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Abstract
Manufacturing challenges are increasing the demands for more agile and dexterous means of production. At the same time, 
these systems aim to maintain or even increase productivity. The challenges risen from these developments can be tackled 
through human–robot collaboration (HRC). HRC requires effective task distribution according to each party’s distinctive 
strengths, which is envisioned to generate synergetic effects. To enable a seamless collaboration, the human and robot 
require a mutual awareness, which is challenging, due to the human and robot “speaking” different languages as in analogue 
and digital. This challenge can be addressed by equipping the robot with a model of the human. Despite a range of models 
being available, data-driven models of the human are still at an early stage. For this purpose, this paper proposes an adaptive 
human sensor framework, which incorporates objective, subjective, and physiological metrics, as well as associated machine 
learning. Thus, it is envisioned to adapt to the uniqueness and dynamic nature of human behavior. To test the framework, 
a validation experiment was performed, including 18 participants, which aims to predict perceived workload during two 
scenarios, namely a manual and an HRC assembly task. Perceived workloads are described to have a substantial impact on a 
human operator’s task performance. Throughout the experiment, physiological data from an electroencephalogram (EEG), 
an electrocardiogram (ECG), and respiration sensor was collected and interpreted. For subjective metrics, the standardized 
NASA Task Load Index was used. Objective metrics included task completion time and number of errors/assistance requests. 
Overall, the framework revealed a promising potential towards an adaptive behavior, which is ultimately envisioned to enable 
a more effective HRC.

Keywords  Data-driven modelling · Human–robot collaboration · Machine learning · NASA-TLX · Wearable sensors

1  Introduction

The manufacturing landscape is moving towards the pro-
duction of customized and personalized products [1]. This 
is mainly due to companies that prioritized their customer’s 
needs, outperforming corporations that had largely focused 
on maximizing shareholder value [2]. High customization 
and personalization lead to an increase in uncertain produc-
tion volumes, constant variant updates, and shorter produc-
tion cycles [1]. Current automation technology, however, is 
often unable to meet the needs for flexibility and adaptability 
[1, 3]. This is due to the fact that complex assembly tasks 
require levels of reasoning, perception, and dexterity that 

exceed the capabilities of conventional industrial robots [3]. 
As a result, an empirical study on the level of automation 
in the German manufacturing industry shows that approxi-
mately one third of the companies reduced their level of 
automation, as solutions were not flexible enough, and thus, 
not economical [4]. Alternatively, production domains with 
minimal deployment of automation technology exist. For 
example, most final assemblies in the automotive and aircraft 
industry are dominantly completed by manual operations 
[5]. However, due to the inability to maximize productivity 
of manual assembly systems, there is a strong motivation to 
increase the level of automation in these domains [6]. This 
is intended to overcome weaknesses associated with human 
workers such as being susceptible to high workload, fatigue, 
and stress [4].

An opportunity to bridge the gap between manual and 
fully automated systems can be human–robot collabora-
tion (HRC) [3]. HRC combines the characteristic strengths 
of humans (perception, dexterity) and robots (precision, 
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fatigue-proof) to achieve common goals, which generates 
synergizing effects [3]. There are, however, several chal-
lenges that need to be addressed to successfully establish 
HRC. Since both human operators and robots are required to 
work in a shared workspace, safety systems need to ensure a 
worker’s health and safety at all times [7]. Another challenge 
is the effective task distribution and allocation, based on 
state of a human/robot and the skills required [3, 8]. Thus, 
effective teamwork, as in the case of HRC, requires aware-
ness of each member of the system [9]. This is essential for 
both establishing a safe environment and  task planning/
organization [10]. Ideally, the robot and the human would 
“understand” each other, which is particularly challenging 
due to the complementary differences [9]. These challenges 
can be tackled by equipping the robot with a model of the 
human to identify the current state, behavior, and intentions 
[9]. Hence, through the human model, a collaborative robot 
could estimate the human’s goal/intention more accurately, 
and thus, adjust its behavior accordingly.

This paper presents a novel framework to establish data-
driven models of the human for HRC. It combines physi-
ological metrics (wearable sensors), subjective metrics 
(user interface), and objective metrics (time, quality) with 
machine learning to adapt to the uniqueness of each human 
operator and to integrate the gained insights into the col-
laborative system. Thus, it is envisioned to consider human 
factors, such as subject-specific characteristics and behav-
iors of individuals, which could ultimately lead to a higher 
system’s performance.

2 � Background

HRC is widely considered the highest level of human–robot 
interaction, since it includes jointly executed tasks [3, 6]. 
Moreover, it is viewed as the closest and most challenging 

method of interaction [3, 7]. The main goal of HRC is to 
combine the best of both worlds: joining the robot’s preci-
sion, speed, and repeatability with the human intelligence, 
dexterity, and adaptability [3]. Thus, task scheduling and 
allocation is focused not only on dispatching tasks according 
to availability of a resource, but also on reaching an opti-
mum based on different criteria such as assigning the most 
skilled entity, product requirements, and even energy con-
sumption [11, 12]. In contrast to fully automated systems, 
the human worker introduces a new level of uncertainty and 
unpredictability [3]. This includes varying levels of worker’s 
expertise, current state including health and fatigue, as well 
as comfort and ergonomic requirements [13]. Subsequently, 
these requirements are expected to lead to a constant and 
dynamic adjustment in task assignments, as well as during 
the execution of a task (adapted robot behavior) [5]. Overall, 
this enforces the need for accurate models of the human, 
which allow the collaborative robot to better understand its 
human partner.

