the potential
benefit of re-estimating the sample size. If an adaptive test is to be used, the
sample size could be re-estimated using the observed effect size from stage 1
for the treatment A versus Placebo comparison, without any risk of inflating the
type | error rate.

There may be other considerations for selecting between methods.
Adaptive methods began to be developed in the 1990s, but have only recently
come into practical use. In general, mid-course design changes driven by
internal information are more controversial than those driven by external
information. Internal information refers to information within the study (such as
the interim effect size or a sub-group analysis) that prompts a change in the
design (change in sample size, change in target population, etc.). However,

when the design change is made based on observed data, then the type |
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error for the final (pre-specified) analysis will be inflated. By applying adaptive
methods (e.g. combination rule) then the pre-specified alpha can be
constrained.

When external information (independent from the study) prompts a
design change for a study, then the integrity of the study may be questioned
because it is difficult to prove that internal information did not play a role in the
design change. Thus adaptive methods are also suitable for this situation. In
this case, adding a new treatment arm to an ongoing study is an example of a
design change based on external information. In this context, the type | error
probability will not be inflated due to an internal look at the data since the-
design change is externally-driven (not involving an unplanned look).
However, if a new dose, or dose regimen, is added to an ongoing trial, it may
be advisable to adjust for the change in design by a combination test, because
it is difficult to show that inside knowledge of the treatment effect for the
current dose, did not impact the decision to increase the dose, unless perhaps
the treatment arm that is added is a lower dose.

Nevertheless, there are situations where a regression approach
(adjusting for stage/cohort) is perfectly acceptable. One such scenario is when
the arm that is added is an active comparator. For instance a clinical trial may
be initiated in the US, and shortly thereafter investigators may realize that in
order to meet European Regulatory authority (EMEA) approval, the current
study treatment would need to be shown non-inferior to the standard of care in

Europe. Then, it may make sense to modify the ongoing trial to add this
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standard as another arm. In this case the investigators wish to show study
treatment superiority versus placebo (for the FDA) and non-inferiority of the
study treatment versus the standard (for the EMEA). In this case, since the
arm that is added is a standard and the rationale is clearly externally driven,
there seems to be no need to adopt an adaptive analysis approach. An
approach such as that given by Denne and Koch would be well suited for this
scenario since the hypotheses (superiority, non-inferiority) are nested.® In the
context of non-adaptive designs, Denne and Koch have shown that it is
possible to test both non-inferiority and superiority sequentially without
adjusting for multiplicity because they are nested hypotheses; closed testing
methods are applied.?***¢

When the decision is made to add an arm to an ongoing clinical trial,
the original design considerations must be taken into account. According to
Follman et al. there should be equal criteria used to evaluate each treatment
arm’. In order to add a treatment arm, the protocol must be amended. The
timing of the protocol re-design may affect the degree to which design
changes can be made. It may be more difficult to re-design a trial after an
interim analysis has been performed.

When adding another treatment arm, it is important to adjust the
randomization allocation ratio to ensure that all three treatment arms complete
enrollment at roughly the same time. Firstly and above all, this is necessary to
ensure blinding, such that the last patients enrolled are not all receiving

treatment B. Secondly, if the randomization allocation ratio is 1:1:1, then, once
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all patients are enrolled into treatment A, there is a possibility of a observing a
third cohort set, who are all enrolled in treatment arm B, having different
characteristics than those patients in stage 1 or stage 2.

These results suggest that the linear model method will always

outperform the adaptive methods as t, increases, even in group sequential

setting, unless the effect size is smaller than expected for one or both
treatment arms or the variance is larger than expected. In this case an
adaptive method allows the sample size to be increased due to internal
information observed at the first interim analysis, and thus the desired power
can be attained.

In Parkinson’s disease clinical trials, there is a chance that there will be
increased enthusiasm about a new drug. Publicity concerning phase |l studies
for certain drugs can impact the rate of enroliment into a Phase Il study of the
same drug, and this is likely to have an impact on subjective self-reported
outcome measures. For Parkinson’s disease clinical trials the cohort effect
may be a legitimate concern. Prior NET-PD studies have shown that changes
in clinical practice over time have a major impact on outcome measures®’.

