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Abstract

During the last decades, renewable energy resources have become an ever increasing part

of the world wide power generation and especially energy produced by wind turbines

has captured a significant part of this power production. This large penetration of wind

power has caused increased focus on the generated power quality and controllability.

A consequence of this increased focus has been an ever increased set of requirements

formulated in national grid requirement. These requirements has forced wind turbines

to evolve from a simple generator on a stick into complicated miniature power plants -

an evolution which has taken place in a very short time. Further, besides the increased

complexity of the wind turbines, the tendency during the late nineties and in the be-

ginning of the new millennium has been, that the size of the turbines has doubled every

third year - a progress putting a very high stress on the design engineers employed in the

wind industry. Such a progress may force design engineers to adopt common practice

from more or less related technologies rather than finding the optimum solution for the

specific application. For instance when applying power electronic converters to wind

turbines in order to comply with requirements, almost all manufactures has chosen a

solution based on the well known two-level voltage source inverter.

The main focus in this thesis is to establish a simple, fast and accurate simulation

tool for evaluating different converter topologies for use in a wind turbine based on the

doubly-fed induction generator. The objective is to be able to compare the turbine

efficiency when using the different converter topologies. The thesis has treated four con-

verter topologies - the commonly used back-to-back two-level voltage source converter,

the more un-matured matrix converter, the back-to-back transistor clamped three-level

voltage source converter and finally the back-to-back diode clamped three-level voltage

source converter.

To evaluate the consequences of applying different converter topologies in a wind tur-

bine application based on the doubly-fed induction generator sufficiently detailed models

of the surrounding wind turbine components such as the generator, the gear box, the

blades and the transformer have to be derived. The first part of the thesis has treated the

modeling approach applied on the surrounding components. The models are wherever

possible based on the governing equations with coefficients obtainable from standard

data sheets.
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The most substantial part of the thesis has been dedicated to the modeling of the con-

sidered converter topologies. For each of the considered converters, analytical models

has been derived representing the component losses. The component losses within the

considered converters depend on the specific turbine design as well as on the operating

conditions such as generator speed, generated power, inverter power factor and modu-

lation method. Regarding modulation methods, an in-dept investigation on existing as

well as new modulation methods are provided and especially for the latter three con-

verter topologies a lot of efforts have been put into the development of new modulation

methods. Actually, for the matrix converter three new modulation schemes has been de-

rived and evaluated, whereas for the three-level inverter topologies four new modulation

methods have been proposed. The functionality of most of the developed modulation

methods have been demonstrated on an experimental test-setup. Apart from the loss

modeling approach, models and methods to estimate the average temperature and peak

temperature of the individual components without entering time consuming time-step

simulations has been derived - methods applicable to determine the actual design margin

for a specific converter design. Although not a part of the thesis these fast predicting

thermal models will in a longer term be usable to estimate problems related to power cy-

cling and thermal cycling of the power semiconductors within a specific turbine design.

To obtain a fair comparison some initial design guidelines for each of the converters has

been outlined concerning components ratings, filter design issues and choice of switching

frequency.

Finally, all the developed wind turbine component models have been implemented in a

simulation tool D′rives enabling a fast and fair comparison of the considered converter

topologies. Besides enabling a comparison on the turbine efficiency (and turbine compo-

nent efficiency), the tool enables an investigation on the actual design margin in terms

of determining the component peak temperature for a given load profile. Actually, for a

fair comparison, the design margin for each converter should be in the same range. The

tool has been demonstrated on selected turbine designs and for the present designs, it

appears that the back-to-back transistor clamped three-level voltage source converter

actually is the best choice (although insignificant) when considering the turbine effi-

ciency - or more specific the annually generated energy. However as will appear during

the thesis, several degrees of freedom exist within the turbine design and clearly, changes

within the design may change the results obtained from the present design examples.



Resumé

Gennem de seneste årtier har energiproduktion baseret p̊a vedvarende energikilder udgjort

en stadig stigende andel af den samlede globale energiproduktion. I elproduktionen har

især vindmøller vist sig at være et næsten konkurrencedygtigt alternativ til traditionel el-

produktion - en konkurrencedygtighed, som til stadighed øges. Den stigende udbredelse

af vindmøller sammenholdt med den mere eller mindre uforudsigelige natur af vinden

har imidlertid bevirket at tilslutningsbetingelserne for vindmøller er skærpet væsentligt

- en udvikling som p̊a relativt kort tid har bevirket at vindmøller har udviklet sig fra at

være en ”simpel generator p̊a en pind” til et kompliceret miniaturekraftværk. Foruden

de skærpede tilslutningsbetingelser har tendensen inden for vindmølleudvikling gennem

slutningen af halvfemserne og i begyndelsen af de nye årtusinde været at møllestørrelsen

er fordoblet hvert tredje år - en udvikling som har holdt vindmølledesignere under et

voldsomt pres. Under s̊adanne forhold tvinges designerne til at adoptere løsninger fra

beslægtede fagomr̊ader frem for at søge den optimal løsning til netop deres applikation.

Eksempelvis har stort set alle fabrikanter valgt at benytte en traditionel to-niveau kon-

verter i bestræbelserne p̊a at opn̊a et system med variabelt omløbstal.

Fokusomr̊adet i denne afhandling er at etablere et simpelt, hurtigt og nøjagtigt simu-

leringsværktøj med henblik p̊a at kunne evaluere forskellige konvertertopologier til an-

vendelse i en vindmølle applikation baseret p̊a den dobbelt fødede asynkrongenerator.

Målet er at opn̊a en fair sammenligning mellem de betragtede konvertere hvor sam-

menligningsparameteren er det samlede systems virkningsgrad eller mere præcist den

årlige energiproduktion. I afhandlingen sammenlignes 4 forskellige konvertertopologier

- den typisk anvendte back-to-back koblede spændingsstive to-niveau konverter, den

væsentlig mindre udbredte matrix konverter, og endelig 2 afarter af den back-to-back

koblede spændingsstive tre-niveau konverter.

For at kunne evaluere konsekvenserne af at anvende de forskellige konvertertopologier

i en vindmølleapplikation baseret p̊a den dobbelt-fødede asynkrongenerator er det nød-

vendigt at modeldanne de øvrige systemkomponenter i en tilstrækkelig detaljeret grad.

Det øvrige system best̊ar i væsentlige træk af generator, gearkasse, vinger og transforma-

tor. Den første del af afhandlingen er dedikeret til denne modeldannelse og modellerne

er primært baseret p̊a velkendte ligninger med let opn̊aelige ligningskoefficienter.
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Det væsentligste bidrag fra denne afhandling ligger i selve modeldannelsen af de be-

tragtede konvertere. For hver af disse konvertere er der udledt analytiske udtryk for

effekttabene afsat i de enkelte komponenter. De afsatte tab afhænger af det specifikke

vindmølledesign s̊avel som de operationelle forhold s̊asom rotationshastighed, effektpro-

duktion, powerfaktor og modulationsmetode. Specielt hvad ang̊ar modulationsmetoder

er der i afhandlingen foretaget en tilbundsg̊aende analyse af eksisterende modulation-

smetoder, ligesom der er udviklet nye modulationsmetoder. Specifikt er der for ma-

trix konverteren udviklet tre nye modulationsstrategier mens der for de to tre-niveau

konverterne er udviklet 4 nye modulationsstrategier. Funktionaliteten af de udviklede

modulationsstrategier er for størstedelens vedkommende demonstreret i en testopstill-

ing. Foruden bestemmelse af konvertertab er modellerne anvendelige til at beregne

middeltemperaturer og peaktemperaturer i de enkelte komponenter - uden at det inde-

bærer langsommelige tids-steps simuleringer. Disse metoder er specielt anvendelige til

at kortlægge et aktuelt konverterlayouts designmargin. Herudover vil metoden p̊a sigt

være anvendelig til at estimere problemer s̊asom termisk cycling og power cycling i et

specifikt vind mølle design. For at opn̊a en fair sammenligning er der for hver af de

betragtede konvertere udarbejdet en initial-design guideline som vedrører emner s̊asom

strøm- og spændingsrating, filter design og valg af switchfrekvens.

Grundet den store mængde af analytiske udtryk til beskrivelse af komponentbelast-

ninger, komponenttab og komponenttemperaturer er samtlige ligninger implementeret

i et beregningsværktøj med navnet D′rives. Det grafiske brugerinterface i D′rives sikre

en hurtig og overskueligt sammenkædning af de relevante ligninger samt indlæsning af

korrekte systemparametre. Ved hjælp af dette beregningsværktøj kan forskellige kon-

verterdesigns og/eller forskellige konvertertopologier sammenlignes i løbet af ganske f̊a

sekunder. Derudover kan et aktuelt konverter design evalueres for, om det temperatur-

mæssigt overholder en given designspecifikation i hele det forventede belastningsomr̊ade.

For at opn̊a en fair sammenligning imellem forskellige konvertertopologier skal alle kon-

verterne tilnærmelsesvis have samme designmargin. Simuleringsværktøjet er i afhan-

dlingen demonstreret p̊a udvalgte vindmølledesigns og for de aktuelle sammenligninger

vil en tre-niveau transistor-clamped konverter være det bedste valg (om end ubetydeligt)

n̊ar der sammenlignes p̊a systemets virkningsgrad eller mere præcist p̊a den årlige en-

ergiproduktion. Som det imidlertid vil fremg̊a af afhandlingen er der i mølledesignet

mange frihedsgrader og ændringer i de sammenlignede designs kan meget vel føre til et

ændret resultat.
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Chapter 1

Introduction

FOR centuries the winds have been used to grind grain and although present appli-

cations powered by the wind have other purposes than grinding grain, almost any

wind powered machine - no matter what job it does - is still called a windmill. In the

1920´s and 1930´s, before electric wires were stretched to every community, small wind

generators were used to power lights and appliances. At the instance of the growth in

the world-wide infrastructure with widely distributed electrical power, the use of wind

generators has been almost suspended for several decades. Among others, a conse-

quence of the oil shock of the 1970´s is that the global energy policy of today is towards

renewable energy resources and for that reason, the windmill has become its renaissance.

This chapter introduces the reader to the trends in modern wind turbine application es-

pecially with focus on the generator system. Advantages of variable speed wind turbines

compared with the constant speed wind turbine are explained and a brief state-of-the-

art in wind turbine generating systems are presented. Subsequently the aim and the

contributions of the thesis are stated and finally the structure of the report is outlined.

1.1 Wind turbines

Since the mid eighties the world-wide installed wind turbine power has increased dra-

matically and several international forecasts expect the growth to continue. Fig. 1.1a

shows the accumulated world-wide installed wind power from 1982 to 2005 [1]. Sup-

porting these forecasts are a number of national energy programmes that proclaim a

high utilization of wind power. Among these, the European Commission has scheduled

12% penetration of renewable energy by the year 2010 [24] and the objective for the

United States is 10.000 MW of installed capacity by the year 2010 [22]. These high po-

litical ambitions along with a fast progress in generator concepts, semiconductor devices

and solid materials have founded a strong basis for the development of large and cost

competitive wind turbines. Figure 13.1b shows the annual average size in kW for wind

turbines installed world wide in the period from 1982 to 2004 and figure 13.1c shows
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Figure 1.1: Trends in the field of wind turbines. a) Accumulated worldwide in-

stalled wind power [1, 2]. b) The average turbine power for wind turbines installed

from 1982-2006 [4, 42]. c) Estimated costs of wind generated electricity in Denmark.

The blue lines indicate a prognosis [4].

the estimated costs of wind generated electricity in Denmark during the last 20 years [4]1.

Until the very late nineties, the constant speed wind turbine, using either a synchronous

generator or a conventional induction generator, has been the preferred choice [34].

However as the ratings of the wind turbines have increased and the use of wind turbines

have become more and more widespread, a couple of problems with the constant speed

wind turbine occurred, which had made other alternatives more attractive.

1.1.1 Constant speed wind turbines

Among others, a reason for the prevalent use of fixed speed wind turbines is the sim-

ple and reliable generator construction, which for small wind turbines seems to be the

most cost per kWh competitive concept. However, in large wind turbines and partic-

ular in wind turbine farms, the problems concerning the fixed speed operation become

significant. To deal with these problems several precautions have to taken, which might

reduce the reliability and competitiveness of the fixed speed system. Below are some of

the drawbacks associated with the fixed speed wind turbine explained.

Energy capture

A problem concerning the design of a constant speed wind turbine is the choice of a

nominal wind speed at which the wind turbine produces its rated power. This problem

arises from the fact that the energy capture of the wind is a nonlinear function depending

on the ratio between wind speed and rotor tip speed. In general the power transmitted

1The calculations of figure 13.1c are based on 20 years depreciation, 5% interest rates and a siting
in roughness class 1.
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Figure 1.3: The power transmitted to

the hub shaft at different wind speeds.

to the hub shaft of the wind turbine is expressed as [44]:

Ptur =
1

2
CpρairAvv

3
wind (1.1)

where Av is the area swept out by the turbine blades, ρair is the mass density of air,

vwind is the velocity of the wind and Cp is the power performance coefficient. The power

performance coefficient varies considerably for various designs, but in general it is a

function of the blade tip speed ratio λ and the pitch angle θpitch. The blade tip speed

ratio λ is defined as:

λ =
vtip
vwind

=
rrtωrt

vwind

(1.2)

where vtip is the blade tip speed, rrt is the radius of the propeller and ωrt is the angular

velocity of the propeller. Fig. 1.2 shows a typical relation between the power performance

coefficient and the tip speed ratio.

The problem concerning the energy capture from constant speed wind turbines is visu-

alized in Fig. 1.3, where the power transmitted to the hub shaft versus rotor speed is

plotted for different wind speeds, v1...v4. From Fig. 1.3 it appears, that at wind speeds

above and below the rated wind speed, the energy capture does not reach the maximum

value.

By the use of a variable speed wind generating system, the

energy capture may be extended, gaining a higher system effi-

ciency [34].

In almost any literature treating variable speed wind turbines, this statement is one of

the major arguments for the use of variable speed wind turbines and for instance, in

[28], McIver et al. obtained 9-15% increase in the energy capture by use of the variable

speed concept. However, in [5] a fixed speed wind turbine and a variable speed wind

turbine were compared, and in spite of several other superior properties of the variable

speed wind turbine, it was stated that no significant improvement in the energy capture

was achieved by introducing variable speed2.

2The conclusion in [5] was based on experimental data. Unfortunately, due to the fact, that the
stator connected converter used in [5] had a switching frequency of only 600 Hz, the conclusion is not
necessarily the general truth.
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Mechanical stress

Another problem concerning the fixed speed wind turbine is the design of the mechan-

ical system. Due to the almost fixed speed of the wind turbine every fluctuations in

the wind power is converted to torque pulsations which cause mechanical stresses. To

avoid breakdowns, the drive train and gear-box of a fixed speed turbine must be able

to withstand the absolute peak loading conditions and consequently additional safety

factors need to be incorporated into the design [41].

The mechanical dimensions of a variable speed wind turbine

might be reduced in comparison with the mechanical dimen-

sions of a fixed speed wind turbine.