In order to model human behavior, one needs to take a 
step back and establish a general understanding of what 
influences behavior. For this purpose, [14] developed the 
extended model of goal-directed behavior (EMGB). The key 
essence is that the majority of behaviors are functional and 
aim to achieve a certain goal. As shown in Fig. 1, Goals or 
Desires lead to intentions, which then lead to human behav-
ior [14]. Moreover, the current behavior is influenced by 
past behavior (Frequency and Recency), as well as perceived 
behavior [15]. The Desire/Goal which leads to a behavior is 
described to be directly influenced by the person’s Opportu-
nity, Motivation, and Capability [14, 16], whereas Capability 
can be further split into Physical Capability and Psychologi-
cal Capability [16].

In the context of HRC, human models have taken advan-
tage of different aspects of this model. They can be grouped 
into different categories such as Marr’s framework, which 

Fig. 1   Extended goal-directed 
behavior (adapted) [14]–[16]
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consists of three layers, namely computational, algorithmic, 
and implementation [17].

The main motivation for computational models (first 
layer) is to describe what the human is doing [17]. This is 
described to include clear and transparent mathematical 
functions [9]. For instance, probabilistic models are uti-
lized, based on the goals of a task, to predict human inten-
tions. These models achieved high accuracies for simple 
and intuitive tasks [18]. Yet, the accuracy is expected to 
decrease with an increasing complexity of tasks and activi-
ties. Moreover, HRC aims to take advantage of the human 
strengths such as adaptability and improvisation [3], which 
imply a higher level of complexity and thus potentially 
lower prediction results. Another type of computational 
models are knowledge-based models, which focus on the 
principle that current human behavior is based on previous 
behavior (ontological based models) [9, 19]. The assump-
tions for these models include that their domain knowledge 
of the human behavior is either complete or containing 
the most critical elements [9]. This, however, is widely 
considered unrealistic for tasks that exceed a certain level 
of complexity [20].

The second layer, containing algorithmic models, mainly 
focuses on the processes in human cognition or how the 
human is doing things [9]. This includes levels of reason-
ing, problem solving, and decision making [9, 17]. Despite 
various models being available, establishing algorithmic 
models remains challenging [9]. This is mainly due to the 
unobservable nature of the human thought process [9, 17]. 
Thus, models often remain in a fairly narrow context [9].

The third layer of Marr’s framework consists of imple-
mentation or data-driven models [17], which aim to cap-
ture “real” physical or biological algorithms as they occur 
[9]. One of the applications is to capture limitations of 
human capabilities, such as how stress or the consumption 
of alcohol affects a person’s performance [17]. Implemen-
tation models are described to be at an early stage in HRC 
[3, 9]. Yet, there are approaches, such as to apply electro-
myography (EMG) sensors to detect an operator’s physical 
fatigue in HRC. In that case, a robot could assist to reduce 
the payload and the subsequent stress on human joints [21, 
22]. This is intended to prevent injuries, as well as long-
term health issues related to physical fatigue [21]. Moreo-
ver, it is taking advantage of the characteristic strengths 
of robots to cope well with high payloads, and thus helps 
to establish synergetic effects. Adding EMG sensor data 
has also shown promising potential to improve the map-
ping of force/torque and displacements in human–robot 
co-manipulation tasks [23].

In addition, brain-computer interfaces such as an electro-
encephalography (EEG) in HRC have gained a high research 
interest [3, 24]. In one application, an EEG was being used 
in conjunction with machine learning to decode human 

movement intentions in the brain, prior to their execution 
[25]. Thus, the collaborative robot could adjust its behavior 
accordingly.

Despite these approaches, there is still a large untapped 
potential for data-driven models of the human in HRC. Apart 
from measuring the human physical state with an EMG, it 
would be also beneficial to assess the human mental state 
in HRC, which directly influences the human goals and 
behavior. The Health and Safety Executive 2018 [26] sug-
gests that high levels of mental workload can occur during 
complicated and therefore demanding tasks, as well as dur-
ing repetitive, monotonous, and frustrating tasks [26]. This 
can lead to fatigue, stress, and poor job satisfaction [26]. 
Stress and fatigue are often related to a decrease in task per-
formance [27]. Subsequently, there is an increased interest 
in human factors research such as measuring the perceived 
workload through physiological metrics. In general, physi-
ological metrics offer a variety of measurements on how the 
human body responds to stimulations such as work tasks 
[13]. Although physiological data can provide insights on 
emotional states, due to the peculiarity of human beings, 
interpretations are often challenging [28]. Therefore, it is 
often required to be interpreted in a context or alongside 
with other metrics or an artificial intelligence (AI) [25, 28]. 
Moreover, more than one sensor technology can be used to 
measure a metric [13, 28]. An overview of potential physi-
ological sensors is presented in Fig. 2.

Brain activity can be measured with the aforementioned 
EEG. This technology requires electrodes to be placed 
across the scalp to measure activities in the cerebral cortex 
[29]. Overall, five main frequency bands are distinguished. 
The higher the frequencies, the more active states are associ-
ated with it: from being drowsy, towards relaxed, then active 
thinking and focus, to alertness [25]. Lowered alpha waves 
(8–12 Hz) and increased gamma waves (30–100 Hz) are 
associated with higher workloads and stress [30, 31].