Another important point is that t, and the covariance within stage are likely to

increase together. That is, the longer you wait to add the new treatment arm,

the higher the t, will be and the more likely things are to have changed (new

standards of care, etc.) introducing cohort effects.
The NET-PD investigators continue to pursue Phase Il trials of

additional agents for the treatment of Parkinson’s disease. If new agents
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become ready for Phase Ill testing by the NET-PD group, design modification
to the current ongoing Phase lll trial is a possibility. These results suggest
that it would be inadvisable to simply pool the treatment groups across the
stages, since the type | error will be inflated and power will decrease if the
intra-stage correlation is greater than zero. In the presence of possible intra-
stage correlation, the linear model approach is more powerful, but the adaptive
method allows for more flexibility to re-estimate the sample size. Both analysis
approaches (regression and adaptive) control the type | error rate when no
internal study information is used in the decision to add a new treatment arm

mid-study.
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CHAPTER 5: Paper 3: Adding a Treatment Arm to an Ongoing Clinical
Trial: An lllustrated Example Using NET-PD clinical trial data

Jordan J. EIm, Yuko Y. Palesch, Barbara C. Tilley, Wenle Zhao, Vanessa

Hinson, Bernard Ravina

Abstract

Background: In settings where clinical trials require many subjects and
long-term follow-up, evaluating more than one drug against a common
placebo would be efficient. Yet, in practice, drugs may be at different stages of
development (e.g. Phase |, Phase Il, or Phase Ill). We have previously
proposed analytical methods for the addition of newly screened drugs into an
ongoing clinical trial. Methods: The NET-PD FS1 and FS-TOO clinical trials
(with identical study designs conducted concurrently) were re-analyzed as a
single study where the treatment arms (from FS-TOO) were added to an
ongoing study (FS1). For each treatment arm, a futility hypothesis was
analyzed using: (1) two-sample t-test with the data pooled across stages; (2)
linear model adjusting for a fixed cohort effect; (3) inverse Chi-square
(Fisher's) combination test®®: and (4) Weighted-Inverse Normal combination
test. The probability of rejecting the null hypothesis was compared for the
different testing methods using bootstrapping. Results: The linear model and

the combination tests performed similarly and were most consistent with the

results from the original analysis of these data as separate studies.
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Conclusions: If a treatment arm is to be added into an ongoing study, then
this example illustrates that either a linear model approach or an adaptive

combination test is well suited for such a situation.
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5.1 Introduction
In settings where clinical trials require many subjects and long-term

follow-up, it is more efficient to test more than one drug against a common
placebo to maximize the chances of finding a successful drug and to minimize
the number of subjects randomized to placebo. In practice, several agents of
interest may be at different stages of development (e.g. dose finding,
screening for futility, or evaluation for efficacy). This is the situation for the
NINDS Exploratory Trials in Parkinson’s Disease (NET-PD) Program funded
by the National Institutes of Neurological Disorders and Stroke (NINDS).
During 2003 to 2005, the NET-PD Program sponsored a series of Phase I
clinical trials®’ of drugs aimed at slowing the clinical progression of PD. In
2007 the first NET-PD large study (LS-1) trial began enroliment of PD patients
into a 5-year double-blind Phase Il study of creatine versus placebo. The
intent of the NET-PD Program is to add to the LS-1 any promising treatments
as they become available for Phase Ill testing, rather than initiate a new large
Phase lll trial for each treatment. The main savings would be in terms of the
number of subjects enrolled into the placebo group that would be used as the
referent group for all new treatments. As such, a flexible clinical trial design
that is able to accommodate adding treatment arms at different times would be
useful.