In [31] the shaft torque pulsations of different variable speed wind turbine schemes are

compared to the torque pulsations of a constant speed wind turbine, and the results

shows significant improvements by the use of variable speed wind turbines.

Power quality

The power generated from a fixed speed wind turbine is sensitive to fluctuations in

the wind. Due to the steep speed-torque characteristics of an induction generator, any

change in the wind speed is transmitted through the drive train on to the grid [41]. An

improvement of the power quality is the pitch control which to a certain extent is able to

compensates slow variations in the wind by pitching the rotor blades and thereby chang-

ing the power performance coefficient Cp. The pitch control are not able to compensate

for gusts and the fast periodic torque pulsations which occur at the frequency the blades

pass the tower. The rapidly changing wind power may create an objectionable voltage

flicker, which causes annoyances to the human eye in shape of disturbances in the light.

Another power quality problem of the fixed speed wind turbine is the reactive power

consumption. Many of the electrical networks, to which wind farms are connected, are

weak with high source impedances. The output power of a constant speed wind turbine

changes constantly with the wind conditions, resulting in voltage fluctuations at the

point of connection. Due to these voltage fluctuations the constant speed wind turbine

draws varying amounts of reactive power from the utility grid which increases both the

voltage fluctuations and the line losses. To improve the power quality of wind turbines,

large reactive components, active as well as passive, are often used to compensate the

reactive power consumption [36].
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Voltage flicker in the utility grid caused by rapid fluctuations in

the turbine power could be reduced by use of a variable speed

wind turbine generating system [46]. Due to the power elec-

tronic utility interface provided with variable speed generating

systems it is also possible to improve the poor displacement

factor associated with induction generators [37].

To get an impression of the size of a compensation installation, [36] treats a static VAr

compensator for a 24 MW wind turbine farm and it is found that the necessary instal-

lation amounts to 8.8 MVAr.

Until recently wind turbines were treated as small embedded generator units with no

contribution to the overall power system stability control and as so wind turbines were

required to disconnect from the utility grid in occurrence of abnormal grid conditions.

Recently national grid operators such as E.ON in Germany, Eltra in Denmark and

Scottish and Southern Energy plc. in Scotland [6, 23], have reconsidered these easy

terms and formulated some quite tough requirements regarding power factor control

and ride through capability - requirements for which constant speed wind turbines are

not very well suited.

1.1.2 Variable speed wind turbines

Initiated by the disadvantages in the use of constant speed wind turbines described

above, the standard of modern wind energy conversion is variable speed constant fre-

quency generating systems. This section tends to give a survey over reported variable

speed generating systems used in wind turbine applications. For each of the reported

systems a brief description of the mode of operation is given together with an evaluation

of advantages and disadvantages associated with the present drive topology.

Improved speed range by rotor impedance control

The use of adjustable resistors for starting and speed control of wound-rotor slip-ring

induction machines (DFIG) is well treated in the literature, [11] and [33]. In [43] a partly

controlled three phase rectifier is connected to the rotor circuit and loaded either with

fixed resistances or without them, while the stator is connected directly to the supply

grid. By controlling the equivalent rotor resistance the speed range of the machine is

improved. Fig. 1.4 on the following page shows the proposed circuit topology. Fig. 1.5

illustrates the principles in the rotor resistance control. By a proper control of the rotor

resistance, torque pulsations caused by variations in the wind power can be reduced at

the expense of speed pulsations and additional losses. In [45], the simple rotor resis-

tance control is extended to rotor impedance control, offering the opportunity of partly

improving the power factor. The system suffers from a low efficiency at improved power

factor. To avoid the brushes, [45] proposed a controllable rotor circuit rotating on the

generator shaft. This concept is among others used by Vestas Wind Systems in some of



8 Chapter 1. Introduction

Supply

DFIG

Figure 1.4: Topology for improving the

speed range by adjusting the rotor resis-

tance.

Tem

�r

Rr < <Rr Rr

Figure 1.5: Controlling the rotor resis-

tance, the torque-speed characteristic of

the machine can be shaped.

their Optislip� concepts. The advantages of this concept are: simple circuit topology,

improved operating speed range compared to the conventional induction generator. To

a certain extent this topology can reduce the mechanical stresses and power fluctuations

caused by wind gusts. The stator of the machine is connected directly to the supply

grid and the power semiconductors are rated only to handle the slip power. The disad-

vantages are: the operating speed range is limited to a few percent above synchronous

speed (for generation mode), and only poor control of active and reactive power is ob-

tained. The slip-power is dissipated in the adjustable rotor resistance and furthermore

the presence of the step up gear increases the costs and weight of the system, and causes

a slight decrease in the system efficiency.

Converter controlled induction generator

A simple method for obtaining a full variable speed wind turbine system is to apply a

bi-directional power converter to a conventional induction generator. Solutions based on

this concept are treated in [29, 34, 35]. Some of the advantages in this topology are that

the active and reactive power is controllable, the generator is durable and requires only

a minimum of maintenance. Furthermore, the large amount of knowledge in the field

of speed controlled induction machine might be applicable in wind turbine applications

[34]. The disadvantages are the presence of the step up gear and the fact that the power

converter must handle the full rated power of the system. In [31] it is claimed that in

low power wind turbines, this solution provides the highest efficiency.

Multi pole synchronous generators

A common reported solution to avoid the step up gear between the propeller and the

generator is the use of a multi pole synchronous generator, either with permanent mag-

nets (PMG) [9, 10, 25, 48] or externally magnetized (SG). In [38] a 400 kW wind turbine

system is designed, based on a permanent magnet generator. The designed generator

has 168 poles, resulting in a synchronous speed of 35.7 RPM. Besides the absence of

the step-up gear some of the reported advantages are: less acoustic noise, full control of

active and reactive power and high efficiency. A consequence of the high pole number

is that the PMG becomes physically larger than machines including a step-up gear and
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still, the full rated power has to be handled by the power converter. Another disadvan-

tage of the PMG is the large amount of magnetic material which is a large contributor

to the total cost of the system. The latter might change if the forecasts on magnetic

materials are to be believed. Alternatively, the synchronous generator can be externally

magnetized. By this the permanent magnets are avoided and the generator voltage

becomes controllable, however at the expense of additional rotor losses. The externally

magnetized multi pole synchronous generator is commercially used by the German wind

turbine manufacture Enercon in their large megawatt wind turbines.

Switched reluctance generators

In papers considering the switched reluctance generator (SRG) for wind turbine appli-

cations, the most common argument is the high efficiency, the reduced costs, due to the

simple construction of the generator [27] and the opportunity of eliminating the step-up

gear. In [39] a comparison between a SRG wind turbine system and a variable speed

IG system was performed, and it was found that the SRG based system has 6% higher

efficiency and 13% reduced costs. The reliability of these results is however debatable

because the comparison was based on typical values for the efficiency of controlled rec-

tifiers, IG, SRG, VSI and CSI. Also the estimation of costs is based on a cost factor

estimate and in this estimate no passive components are incorporated. The advantages

of using the SRG are: elimination of the gear box is possible, high reliability and low

generator costs, due to the simple structure of the generator [40]. High efficiency of the

generator. Lower diameter than a direct driven synchronous generator. More simple

converter and a higher power-to-weight ratio [8]. The disadvantages are: relatively high

VA-ratings of the converter, and high converter losses due to the high amount of field en-

ergy which has to be supplied and removed for each stroke. The VA ratings of the power

converter might be reduced by implementing permanent magnets in the generator [14],

but clearly this increases the costs and the complexity of the generator. Furthermore,

the mechanical stress of the generator are high due to the high torque ripple and finally,

the full power of the generating system has to be handled by the power converter.

Cascaded generator systems

Except for the rotor impedance control, a major drawback of the generator systems

treated so far, is that the power converter has to handle the rated power of the system.

One way to avoid a full rated power converter is by using a cascaded generator. Accord-

ing to [21], a cascaded generator has the properties that the frequency converter only

handles a part of the full power and the presence of slip-rings is avoided. Among others,

the brushless doubly-fed reluctance generator (BDFRG), the brushless doubly-fed in-

duction generator (BDFIG) and the cascaded doubly-fed induction generator (CDFIG)

all have these properties and in addition they offer the opportunity of full active and

reactive power control. Fig. 1.6 on the next page shows the topology of these three

cascaded generators.
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Figure 1.6: Cascaded generator topologies. a) The brushless doubly-fed induction

generator. b) The brushless doubly-fed reluctance generator. c) The cascaded

doubly-fed induction generator.

In [7] a BDFIG variable speed wind generating system with a speed range between

1200 RPM and 2000 RPM was developed. In this system, the converter was rated to

handle 25% of the full power. It was stated that the generator efficiency is comparable

to that of a conventional induction generator while the efficiency of the converter was

higher than the efficiency of a full scale converter, giving an overall higher efficiency.

Further advantages are: compact design (almost comparable to a conventional IG) [41]

and better harmonic characteristics because most of the power is generated directly to

the grid [37]. A wind power generating system based upon the BDFRG is described in

[47]. The reported advantages are: Higher generator efficiency compared to the BDFIG

due to the absent of copper losses in the rotor circuit. Enhanced reliability and reduced

costs are also achieved due to the absent of the rotor windings and the brushes. Finally,

the controllability and flexibility of the generating system are accentuated. However,

an insufficiency of the work carried out in [47] is that the conclusions are only based on

simulation results. In [3] it is mentioned that the design of the rotor is quite complex

and is a compromise between complexity, efficiency and torque per volume. The third of

the reported cascaded generators in wind turbine generating systems is the CDIG [21].

The CDIG consists in principle of two doubly-fed slip-ring induction generators where

the two rotors are mechanically and electrically connected (no brushes are in use). In

[21] two equal sized slip-ring induction generators were used. By this arrangement the

power converter had to handle 50% of the rated power while full active and reactive

power control was achieved. A drawback of this method is that the axial length of the

generator is higher than other generators [41].

Doubly-fed induction generators

Early attempts to make variable speed wind turbines in the megawatt range were

based on the doubly-fed induction generator (DFIG). For instance, the Growian tur-

bine erected in Germany in the early 1980´s was a 3MW variable speed wind turbine

based on the DFIG and controlled by a thyristor based cyclo converter. Although the

Growian turbine turned out to be an economical and technical disaster, it was one of

the pioneering projects leading to the success of present wind turbines. Still at the
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Figure 1.7: Conversion process from wind energy to electrical energy [13].

present level of technology, the DFIG seems to be the most serious competitor to the

conventional constant-speed constant-frequency wind turbine, - at least according to the

amount of literature available. In many aspects, the DFIG is related to the cascaded

generators in the way, that the converter only has to handle the slip-fraction of the total

power, but unlike the cascaded generators, the control of the DFIG is obtained directly

through the rotor circuit of the generator. Compared to the cascaded generators, the

doubly-fed induction generator is less complex while having the same nice properties of

full active and reactive power control. However, these superior properties are achieved

at the expense of introducing slip-rings in the system. Besides the slip rings, another

drawback of the DFIG is the need for a step-up gear.

1.1.3 State of the art

Introducing the variable speed concept in wind turbines has obviously produced a large

variety of applicable solutions both with regards to machine type and with regards to

converter topology. Fig. 1.7 surveys the different generator concepts discussed in the

preceding sections. However, regardless of the large variety of generator concepts, a

look among the 10 largest wind turbine manufactures in the world forms the picture,

that the DFIG equipped with a back-to-back two level power converter is occupying

the de-facto standard position for variable speed wind turbines [13]. The numbers in

Fig. 1.7 represents a count of the manufactures using the specified topology. Out of ten

manufactures, seven of them use the DFIG in a slip recovery system, two use a constant
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speed solution and only one believes in a solution based on the multi pole synchronous

generator.

Regarding the power capability of present wind turbines, the state of the art turbine

size (made up in December 2006), seems to be in the vicinity of 3-4 MW, although some

manufactures announce an approaching introduction of turbines in the 6-7MW range.

1.2 Problem statement

As indicated by the technical report ”Conceptual survey of Generators and Power Elec-

tronics for Wind Turbines” from Risø National Laboratory [13], only a few references

covers a survey and a comparison among different topologies while solutions and inno-

vations for a specific topology are numerous. The goal of this project is to establish

some tools for making a fair comparison between different topologies. This is obviously

an overwhelming task and surely some limitations have to be introduced. Before stating

the limitations of the comparison, the motivation for entering this huge work is discussed

and the scope of the thesis is defined.

1.2.1 Motivation

Wind turbines are developing very rapidly and have, during the nineties, evolved from

small generators on a stick to highly complicated and advanced miniature power plants.

However, in such a fast progressing industry, wind turbine manufactures often have

to choose a kind of standard solution, relying on choices made for instance by the

variable speed drive industry, without considering alternative - and maybe more suitable

- solutions. In the future, when the turbine units are entering into the tens-of-megawatt

range, the turbine manufactures may have to reconsider their choices and designs and

pay even more attention to the issues given below:

• Power losses.

• Volume and weight.

• Reliability.

Decreasing the power losses of the system will gain the annual energy production and

thereby the economical profit for the wind turbine owner (and the wind turbine man-

ufacturer). Further, decreasing the power losses reduces the need for internally cooling

facilities, thereby reducing weight and volume.

As the turbine power increases, weight and volume become very (maybe the most) cru-

cial factors in the design of the wind turbines. As an example, in today′s state of the art

wind turbines, the weight of the nacelle, hub and blades accounts for among 110 tons,
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constituting a serious transportation problem, both with regard to weight and volume.

Finally, as wind turbines are penetrating the public supply grid to a considerable extent,

the demands to reliability and availability increases correspondingly. Further, since

wind turbines and wind turbine parks are often located in remote areas (even off-shore),

service and maintenance has to be quite rare and preferably on scheduled tasks.

1.2.2 Scope of the thesis

In the light of the increasing interest on variable speed wind turbines and the numerous

amount of publications treating variable speed wind turbines, it is conspicuous that only

a few papers compares different topologies. In [12], Grauers presented an efficiency eval-

uation of three different generator concepts for variable speed wind turbines, concluding

that a multipole permanent magnet generator is the most efficient generator choice for

a variable speed wind turbine. However, this work only focused on the generator and it

is strongly believed that incorporating the efficiency of the power converter will change

this picture - at least at the present level of semiconductor technology. In [20], Hoffmann

et al. investigated different turbine configurations with regard to energy capture, but

the main focus were on the blade control rather than on the variable speed configuration.

A thorough comparison, involving different generator concepts and converter topologies

is obviously an almost overwhelming task and in order to reduce this task, it is chosen

to believe in the mainstream of wind turbine manufactures counting on the DFIG and

instead questioning the conservative adhere to the conventional back-to-back two-level

converter. Hence, the main scope of this thesis is to evaluate different converter topolo-

gies for use in a variable speed wind turbine based on the DFIG. A thorough evaluation

should obviously include and weight the various motivation factors, because gained per-

formance with respect to one of the motivating factors might very well be overruled

by a decreased performance in other aspects. For instance, a slight gain in the annual

energy production might very well be of minor importance if the converter structure is

much heavier and voluminous. However, the evaluation criteria for this comparison will

primarily be the converter efficiency, or more specific, the annual energy production,

given a certain wind distribution, while evaluation of volume, weight and reliability will

be performed on a qualitative basis only.