Pupillometry includes the analysis of pupil diameter, 
blink rate, and constant motion, known as saccades [32]. 
An increased period between blinks, for example, can be 
linked to a higher mental workload [13]. Eye-tracking is 
often combined with other physiological sensors [32].

Nose temperature: the human internal temperature cor-
relates with physical and psychological states [33]. The 
reaction to stimuli increases or decreases blood flow which 
leads to variation in skin temperature. The variability in skin 
temperature is often measured with thermal imaging [34]. 
Among other facial regions, the nose tip is regarded to pro-
vide the most consistent indications of stress. Once stressful 
conditions apply, the nasal temperature decreases [33].

As described before, an EMG detects the contradiction 
of muscles. When placed in the face, it can detect tensions 
occurring from a clenched jaw. These readings can be asso-
ciated with stress and a higher workload [28].

1235The International Journal of Advanced Manufacturing Technology (2022) 119:1233–1248
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Cardiovascular signals are measured and monitored with 
an electrocardiogram (ECG). The ECG can detect a heart’s 
responses to stimuli. Responses can be an increased/lowered 
heart rate, heart rate variability, blood pressure, and blood 
volume pressure [28]. The recorded data can be interpreted 
as the occurrence of stress, to measure mental effort, and 
various emotional sates. Generally, an increase in heart rate 
over time or a decrease in heart rate variability is linked to 
a higher mental workload [28, 29]

Respiratory activity such as breathing rate and breathing 
rate variability is strongly linked to cardiovascular activity. 
Measurements track the expansion and contraction of the 
chest [28]. A decrease in breathing rate in combination with 
a higher intensity is attributed to higher levels of mental 
workload [35].

Skin conductance activity (SCA) or galvanic skin 
response relies on the electrical conductivity that occurs 
when the human body produces sweat [28]. Larger amounts 
of sweat lead to a higher conductivity. Thus, an increase 
of SCA is associated with an increase in mental workload 
[35, 36]. A disadvantage, however, is that SCA is typically 
measured on the finger tips [28]. This could conflict with 
a worker’s ability to perform a task in a human–robot col-
laborative scenario.

Muscular and skeletal positioning tracking can be used 
as a physiological measurement to link a person’s posture 
to a mental state [28]. Yet, the linkage between specific pos-
tures and mental workload is currently considered challeng-
ing [37].

Although physiological sensor data is often grouped in 
categories, which might lead to the impression that consist-
ent interpretations might be established, they often lack a 
monolithic interpretation, due to a wide variety of subject-
specific characteristics and noise within the data [28, 29, 
38]. Nevertheless, with advances regarding machine learn-
ing, there is the opportunity to further utilize these sensor 
technologies, and to establish a more accurate, real-time 
model of the human.

3 � Framework architecture

In this section, an overview of the proposed adaptive 
human sensor framework for human–robot collaboration 
is presented. Since HRC is often applied in a manufactur-
ing context, it is essential to not solely focus on the human 
factors, but to consider the collaborative robot’s configura-
tion and product requirements as well, to obtain an optimal 

Fig. 2   Human physiological 
interfaces (adapted) [28]
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solution. Thus, awareness of all members in the collabora-
tive system is required. On a top level, this could be organ-
ized by existing technologies, such as agents, as shown in 
Fig. 3. Essentially, agents form a digital representation of 
each physical entity to model the state, goals, and behavior 
in the digital domain [39].

While the concept of using agents in HRC itself is not 
new [3, 40], the stored information and behavior could 
be modelled more accurately, based on data-driven mod-
els, especially of the human operator. This would offer 
to model the characteristic strengths and weaknesses of 
humans, such as, for example, the dynamic nature of per-
ceived workloads. These perceived workloads can occur 
either during very demanding tasks, or on the opposite 
scale, during monotonous and repetitive tasks. Overall, 
this is envisioned to increase productivity of the setup 
while maintaining the system’s overall flexibility.

The product agent initiates the global optimization 
and task distribution. Its main goal is to be manufactured 
to the quality standards of the company. The quality 
requirements can only be achieved if the required skills 
are matched to the product requirements. Consequently, 
the product would aim to allocate the most skilled agent 

(human or robot). This, however, could conflict with the 
required assembly time and subsequent costs. Therefore, 
the conflict between achieving a high quality and meet-
ing the set order deadline needs to be implemented. Thus, 
overall, the product agent represents the manufacturing 
requirements or objective metrics. Objective metrics in 
human-centered experiments are commonly recorded 
as quantitative measures to establish comparable values 
across different individuals [41]. They are often used for 
the rating of task performance as measurements for com-
pletion time, accuracy, gauging error, and successfulness 
of the task [41].

The collaborative robot (cobot) agent holds the skills and 
goals of the robot’s current configuration. This configura-
tion does not only include software and pre-programmed 
task sequences. It is also based on the physical configura-
tion of the robot, such as the tool attached to the robot's 
end-effector. Changing the configuration results in manual 
efforts to re-equip and reprogram a robot. Hence, the cobot-
agent’s goal is not only to perform mainly standardized tasks 
(e.g., pick and place), but also to minimize reconfiguration 
as much as possible, which is aligned with robot’s char-
acteristic strengths to cope well with repetitive tasks. The 

Fig. 3   Top level architecture of the framework
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opposite, as in adapting to changes, is widely considered a 
robot’s weakness. Therefore, the cobot-agent aims to avoid 
reacting to unexpected events. This duty would be shifted 
over to the human-agent.