In order to meet regulatory approval, a clinical trial needs to be
conducted following the Good Clinical Practice (GCP) Guidelines and the

Food and Drug Administration (FDA) Code of Federal Regulations®.
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Accordingly, in principle, the key features of clinical trial designs (e.g.,
hypotheses, primary outcome, treatments) should not change once the study
has begun. In reality, not all parameters are known when planning a trial, and
if the trial is planned with incorrect assumptions about these parameters, the
chance of success can be diminished. It may be logistically and/or
economically efficient to modify a trial protocol once new information is known.
However, these practicalities should not eclipse the potentially adverse effect
of design changes on the validity of statistical inference. Some argue that any
modification to the protocol needs to be accounted for in the method of
analysis since protocol modifications can introduce bias to the conclusions'®”.
Recent statistical developments of adaptive clinical trial methodology
allow investigators some flexibility to modify the study during its course. There
now exists a class of adaptive clinical trial designs that encompass various
situations (including but not limited to group sequential design, sample size re-
estimation design, adaptive dose escalation design, and phase Il/Ill designs).
For a simple, single design change such as adding a treatment arm, there are
two issues of concern: (1) the inflation of the type | error rate; and (2) the
introduction of bias in the scale or shift parameters. Adaptive analytical
methods make it possible to change a key feature of the design, and still
maintain adequate control of the type | error rate. In the 2006 conference on
Adaptive Trial Design, the FDA has indicated its support of such
adaptive/flexible designs for some situations and currently is developing

guidance documents.® In practice, adaptive methods need to be pre-specified
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rather than applied in an ad hoc fashion. In order to gain regulatory approval
of the design, the pre-specified adaptive protocol should anticipate and include
all possible scenarios.*® A program such as NET-PD which is conducting a
series of clinical trials, at various phases, should design a protocol that allows
for adding treatment arms to the ongoing trial, should they become available.
Although many authors have considered multi-armed studies where
one or more treatment arms are dropped’*°%""#2 the process of adding a
treatment arm into an ongoing clinical trial has received little attention in
existing literature. Adaptive combination methodology can be applied for
modifying hypotheses mid-study, in particular, for the case of changing the a
priori ordering of hypothesis or adding a new hypothesis*. As such, we can
conceptualize adding a treatment arm as a type of adaptive design, in which a

new hypothesis is added to the study mid-course.

One type of adaptive methodology applicable to many types of design
changes is the p-value combination test. This method controls the type | error
rate after a design modification and would be suitable when a treatment arm
has been added to a trial. No distributional assumptions for the endpoints are
required. The p-values for the data from 2 stages (before and after the design
change) or k stages are combined across stages®®.

To illustrate the adaptive design methodology for adding a treatment
arm to an ongoing trial, we use the data from the NET-PD FS1 and FS-TOO
studies. These studies had the same entry criteria, primary outcomes, and

were conducted concurrently at more than 40 clinical sites participating in the
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NET-PD Program. Enrollment into the first pilot study (FS1) occurred between
5/2003-9/2003 and into the second pilot study (FS-TOO) between 3/2004-
7/2004, and subjects were followed-up every 3 months for at least 12 months.
The aim of each pilot study was to evaluate the futility of the active treatments.
In each study, PD subjects were randomized into one of two active arms or a
concurrent placebo. In FS1, 200 subjects were randomized to creatine (n=67),
minocycline (n=66), or placebo (n=67). In FS-TOO0,° 213 subjects were
randomized to Coenzyme Q1o (n=71), GPI-1485 (n=71), or placebo (n=71). In
the original study design, the primary outcome measure was the change from
baseline score at 12-months in the Unified Parkinson’s Disease Rating Scale
(UPDRS). Each active arm was (individually) compared to a pre-specified
futility threshold in a one-sample test. Full descriptions of these clinical trials
are available.®”

For the primary analysis, each treatment arm was compared to the
futility threshold that was obtained from the placebo group data from a large
PD study conducted in 1996 -1998, Deprenyl And Tocopherol Antioxidative
Therapy Of Parkinsonism (DATATOP). Additionally, both studies included a
small placebo group strictly as a calibration control®®. In other words, the
treatment and placebo groups were not compared head to head. One of the
major issues in these studies was the shift in the placebo data across studies.
In both studies, the mean UPDRS change score in the concurrent calibration
placebo group fell outside the 95% confidence interval (Cl) for the DATATOP

placebo change, suggesting a significant difference. Moreover, a marked
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difference in the change score was observed between the FS1 and FS-TOO
placebo groups.