Compared to the back-to-back two-level converter, which at present is the prevalent

choice, alternative converter topologies are quite non-mature, making an immediate

comparison unfair and in absolute favor of the back-to-back two-level converter. Hence,

a part of this thesis is dedicated to mature alternative converter topologies in order to

obtain a fair comparison. Besides maturing alternative topologies, another challenge is

to establish an equal set of evaluation criteria. From this, problem #1 arises:
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Problem #1

Investigation of selected converter topologies, including some maturing

efforts. In order to compare the different converter topologies, some eval-

uation tools have to be established. To exemplify the derived tools, the

tools will be used to evaluate the considered topologies with regards to

their annual energy capture in a specific state of the art turbine applica-

tion.

To obtain a fair outcome of the comparison formulated in problem #1, the considered

power converters will have to be designed to have an equal power capability in the entire

operating range. Hence problem #2 to be addressed in this thesis is:

Problem #2

Development of a tool suitable for determining the power capability of a

certain converter design

1.2.3 Limitations

Besides the limitation introduced by considering only the DFIG, the converter investi-

gation is limited to focus only on the following four inverters although other alternatives

are known to exist:

• The back-to-back two-level voltage source converter.

• The matrix converter.

• The back-to-back diode clamped three-level voltage source converter.

• The back-to-back transistor clamped three-level voltage source converter.

As mentioned previously, to exemplify the derived comparison tools, a 2 MW wind

turbine is considered having some pre-determined characteristics. Obviously, the results

and conclusions obtained when looking at a turbine of another size and with different

characteristics will probably change. However, at this point it should be emphasized

that the important aspect is the evaluation method rather than the specific result. That

is:

The present turbine size of 2 MW is only used to exemplify the

evaluation methods.

System under considerations

The system under consideration is shown in Fig. 1.8. In the present case, the system is

a 2 MW wind turbine based on the DFIG. The system is connected to the 10 kV supply

grid through a transformer with a secondary winding voltage of 690 V (phase-phase).
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Figure 1.8: Doubly-fed induction generator system.

The stator of the DFIG is connected to this secondary winding, however with the possi-

bility to connect the generator in either star or delta connection, thereby increasing the

speed range of the system at low power and at the same time reducing the system losses.

Since the considered converters do not have the same properties with regards to voltage

gain etc. it is assumed that the voltage at the tertiary winding as well as the winding

ratio of the generator can be used as design variables. In the system, components and

characteristics such as gear type, blade characteristics, electrical generator- and trans-

former characteristics (except the winding ratio) are predetermined and is described in

chapter 2 concerning the modeling of the system.

1.3 Contributions

Although it is not the author′s privilege to judge the novelty and significance of his own

work, it may be worthwhile to spend a few lines pointing out, in which areas special

efforts were made in order to come up with new ideas and thoughts. Below is a list of

areas to which special attention have been paid:

Comparison of different converter topologies: Comparison of different converter

topologies for use in a variable speed wind turbine based on the doubly-fed induc-

tion generator [15]

New modulation strategies for the matrix converter : In the efforts on matur-

ing the matrix converter, one task was to investigate and develop new modulation

strategies having better harmonic properties and/or lower switching losses com-

pared to existing strategies. Some of these efforts are described in [19, 26].

Tools for evaluating different modulation strategies: Besides developing new mod-

ulation strategies, a survey on the literature covering matrix converters revealed

that unlike for the two- and three-level inverters, no methods existed for evalu-

ating modulation strategies for the matrix converter. It was found worthwhile to

spend some efforts developing a comparison method similar to those for two- and

three-level inverters. The comparison method is described in [17].

New modulation strategies for the three-level converter: As for the matrix con-

verter, the study on three-level converters (and multi-level inverters in general)

revealed that the maturing process for the three-level inverters needed a little
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injection with regards to modulation strategies. Hence, some efforts were also

dedicated to develop new modulation strategies for the three-level converter, es-

pecially with focus on harmonic properties, switching losses and DC-link balancing

[18, 16].

The citations mentioned above are all enclosed in Appendix C-I. Besides the work

documented in this thesis and in the publications cited above, the intensive work in

converter topologies for the doubly-fed induction machine has made it possible to partly

contribute to the following work:

Patent WO 01/91279 A1 [32]: The patent entitled ”Variable Speed Wind Turbine

having a Matrix Converter”, International publication number WO 01/91279 A1

was partly initiated by the work described in chapter 4 of the this thesis. The

content of the patent was formulated in co-operation with Anders V. Rebsdorf a

former colleague at Vestas Wind Systems.

The book ”Control in Power Electronics” [30]: Chapter 13 of the book ”Control

in Power Electronics”, covering wind turbine systems was written, based on knowl-

edge obtained during the Ph.D.-programme. The chapter is a general survey over

different wind turbine concepts, including some control aspects and was written

in co-operation with Frede Blaabjerg.

The technical report ”Risø-R-1205(EN)” [13] .Chapter 3 of the technical report

”Risø-R-1205(EN)”, entitled ”Conceptual survey of Generators and Power Elec-

tronics for Wind Turbines” covers different converter topologies for use in variable

speed wind turbines and was based on a preliminary survey report written in the

early stage of the Ph.D-programme.

1.4 Outline of the report

The main report is divided into separate parts dedicated to pursue the stated problems.

Actually, the report consists of three parts, the first part Preliminaries covers the intro-

duction to variable speed wind turbines, and in particular an introduction and modeling

of the variable speed wind turbine based on the doubly-fed induction generator. The sec-

ond part Converter modeling is aimed to the modeling and maturing efforts performed

in order to be able to compare the different converter topologies. The third and last

part concerns the comparison of the considered systems along with the conclusion and

the perspectives of the accomplished work. Besides the three parts forming the main

report, a fourth part is added, covering a number of appendices and the publications

published by the author.

To structure the individual parts, each part is divided in an appropriate number of

chapters. The part- and chapter structure is outlined in Fig. 1.9 on the facing page.
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Converter comparison tool
(chapter 6)

Converter interface modeling
(chapter 2)

Introduction
(chapter 1)

Topology comparison
(chapter 7)

Conclusion and
perspectives
(chapter 8)

Three-level converters
(chapter 5)

Matrix converter
(chapter 4)

Two-level converter
(chapter 3)

Part I

Part II
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Figure 1.9: The structure of the report.
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Chapter 2

Modeling of wind turbine system

WHEN evaluating the different converter topologies with regards to the annual

energy production of the turbine it is likely to expect that besides the power

losses in the converter, the performance and characteristics of the converter may influ-

ence the power losses in the interfering components and hence affect the annual energy

production in a quite complicated manner. Hence, to evaluate the converter topologies

with regards to annual energy production of the turbine, it is necessary to establish

adequate models of the components interfering with the converter. Fig. 2.1 illustrates

the components interfacing to the power converter in a doubly-fed system.

With reference to Fig. 2.1, this modeling chapter begins with a description of the

available wind power and then step by step establishing models of each component in

Fig. 2.1 in order to predict the power flow and in the final stage predict the annual

energy production. The last step in Fig. 2.1 represents the supply grid but since the

energy production is evaluated at the point of connection, no loss models of the grid

are needed. However, the grid, or rather the grid operator sets some demands to the

grid connected wind turbine and hence to the converter design. Hence, these demands

will be outlined in this chapter. The models established in this chapter along with the

converter models and converter features described in chapter 3 to chapter 5 are to be

used in a design and comparison tool. The developed design and comparison tool will

be presented in chapter 6.
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Figure 2.1: Components interfacing to the power converter.
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2.1 Model of the wind power

The power in the wind can be modeled as the super position of two components [9]:

• The macro-scale air flow, i.e. average wind speed.

• The micro-scale air flow, i.e. rapid wind speed changes such as wind gusts.

The macro-scale air flow is imposed by local low-pressure and high-pressure zones and is

characterized by slowly varying conditions. Thus, the macro-scale air flow may represent

the average wind speed or the wind energy which is desirable to extract. The micro-scale

air flow is caused by e.g. obstacles in the terrain creating fast fluctuations in the wind

speed at a given site and hence quite fast transients in the available power. As discussed

in chapter 1, these wind speed fluctuations may cause a number of problems especially

in connection with constant speed wind turbines.

2.1.1 Power in the wind

From the definition of kinetic energy [3], the power in the wind, Pwind, blowing perpen-

dicular to a surface Av with a constant speed vwind can be calculated by:

Pwind =
1

2
· ρair · Av · v3wind (2.1)

where ρair is the mass density of air. Fig. 2.2 shows the per unit area wind power as a

function of the wind speed. To model the power in the wind, a description of the wind

speed is needed.

2.1.2 Wind speed distribution

Short term wind distribution

The short term wind speed, for instance describing both the micro-scale air flow and the

hourly varying macro-scale air flow, could be generated by the empirical model described

in [9]. The empirical model uses the spectral power density S(ffwind) calculated for

different wind frequency components fwind. The spectral power density of the wind is

given by:

S(fwind) =

h
V wind

· σ2wind

fm

(
1 + 3

2·fm

(
fwind · h

V wind

)) 5
3

(2.2)

where V wind is the average wind speed in the considered frequency spectrum, h is the

height above ground, fm is a fluctuation constant (assumed to be 0.06) and σwind is the

wind speed standard deviation given by the turbulence times the average wind speed.

Using the wind power spectrum calculated for the different frequency components, the
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erage wind speed is 15 m/s.

hourly wind speed can be modeled by:

vwind = V wind +
√

2 ·
fwind,max∑

i=fwind,min

√
S(fwind,i) · ∆fwind · cos(2 · π · fwind,i · t+ βi) (2.3)

where βi is a random number between 0 and 2π and ∆fwind is the frequency spacing

between the considered wind frequencies. Fig. 2.3 shows the wind speed, generated by

(2.3) with a turbulence of 0.1, a mean wind speed of 15 m/s and a height above ground

of 80 meters.

Annual wind speed distribution

Besides the hourly wind speed described by (2.3), a model of the annual distribution of

the hourly average wind speed is needed. The hourly average wind speed distribution

throughout the year is often modeled by the Weibull distribution function given by [4]:

P (V wind, c, a) =
c

ac
· V c−1

wind · e
−
(

V wind
a

)c

(2.4)

where V wind is the wind speed range in which the wind distribution is evaluated. The

constants c and a are parameters in the distribution function. Table I shows standard

values of the factors a and c for different site classifications . Having the parameters

in the Weibull distribution, the annual average wind speed vwind can then be calculated

by:

vwind = Γ

(
1

c
+ 1

)
· a (2.5)

where Γ(1/c + 1) is the generalized faculty function of 1/c [7]. Using (2.5), with the

parameters from Table I gives an annually average wind speed of 7.5 m/s for typical
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Figure 2.4: Annual wind distribution

for an on-shore site.
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Figure 2.5: Annual wind distribution

for an off-shore site.

on-shore turbines (IEC III) and 10.1 m/s for a high-wind off shore site (IEC I). Fig.

2.4 and 2.5 show the wind distribution for a typical on-shore site and an off-shore site

respectively. Although factors as reliability and intervals between maintenance may

influence the annual energy production it is assumed that the availability of the turbine

is 100% and hence, according to the wind distributions in Fig. 2.4 and Fig. 2.5, an

on-shore turbine is producing power 7757 hours per year while an off-shore turbine is

producing power 8122 hours per year. (Assuming a cut-in wind speed of 3 m/s and a

cut-out wind speed of 25 m/s). . The accumulated hours of operation is shown on the

right axis of Fig. 2.4 and Fig. 2.5.

2.1.3 Limitations

As described above, models exist for both the micro-scale air flow and the hourly varying

macro scale air flow. However, to utilize the information in such detailed wind models

in the prediction of the annual energy production requires quite good knowledge of the

dynamics both in the pitch control system and in the power converter control system.

For that reason the wind speed is only modeled as an hourly average, described by (2.4).

A justification of this limitation can be found in [8] where it is stated that the error

obtained by omitting the turbulent wind component is within a few percent, provided

TABLE I: Wind distribution parameters.

Site Parameter Parameter Annual average
classification a c wind speed [m/s]
IEC I site 11.38 2 10.1
IEC II site 9.60 2 8.5
IEC III site 8.46 2 7.5
IEC IV site 6.77 2 6.0
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Figure 2.7: Power extracted from the
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that the turbulent component is within a reasonable range.

2.2 Model of the turbine blades

The purpose of a turbine blade model is to calculate the power extracted from the wind

and transferred into mechanical power in the shape of torque and rotational speed on

the turbine shaft. Since the turbine blade design along with the operation of the turbine

have a high impact on the energy capture it is necessary to incorporate a quite good

steady state model of the turbine blades - a model which basically is described by the

power performance coefficient Cp.

2.2.1 Power performance coefficient

As discussed in chapter 1, the power captured from the wind depends on the blade

design, the pitch angle θpitch and the tip speed ratio λ - all described by the power per-

formance coefficient Cp(θpitch, λ). Ideally, the maximum power, which can be extracted

from the wind is about 59% - the so-called Betz limit - but in practical blade designs,

the maximum value is in the interval between 0.4 and 0.5 [18]. Fig. 2.6 shows the power

performance coefficient Cp versus tip-speed ratio λ for a 45 meter long blade applicable

for a 3 MW turbine. The curves indicated by dotted lines correspond to different pitch

angles while the solid line indicates the power performance coefficient when tracking the

optimum pitch angle. In the model of the turbine blades, it is assumed that the turbine

tracks the optimum pitch angle as long as the generated turbine power is below the

nominal power of the system. When the generated turbine power reaches the nominal

power, i.e. nominal power generated to the grid, the pitch angle is controlled to keep
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the turbine power at the nominal value. As so, the turbine blade model is described

by a 2-D look-up table with the tip speed ratio λ and the available wind power Pwind

as inputs and then using interpolation between the table values to find the pitch angle

θpitch and thereby the power performance coefficient Cp.

2.2.2 Power transferred to the hub

Using the turbine blade characteristics in Fig. 2.6, the power extracted from the wind

Ptur can be calculated by1:

Ptur =
1

2
CpρairAvv

3
wind (2.6)

Fig. 2.7 on the preceding page shows the power extracted from the wind as a function of

the wind speed. The blue curve represents the theoretical maximum extractable power

while the red curve represents the extracted power assuming that the turbine tracks

the optimum tip-speed ratio as long as the turbine operates below nominal power. At

nominal power, the turbine blades are pitched out of the wind, in order to keep the

extracted power at a constant level. In Fig. 2.7 this constant level is 2 MW but in order

to compensate losses in the remaining turbine parts this power level will be slightly

higher. Further, when evaluating different concepts, the speed range of the turbine may

for some reason be limited and hence the turbine will have to operate at a non-optimum

tip-speed ratio which also will change the red curve in Fig. 2.7. As an example, the

green curve in Fig. 2.7 appears if the maximum tip speed is limited2 to 72m/s. Having

the tip speed and power extracted from the wind the rotational speed ωr0 and torque

Tr0 on the main shaft can be calculated:

ωr0 =
λ · vwind

rrt
(2.7)

Tr0 =
Ptur · rrt
λ · vvwind

(2.8)

where rrt is the radius of the swept area, i.e. the length of the turbine blade.