The human-agent is considered the most complex agent 
in the system, since human operators have different indi-
vidual behaviors, skills (qualification, experience), and 
goals. Moreover, these behaviors and skills are expected to 
change over time. Consequently, an agent would be required 
to continuously learn the characteristics for each individual 
human-being. It is also required to adapt to new human 
behaviors. In order to measure human states (physical and 
psychological capability) that are related to goals and behav-
iors, two types of metrics need to be acquired: subjective 
measurements and physiological data [28]. Individually, the 
significance/impact of each metric is rather limited due to 
the complexity of the human [28]. Advantages and disadvan-
tages of each metric are analyzed in the following.

Subjective measurements typically include self-report 
measures such as questionnaires, surveys, and scales [36]. 
In the current context of predicting perceived workload, the 
NASA Task Load Index (TLX) was chosen, as it incorpo-
rates subjective ratings among six domains of perceived 
workload. This includes physical demand, mental demand, 
temporal demand, effort, performance, and frustration [42]. 
A disadvantage of any subjective metric, however, is that 
data is collected in retrospect, in which participants are 

expected to remember, interpret, and explain experiences, 
which is susceptible to cognitive biases [43]. Yet, stand-
ardized subjective metrics such as the NASA-TLX aim to 
eliminate this bias to the utmost [42].

Physiological measurements can be conducted with a 
variety of sensors, introduced in Sect. 2. The sensors each 
offer individual advantages and disadvantages, depend-
ing on the context. However, the sensory data often lacks 
a single monolithic interpretation [28]. In order to cope 
with this challenge, machine learning algorithms are 
utilized to process and interpret physiological measure-
ments, while minimizing manual programming and fine-
tuning efforts [21].

Figure 4 provides an overview of the proposed human-
agent incorporating a data-driven model, which continu-
ously acquires and adapts to the human operator. The 
model aims to provide standardized interfaces, plug-
and-play of new sensor technologies, and self-learning/
adjusting capabilities, based on the acquired data.

3.1 � Physical layer

At the lowest level, in the physical domain, data is acquired 
from physiological sensors. In the following experiment, a 
mobile electroencephalogram (EEG), an electrocardiogram 
(ECG), and a respiration sensor are included to predict per-
ceived workloads. This sensor selection is based on the fact 

Fig. 4   Human-agent sensory framework
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that they delivered promising results in previous research 
[13, 25, 28]. However, the selection is not limited to these 
sensors; other physiological sensors can be used, depending 
on their suitability for the context.

Generally, the main goal should be to minimize the intru-
siveness of sensors and their subsequent interference with an 
operator’s ability to perform tasks. Ideally, the sensors would 
allow a hands-free measurement, as this allows for operators 
to complete their tasks without hindrance.

3.2 �  Communication layer

In a second step, the sensor data is streamed through the 
communication layer. In the current setup, the OPC Unified 
Architecture (UA) is chosen, as it as a platform independ-
ent service-oriented architecture [44]. Thus, this allows for 
adding or removing sensors to the framework, when needed 
(plug-and-play). Moreover, OPC UA enables communica-
tion security, information modelling tools, and the ability 
to define a so-called value transmission. Within the value 
transmission, data structures and sampling intervals can be 
defined. This is particularly useful for processing human 
physiological data, since it often follows sinusoidal patterns, 
which requires an interval-based wave transform, before it 
can be interpreted [28]. In addition, the recorded data can be 
stored in databases, which allows for collecting data during a 
manufacturing process and to train machine learning classifi-
ers both offline and online. An important consideration when 
storing physiological data needs to be that it is classified as 
sensitive personal data [28]. Therefore, it is essential to store 
the data in compliance with data protection regulations.

Overall, the selection of an appropriate technology to 
implement this communication layer is one of the crucial 
tasks regarding the complexity, speed, and performance of 
industrial distributed systems [45].

3.3 � Data analysis and interpretation layer

The data analysis layer utilizes machine learning to extract 
relevant patterns and to predict a human state, which influ-
ences the human-agent’s behavior, as depicted in Fig. 4. 
Given that each physiological sensor requires one or more 
data processing services, the data-driven model needs to 
allow for multiple services being plugged-in, as well as 
merging their results. The processing is executed in three 
steps: filtering, an embedded AI, and a weighted fuzzy logic-
based voting at the end.

Depending on the sensor technology, the data prepara-
tion/filtering might be more intensive. As an example, EEGs 
are considered delicate devices that tend to measure large 
quantities of external noise [31]. Therefore, high filtering 
efforts are expected. ECG devices, on the other hand, often 
already provide absolute values of the heart rate and heart 
rate variability, which require little to no filtering [28].

After the filtering and preparation, the data can be inter-
preted. For this purpose, three main processing and machine 
learning techniques were identified, which can be applied 
based on the data complexity and volume, shown in Fig. 5.

3.3.1 �  Standard methodology

A common methodology for processing physiological data 
includes signal acquisition with a sensor, before splitting the 
data into intervals. Based on the sensor sampling rate and 
the context, different window sizes can be chosen. EEGs 
typically have a high sampling rate, which would allow for 
using smaller detection windows [28], whereas ECG sen-
sors would need a larger window, since a heart rate of < 60 
beats per minute implies less than a heartbeat per second. If 
an application is time critical, the window size needs to be 
minimized, as it adds to the processing time required.