Because of the similarities in these two studies and since the primary
manuscript for FS-TOO included a re-analysis of FS-1, these studies provided
an example for the scenario of adding treatment arms to an ongoing study. For
the purposes of this paper, we considered the FS-TOO study as if it were
added to the FS1 study, rather than a separate study. We examined the
impact of adding the three FS-TOO treatment arms into the FS1 study on the
probability of rejecting the null hypothesis for each treatment arm comparison
versus concurrent placebo under four methods of analysis. Our primary
objective was to demonstrate how the testing methods can be applied in a real
setting and to examine how these results compared to the original findings for
each treatment. This exercise retains the futility hypothesis as the primary
research question.

5.2 Methods

First, in order to study whether the design modification (of adding FS-
TOO treatment arms to FS1) impacted the target population, we estimated the
sensitivity index using FS1 and FS-TOO data. The sensitivity index, a

measure of change in the signal-to-noise ratio in the actual population studied

84p27 can be estimated as A = 1+(f:/ H

versus the original target population

where e=y,,. -# and C=ouw/c. If the modification does not affect the

target population then A should equal 1.
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In the original study design, each individual treatment arm was compared
to a fixed futility threshold of 7.5 points in the UPDRS (defined as a ~3 point
decrease in the placebo group’s annual change of 10.65 observed in
DATATOP). For the purposes of this illustration, we performed a two-sample t-
test where each treatment was compared to a futility threshold defined as a 3
point decrease in the concurrent placebo (rather than the DATATOP placebo).
The two sample hypothesis was written as Ho: i < pp- 8 versus Ha: Wi > p-

0’ where 6’ was defined as 3 UPDRS points as in the original study design
(for UPDRS change a lower score is better).

With the given sample size of 67-71 per group, a two sample t-test with a
0.10 one-sided significance level has 75% power to detect a difference in
means of 3 assuming that the common standard deviation is 9. The type |
error rate was set at 0.10 as in the original studies. The stage 1 data were
conceptualized as the FS1 study and the stage 2 data were the FS-TOO

study.

Methods of Analysis

In Chapter 4, we introduced the testing methods one could use when a
treatment arm(s) has been added into an ongoing clinical trial. One could
(naively) pool the data across stages (before and after an arm has been

added) and perform the usual test statistic from a two sample t-test. Better yet,
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one could adjust for the stage effect in a regression (e.g. as a fixed effect),
hereafter referred to as the linear model method.

Alternatively, one could take into account this design adaptation in the
construction of the test statistic by combining the p-values from the two stages
(before and after an arm has been added). There are several ways to define a
two-stage test statistic. The most commonly used are: (1) the product of the
stagewise p-values (from stages 1 and 2) which is an inverse x” test; and (2)
the weighted inverse normal test.

The inverse x” test (ICHI) is formed as follows:

2
T, = Hpk <c, = exp[—% Xe10] Where p, and p, are the p-values from the first
k=1

and second stages of data and z;, (1 - &) is the (1-a)-quantile of the central

x’ distribution with 2k degrees of freedom>®*°. The weighted inverse normal

2 2
test (INORM) is formed as follows: 7, = > 'w, -®'(1-p,) where Y w; =1 and
k=1

k=1

> -1/2
W, =(anj \/E where n, is the total number of observations at the k™

k=1

stage. The overall null hypothesis H is rejected at level alpha if T, > ¢ where

c is the classical group sequential stopping boundary*®-42>7: p-101:

Since the original trial type | error rate was 10%, then for the INORM
combination test ¢=0.10, as we will not consider early stopping after stage 1
(at the time of addition of FS-TOO arms). For the ICHI combination test, the

10% type | error rate corresponds to o= 0.02045 and 0,=0.02045 where o4
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and o, are the critical upper limits for stages 1 and 2 (stopping boundaries).
(For the ICHI testing procedure, by construction, if the stage 1 p-value is less
than oy, then the null hypothesis is rejected at stage 1). For the ICHI

combination test, the p-value of the final analysis (for the 2-stage combination

test) is given by p=p, if p,<as0r p=«, +p1p2|n[ai] otherwise, where p, and
i

p, are the observed p-values for the f-tests at stage 1 and stage 2,

respectively.