2.3 Model of the gear train

In wind turbines containing a gear box, a considerable part of the turbine losses are

dissipated in the gear box. Since the speed operating area may differ from one turbine

topology to another, speed- and torque dependent losses (if any) in the gear box may

change the loss distribution and hence the result on generated energy. For instance,

limiting the speed operating range will on the one hand reduce the energy captured

from the wind (as described in section 1.1.1) but on the other, the losses of the gear box

may decrease correspondingly. Hence the losses of the gear box have to be modeled.

1This expression has already been stated in eq. 1.1 on page 5 but for completeness of the model
description it is repeated in this context.

2This limit could e.g. be introduced to lower the emitted noise from the wind turbine.
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2.3.1 Gear loss model

Input to the gear model is the applied torque and rotational speed on the main shaft of

the turbine while output from the model is the torque and rotational speed applied on

the generator shaft. To calculate these output quantities, the power losses in gear box

have to be modeled. Based on the normalized loss data in Table II and Table III,

presenting load dependent losses and speed dependent losses respectively, the following

loss model of the gear box is assumed [14]:

Pgear,loss = kg1 · ω2r0︸ ︷︷ ︸
Viscous fric.

+ kg2 · ωr0︸ ︷︷ ︸
Static fric.

+ kg3 · ωr0 · Tr0︸ ︷︷ ︸
Mesh fric.

+ kg4︸︷︷︸
Aux power

(2.9)

To justify the modeling approach described by eq. (2.9), the term kg1 · ω2r0 represents

some viscous friction losses arising from e.g. friction in the bearings, kg2 · ωr0 and

kg3 · Tr0 · ωr0 represents some losses due to static friction , where it is assumed that

the static friction increases as the torque increases due to torsion deformation of the

TABLE II: Measured gear loss data.

Gear input torque Gear loss [pu]
[kN] (ωr = 1.75 [rad/s])
6.86 0.160
260.0 0.315
519.4 0.474
778.2 0.648
1037.7 0.835
1297.1 1

TABLE III: Measured gear loss data

Rotational speed Gear loss data
[rad/s] (Pgear,out = 0 [kW])
0 0.038

0.438 0.057
0.875 0.083
1.313 0.118
1.750 0.160
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TABLE IV: Normalized gear loss modeling parameters.

Description Symbol Value Unit
Viscous friction coefficient kg1 0.0209 [pu]
Static friction coefficient kg2 0.0307 [pu]
Mesh friction coefficient kg3 3.72·10−7 [pu]
Constant loss kg4 0.0382 [pu]

gear box and due to the friction from the teeth sliding on each other. The latter is

also denoted mesh friction. Finally, the constant loss contribution kg4 models the power

used for cooling and circulation of the gear oil. Fitting the modeling approach in eq.

(2.9) on the measured data in Table II and Table III give the parameter values listed

in Table IV. The solid line in Fig. 2.9 and Fig. 2.8 is obtained using the model in eq.

(2.9) while the (*) represent the measured data in Table II and Table III.

2.3.2 Power transferred to the generator

In steady state operation, the rotational speed on the primary- and secondary side

relates to each other simply by the gear ratio Ngear:

ωgen = Ngear · ωr0 (2.10)

where ωgen is the speed on the high speed shaft and ωr0 is the speed of the main shaft.

For the turbine considered in this context, the gear ratio, Ngear, is 100.5. To satisfy

energy conservation, the steady state torque Tgen applied to the generator shaft is then

given by:

Tgen =
ωr0 · Tr0 − Pgear,loss

ωgen

(2.11)

2.4 Model of the generator

As the component interfacing directly to the power converter, the doubly-fed induction

generator has a great impact on both the converter design and the converter losses and

as so the modeling of the generator may appear a little more detailed than the modeling

approaches described in the previous sections. The modeling described in this section

has two purposes 1) establish a model in order to be able to calculate the generator

losses. 2) Establish a model to be able to calculate the currents and voltages which

the power converter should be able to manage. The starting point for the generator

modeling is the parameters normally available in the generator documentation provided

by the generator manufacturer3. However, since some of these parameter values are to

be considered as confidential material they are intentionally not listed in the thesis.

3Data sheets provided by the generator manufactures to Vestas Wind Systems A/S and as so not
necessarily public available.
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TABLE V: Generator friction loss modeling parameters.

Description Symbol Value Unit
Static friction coefficient k1 5.49 · 10−4 [pu]
Viscous friction coefficient k2 1.61 · 10−6 [pu]
Ventilation friction loss k3 1.58 · 10−7 [pu]

2.4.1 Generator loss model

The considered losses in the DFIG are: the friction losses, the copper losses and the

iron losses.

Friction losses

Conventionally, friction losses of electrical machines are modeled by [6, 15]:

Pfric = k1 · ωgen︸ ︷︷ ︸
Static fric.

+ k2 · ω2gen︸ ︷︷ ︸
Viscous fric.

+ k3 · ω3gen︸ ︷︷ ︸
Ventilation

(2.12)

where the total friction losses consist of the sum of static friction losses, viscous friction

losses and ventilation losses. Fitting the model in eq. (2.12) on the measured generator

losses in Table VI, the loss coefficients in Table V are obtained. The measured and

modeled friction losses are shown in Fig. 2.10.

Copper losses

The copper losses of the generator is simply modeled by:

Pcu = 3 · (Rs · I2s +Rr · I2r
)

(2.13)

TABLE VI: Measured friction losses.

Rotational speed Friction losses
[rad/s] [pu]

0.0 0.0
89.0 0.161
115.2 0.322
117.3 0.342
147.7 0.624
159.2 0.765
169.6 0.906
175.9 1
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Figure 2.10: Measured and modeled

rotational losses.
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Figure 2.11: Iron loss modeling approaches. a) Iron loss resistance in parallel. b)
Iron loss resistance in series.

where Rs and Rr are the stator- and rotor resistance respectively and Is and Ir are the

stator- and rotor currents. Since the actual value of the resistances very much depend

on the winding temperature, i.e. the loading conditions as well as the rotor resistance

changes with the changes in the slip4, eq. (2.13) will have to account for both winding

temperature and generator speed. These secondary effects are treated in section 2.4.3.

Iron losses

The iron losses Pfe of an induction machine are typically modeled by a resistor Rfe,

placed either in parallel or in series with the magnetizing inductance [1]. Fig. 2.11 shows

the two different modeling approaches. For most applications (motor drives), the two

models only manage to calculate equal losses in one certain working condition (a certain

voltage and frequency) while in all other conditions different results are obtained. In the

present application the magnetization level and the stator frequency is nearly constant,

determined by the applied stator voltage and hence it does not matter on the results

whether a series model or a parallel model is used. The iron losses are simply modeled

as:

Pfe = 3 ·Rfe · I2fe (2.14)

where Ife is the current through the (fictional) iron loss resistance, c.f. Fig. 2.11.

2.4.2 Power transferred to the converter

Input to the generator model is the power (in shape of torque Tgen and rotational speed

ωgen) applied on the generator shaft, the stator voltage V s and the desired stator reactive

power Qs, while output from the model has to be stator current Is, rotor current Ir and

rotor voltage V r. By use of the equivalent diagrams in Fig. 2.11 and neglecting the

iron loss resistance, the steady state equations for the doubly-fed induction generator

become:[
V s

V r

]
=

[−Rs − j · ωs · Ls −j · ωs · Lm

j(ωr − ωs)Lm −Rr + j(ωr − ωs)Lr

]
·
[
Is
Ir

]
(2.15)

4The slip is defined in eq. (2.16).
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where the quantities V and I represent phasors, ωs is the grid angular frequency and ωr

is the rotor angular frequency in electrical measure5. Introducing the slip s defined by:

s =
ωr − ωs

ωs

(2.16)

eq. (2.15) is rewritten in the form:[
V s

V r

]
=

[−Rs − j · ωs · Ls −j · ωs · Lm

j · sωs · Lm −Rr + j · s · ωsLr

]
·
[
Is
Ir

]
(2.17)

By inversion of the generator impedance matrix in eq. 2.17, the generator stator - and

rotor currents become:[
Is
Ir

]
=

[
a11 + j · b11 a12 + j · b12
a21 + j · b21 a22 + j · b22

]
·
[
V s

V r

]
(2.18)

where the parameters a11..b22 are given by:

a11 + j · b11 =
−Rr + j · sωs · Lr

RsRr − s · ω2s(L2m − LsLr) + j · ωs(LsRr − s ·RsLr)
(2.19)

a12 + j · b12 =
j · ωsLm

RsRr − s · ω2s(L2m − LsLr) + j · ωs(LsRr − s ·RsLr)
(2.20)

a21 + j · b21 =
−j · sωs · Lm

RsRr − s · ω2s(L2m − LsLr) + j · ωs(LsRr − s ·RsLr)
(2.21)

a22 + j · b22 =
−Rs − j · ωs · Ls

RsRr − s · ω2s(L2m − LsLr) + j · ωs(LsRr − s ·RsLr)
(2.22)

The effort left is then to find the rotor voltage which have to be applied by the rotor

inverter. From the definition of reactive stator power Qs given by:

Qs = 3�m(V s · I∗s) (2.23)

and substituting the stator current Is by the expression in eq. (2.18), the imaginary

component of the rotor voltage Vr2 becomes:

Vr2 =
Vs2 a12 Vr1 − Vs2

2b11 − b11 Vs1
2 − Vs1 b12 Vr1 − 1

3
Qs

Vs1 a12 + Vs2 b12
(2.24)

To derive the real part of the rotor voltage Vr1 the active power balance of the generator

is used:

ωgenTgen = Ps + Pr + Pgen,loss (2.25)

where Pgen,loss is the generator power losses given by the sum of eq. (2.12), eq. (2.13)

and eq. (2.14) and the rotor active power Pr and stator active power Ps is given by:

Pr = 3�e(V r · I∗r) (2.26)

Ps = 3�e(V s · I∗s) (2.27)

5The rotor angular frequency in electrical measure ωr is simply related to the mechanical angular
frequency of the rotor ωgen by the number of pole pairs Pp. That is: ωr = Pp · ωgen
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Combining eq. (2.18), (2.25), (2.26) and (2.27), the real part of the phasor V r can be

found by solving the second order equation:

k1V
2
r1 + k2Vr1 + k3 = 0 (2.28)

where the coefficients k1..k3 are given by

k1 =
a22 (b212V

2
s2 + a212V

2
s1 + b212V

2
s1 + a212V

2
s2)

(b12Vs2 + a12Vs1)
2 (2.29)

k2 =
(a312 + a21a

2
12 + b212a12 + 2b12a22b11 − b12b21a12)V

3
s1

(Vs2b12 + Vs1a12)
2 +

(b312 + a212b12 + a12a21b12 − b21b
2
12 − 2a12a22b11)V

3
s2

(Vs2b12 + Vs1a12)
2 +

(b312 + a212b12 − b212b21 + a21b12a12 − 2b11a12a22)V
2
s1Vs2

(Vs2b12 + Vs1a12)
2 + (2.30)

(a312 + a212a21 + 2b12a22b11 + b212a12 − b21a12b12)Vs1V
2
s2

(Vs2b12 + Vs1a12)
2 +

2
3
(b12Vs1 − a12Vs2) a22Qs

(Vs2b12 + Vs1a12)
2

k3 =
(b211a22 − b11b21a12 + b12b11a12 + a11a

2
12)V

4
s1

(Vs2b12 + Vs1a12)2
+

(a11b
2
12 − a12b11b12 − b11a21b12 + b211a22)V

4
s2

(Vs2b12 + Vs1a12)2
+

(−b11a212 + b212b11 − b11b21b12 − b11a21a12 + 2a11b12a12)V
3
s1Vs2

(Vs2b12 + Vs1a12)2
+

(b11b
2
12 − a212b11 − b11b21b12 − b11a21a12 + 2a11a12b12)V

3
s2Vs1

(Vs2b12 + Vs1a12)2
+

(2b211a22 + a11b
2
12 + a11a

2
12 − b11b21a12 − b11a21b12)V

2
s1V

2
s2

(Vs2b12 + Vs1a12)2
+ (2.31)

(2b11a22 − b21a12 + b12a12)V
2
s1Qs

3(Vs2b12 + Vs1a12)2
+

(1
3
Pgen,lossa

2
12 − ωgenTgena

2
12)V

2
s1

3(Vs2b12 + Vs1a12)2
+

(2b11a22 − a21b12 − a12b12)V
2
s2Qs

3(Vs2b12 + Vs1a12)2
+

(Pgen,lossb
2
12 − ωgenTgenb

2
12)V

2
s2

3(Vs2b12 + Vs1a12)2
+

(b212Qs−a21a12Qs−a212Qs−b21b12Qs)Vs1Vs2

3(Vs2b12 + Vs1a12)2
+

a22Q
2
s+(6Pgen,lossb12a12−6ωgenTgenb12a12)Vs1Vs2

9(Vs2b12 + Vs1a12)2

It should be noted, that alignment of the stator voltage phasor V s to e.g. the real axis

of the coordinate system, i.e Vs2 = 0, significantly reduce the efforts of calculating the

coefficients k1..k3. However, for completeness the coefficients are derived for an arbitrary

alignment of the stator voltage phasor.
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Figure 2.12: Rotor voltage (-) and rotor

current (· · · ) calculated at no load (-) and

full load (-) respectively.
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Figure 2.13: Load angle of rotor in-

verter vs. slip, calculated at no load (-)

and full load (-) respectively.

Solving eq. (2.28) and choosing the solution implying the lowest amount of circulating

power, i.e lowest amplitude of the rotor voltage, the real part of the rotor voltage can

finally be calculated. Fig. 2.12 shows the rotor voltage and the rotor current as a

function of the slip, calculated at no load and full load respectively. Fig. 2.13 shows

the corresponding load angle of the rotor inverter, also in both no load and full load

condition.

2.4.3 Generator secondary effects

Principally, the power losses of the generator has been described by eq. (2.12), eq. (2.13)

and eq. (2.14) and the power transferred to the converter has been described by eq.

(2.18) eq. (2.24), and eq. (2.28) but since a number of secondary effects may change

some of the implied parameters and hereby the calculated losses, currents and voltages,

this section will describe the modeling of some of the major secondary effects.