Fig. 5   Human sensory data 
processing techniques
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Afterwards, some physiological sensor data requires pro-
cessing via a wavelet transform, often Fourier transform. 
This is mainly due to the fact that many physiological sen-
sors provide data in sinusoidal patterns [28]. Consequently, 
the absolute values for the underlying frequencies can be 
extracted. These values are used to train and test a machine 
learning classifier offline, before its use in an online appli-
cation. In literature, it is described that the processing 
technique such as fast Fourier transform can have a greater 
impact on the detection accuracy, than the classifier itself 
[46]. Nevertheless, the selection of a suitable classifier is 
essential to optimize processing time and to avoid over-
fitting. Many applications based on this methodology use 
Support Vector Machines (mostly with a Gaussian kernel) 
[28]. The frequent application of this classifier suggests it 
is somewhat considered state of the art. After training and 
testing of the classifier, it can be applied online.

The main advantage of this methodology is the high 
transparency, as the Fourier transform results can be visual-
ized and manually inspected. Disadvantages, however, are 
the high manual tweaking and programming efforts. Moreo-
ver, one of the main issues identified in [46] regarding the 
classification of physiological data is the deviation between 
the classification accuracy offline and an online application. 
This can even be observed during different recording ses-
sions for the same individual [46].

3.3.2 �  Artificial neural network

In contrast to the common methodology, there are also 
approaches in which raw sensor data is directly streamed 
into a classifier [25]. Thus, the classifier needs to cope with 
the noise and learn to identify the relevant constellation of 
features by itself [46]. In order to handle the complexity and 
even the time-based shape of the data, classifiers need to 
be fairly advanced. Mostly neural networks are utilized for 
these purposes, including specified subcategories of neural 
networks such as recurrent neural networks for time series-
based prediction [25].

One of the main advantages of this approach is the low 
fine-tuning effort. The framework is coping with the raw 
data and adapting to the noise, it might even identify pat-
terns that could not be recognized in a manual process. Dis-
advantages of this methodology can be the large amount of 
training data required to train a neural network. Moreover, 
after the training process, the model itself is considered a 
“Black Box,” meaning the classification logic cannot be 
visualized and thus it is often difficult to comprehend what 
constellation led to a decision. A trained neural network is 
less likely to have (severely) varying detection accuracies 
between offline and online sessions, and still, the detection 
accuracy can decrease during new recording sessions [46].

3.3.3 �  Incremental learning

Incremental learning algorithms aim to address the limita-
tions of varying classification results between offline and 
online systems by performing learning and classification 
operations online only. Moreover, it offers the ability of 
life-long learning, which allows to further tune the model’s 
structure and performance over time. Thus, it allows to adapt 
to subject-specific characteristics within human sensory data 
[22, 47]. In addition, no prior knowledge about the number 
of classes or instances is required, which allows to drasti-
cally lower the manual programming efforts [47]. There are, 
however, disadvantages to incremental learning such as the 
plasticity-stability dilemma, which implies the model has 
to obtain new knowledge, while at the same time, it must 
not forget previous knowledge. Moreover, the more com-
plex a model becomes, the longer it will take to perform the 
learning and classification operations [22, 47]. Subsequently, 
these issues need to be taken into account, when applying 
incremental learning for human sensory data. Nevertheless, 
incremental learning offers the potential to significantly 
reduce manual programming and fine-tuning efforts, when 
adding and integrating various physiological sensors to the 
human-agent.

3.4 �  Reinforcement learning layer

After processing available human-agent sensory data using 
suitable data processing services, the sensor data can be 
mapped with relevant subjective analysis through the rein-
forcement interface. This also enables to have a different 
set of machine learning models (services) that use the same 
sensor data and features to predict different subjective met-
rics. Consequently, each service can be weighted based 
on its prediction performance. Such an approach is called 
ensemble learning, which is a set of weak learners, where a 
prediction is based on voting. The ensemble learning estab-
lishes a weighted voting of each sensor/service, and then 
the final prediction is made based on the majority of votes. 
The weight of a service ranges from 0 to 100. A correct 
prediction of the human current state will result in a minor 
increase in weight. Yet, an incorrect prediction will lead to 
a more drastic decrease in weight (penalty). To determine 
the correctness of the predictions, the classification results of 
each sensor are compared with subjective metrics, which are 
collected through a user interface. In the current context, it 
is displaying a digital version of the NASA-TLX (perceived 
workload). The overall subjective score is then used as input 
for this reinforcement learning (adjusting the weights).

When establishing a subjective interface, it is essential 
to minimize the frequency of subjective metric requests, as 
they would distract a human operator from their current task. 
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Also, a constant demand for subjective feedback could lead 
to an increase in stress and thus, higher perceived workloads. 
Therefore, a subjective metric user interface could only be 
triggered, once the individual sensor weights show a large 
deviation.

3.5 �  Human physiological state layer

In the proposed framework, the state within the human-agent 
is represented by a set of services that adapt to the human 
behavior through the weighting mechanisms. The human-
agent will then change/adjust its behavior and negotiations 
with other agents, accordingly, based on the physiological 
state. In the current context, a high perceived workload will 
result in the human-agent negotiating a change in tasks for 
its human operator or to trigger an assistant request of the 
robot, which aims to reduce the perceived workload of the 
operator. A low perceived workload will lead to the human-
agent requesting more tasks or a more demanding task for 
its human counterpart. Thus, the human-agent aims to keep 
the perceived workload at an optimal level.