Control of Multiplicity

Since there are four treatment-to-placebo comparisons, closed testing
methods and Simes’ method were used to control the familywise error (FWE)
rate strongly at 0:=0.10 (the pre-specified error rate)'®%. Closed testing
methods involve forming the set of all possible intersection hypotheses among
the H; treatment versus placebo comparisons (the closure of the set). Each
intersection hypothesis is tested using an appropriate alpha-level test. Any
hypothesis H; can be rejected with control of the FWE when: (1) the test of H;
is statistically significant; and (2) the test of every intersection hypothesis that
includes H; is statistically significant. The intersection hypotheses were tested

using Simes’ method. See figure 5-1.
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Figure 5-1. Closed Testing Method for a Trial with Four Treatment versus

2,32

Placebo Comparisons (Many-To-One)

Closed testing procedures can be combined with adaptive methodology
to control multiplicity from a priori ordered hypotheses.*® The closed testing
scheme for the adaptive tests is given in figure 5-2. This is simpler than figure
5-1, because at stage 1 only data for treatment 1 and 2 (creatine and
minocycline) were available, and at stage 2 only data for treatment 3 and 4

(CoQ-10 and GPI-1485) were available. Thus, at the end of the study, if
H,nas is rejected (by an adaptive combination test) then we can step-down to

test H;>, and Hs4 and then the individual hypotheses H;, H, Hs Hy.
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Figure 5-2. Closed Testing Scheme for Adaptive Method in this Example

H pna
Hi2 Hzq
H, H> Hs H,
Key: Stage 1 Stage 2

Application to the FS1 and FS-TOO Data

First, the results for each of the possible testing methods were found
using the actual data. The following testing methods were performed: (1) two-
sample t-test with the data pooled across stages; (2) linear model adjusting for
a fixed cohort effect; (3) inverse x* (Fisher's) combination test (ICHI)%; or (4)
Weighted-Inverse Normal combination test INORM)*. Next, we
bootstrapped samples (stratified by treatment group and study) to estimate the
probability of rejecting the null hypothesis for each treatment comparison
under the possible testing methods. Bootstrapping, or repeated sampling with
replacement, is a nonparametric method of inference using the empirical
distribution. By repeatedly sampling from a given dataset, one can estimate
properties of an estimator®®. Here, we used bootstrapping to estimate the

probability of rejecting the null hypothesis defined by the total number of times
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the bootstrapped samples rejected the null hypothesis (for a given testing
method) divided by the total number of samples drawn. Samples of the FS1
and FS-TOO data were drawn with replacement (i.e. bootstrapped) from each
treatment group. In this case the number of bootstrapped samples drawn was
set at 10,000 since this would provide adequate stability in the estimate

properties and could be easily achieved with the given computing resources®.

5.3 Results
The estimated sensitivity index was 1.05 with all six treatment groups

combined. This value is close to 1 and is indicative of little change in the target
population across studies énd treatment groups. However, when examining
only the placebo groups, the sensitivity index was 3, indicating a large shift in
the target placebo population from FS1 to FS-TOO. Figure 5-3 shows box and
whisker plots for the outcome measure (UPDRS change) by treatment group
for the bootstrapped samples. The shift in the distribution of the placebo

groups between studies remained evident after bootstrapping.
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Figure 5-3. Box and Whisker Plots for Total UPDRS 12 month change by
Treatment Group after 10,000 Bootstrapped Samples

‘L "

& » g -—l-—
T i S S S |
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Creatine [ ] Minocycline [ FS1 Placebo
lcoa10 [ ] GPI-1485 [ ] FS-TOO placebo

Table 5-1 shows the results for two-sample tests of each treatment
versus placebo. The p-value for Hypothesis column gives the unadjusted p-
values for H;, Hz, H3 and H, and the p-values (obtained via Simes’ method) for
the intersection hypotheses. Adjusted p-values for H; H, Hs and H, were
found via closed testing methods. Bolded p-values indicate the null hypothesis
was rejected at p<0.10, so the treatment was considered futile.