Modeling of skin effects

In large machines, skin effects in the rotor windings are quite pronounced and hence

the rotor resistance increases when the slip frequency increases (regarding skin effects,

the slip is evaluated as an absolute value). To account for the skin effects, the rotor

resistance has been modeled as a linear function of the slip frequency given by [19, 20]:

Rr = Rr|s=0 + |s| · (Rr|s=1 −Rr|s=0) (2.32)

where Rr|s=0 is the rotor resistance at synchronous speed and Rr|s=1 is the rotor re-

sistance measured in a blocked rotor test. Fig. 2.14 shows the slip dependent rotor

resistance of the considered generator - normalized to the rotor resistance value at syn-

chronous speed, i.e. s=0.
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Modeling of saturation effects

Another secondary effect which may influence the calculated losses as well as the cal-

culated currents and voltages is the saturation of the main inductance Lm. As argued

in the modeling of the iron losses on page 32, the magnetization level in the doubly-

fed system is almost fixed by the applied stator voltage and hence it may appear non

relevant for the steady state considerations. However, over- and under voltages at the

grid as well as high demands for reactive power consumption/generation may change

the generator magnetization level and hence for converter design purposes it may be

important to include the saturation effect. Fig. 2.15 illustrates the saturation effect

of the main inductance in the considered generator. The inductance and magnetizing

current is normalized to their values at nominal loading conditions.

Modeling of thermal effects

The last of the considered secondary effects is the temperature dependency of the gener-

ator resistances. To account for the temperature effects, the temperature of the windings

have to be estimated. The steady state temperature Ts of the stator and Tr of the rotor

is determined as:

Ts = αs · Ps,loss + Tamb (2.33)

Tr = αr · Pr,loss + Tamb (2.34)

where the thermal resistance αs and αr of the stator and rotor respectively are calculated

from the temperature rice at nominal load. Based on the calculated temperatures, the

resistances of the stator- and rotor winding in the present working point is calculated
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as:

Rs = Rs0 + αcu · (Ts − T0) (2.35)

Rr = Rr0 + αcu · (Tr − T0) (2.36)

The resistances Rs0 and Rr0 are the stator- and rotor resistance measured at temperature

T0. The coefficient αcu is the temperature coefficient of resistivity of the considered

material.

2.4.4 Simplified generator model

For the purpose of pre-design issues and rough calculations, the comprehensive genera-

tor modeling approach described so far seems to be a little too complicated and detailed.

Hence, for these purposes a more straight forward method is desirable, although this is

obtained on the expense of precision.

Assuming an ideal lossless generator, i.e. a generator with no leakage inductances and

no resistances, it appears from eq. 2.17 that stator voltage and rotor voltage is simply

related by the slip of the generator:

|Ṽ r| = s|V s| (2.37)

where the˜ indicates that the result is obtained under the assumption of an ideal gen-

erator. Continuing this simplified approach, the relation between shaft power given by

ωgenTgen, stator power P̃s and rotor power P̃r can be derived from eq. (2.18), (2.25),

(2.26) and (2.27):

P̃s =
ωgenTgen

1 + s
(2.38)

P̃r =
s(ωgenTgen)

1 + s
(2.39)

The reactive rotor power is given by:

Q̃r = s ·
(
Q∗

s +
3|V |2s
ωsLm

)
(2.40)

where Q∗
s is the desired reactive power to be generated from the stator. The rotor

current, can then be roughly estimated by:

|Ĩr| =

√
P̃ 2r + Q̃2r

3 · s · |V s|
(2.41)

In eq. (2.37) and eq. (2.41) it is assumed that the generator winding ratio, i.e. ratio

between rotor windings and stator windings, is unity. To account for an arbitrary

winding ratio, eq. (2.37) should be multiplied by the winding ratio whereas eq. (2.41)

should be divided by the winding ratio.
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Figure 2.16: Equivalent diagram of the three phase three winding transformer.

All parameters are transferred to the primary side.

2.5 Model of the transformer

According to Fig. 2.1 on page 23 the last component to be modeled is the transformer.

The purpose of the transformer modeling is: 1) To calculate the losses in the transformer

and 2) to calculate the power transferred to the grid (which actually was the purpose of

all the modeling approaches described in this chapter). Input to the transformer model

is the voltage applied on the primary side of the transformer, i.e. the grid voltage V g1,

the current generated by the generator stator Is and the current generated by the grid

side inverter Ig3 while output have to be the current Ig1 generated to the grid and the

voltages V s and V g3 applied on the generator stator and grid inverter respectively . Fig.

2.16 shows an equivalent diagram of the three winding transformer, defining the current

directions and parameters used in the transformer modeling.

2.5.1 Transformer losses

The considered transformer losses are: Copper losses and iron losses.

Copper losses

From the notation in the transformer equivalent diagram in Fig. 2.16, the copper losses

of the transformer is simply modeled by:

Pcu,trafo = 3 · (R1 · I2g1 +R2 · I2s +R3 · I2g3) (2.42)

Iron losses

As for the generator, the iron losses Pfe,trafo of the transformer can be modeled either

as a resistance in series or in parallel with the mutual inductance. As argued previously,

since the voltage and frequency applied to the transformer is almost constant, it does

not matter on the results whether a series or parallel model is used. For the series model

(as shown in Fig. 2.16) the transformer iron losses are simply calculated by:

Pfe,trafo = 3 · (Rfe · I2fe)
= 3 · (Rfe · |Ig1 − Is − Ig3|2) (2.43)
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2.5.2 Power transferred to the grid

The steady state equation for the transformer is given by:V g1

V s

V g3


︸ ︷︷ ︸
V trafo

=

−R1−Rfe−jωsL1 jωsLm jωsLm

−jωsLm R2+Rfe+jωsL2 jωsLm

−jωsLm jωsLm R3+Rfe+ωsL3


︸ ︷︷ ︸

X
trafo

Ig1Is
Ig3


︸ ︷︷ ︸
Itrafo

(2.44)

where L1..3 is the self inductance of the considered winding i.e. L1..3 = Lσ1..3 + Lm,

Lm is the mutual inductance and R1..3 is the resistance of the considered winding. The

parameters used for the transformer modeling are all derived from standard measure-

ments, i.e. short circuit and no load tests. Since the unknowns in eq. (2.44) are the

grid current Ig1, the stator voltage V s and the grid inverter voltage V g3, the equation

has to be rearranged. In short form, eq. (2.44) can be written as:

[V trafo] = [X][I trafo] (2.45)

and by inversion of the impedance matrix X, the transformer currents can be calculated

by:

[I trafo] = [Y ][V trafo] (2.46)

Combining eq. (2.45) and eq. (2.46) the unknown currents and voltages can be found: Ig1V s

V g3

 =


y11

(1−y12x21−y13x31)
(y12x22+y13x32)
(1−y12x21−y13x31)

(y12x23+y13x33)
(1−y12x21−y13x31)

x21y11

(1−y12x21−y13x31)
x21(y12x22+y13x32)

(1−y12x21−y13x31)+x22

x21(y12x23+y13x33)
(1−y12x21−y13x31)+x23

x31y11

(1−y12x21−y13x31)
x31(y12x22+y13x32)

(1−y12x21−y13x31)+x32

x31(y12x23+y13x33)
(1−y12x21−y13x31)+x33


V g1

Is
Ig3


(2.47)

where xij and yij are the i, j element in the X and Y matrices in eq. (2.45) and eq.

(2.46).

2.5.3 Transformer secondary effects

As for the generator, secondary effects such as saturation and thermal effects may slightly

change the calculated transformer voltages and transformer currents. To include these

secondary effects, the procedures described in section 2.4.3 on page 35 have to be applied

on the transformer parameters.

2.6 Grid interface

As a consequence of the increasing wind power penetration, the different national grid

operators are more and more concerned about the stability and reliability of their power

systems [5]. Hence, during the last few years, several national grid codes have been

published, concerning the behaviour of the wind turbine (or wind turbine park), both
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Figure 2.17: Example of the reactive power capability requirement [2]

under normal operation and during grid faults [11, 12, 13, 16]. Since the national grid

codes around the world are quite different and the individual grid codes are changing

quite often, the demands listed in this section should be considered as examples and as

they appeared at the time this chapter was prepared.

For the purpose of this thesis, only the requirements regarding steady state operation are

considered. Further since the national requirements deviate very much from each other

and since some of the requirements may have an influence on the converter evaluation

results it will be stretched out for which requirement the converters are to be evaluated.

2.6.1 Reactive power generation and voltage regulation

To provide voltage control in the point of common connection (PPC), many grid codes

include requirements for the reactive power capability of a wind turbine (or wind turbine

park). An example of such requirements for reactive power capability is shown Fig. 2.17.

The requirements illustrated in Fig. 2.17 distinguishes between dynamically controllable

reactive power and more or less statically controllable reactive power, where the dynam-

ically controllable reactive power may have to be provided by an active converter e.g.

the rotor- or grid inverter in the doubly fed system while the statically part of the reac-

tive power may be provided by passive shunt elements. If the dynamically controllable

power are to be provided by the converter in the doubly fed system it obviously influence
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TABLE VII: Reactive power requirements.

Grid code Country/region PF-range
(Absorb-supply)

AESO Canada (Alberta) 0.9-0.9
E.ON Germany 0.95-0.95
ESB Ireland 0.95-0.85
NECA Australia 1 - 0.95
NGC England/Wales 0.95-0.95
Elkraft/Eltra Denmark 1

the converter ratings and the system power losses. Further, since other national grid

codes have other requirements for the reactive power capability, the converter design

and evaluation results will be influenced by the considered grid code. To exemplify the

diversity among the different grid codes Table VII lists the reactive power requirements

from some selected grid codes.

In the evaluation of the converter topologies in this thesis, the Danish requirements will

be used, i.e. the turbine should provide no reactive power consumption or generation.

However, all equations and methods described throughout the thesis can be applied for

any reactive power requirements.

2.6.2 Voltage and frequency range

As for the reactive power requirements, the steady state voltage and frequency range in

which the turbines are required to remain connected deviate very much from one grid

code to another. Fig. 2.18 and Fig. 2.19 illustrate some selected requirements on the

voltage and frequency range6, all normalized to their nominal values. The upper volt-

age limit (even the short term limits) clearly influence the choice of converter voltage

ratings (or converter voltage level) while the lower steady state voltage levels influence

the current ratings of the converter. To comply with the selected voltage requirements

in Fig. 2.18 the converter will have to be designed for 25% over-voltage and 10% under-

voltage unless other precautions are incorporated in the turbine design. Regarding the

frequency the lower limits may slightly influence the magnetization level of the generator

and transformer and thereby increase the current ratings of the rotor inverter.

In the converter evaluation throughout this thesis, nominal voltage and frequency will

be used, both for the converter design and the converter evaluation.

6The voltage requirements are normally stated on the HV side of the main transformer in PCC.
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for wind turbines.

2.6.3 Power quality

Current harmonics in the supply grid are undesirable since they increase the grid power

losses and causes voltage fluctuations, especially in weak electrical networks. Generally,

the allowed emission of current harmonics depend on the stiffness of the supply grid,

and requirements on harmonics are often stated on the voltage in PCC rather than the

generated currents. Guidelines such as the IEEE 519 actually specifies limits for both

the allowable harmonic current content and on the allowable voltage distortion at PCC

whereas [17] solely calculates the amount of allowable current harmonics based on the

allowable harmonic voltage. According to [17], the allowable harmonic current content

can be calculated by:

In ≤ Vn ·
√

1 + (tan(Ψsc))2

1 + (n · tan(Ψsc))2
· Ssc

Strafo

(2.48)

where In is the considered harmonic current, Vn is the allowed harmonic voltage, Ssc is

the short circuit power in PCC, Ψsc is the short circuit angle and Strafo is the apparent

power rating of the main transformer. In addition to the individual harmonic limits,

the total harmonic distortion THDi of the input current is in some cases considered.

The total harmonic distortion of the current, THDi in percent, is defined as [10]:

THDi = 100 ×
√√√√∑

h�=1

(
Ih
I1

)2
(2.49)

2.7 Summary

This chapter has described the modeling of the components interfacing directly or in-

directly to the power converter. The purpose of the modeling has been: 1) to identify

the power flow and thereby identify the current and voltage ratings for the considered
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converter and 2) to calculate the losses of the different components in order to evaluate

the annual energy production. Since the upcoming national grid codes have a high im-

pact on the necessary converter rating, the last section summarized some of the most

important steady state grid code demands.
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Converter modeling





Chapter 3

The back-to-back two-level voltage

source converter

SINCE the appearance of power electronic valves with intrinsic gate-turn-off capa-

bility, the two level voltage source converter has been the most widely used power

processing converter for three phase motor drive applications. Probably due to the ma-

turity obtained in the drives industry during more than a decade, the two-level voltage

source converter was widely adopted by the wind turbine industry for use in large scale

wind turbines in the late nineties.

Since the back-to-back two-level voltage source converter seems to be the preferred con-

verter topology in wind turbine applications, the purpose of this chapter is to establish a

foundation to compare and evaluate the back-to-back two-level voltage source converter

against other converter topologies applicable for the doubly-fed wind turbine system.

The chapter starts with a review on previous work, especially with focus on the use of

back-to-back two-level voltage source converters in doubly-fed wind turbine applications

followed by a description of the operating principles of the converter. As the control of

the active switches - known as modulation - is closely related to the operating princi-

ples of the converter and crucial in the calculation of the converter losses, the chapter is

continued with a quite detailed description of the most accepted modulation techniques.

Finally, to be used in a converter comparison and converter evaluation, the power losses

of the back-to-back two-level voltage source converter are modeled and some design

aspects and design guidelines regarding component ratings are outlined.

3.1 Previous work

The majority of variable speed three phase motor drive systems covered by literature

and used in industry are uni-directional with regard to power flow and although uni-

directional power converters are operational in the doubly-fed wind turbine system like

e.g. the so-called static Kramer drive [13, 23] or the VCRS system [1, 35] proposed

by Vestas, the most efficient operation of such a doubly-fed system is achieved by use
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DFIGDFIGDFIG

a) b) c)

Figure 3.1: Different wind turbine systems based in the doubly-fed induction

generator and the two-level voltage source inverter. a) The static Kramer drive. b)
The VCRS system. c) The back-to-back two level voltage source converter.

of a bi-directional power converter. The three different doubly-fed induction generator

based systems are illustrated in Fig. 3.1.

From the operating principles of the doubly-fed induction generator described in section

2.4 it appears that, since power is prevented from being supplied to the rotor circuit,

the static Kramer drive in Fig. 3.1a is only able to generate power when operating

above synchronous speed. Further, due to the passive diode rectifier on the generator

side, the magnetization of the generator has to be provided from the stator, thereby re-

ducing this systems ability to provide an efficient reactive power control. On the other

hand, the VCRS system in Fig. 3.1b is only able to generate power when operating

below synchronous speed while the back-to-back system shown in Fig. 3.1c is able to

generate power both above and below synchronous speed which allows this system to

track the optimum tip speed in a larger speed range than the static Kramer drive and

the VCRS system. Further, the back-to-back system is able to provide reactive power

control [36, 42] and harmonic compensation [24] both by the grid side inverter and by

the rotor side inverter. From the early nineties, the majority of technical publications

on variable speed wind turbines have concerned the back-to-back topology in Fig. 3.1c.