Since the product agent stores information on quality and 
assembly time, it can provide insights on (objective) task 
performance. The task performance could then be corre-
lated with the physiological state of the human operator. 
Moreover, the physiological state of a human operator could 
also be linked with the weights of each physiological sensor. 
Thus, the sensor weights would create an easily interpretable 
fit-for-purpose sensor overview. This self-learning capabil-
ity of the system could offer the potential to reduce manual 
programming and tweaking efforts. To test and validate the 
proposed adaptive framework, an experiment was conducted 
including two assembly experiments.

4 � Experimental design and setup

The experimental design aims to demonstrate the frame-
work’s adaptive behavior by creating a comparison between 
two distinguished scenarios. In the first scenario, partici-
pants are expected to perform a manual assembly task with-
out assistance of the robot. Higher perceived workloads 
are expected, as the task must be completed as quickly as 
possible, and participants are to remember all assembly 
steps. The second scenario contains a robot-assisted assem-
bly task. Pick-and-place tasks are completed by the robot, 
which delivers the individual parts in the correct order. The 
human operator is tasked to assemble the pieces correctly. 
This highly assisted task is expected to create lower per-
ceived workloads for participants. Thus, this would allow 
for the framework to predict different perceived workloads 
during the two scenarios. To avoid bias, participants with an 

odd number would perform the manual assembly task first 
and then the collaborative task. Participants with an even 
number, on the other hand, would perform the collaborative 
task first, and then the manual task.

Throughout the experiment, participants were equipped 
with wearable sensors, namely an Emotiv Epoc + EEG and 
a BioHarness 3 (ECG and Respiration Sensor). Figure 6 
shows the task sequence, as well as the experimental setup 
in a shared human–robot cell, composed of a UR10 col-
laborative robot with a set of parts to be assembled. To 
correlate objective, subjective, and physiological metrics, 
all three are needed to be incorporated into the experi-
ment. Therefore, objective measurements such as task 
performance are acquired by the experimental supervisor. 
Subjective metrics are gathered in the form of the NASA-
TLX questionnaire after the completion of each scenario. 
Physiological data is collected in the form of brainwave 
activity (EEG), heart rate (ECG), and breath rate. The sen-
sory data was automatically collected and stored through 
the proposed framework. Afterwards, machine learning 
was applied to identify features within the physiological 
data that correlate with the perceived workloads.

5 � Results and discussion

This section presents the results of the validation experi-
ment, as well as the learning outcomes of the proposed 
framework. In total, 18 participants took part in the experi-
ment, 10 female and 8 male participants between 22 and 
59 years of age (average: 25.5 years). Almost half of the 
participants had no prior experience working with industrial 
robots. Lack of experience has been indicated to affect a par-
ticipant’s performance in experiments [41]. Yet, no detecta-
ble correlations between lack of experience and performance 
could be found in the experimental data. Throughout the 
experiment, data from three different sensors was collected: 
namely EEG, ECG, and respiration sensors.

For the analysis of the EEG data, the channels F7, F3, 
FC5, AF3, AF4, FC6, F4, and F8 were used, since litera-
ture suggests higher detection accuracy, when measuring 
workload-related signals over the frontal lobe [31].The 
analysis results of the processed EEG data, using a notch 
filter (to filter power line noise) and fast Fourier transform, 
showed a difference in alpha waves (8–12 Hz) during both 
scenarios across all participants, in which lower alpha waves 
occurred during the manual task and higher alpha waves 
during the collaborative task, as shown in Fig. 7 part A. 
This was expected, as literature suggests lower alpha wave 
occurrences during an increased mental workload [30]. Sim-
ilarly, higher amounts of low-range gamma waves (> 30 Hz) 
occurred during the manual task, and lesser occurrences 
were detected during the collaborative task, shown in Fig. 7 
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part B. This result was also anticipated, as an increase in 
gamma waves can be observed during an increased mental/
perceived workload [31].

The ECG data showed a common pattern among different 
participants of slightly higher heart rates during the manual 
task and somewhat lower heart rates during the collabora-
tive task, as shown in Fig. 7 part D. The only exception is 
participant 17 who showed an increased heart rate during 
the collaborative task. Overall, these results are expected, 
since literature suggests an increase in heart rate during a 
higher perceived workload [13, 28]. Moreover, a difference 
between participant’s individual heart rates was also antici-
pated. For participant 6, heart rates between 48 and 57 beats 
per minute were observed. Opposing to that, participant 10 
showed a heart rate of 108 to 117 beats per minute. Thus, 
this highlights the uniqueness of human beings and the sub-
sequent need to establish individual models in order to cor-
rectly interpret these values.

In contrast to EEG and ECG data, the respiratory data 
shows no clear trend among the participants between the two 
different scenarios. A lowered breath rate is described to be 
an indicator of a higher perceived workload [35]. However, 
only participants 4, 7, and 13 showed clearly distinguishable 

signals during the manual task, as shown in Fig. 7 part C. 
This result is rather unexpected as respiration is described to 
be strongly linked with ECG data [13, 28]. Yet, overall, the 
ECG data showed a more consistent trend among different 
participants. Consequently, low machine learning prediction 
accuracies would be expected based on the acquired respira-
tion data.

Regarding heart rate and breath rate, it needs to be con-
sidered that the observation window, in this experiment, was 
between 36 and 154 s. This is fairly short, considering ECG 
measurements for medical applications are typically con-
ducted over several hours [13, 28]. Therefore, it is expected 
that a longer observation period would lead to more distin-
guishable results.