In the first three columns, the results are shown for when the FS-TOO
study arms are not added to FS1 (“Separate Studies”). The t-statistic,

unadjusted p-values, and multiplicity adjusted p-values are given. When FS-1
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and FS-TOO were analyzed as separate studies, we rejected the null
hypotheses for GPI-1485 and COQ-10, but not for creatine and minocycline.
Next, in Table 5-1 the results are given for when the data were pooled
across stages (studies). The table rows display the results for the intersection
hypotheses. In this case, we rejected the null hypothesis for all treatments
except for creatine. When a linear model (adjusting for stage) was performed,
we rejected the null hypothesis for GPI-1485 and COQ-10, but not for creatine

and minocycline.

In Table 5-2 the results are given for the adaptive combination tests.
The Stage 1 and Stage 2 p-value columns give the unadjusted p-values for Hy,
H> Hs and H, and the p-values for the intersection hypotheses (obtained via
Simes’ method). Unadjusted p-values are given for the combination test of

H,.~ - Then adjusted p-values (via closed testing methods) for Hy, H» H3 and

H,4 are given. Bolded p-values indicate the null hypothesis was rejected at
p<0.10, and the treatment was considered futile. For both adaptive
combination tests (ICHI and INORM), we rejected the null hypotheses for GPI-

1485 and COQ-10, but not for creatine and minocycline.
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Figure 5-4 shows the proportion of rejections of the null hypothesis in
10,000 bootstrapped samples. The bootstrapped results support the findings
using the actual data (in Tables 5-1 and 5-2) and are consistent with the
original published study findings’. The results vary by treatment group. For
creatine, all methods, except pooling the placebo, had a proportion of
rejections around 0.10, which is what one would expect if the null hypothesis
was in fact true. Of note is that for COQ-10 and GPI-1485, all methods had a
proportion of rejections greater than 0.70 which would suggest that the true
distribution for these treatment groups is from the alternative hypothesis (see
Methods section). This is consistent with the original FS-TOO paper where
these two treatments (COQ-10 and GPI-1485) were found futile®. For the
minocycline group, the proportion of rejections is fairly low (30%) except when
using the pooled method (65%).

Pooling the placebo groups increased the proportion of rejections for
both creatine and minocycline, and likewise decreased the proportion of
rejections for both COQ-10 and GPI-1485 compared with not combining
studies (“Separate Studies”). This was driven by the direction of the mean
placebo differences in the two studies (mean of 8.4 versus 6.3 for FS1 and
FS-TOO placebos, respectively). The inconsistency of the results with the

pooling method indicates (as in Chapter 4) that this method is inappropriate.
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Figure 5-4. Proportion of Rejections of Treatment vs Placebo in a two-
sample test after 10,000 bootstrapped samples
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5.4 Discussion
For creatine and minocycline, pooling the placebos across studies is

the least conservative approach in that the null hypothesis more likely to be
rejected (compared with the tests for separate studies or the adaptive tests).
Moreover, by pooling the placebo groups, statistical power to reject the null
hypothesis is diminished for the two arms that are clearly futile (GPI-1485 and
COQ-10). As shown in Chapter 4, the linear model (adjusting for stage) and
the adaptive combination tests are better analysis choices when a treatment
arm(s) is added to an ongoing trial.