Among publications concerning the back-to-back two-level voltage source converter in

wind turbine applications a bulk of these have dealt with the control aspects. Especially,

focus has been on the field oriented control [12, 40, 42] and position sensor-less control

[3, 4, 8, 41]. Regarding the power yield of a wind turbine based on the back-to-back

two-level voltage source converter only a few comparisons has been presented. However,

focus in these comparisons has been on the influence of the blade control/design [29, 39]

and on the generator choice/design [14, 31] while no detailed analysis of the relationship

between power yield and converter design/control (modulation) has been published.

Obviously, a reason for this lack of interest is that an efficiency increase by choice/design

of generator or by blade design/control is more or less directly reflected in the overall

turbine efficiency while an increase in the converter efficiency is only reflected in the

overall turbine efficiency by about one tenth1. Nevertheless, the tools and methods

obtained by evaluating the converter in the doubly-fed system can be directly applied

1This is due to the fact that the power converter in a doubly-fed system normally processes about
10% of the overall generated power.
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Grid Rotor

Figure 3.2: The back-to-back two-level voltage source converter topology.

on a full-scale converter system (which seems to be the choice for the coming turbine

generations) where the converter processes the full power of the system and hence where

the converter efficiency is directly reflected in the turbine efficiency.

3.2 Operating principles

The back-to-back two-level voltage source converter is a bi-directional power converter

consisting of two conventional two-level voltage source inverters coupled in a back-to-

back fashion. The topology is shown in Fig. 3.2.

3.2.1 Reference voltage generation

The aim for both the grid side inverter and the rotor side inverter is to synthesize a

voltage that satisfy the current demand on the generator side and grid side respectively.

Typically, the grid side current demand is controlled in order to keep the DC-link volt-

age on a certain level while the generator side current level is controlled to achieve a

certain active and reactive power generation as discussed in section 2.4. To illustrate the

inverter reference voltage generation Fig. 3.3 and Fig. 3.4 show typical realizations of

the grid inverter reference voltage generation [30]2 and rotor inverter reference voltage

generation [42] respectively.

2The dynamic cross coupling compensation described in [30] is not shown in Fig. 3.3.
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Figure 3.5: The eight possible switch states of the voltage source inverter.

With reference to Fig. 3.3, input to the control of the grid side inverter is the DC-

link voltage reference V ∗
DC . The DC-link voltage reference is compared with the actual

DC-link voltage VDC and the voltage error is fed to a PI controller. The PI-controller

outputs an active current reference i∗gq i.e. a current reference in the synchronously

rotating reference frame. This current is compared with the actual active current igq
derived from the measured grid currents and the current error is fed to another PI-

controller which outputs the active voltage reference v∗gq - still in the synchronously

rotating reference frame. Together with the reactive voltage reference v∗gd, the voltages

are then transformed back into the stationary reference frame and then fed into the

space vector modulator. The transformation from stationary reference frame to rotating

reference frame and vice versa is based on a reliable estimate of the grid angle σg.

Different methods exists for estimating this angle but a further explanation is referred

to [2, 10]. Similar considerations goes for the rotor side inverter control in Fig. 3.4

where input is the reference for active power P ∗ and reactive power Q∗ of the turbine.

3.2.2 Voltage synthesizing

Since the two inverters of the back-to-back two-level converter are operated individually,

the operating principles can be explained by inspection of only one of the inverters. The

inverter has three output ports which can be clamped to either the upper DC-link bus or

to the lower DC-link bus. By this, the output of the inverter can achieve eight different

switch combinations, i.e. eight legal voltages at the output ports. Fig. 3.5 shows the

possible switch combinations. By a proper control of the switch states, the voltage

source inverter are able to synthesize the desired output voltage. The control of the

switch states are known as modulation.

3.3 Modulation

Although the goal of the modulation is to synthesize a desired output voltage, several

methods are applicable, ranging from simple sinusoidal carrier based modulation to

sophisticated methods like random modulation [5]. In the present work only modulation
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Figure 3.6: The eight allowed switch combinations for the voltage source inverter

and the corresponding space vectors.

methods based on the space vector approach are described and only the most widely

accepted modulation strategies are discussed.

3.3.1 Space vector approach

In the space vector modulation approach [22] the three time domain output voltage

references v!A, v!B and v!C are transformed into the complex valued space vector coordinate

system by the following3:

V !
s =

2

3

(
v!A + v!Be

j 2π
3 + v!Ce

j 4π
3

)
(3.1)

By this, the three reference voltages become a vector with constant magnitude and ro-

tating with constant angular velocity in the complex space-vector plane (provided that

the reference voltages are symmetrical and their frequencies are constant).

Using eq. (3.1) on the possible switch-states of the voltage source inverter, c.f. Fig. 3.5

on the facing page, it appears that all the switch combinations become stationary vectors

with amplitudes equal to 2
3

of the DC-link voltage. Fig. 3.6a shows the space vector

representation of the output voltages of the voltage source inverter.

With reference to Fig. 3.6b, a given reference vector V !
s can be realized by applying the

two adjacent stationary vectors and a zero-vector for an angle dependent time duration

(duty-cycles). In order to establish expressions for the duty-cycles which are independent

3It should be noted that the voltage reference vector V �s, consisting of a real and an imaginary part,
actually constitute the two inputs to the modulator box in Fig. 3.3 and Fig. 3.4 on page 49.
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of, in which sector the voltage reference vector is located, the angle ∆s is defined as:

∆s = mod
((
ωst+

π

6

)
,
π

3

)
(3.2)

where ωst = 0 is defined as the positive zero crossing of the phase A reference voltage

(v!A =
√

2V ∗
A · sin(ωst)). By this the angle ∆s is in the interval: ∆s ∈ [0..π

3
]. For a given

reference voltage vector V !
s, the fractional on-times δ1..2 for the adjacent stationary

vectors can be calculated as:

Vs1 = |V !
s|

sin
(
π
3
− ∆s

)
cos
(
π
6

) = δ1 · 2

3
· VDC

⇓

δ1 =

√
3|V !

s| · sin
(
π
3
− ∆s

)
VDC

(3.3)

Vs2 = |V !
s|

sin (∆s)

cos
(
π
6

) = δ2 · 2

3
· VDC

⇓
δ2 =

√
3|V !

s| · sin (∆s)

VDC

(3.4)

where VDC is the DC-link voltage. Having the fractional on-time duration for the two ad-

jacent stationary vectors, the remaining part of the switching period are to be completed

by use of the zero-vectors v000 or/and v111. The fractional on-time for the zero-vector is

given by:

δ0 = 1 − (δ1 + δ2) (3.5)

Although, eq. (3.3) and eq. (3.4) gives the fractional on-times for the two station-

ary vectors adjacent to the reference vector, it should be noted that these modulation

functions are limited by the following constraint :

δ0..2 >= 0 (3.6)

To comply with this constraint, it appears that the maximum amplitude of the output

phase voltage is restricted to 1√
3

times the DC-link voltage (which also is the theoretical

maximum voltage transfer ratio for the voltage source inverter [17] without entering

overmodulation).

3.3.2 Modulation index

In this context, the modulation index will be defined as4:

M =
|v!A|
|v̂A!| (3.7)

4In the technical literature some confusion exists regarding the definition of modulation index. In
some publications the modulation index equals unity at the boundary where the sinusoidal carrier based
modulation enters overmodulation. In the present definition of modulation index this boundary occurs
at a modulation index of

√
3/2.
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where v̂! denotes the phase A voltage reference at which the space vector modulation

approach enters the over-modulation range. By this definition, the modulation index

becomes unity at the over-modulation boundary. The boundary for overmodulation is

shown as the circle on Fig. 3.6.

From the definition in eq. (3.7), the desired RMS inverter reference phase voltage V !
A is

related to the modulation index by:

V !
A =

M√
6
VDC (3.8)

3.3.3 Vector sequences

Although eq. (3.3) and eq. (3.4) determines the fractional on-times per switching period

for the two adjacent vectors, the realization of a given reference vector can be performed

in an arbitrary number of ways and the only requirement is that the volt-second balance

of the active vectors are satisfied within each switching period. However, in practice

only about eight different methods have gained a wide acceptance [16]. In this thesis,

only modulation methods based on the space vector approach will be treated. Actually,

those to be treated are5:

• Suboptimal modulation (subopt)6 [18] also known as SVPWM

• Symmetrical flat-top modulation (sft)6 [11] also known as DPWM1.

• Asymmetrical shifted left flat-top modulation (aslft)6 [28] also known as DPWM0.

• Asymmetrical shifted right flat-top modulation (asrft)6 [28] also known as DPWM2.

Before entering into a description of each modulation strategy, some general remarks on

the four strategies are to be added.

All the considered modulation strategies have switching sequences which are distributed

symmetrical around the center of the switching period, and the shift between any two

switch-states within a switching period are only allowed to involve one branch switch

over (BSO). Finally, to make it easier to discuss and distinguish between the different

modulation methods, it is appropriate to define the two dummy variables δlow and δhigh:

δlow =
δ000

δ000 + δ111
(3.9)

δhigh =
δ111

δ000 + δ111
(3.10)

5The references cited behind each of the modulation method do not necessarily provide the most
comprehensive and adequate description but according to the authors reference list, these papers should
be acknowledged as the inventors of the respective modulation schemes.

6The abbreviations are used in the comparison of the modulation schemes.
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Figure 3.7: Illustration of the suboptimal modulation.

TABLE I: Switching table for the suboptimal modulation of the B6-inverter.
1
4δ0

1
2δ1

1
2δ2

1
2δ0

1
2δ2

1
2δ1

1
4δ0

Sector 0 v000 v100 v110 v111 v110 v100 v000
Sector I v111 v110 v010 v000 v010 v110 v111
Sector II v000 v010 v011 v111 v011 v010 v000
Sector III v111 v011 v001 v000 v001 v011 v111
Sector IV v000 v001 v101 v111 v101 v001 v000
Sector V v111 v101 v100 v000 v100 v101 v111

which expresses the utilization of the two zero vectors v000 and v111 (δ000 is the on-time

ratio for zero-vector v000, and δ111 for the zero-vector v111).

The first modulation method (subopt) belongs in the category of continuous modulation

schemes while the latter three modulation methods, all are special cases of the general-

ized discontinuous modulation [15]. These discontinuous modulation methods uses the

redundancy of the two zero vectors v000 and v111 to reduce the number of switchings per

switching period. Actually this redundancy can be used to prevent switchings in the

inverter phase leg carrying the instantaneously highest current. This can be complied

as long as the angle φ between inverter phase voltage and phase current is in the in

interval φ ∈ [−π
3
..π
3
; 2π
3
..4π
3

] ). In the following, a brief description of each modulation

method is given, followed by a comparison and an evaluation of the methods.

Suboptimal modulation (subopt)

In the suboptimal modulation, also called the space-vector PWM (SVPWM), because

this modulation technique was the first in which the space vector theory was used to

calculate the on-times [9], the two zero-vectors v000 and v111 are equally used within

a switching period, i.e. δlow = δhigh=0.5. Table I shows the switching sequences for

the suboptimal modulation technique for each of the 6 sectors. The sector definition
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Figure 3.8: Illustration of the symmetrical flat top modulation.

TABLE II: Switching table for the sft-modulation of the B6-inverter.
1
2δ0

1
2δ1

1
2δ2 δ0

1
2δ2

1
2δ1

1
2δ0

∆s ≤ π
6 − v100 v110 v111 v110 v100 −

Sector 0
∆s > π

6 v000 v100 v110 − v110 v100 v000
∆s ≤ π

6 − v110 v010 v000 v010 v110 −
Sector I

∆s > π
6 v111 v110 v010 − v010 v110 v111

∆s ≤ π
6 − v010 v011 v111 v011 v010 −

Sector II
∆s > π

6 v000 v010 v011 − v011 v010 v000
∆s ≤ π

6 − v011 v001 v000 v001 v011 −
Sector III

∆s > π
6 v111 v011 v001 − v001 v011 v111

∆s ≤ π
6 − v001 v101 v111 v101 v001 −

Sector IV
∆s > π

6 v000 v001 v101 − v101 v001 v000
∆s ≤ π

6 − v101 v100 v000 v100 v101 −
Sector V

∆s > π
6 v111 v101 v100 − v100 v101 v111

refers to Fig. 3.7a. Fig. 3.7b shows the voltage reference v∗A and the corresponding

modulation function sA for inverter branch A. The modulation function sA is given by:

sA =
1

2

(
1 +

2√
3

v∗A
v̂∗A

+ v0

)
where v0 =


1
2

v∗A
v̂∗A

if |v∗C | > |v∗A| < |v∗B|
1
2

v∗B
v̂∗B

if |v∗A| > |v∗B| < |v∗C |
1
2

v∗C
v̂∗C

if |v∗B| > |v∗C | < |v∗A|
(3.11)

Symmetrical flat top modulation (Sft)

The discontinuous modulation scheme, known as symmetrical flat top modulation (sft-

modulation) or DPWM1 [15, 16]7, is designed to minimize the switching losses whenever

the phase current and phase voltage are in phase (or counter phase). This is obtained

by letting δlow equal zero for the first 30◦ of the even sectors and one for the last 30◦ of

7In this context the name symmetrical flat top modulation is preferred since this name closely relates
to the shape of the modulation waveform, c.f. Fig. 3.8b
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Figure 3.9: Illustration of the asymmetrical shifted left flat top modulation.

TABLE III: Switching table for the asymmetrical shifted left flat top modulation.
1
2δ2

1
2δ1 δ0

1
2δ1

1
2δ2

Sector 0 v110 v100 v000 v100 v110
Sector I v010 v110 v111 v110 v010
Sector II v011 v010 v000 v010 v011
Sector III v001 v011 v111 v011 v001
Sector IV v101 v001 v000 v001 v101
Sector V v100 v101 v111 v101 v100

the even sectors. In the odd sectors, the order of δlow and δhigh is reversed. Fig. 3.8a

shows the voltage space vector hexagon for the voltage source inverter along with the

hexagon for the phase current amplitudes. Fig. 3.8b shows the voltage reference v∗A
and the corresponding modulation function sA for inverter branch A. The modulation

function for the Sft-modulation is given by:

sA =
1

2

(
1+

2√
3

v∗A
v̂∗A

+v0

)
where v0 =


|v∗A|
v∗A

− v∗A
v̂∗A

if |v∗C | < |v∗A| > |v∗B|
|v∗B |
v∗B

− v∗B
v̂∗B

if |v∗A| < |v∗B| > |v∗C |
|v∗C |
v∗C

− v∗C
v̂∗C

if |v∗B| < |v∗C | > |v∗A|
(3.12)

The shaded area of Fig. 3.8 illustrates the zone, where phase leg A is clamped to either

the upper DC-branch or the lower DC-branch. For phase leg B and C, the clamping

interval is rotated ∓60◦. Table II summarizes the sector dependent switching sequences

of the sft-modulation. The angle ∆s in Table II is the reference voltage angle in the

actual sector, c.f. Fig. 3.6 and eq. (3.2).