Rather surprising results were achieved, at first, in the 
follow-up questionnaire (NASA-TLX) after the experiment, 
shown in Fig. 8 part A. The EEG and ECG data indicated 
higher workloads during the manual task and lower work-
loads during the collaborative task. In total, 11 out of 18 par-
ticipants confirmed this trend in their subjective observation. 
However, participant 2 described the perceived workload as 
considerably higher during the collaborative scenario. Yet, 
there are no indications in the physiological data to back up 

Fig. 6   Experimental design and setup
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this observation. The participant suggested that the subjec-
tive high perceived workload might be due to a low trust in 
the system/robot.

Participants 1, 7, 9, 15, and 18 described the perceived 
workload as equal during both scenarios. This would lead 
to two possible conclusions: either participants have a poor 
judgement of their perceived workload in retrospect, as one 
potential explanation [43]; or that the physiological sensors 
did not capture all relevant features to correctly predict those 
participant’s perceived workload. Further analysis showed 
that the second conclusion points towards being correct. 
Overall, the NASA-TLX incorporates physical demand, 
mental demand, temporal demand, effort, performance, and 
frustration [42]. These metrics are aggregated to predict per-
ceived workload. However, the individual metrics showed 
a larger degree of variation between the manual and col-
laborative scenario, as shown in Fig. 8 parts B and C (the 
performance rating is inverted).

Participants often rated the physical demand, mental 
demand, and effort higher during the manual task, as shown 
in Fig. 8 parts B and C. Though, the reason why the overall 
perceived workload is similar, for some participants, is due 
to their high rating of either temporal demand or frustration 
during the collaborative scenario. The participants stated 
this was either due to the robot moving too fast or too slowly. 
Further analysis and experiments could investigate how a 

collaborative robot’s speed affects the overall perceived 
workload of the human operator. Moreover, this highlights 
the potential for an adapted robot behavior, which adjusts 
its speed based on the preference and working pace of the 
human operator.

Overall, the average subjective performance rating was 
higher (inverted in figure) during the collaborative scenario 
than during the manual task, which was also observed in the 
objective data (Fig. 9). The mean duration of the manual 
task was 58 s and 52 s for the collaborative task. Also, 6 
mistakes and 9 assistance requests were recorded during the 
manual scenario. Only four assistance requests and no errors 
were observed during the collaborative task. Thus, this data 
points towards slightly higher performances during the col-
laborative scenario.

Demonstrating the adaptive ability of the framework 
through prediction of perceived workloads might not be fully 
achievable from this data, due to do some participant’s higher 
rating of mental demand, physical demand, and effort during 
the collaborative scenario. This led to similar or equal per-
ceived workload scores during the different scenarios, despite 
having different causes. Thus, to test the framework, an addi-
tional metric was established that considers individual scores 
of mental demand, physical demand, and effort (MPE).

In order to validate whether the framework can learn 
to predict either perceived workload or MPE from 

Fig. 7   Physiological results
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physiological data, a testing scenario was developed. For 
each participant, a sequence of five second intervals of the 
collected data was streamed into the framework, in the same 
sampling rate as it was acquired. This consisted of both the 
fully manual and the collaborative scenario. Each sensor 
was included in a service, which included preprocessing and 
predictions based on machine learning. For the EEG data, 

the preprocessing consisted of a notch filter and fast Fou-
rier transform. The resulting alpha and gamma waves were 
used to train a support vector machine (SVM). The ECG and 
respiration data were filtered based on the confidence level 
within the sensor data, which was provided by the device 
itself. For classifying sensor data, also an SVM was chosen 
with a Gaussian kernel in each service. Yet, other classifiers 

Fig. 8   Subjective results (TLX)
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such as random forests and neural networks delivered similar 
results.

In a first step, the SVM was trained offline based on an 
80/20 split, which means that 80% of the available data was 
used to train a classifier and 20% for testing. In the con-
text of physiological data, however, it is important to not 
break the time domain of the data as it often follows the 
aforementioned sinusoidal pattern. Otherwise, unrealistic 
constellations (different wave patterns) might occur. Thus, 
instead of performing an 80/20 split on raw data, the split 
was performed based on the windowed, Fourier transformed 
intervals. Finally, the trained classifiers were included in a 
service, and the experimental data was streamed into this 
service in the same sampling rate as it was acquired, to test 
the online classification capabilities. After each 5-s interval, 
the prediction of a sensor/service is compared with the sub-
jective data to adjust the services weights using reinforce-
ment learning, in which a correct prediction increases the 
weight of a sensor. An incorrect prediction, on the other 
hand, will severely reduce the weight of a sensor, as a pen-
alty function. Subsequently, based on the associated weight 
of a sensor, its suitability in the current context could be 
evaluated.

To test the frameworks’ adaptive capabilities, two test-
ing cases were implemented, based on the experimental 
data, shown in Figs. 7 and 8. On one hand, this included an 
obvious difference in perceived workload (participant 10). 
Whereas the participant indicated high perceived workloads  
during the manual scenario, and lower levels during the col-
laborative task, as expected. And, on the other hand, a minor, 
inverted difference in perceived workload (participant 15),  
which was not aligned with the expected outcome. Although 
participant 15’s subjective rating could be influenced by 
cognitive bias, the participant was not confronted with the 
result. In fact, this constellation was considered an ideal 
testing scenario, to evaluate the framework’s capability to 
raise awareness of different metrics not correlating. Figure  
10 parts A and B show the comparison of the perceived  
workload prediction between participants 10 and 15.