In this example three methods of inference (linear model, ICHI, and
INORM) gave similar results. This is partially due to the limitations of the data

since there was no stage 2 data for FS1 available or stage 1 data for FS-TOO.
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For ICHI and INORM, a 2-stage combination test was used to test the
intersection hypothesis H;,3; . However, for the individual pairwise

hypotheses H; H» Hs and H,, data were not available for both stages so the
individual hypotheses were tested via a (one stage) t-test, rather than a 2-
stage combination test. For the linear model, the stage effect was actually a
study effect, since all subjects in stage 1 were in FS1 and all subjects in stage
2 were in FS-TOO. Had the studies actually had overlapping enroliment
periods, where the FS-TOO arms were introduced after, say, 50% of the FS1
subjects were enrolled, we may have had somewhat different results.
Nevertheless, this paper shows how these methods would be applied using
real clinical data and the conclusions are consistent with those reported in the
primary study papers®’.

Any modification to the protocol (even a minor one) has the potential to

introduce bias in the study conclusions® P38

. A major modification could have
a substantial impact on statistical inferences by shifting the mean response or
inflating the variability, even when the type | error rate is controlled at a pre-
specified level®* P#°_ In this example, the sensitivity index indicates a
significant shift in the target placebo population from FS1 to FS-TOO.
However, all methods used when combining the studies produce conclusions
similar to those when the studies are analyzed separately.

The decision to modify a protocol to add a new treatment arm to the

study is likely to be based solely on external information. Internal interim effect

size is unlikely to play a role in this decision, unless the treatment added was a
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different dose of the same drug. When only external information is used, then
it would be acceptable to apply a linear model approach with an appropriate
multiple comparison procedure such as shown here. The adaptive
combination tests are also a suitable choice, and are the best choice if internal
information contributed at all to the decision to add the arm(s) to the ongoing
study*’.

In most Parkinson’s disease clinical trials, the primary outcome
measure is the Unified Parkinson’s Disease Rating Scale (UPDRS). The total
score is the sum of 30 ordinal questions on mental, ADL, and motor
dysfunction. The questions are completed by a neurologist upon examining
the patient and are, by nature, somewhat subjective. The primary outcome for
these two studies was defined as the change from baseline to 12 months OR
the visit at which the need for symptomatic therapy was determined. Thus,
changes in practice of the introduction of symptomatic therapy could also
influence the primary outcome measure. A significant shift in the timing of the
introduction of symptomatic therapy was observed in FS1 and FS-TOO versus
the historical DATATOP dataset’.

Unpublished data indicate there was increased enthusiasm for the
CoQ1pdrug compared to the GPI-1485 drug among the NET-PD investigators
at the outset of FS-TOO, and this is likely to have an impact on subjective
outcome measures. Given the subjective nature of the primary outcome and
the observed changes in clinical practice, a cohort effect may be a legitimate

concern for Parkinson’s disease clinical trials.
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The NET-PD group is enrolling PD patients into the LS-1 study of
creatine versus placebo with 860 subjects/group. The economies of scale by
adding another treatment arm and thereby saving on the required placebo
subjects are clear. However, this may not be possible depending on the
timing of the availability of future compounds ready to be tested in a Phase |l
study. If a treatment arm is to be added into an ongoing study, then this
example illustrates that either a linear model approach or an adaptive

combination test is well suited for such a situation.
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CHAPTER 6. SUMMARY AND CONCLUSIONS

In principle, clinical trials should be conducted according to plan and as
specified in the protocol. Any modification made mid-course to the conduct of
a trial should be approached with caution, as it may introduce bias into study.
That being said, there is often a real need for clinical trial designs that can
accommodate mid-course design changes. The motivation for the work here is
the need within the NET-PD studies for group sequential multi-armed trials
that can handle the introduction of new treatment arms at different times.