Asymmetrical shifted left flat top modulation (Aslft)

The second discontinuous modulation scheme is the asymmetrical shifted left flat top

modulation (aslft) also called DPWM0-modulation. As the name implies, the clamping
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Figure 3.10: Illustration of the asymmetrical shifted right flat top modulation.

period for a phase leg is shifted to the left compared to the symmetrical flat top modu-

lation. The shift is obtained by letting δlow equal one in the even sectors and zero in the

odd sectors. By this, the aslft-modulation is switching loss optimized for a 30◦ leading

current. The aslft-modulation is illustrated in Fig. 3.9. The modulation function for

the aslft-modulation is given by:

sA =
1

2

(
1+

2√
3

v∗A
v̂∗A

+v0

)
where v0=


|v∗A|
v∗A

− v∗A
v̂∗A

if |v∗C0| > |v∗A0| < |v∗B0|
|v∗B |
v∗B

− v∗B
v̂∗B

if |v∗A0| > |v∗B0| < |v∗C0|
|v∗C |
v∗C

− v∗C
v̂∗C

if |v∗B0| > |v∗C0| < |v∗A0|
(3.13)

where v∗A0, v
∗
B0 and v∗C0 are phase shifted by -π/6 relative to v∗A, v∗B and v∗C respectively.

The sector dependent switching sequences are listed in Table III.

Asymmetrical shifted right flat top modulation (Asrft)

The last of the discontinuous modulation schemes - at least to be treated in this context

- is the so-called asymmetrical shifted right flat top modulation (asrft) or DPWM2.

According to Fig. 3.10 the asrft-modulation is obtained by letting δlow equal zero in the

even sectors and one in the odd sectors. By this, the asrft-modulation is switching-loss

optimized for a 30◦ lagging current, c.f Fig. 3.10b. The modulation function for the

asrft-modulation is given by:

sA =
1

2

(
1+

2√
3

v∗A
v̂∗A

+v0

)
where v0=


|v∗A|
v∗A

− v∗A
v̂∗A

if |v∗C2| > |v∗A2| < |v∗B2|
|v∗B |
v∗B

− v∗B
v̂∗B

if |v∗A2| > |v∗B2| < |v∗C2|
|v∗C |
v∗C

− v∗C
v̂∗C

if |v∗B2| > |v∗C2| < |v∗A2|
(3.14)

where v∗A2, v
∗
B2 and v∗C2 are phase shifted by π/6 relative to v∗A, v∗B and v∗C respectively.

Table IV summarizes the sector dependent switching sequences for the asrft-modulation.



58 Chapter 3. The back-to-back two-level voltage source converter

TABLE IV: Switching table for the asymmetrical shifted right flat top modulation.
1
2δ1

1
2δ2 δ0

1
2δ2

1
2δ1

Sector 0 v100 v110 v111 v110 v100
Sector I v110 v010 v000 v010 v110
Sector II v010 v011 v111 v011 v010
Sector III v011 v001 v000 v001 v011
Sector IV v001 v101 v111 v101 v001
Sector V v101 v100 v000 v100 v101

3.3.4 Evaluation of the modulation methods

Although all the modulation methods described in the preceding section satisfy the

volt-second balance and thereby complies the desired voltage reference, the modulation

methods behaves differently when considering e.g. switching losses, conducting losses

and harmonic content. To be able to compare and in a final stage select an appropriate

modulation method for the voltage source inverters the modulation methods have to

be evaluated on an equal basis. In this section the harmonic content for the different

modulation methods are evaluated in order to be able to select a switching frequency

which for a certain modulation method generate an acceptable harmonic content. The

switching losses and conducting losses and their relation to the selected modulation

method are discussed in section 3.4.

Harmonic performance

To evaluate the output voltage quality, the harmonic flux is considered [16, 21]. Pre-

sumed that the flux error equals zero in the beginning and at the end of each switching

sequence, the Nth carrier cycle harmonic flux ψ̃ can be calculated by:

ψ̃ =

∫ (N+1)Ts

NTs

(V s − V !
s)dt (3.15)

where V s is a stationary output vector. To be able to compare the modulators for the

different converters, the per carrier harmonic flux error ψ̃ in eq. (3.15), is normalized to

the product of the maximum voltage amplitude |V̂ s| and the switching period. That is:

ψ̃n =
1

Ts|V̂ s|
· ψ̃ (3.16)

For the two-level voltage source inverter, the maximum voltage amplitude equals VDC/
√

3.

The normalized per-carrier cycle RMS value of the harmonic flux ψ̃RMS,n can be calcu-

lated by:

〈ψ̃RMS,n〉Ts =

√∫ 1

0

(
ψ̃n · ψ̃∗

n

)
dt (3.17)
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Figure 3.11: The harmonic flux distortion of the different modulation meth-

ods, normalized according to eq. (3.16).

where ψ̃∗
n is the complex conjugate of ψ̃n. Since the flux error characteristics have six

fold symmetry per fundamental, the RMS harmonic flux value of the voltage source

inverter can be calculated in the following:

ψ̃RMS,n =

√
3

π

∫ π
3

0

(
〈ψ̃RMS,n〉Ts

)2
d∆s (3.18)

Fig. 3.11 shows the RMS-value of the harmonic flux as a function of the modulation

index for the different modulation methods. For the nominal operation point, i.e. nom-

inal modulation index M , Fig. 3.11 can be used to adjust the switching frequency of

the different modulation methods in order to achieve a certain harmonic flux distortion.

This issue is discussed in section 3.5.4 on page 81.

3.4 Loss evaluation

For the purpose of an RMS value model usable both to calculate the per-fundamental

converter losses and the designing semiconductor temperatures, it is necessary to es-

tablish analytical expressions for the conduction losses and switching losses, taking into

account both the modulation method, the modulation index M , and the load angle φ

of the inverter. This section is aimed to derive these analytical expressions.

3.4.1 Conducting losses of the switches

In this context, the conducting losses of a semiconductor device, i.e transistor and diode,

are simply modeled by [37]:

Pt,cond = Vt0(T ) · It,avg +Rt(T ) · I2t (3.19)

Pd,cond = Vd0(T ) · Id,avg +Rd(T ) · I2d (3.20)

where Ix,avg is the average current through the considered component, Ix is the RMS cur-

rent through the considered component, Vx0(T ) is the temperature dependent threshold
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voltage of the considered component and Rx0(T ) is the temperature dependent resis-

tance of the considered component. The threshold voltage and on-resistance can either

be found from data sheets or derived by the procedure described in Appendix A. Fig.

3.12 illustrates the applied modeling approach of the voltage drop across the semicon-

ductor device (in the present case, the transistor voltage drop) along with an illustration

of the actual voltage drop (shown by the dash line).

Unfortunately there is no simple relationship between the RMS output current Ir and

the current in the diode Id and transistor It. In fact, the current distribution between

diode and IGBT is a function of both the modulation index M and the displacement

angle φ between inverter phase voltage and current. Further, from the switching func-

tions of the considered modulation methods illustrated in Fig. 3.7, 3.8, 3.9 and 3.10

it appears that the current distribution between diode and transistor even may differ

from one modulation method to another. In [7], the inverter losses for two different

modulation methods were evaluated but only the integral-form of the expression were

derived while the results were evaluated numerically. For the purpose of a fast evalua-

tion method a closed form expression of the current distribution is needed. To obtain a

closed form expression of the current through the diode and transistor, an approach was

given in [27, 6] and [38] which all to a certain extent evaluated the diode- and transistor

current using sinusoidal modulation8. However, the expressions in these publications

are only valid for sinusoidal modulation.

To derive a closed-form expression for the diode - and transistor current, the current

definitions in Fig. 3.13 are used. From Fig. 3.13 the relation between diode current id
and transistor current it at any time instant is given by:

ibx = itx − idx (3.21)

where the index x may be substituted by either a or b, c.f. Fig. 3.13. The average

8In the final stage the closed form expressions in [38] were obtained from curve fitting on simulated
results and does not represent an exact solution. Fortunately this was an easy task for sinusoidal
modulation due to a nearly linear relation between transistor RMS current and the product of inverter
power factor and modulation index.
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current through the transistor and diode respectively can be evaluated by:

It,avg =
1

T0

∫ π+φ

φ

(sAir)dθ (3.22)

Id,avg =
1

T0

∫ π+φ

φ

((1 − sA)ir)dθ (3.23)

where φ is the angle between phase current and reference phase voltage, θ is an inte-

gration variable and sA is the modulation function given by either eq. (3.11), (3.12),

(3.13) or (3.14). Using the expressions for the modulation functions, it can be shown

that the average current through the transistor It,avg and diode Id,avg is independent of

the chosen modulation method and given by9:

It,avg =

(√
2

2π
+

√
6

12
M cos(φ)

)
Ir (3.24)

Id,avg =

(√
2

2π
−

√
6

12
M cos(φ)

)
Ir (3.25)

where Ir is the RMS output phase current - assuming a pure sinusoidal current waveform.

The expressions in eq. (3.24) and (3.25) are valid whenever the active power flow is out of

the inverter. In case the power flows in the opposite direction, the expression for diode-

and transistor average current has to be exchanged. Fig. 3.14 and Fig. 3.15 shows

the average transistor current and diode current respectively. The average currents are

plotted as a function of the load angle and shown for different values of the modulation

index.

Using the definition of RMS current and the modulation functions in either eq. (3.11),

9Comparing the results obtained in [38] with the results in eq. (3.24) and eq. (3.25) it is important
to note that the definition of modulation index is not identical and hence the constants do not comply.
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(3.12), (3.13) or (3.14), the RMS current through the transistor and diode can similarly

be evaluated by:

It =

√
1

2π

∫ π+φ

φ

(sAi2r)dθ (3.26)

Id =

√
1

2π

∫ π+φ

φ

((1 − sA)i2r)dθ (3.27)

where θ is used as an integration variable. Unfortunately, unlike the average current

expression, the closed form expression for the RMS current is dependent on the chosen

modulation method. In the following, the RMS current expressions are derived for the

different modulation methods. It is important to note that the derived expressions are

valid for power flowing out of the inverter while for power entering the inverter, the

diode and transistor current expressions have to exchanged.

Suboptimal modulation

The closed form solution to eq. (3.26) and eq. (3.27) using the suboptimal modulation

method, i.e. the modulation function given by eq. (3.11), is given by:

It =


(

−M+3π−4M cos(φ)2+8
√
3M cos(φ)

12π

) 1
2
Ir |φ| < π

6(
2M
(
2+

√
3

2
sin(|2φ|)−cos(φ)2−2 sin(|φ|)+2√3 cos(φ)

)
+3π

12π

) 1
2

Ir
π
6
< |φ| < π

2

(3.28)

Id =


(
1
2
− −M+3π−4M cos(φ)2+8

√
3M cos(φ)

12π

) 1
2
Ir |φ| < π

6(
1
2
− 2M

(
2+

√
3

2
sin(|2φ|)−cos(φ)2−2 sin(|φ|)+2√3 cos(φ)

)
+3π

12π

) 1
2

Ir
π
6
< |φ| < π

2

(3.29)
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The per unit transistor current and diode current when using suboptimal modulation is

shown in Fig. 3.16 and 3.17 respectively. The per unit currents are shown as a function

of the load angle and plotted for different values of the modulation index. To validate

the derived expressions in eq. (3.28) and eq. (3.29) a simulation model was established.

The simulated values are marked with an ”x” and as shown the simulated and calculated

values are identical.

Symmetrical flat top modulation

Using the symmetrical flat top modulation, given by eq. (3.12), the closed form expres-

sion for the RMS current through the transistor and diode becomes:

It =



(
(6−8M)

√
3 cos(φ)2+M

√
3(4+8 cos(φ))−8M sin(|φ|)
12π

+
|φ| < π

3
(4M−3) sin(|2φ|)−3√3+2π+6|φ|

12π

) 1
2
Ir(

(4M−3) sin(|2φ|)+3π−3|φ|
6π

) 1
2
Ir

π
3
< |φ| < π

2

(3.30)

Id =



(
1
2
− (6−8M)

√
3 cos(φ)2+M

√
3(4+8 cos(φ))

12π
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12π

) 1
2
Ir(

1
2
− (4M−3) sin(|2φ|)+3π−3|φ|

6π

) 1
2
Ir

π
3
< |φ| < π

2

(3.31)

The calculated and simulated per unit RMS currents are shown in Fig. 3.18 and Fig.

3.19. The currents are calculated as a function of the load angle φ and shown for different

values of the modulation index M .



64 Chapter 3. The back-to-back two-level voltage source converter

−1.5 −1 −0.5 0 0.5 1 1.5

0.45

0.5

0.55

0.6

0.65

0.7

Load angle [rad]

RMS transistor current [pu] (aslft)

Figure 3.20: Per unit RMS current

through transistor as a function of the

load angle. M ∈ [0, 0.1 ...1].
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Figure 3.21: Per unit RMS current

through diode as a function of the load

angle. M ∈ [0, 0.1 ...1].

Asymmetrical shifted left flat top modulation

Using the asymmetrical shifted left flat top modulation described by the modulation

function in eq. (3.13), the closed form expression for the RMS diode- and transistor

current can be derived as:

It =



(
(4
√
3M−6) sin(2φ)+8√3M cos(φ)

12π
+
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6
< φ < π
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(3.32)
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(3.33)
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The calculated and simulated per unit RMS currents when using the asymmetrical

shifted left flat top modulation are shown in Fig. 3.20 and Fig. 3.21. The currents are

shown as a function of the load angle and plotted for different values of the modulation

index.

Asymmetrical shifted right flat top modulation

Using the asymmetrical shifted right flat top modulation given by the switching function

in eq. (3.14), the closed form expressions for the RMS transistor- and diode current can

be derived as:

It =



(
(6−4

√
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√
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√
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(3.35)

The calculated and simulated per unit RMS currents when using asymmetrical shifted

right flat top modulation are shown in Fig. 3.22 and Fig. 3.23. The currents are

calculated as a function of the load angle and shown for different values of the modulation

index.

3.4.2 Switching losses

As in the case with the conducting losses, the switching losses of a two-level voltage

source inverter also depend on the chosen modulation strategy [16]. Assuming the

inverter component switching losses to be proportional to the switched voltage and
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Figure 3.22: Per unit RMS current

through transistor as a function of the

load angle. M ∈ [0, 0.1 ...1].
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Figure 3.23: Per unit RMS current

through diode as a function of the load

angle. M ∈ [0, 0.1 ...1].

the switched current [26] and accounting only for the fundamental component of the

load current, the switching losses can be analytically modeled for any given modulation

strategy. The transistor and diode inverter switching losses per fundamental can be

evaluated by:

Pt,sw = VDC · Esw0,t(T ) · fsw · Isw,avg (3.36)

Pd,sw = VDC · Esw0,d(T ) · fsw · Isw,avg (3.37)

where Et,sw0 is the sum of the per unit VA transistor turn on and turn off switching

energy, Ed,sw0 is sum of the per unit VA diode turn on and turn off switching energy,

VDC is the DC-link voltage, fsw is the switching frequency and Isw,avg is the average

switched device current. The per unit VA switching energies can either be found from

data sheets or derived by the procedure described in Appendix A. The average switched

device current is given by:

Isw,avg =
1

4π

∫ 2π

0

ĩsw(θ)dθ (3.38)

where ĩsw(θ) is the switching current function The switching current function equals

zero in the intervals where modulation ceases (in case of discontinuous modulation) and

the absolute value of the corresponding phase current value elsewhere. To obtain a

closed form expression for the switching losses, the switching current function has to be

evaluated for the different modulation methods.