Participant 10 had a perceived workload score of 98 dur-
ing the manual task and 17 during the collaborative task. 
Subsequently, the weight of the EEG sensor is continuously 
increased, whereas the weight for breath rate is reaching a 
weight of zero. The heart rate is correlating, except for one 
5-s interval. Based on these learning outcomes, the EEG and 
ECG would be considered the most suitable sensors in that 
context. Also, the framework would be able to distinguish 
the manual from the collaborative scenario, based on this 
data.

Participant 15 had a perceived workload score of 18 dur-
ing the manual scenario and 20 during the collaborative 
task. Figure 10 part B shows that all physiological sensors 
were ineffective to predict the states. Thus, a consistent per-
ceived workload prediction across all participants was not 
possible with the sensors used. However, this is mainly due 
to slightly higher temporal demands and frustration levels 
that were observed during the collaborative scenario. In 
contrast to perceived workloads, considering the individual 
subcategories, MPE showed a more consistent result among 
all participants. Despite the fact that both participants had 
different perceived workload scores, the framework could 
predict all 41 intervals correctly regarding MPE for partici-
pant 10; and all 31 instances correctly for participant 15. 
This demonstrates the framework’s ability to compare its 
predictions with subjective measures and thus, to adjust the 
weights of sensors. In addition, the framework established 
an awareness of discrepancies between the subjective input 
and physiological metrics, as in the case of participant 15 
for predicting perceived workloads.

Overall, these results highlight the complexity of meas-
uring the human and establishing common interpretations 
among different individuals. Despite participants completing 
the same tasks, their subjective and physiological responses 
showed large variations, as shown in Figs. 7 and 8. Never-
theless, this can also be seen as an opportunity. Since par-
ticipant’s perceived workloads are described to affect task 
performance, adapting to the unique preferences of a human 
operator could enable a higher system’s performance. Thus, 

Fig. 9   Objective results
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in a next step, the framework, including an agent-based task 
allocation/organization, will be applied online. This would 
allow for validating whether the proposed framework ena-
bles a higher productivity than existing systems.

6 � Conclusion and future work

A novel adaptive sensor framework was introduced to estab-
lish data-driven models of the human for HRC. The frame-
work incorporates subjective, objective, and physiological 
metrics in conjunction with machine learning to process 
sensory data, as well as to perform reinforcement learn-
ing, based on the operator’s subjective input. By giving the 

framework the ability to learn and adjust itself, it offers the 
potential to reduce manual fine-tuning efforts when estab-
lishing data-driven models. Since the framework offers a 
plug-and-play architecture, it could be applied to predict 
various physiological states of the human operator, with 
different wearable sensors, depending on the context. Thus, 
it enables various potential use cases of implementation/
data-driven models according to Marr’s framework in HRC.

To test the framework’s adaptive behavior, it was being 
used during two assembly scenarios (manual and collabo-
rative) to predict perceived workloads of the human opera-
tor. Perceived workloads are described to have a substantial 
impact on human task performance. Although the scenarios 
were expected to provide clear and distinguishable results 

Fig. 10   Framework learning 
results
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(high workloads during manual scenario, low workloads 
during collab scenario), this did not apply across all par-
ticipants. Some participants rated the perceived workloads 
equally, due to the collaborative robot either moving too fast 
and causing high temporal demands or the robot moving 
too slowly which caused frustration. Thus, further research 
could investigate how adaptive robot speeds could affect the 
human operator’s performance.

In addition, participants showed variation in both physio-
logical signals and subjective perception, despite completing 
the same tasks, which highlights the uniqueness of human 
beings and their subsequent distinct behavior. By adapting 
to the individuality and the dynamic nature of human states 
and behavior, data-driven models of the human operator 
are expected to provide a more accurate representation of 
the human goal-directed behavior. This is due to the use of 
subject-specific, real-time measured values that are inter-
preted by machine learning models. Allowing the robot to 
adapt and adjust its behavior is envisioned to enable a higher 
system’s performance.

Overall, the framework depicted in Fig. 4 could be further 
expanded in mainly two ways, namely, on the horizontal 
scale and the vertical scale.

On a horizontal scale, a wider range of physiological sen-
sors can be deployed to more accurately predict the state of 
the human operator. As such, this could include pupillom-
etry or skin conductance activity, among others. Moreover, 
two data services originating from one sensor device are also 
plausible. For instance, an ECG could provide both heart 
rate and heart rate variability. Therefore, this would allow 
for comparing different physiological metrics, even within 
the same sensor data.

On a vertical scale, a sensor data stream could be inter-
preted by different machine learning algorithms. Thus, this 
would allow for comparing the performance of more sim-
ple classifiers, such as SVMs with advanced deep learners 
such as LSTM-RNN’s. In addition, the framework could be 
utilized to predict a wider set of human states, such as the 
physical state for example. For this purpose, EMGs could be 
deployed to predict the muscular fatigue of a human opera-
tor. In this case, a collaborative robot could assist the opera-
tor during the manipulation of heavy payloads, to establish 
a more ergonomic environment.

In a next step, the framework including the human-agent 
incorporating a data-driven model for perceived workloads 
will be applied online. Thus, it would allow for quantifying 
the potential benefit of an adaptive behavior over existing 
solutions regarding task allocation/organization.

In conclusion, HRC still offers a large unexplored poten-
tial, especially regarding the integration of the human. 
Advances in sensor technology in conjunction with 
machine learning offer promising potentials to further push 

boundaries towards a more synergetic collaboration between 
human operators and robots.
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