As the methodology advances, mid-course design changes (re-
designing a trial) are possible. The penalty for performing mid-course design
changes (based on internal or external data) are the use of non-standard test
statistics which are not sufficient statistics (combination tests of stage-wise p-
values)®. In general, standard guidance documents and education are
needed to fully support the conduct of adaptive clinical trials (particularly
phase Il confirmatory trials)*®. With mid-course design changes, there is a
need for transparency of the decision process combined with the continued
need for blinding of investigators until the study is complete®®. Documentation
of the decision process is essential’’. Although regulatory agencies have

announced their support of such flexible designs, they are in general more
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conservative in regards to their use'"'*. As with any new methodological
development, it takes time to transfer from development to application without
concerns about credibility. There is no doubt that the flexibility of mid-course
decision making makes sense ethically and economically, provided the
inference will not be affected.

The ethical considerations of conducting group sequential multi-armed
clinical trials are significant. By specifying a group sequential design, the
investigators have decided a priori to stop the trial once efficacy has been
determined. Yet as we showed in Chapter 3, when two treatment arms are
equally efficacious, it is likely that one, but not the other, will be found
efficacious at an interim analysis. There may be ethical concerns about
continuing to enroll or follow subjects on placebo to study the second
treatment, once efficacy has been established for one treatment. This is the
rationale for transitioning into a non-inferiority trial with the first treatment as
the standard. Chapter 3 suggests analytical methods for transitioning into a
non-inferiority trial including methods to constrain the type | error rate strongly.
Approaches to increase the sample size are suggested since sample size
necessary for a non-inferiority test is greater than for superiority (given the
same power is desired). The results of the Monte Carlo simulation study
suggest all methods performed similarly, but empirical power was slightly
higher when using an inverse chi-square adaptive testing procedure. When

sample size was allowed to be re-estimated based on the observed effect
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size, then the adaptive procedure required a sample size approximately 50-
80% of that necessary for a non-inferiority hypothesis based on the original
sample estimates. Thus, the adaptive methods allow for a reduction in total
sample size with increased power for testing non-inferiority (compared to a
non-adaptive approach). Further research is needed to correct for the biased
point estimate and its affect on the inference as noted in Chapter 3. Further
research would also be to consider under simulation a linear contrast of the
three groups to test for non-inferiority as a percent retention of the (observed)
active control effect in the context of sequential testing trial®"®® and to consider
the impact of a cohort effect.

In Chapter 4, we see that both adaptive and non-adaptive analytical
methods are possible when a new treatment arm is added mid-study. Methods
for controlling the type | error rate strongly in the presence of various sources
of multiplicity (multiple treatment arms, interim analyses, and design changes)
are reviewed. The possibility of a cohort effect is addressed, and operating
characteristics are compared under various levels of a cohort effect. While in
most cases, the decision to add a new treatment arm is likely based on
external information (such as new results from a pilot study), the possibility of
introducing bias still exists (such as due to increased enthusiasm) and the
analysis approach adopted should account for that'®. The results show that
simply pooling data, from before and after the design change, would not be

prudent. When these methods are applied to real Parkinson’s disease trial
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data in Chapter 5, the conclusions support the findings from Chapter 4 as well
as the findings from the primary trial findings®®7"7.

One limitation of this research is the focus on continuous outcomes (the
normal case). In Parkinson’s disease clinical trials, the standard outcome
measure used is the UPDRS, which is continuous. However, the Phase lI
NET-PD study of creatine is using a global outcome measure. Further
research is needed to extend this work for multivariate outcomes. Another
limitation is the use of only three-arms and only one interim analysis. The
impact of more than three treatment arms and/or more interim analyses was
not considered here.

A limitation of the adaptive testing procedure is the restriction to one-
sided testing. A publication written in German gives a method to perform
doubly one-sided tests, but further research is needed to assess the operating
characteristics for this testing approach’®. Another limitation of adaptive
combination tests (either pre-specified or otherwise) is the loss of unbiased
point and confidence interval estimation'. There have been some
developments in this area, but further research is needed’?.

There is limited literature on group sequential multi-armed clinical trials
or flexible designs for multi-armed clinical trials. It is widely recommended to
perform simulations at the planning stage in order to fully understand the

implications of mid-course design changes since inference becomes more
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complex'%%. This work helps to fill this gap and provide some guidance to

clinical trialists in the Parkinson's disease area.
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