Suboptimal modulation

In the suboptimal modulation scheme, the switchings of each device are equally dis-

tributed within the fundamental period and hence the switching losses are independent

of the load angle φ between current and inverter voltage. Evaluation of the switching
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current function for the suboptimal modulation gives:

Isw,avg =
1

4π

∫ 2π

0

ĩsw(θ)dθ

=

√
2

π
Ir (3.39)

where Ir is the RMS output phase current of the inverter.

Symmetrical flat top modulation

Using a discontinuous modulation methods like the symmetrical flat top modulation it

clearly appears from the modulation function illustrated in Fig. 3.8 on page 55 that

the switching current function depends on the load angle φ, i.e angle between inverter

reference voltage and phase current. For the symmetrical flat top modulation the closed

form expression for the switching current function can be derived as:

Isw,avg =
1

4π

∫ 2π

0

ĩsw(θ)dθ

=


−

√
2(cos(φ)−2)
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3
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3√
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2π
Ir

2π
3
< |φ| < π

(3.40)

Asymmetrical shifted left flat top modulation

The closed form expression for the switching current function when using the asymmet-

rical shifted left flat top modulation can be derived as:

Isw,avg =
1

4π

∫ 2π
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ĩsw(θ)dθ
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3
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6
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(3.41)

Asymmetrical shifted right flat top modulation

Finally, the closed form expression for the switching current function when using the

asymmetrical shifted right flat top modulation can be derived as:

Isw,avg =
1

4π

∫ 2π

0

ĩsw(θ)dθ

=


−

√
2(cos(φ+π

6
)−2)

2π
Ir |φ+ π

6
| < π

3√
(6) sin(|φ+π

6
|)

2π
Ir

π
3
< |φ+ π

6
| < 2π

3√
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(3.42)
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Figure 3.24: The switching current function (normalized to the RMS output cur-

rent) for the different modulation methods.

The switching current functions for the different modulation methods are shown in Fig.

3.24.

3.4.3 Thermal modeling

The thermal modeling of the switches has two purposes:

1. To calculate the per fundamental average temperature in order to derive the correct

values for resistances and on-state voltage drops under the actual temperature

conditions10.

2. To calculate the peak temperature within a fundamental period in order to validate

a certain converter design11.

Fig. 3.25a illustrates a simple one dimensional approach to calculate the junction tem-

perature of the semiconductor components in a half bridge module [26], where the index

notation of the power losses, e.g. Pta, follows the notation in Fig 3.13 on page 60. Each

of the semiconductor power losses are modeled as a current source feeding into a thermal

impedance denoted by Zthxx. As illustrated in Fig. 3.25b, the thermal impedances can

be composed of one or more series connected RC-elements. The temperature source

k · Txx illustrates a thermal coupling between a transistor and a diode having current

conduction in the same half period of a fundamental and finally the temperature source

Tamb makes it possible to offset the temperature estimation by the ambient tempera-

ture. Based on the thermal modeling approach in Fig. 3.25 the goal is to derive a

method which enables estimation of the average and peak junction temperatures, only

10Assuming the resistances and on-state voltage drops to be linear dependent on the component
temperature, this approach will generate the correct per fundamental power losses.

11Especially in the doubly-fed system, this seems to be a very important issue due to the low fun-
damental frequency of the rotor inverter. Due to the low frequency, very high temperature variations
within a fundamental period can be expected.
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Figure 3.25: Illustration of the simple thermal models used to estimate switch

temperatures. a) Thermal model of a half bridge module. b) Model of a thermal

impedance Zth.

with information on the modulation method dependent semiconductor losses calculated

in section 3.4 and the thermal parameters in Fig. 3.25.

Average temperatures

Neglecting the thermal coupling between the components in the half bridge module, the

average temperature of the individual components can simply be calculated by:

Ttx = Ptx ·
y∑

w=1

Rthxw,t + 2 · (Ptx + Pdx) · (Rthch +Rthha) + Tamb (3.43)

Tdx = Pdx ·
y∑

w=1

Rthxw,d + 2 · (Ptx + Pdx) · (Rthch +Rthha) + Tamb (3.44)

where Ttx is the average transistor temperature, Tdx is the average diode temperature

and Rthxx,x is the thermal resistances in the thermal model in Fig. 3.25b.

Peak temperatures

During operation at low frequencies (fs < 10 Hz) the temporal variability of the power

losses within a fundamental causes similar junction temperature variations. To estimate

these temperature variations with a high accuracy, detailed knowledge of thermal struc-

ture of the semiconductor component is needed as well as an accurate prediction of the

semiconductor losses as a function of time is required.

The thermal modeling of the semiconductor device may be accomplished by FEM anal-

ysis [34] or by three-dimensional electrical circuit equivalents while the semiconductor

losses may be derived from a time consuming numerical simulation. However, none

of these approaches are suitable for the purpose of the present approach since: 1) the

necessary thermal data are generally not available and 2) the mentioned approaches are
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Figure 3.26: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using sub-

optimal modulation.
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Figure 3.27: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using sym-

metrical flat top modulation.
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Figure 3.28: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using asym-

metrical shifted left flat top modulation.
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Figure 3.29: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using asym-

metrical shifted right flat top modulation.

very time consuming which is against the intention of the present work. The approach

considered in this context is based on the one-dimensional thermal model illustrated in

Fig 3.25, and the approach is to model the losses as sinusoidal functions with a DC-

offset representing the average losses. By this approach, the thermal problem is reduced

from a complex numerical iteration task to simple scalar expressions. By the present

approach, the transistor losses p̃tx and diode losses p̃dx are estimated by:

p̃tx(t) = Ptx +
∞∑
n=1

(pt,an · cos (n · ωs · t) + pt,bn · sin (n · ωs · t)) (3.45)
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Figure 3.30: Example of calculated (-)

and simulated (*) peak power losses as a

function of the load angle, using subopti-

mal modulation.
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Figure 3.31: Example of calculated (-)

and simulated (*) peak power losses as a

function of the load angle, using symmet-

rical flat top modulation.
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Figure 3.32: Example of calculated (-

) and simulated (*) peak power losses as

a function of the load angle, using asym-

metrical shifted left flat top modulation.
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Figure 3.33: Example of calculated (-

) and simulated (*) peak power losses as

a function of the load angle, using asym-

metrical shifted right flat top modulation.

p̃dx(t) = Pdx +
∞∑
n=1

(pd,an · cos (n · ωs · t) + pd,bn · sin (n · ωs · t)) (3.46)

where the coefficients pt,an, pt,bn, pd,an and pd,bn are found from a Fourier analysis of the

actual transistor losses and diode losses. The actual transistor and diode losses where

derived in section 3.4 and are given by:

ptx(t) =
(
VDC · Esw0,t(T ) · fsw · ĩsw,t(θ) + Vt0(T ) · it(θ) +Rt · i2t (θ)

)
(3.47)

pdx(t) =
(
VDC · Esw0,d(T ) · fsw · ĩsw,d(θ) + Vd0(T ) · id(θ) +Rd · i2d(θ)

)
(3.48)

Fig. 3.26 - Fig. 3.29 illustrates the present approach when applied on the four
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Figure 3.34: Example of calculated (-)

and simulated (*) IGBT junction temper-

atures as a function of the fundamental

frequency, using suboptimal modulation.
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Figure 3.35: Example of calculated

(-) and simulated (*) IGBT junction tem-

peratures as a function of the fundamen-

tal frequency, using symmetrical flat top

modulation.
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Figure 3.36: Example of calculated (-)

and simulated (*) IGBT junction temper-

atures as a function of the fundamental

frequency, using asymmetrical shifted left

flat top modulation.
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Figure 3.37: Example of calculated

(-) and simulated (*) IGBT junction tem-

peratures as a function of the fundamen-

tal frequency, using asymmetrical shifted

right flat top modulation.

considered modulation strategies. The blue curves show the real losses derived from a

numerical simulation whereas the red curves show the losses calculated from eq. (3.45)

- eq. (3.48) when the number of harmonics n is limited to 25. To further demonstrate

the strength of the present approach, Fig. 3.30 - Fig. 3.33 shows the peak power losses

in a transistor. The peak power losses are calculated as a function of the load angle φ

and shown for different values of the modulation index. The power losses marked with

(*) are simulated losses using the real loss distribution on a thermal model as shown
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TABLE V: Thermal parameters used in the example of Fig. 3.34 - Fig. 3.37.

Symbol Value Unit Symbol Value Unit
Rthjc1,t 3.4 [K/kW] Cthjc1,t 107 [K/mWs]
Rthjc2,t 9.6 [K/kW] Cthjc2,t 18.8 [K/Ws]
Rthjc3,t 7.0 [K/kW] Cthjc3,t 5.7 [K/Ws]
Rthjc1,d 12.0 [K/kW] Cthjc1,d 2.5 [K/mWs]
Rthjc2,d 12.0 [K/kW] Cthjc2,d 417 [K/Ws]
Rthjc3,d 18.0 [K/kW] Cthjc3,d 13.9 [K/Ws]
Rthjc4,d 20.0 [K/kW] Cthjc4,d 2.00 [K/Ws]
Rthca 11 [K/kW] Cthca −− [K/Ws]

in Fig. 3.25 while temperatures calculated by the present approach are shown by solid

lines. Assuming that the thermal capacitance of the case to ambient structure of the

semiconductor module is sufficiently large to suppress temperature variations in the

considered frequency range, the peak junction temperature of the transistor and diode

can be estimated by:

T̃tx = Ttx+
∞∑
n=1

(
(pt,an ·cos (n·ωs ·t) + pt,bn ·sin (n·ωs · t))

y∑
w=1

Zthxw,t(n·ωs)

)
(3.49)

T̃dx = Tdx+
∞∑
n=1

(
(pd,an ·cos (n·ωs ·t) + pd,bn ·sin (n·ωs ·t))

y∑
w=1

Zthxw,d(n·ωs)

)
(3.50)

where Ttx and Tdx are the average component temperature calculated by the expres-

sion given in eq. (3.43) and eq. (3.44). Fig. 3.34 - Fig. 3.37 demonstrate the present

approach for calculating peak junction temperature. The junction temperatures are cal-

culated as a function of the fundamental frequency and shown for different values of the

modulation index. The temperatures marked with (*) are simulated temperatures using

the real loss distribution on a thermal model as shown in Fig. 3.25 while temperatures

calculated by the approach given in eq. (3.49) and eq. (3.50) are shown by solid lines.

The thermal parameters used to exemplify the peak temperature estimation approach

are listed in Table V.

3.4.4 Inductor power losses

The inductor power losses PL are composed of copper losses, hysteresis losses and eddy

current losses. That is:

PL = Pcu + Phy + Ped (3.51)
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Copper losses

The copper losses in the inductor are due to the effective resistance RL of the windings.

Pcu = RLI
2
L (3.52)

Where the effective resistance is a function of the inductor design, the inductor temper-

ature and the frequency of the inductor current. For a given load current and a desired

inductor value, Appendix B provides a detailed inductor design tool from which the

effective resistance RL of the inductor can be extracted.

Hysteresis losses

The empirical Steinmetz equation expresses the specific hysteresis loss as an exponential

function of the frequency f and the maximum flux density B̂c. Provided that the

magnetizing current is purely sinusoidal, the hysteresis loss can be expressed by:

Phy = ML · cm · fα · B̂β
c (3.53)

where ML is the weight of the core material cm, α and β are material property constants.

Despite, the formula in (3.53) is a well established expression for the hysteresis losses,

manufactures of iron cores rather provide graphical presentation of the loss character-

istic than providing the material property constants. Appendix B provides a detailed

description on the extraction of the material property constants cm, α and β as well

as a design procedure for determining core material mass, given the nominal current

and the desired inductance value. The design values for the current and inductance are

discussed in section 3.5.

Eddy current losses

To account for the eddy current losses the empirical Steinmetz equation is used:

Ped = ML · σc · τ
12ρc

(
dB

dt

)2
(3.54)

where σc is the conductivity of the core material, τ is the thickness of the lamination

and ρc is the mass density of the used core material. For a more detailed description on

the modeling of the inductor power losses, see Appendix B.

3.5 Design aspects

Although the modeling approach described in the preceding sections in some sense has

provided most of the equations for use in the converter design it may be difficult to

extract the essential parts and for that reason it seems convenient to have some less

complex design guidelines, at least for an initial design approach. This section is aimed

to provide some rough design guidelines for the components in the back-to-back two-level
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voltage source converter. Having this rough converter design, the loss- and temperature

modeling approach described in this chapter can then be used to evaluate whether the

designed converter does comply with the specified performance specification.

3.5.1 Design of switches

The aspects regarding the switch design describes some rough current rating estimations

based on the ideal generator model discussed on page 37 and some rules of thumb

regarding choice of switch for a given DC-link voltage. However regarding the latter

aspect it is important to note that the voltage design margin very much depend on the

specific power layout.

Current ratings

Neglecting the generator losses, the active power to be handled by the back-to-back

converter is given by:

P̃r =
s(ωgenTgen)

1 + s
(3.55)

where ωgen is the angular velocity (in rad/s) of the generator shaft, Tgen is the torque

applied on the generator shaft and s is the slip defined by12:

s =
Np · ωgen − ωs

ωs

(3.56)

where Np is the number of pole pairs in the generator and ωs is the angular velocity of

the grid voltage applied on the stator. Further, the reactive power to be handled by the

rotor inverter Q̃r is given by:

Q̃r = s ·
(
Q∗

s +
3|V s|2
ωsLm

)
(3.57)

where Q∗
s is the desired reactive power to be generated from the stator, |V s| is the RMS

stator phase voltage and Lm is the magnetizing inductance of the generator. The rotor

current Ĩr, can then be roughly estimated by:

|Ĩr| =
1

Ngen

·
√
P̃ 2r + Q̃2r

3 · s · |V s|
(3.58)

where Ngen is the winding ratio between rotor and stator. Neglecting the converter

losses, the power to be handled by the grid side inverter equals the rotor power P̃r.

Hence the grid inverter current Ĩg can the be estimated by:

|Ĩg3| =

√
P̃ 2r + (Q∗

g3)
2

3 · |V g3|
(3.59)

12Please note that the definition of slip is positive for super synchronous speed - a definition contrary
to the definition normally used in text books concerning electrical machinery.
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Figure 3.39: Typical relation between

DC-link voltage and switch voltage.

where Q∗
g3 is the reactive power generated to the grid by the grid side inverter. Fig.

3.38 demonstrate an example of these simple calculations of the rotor currents and grid

currents compared with the actual values. As a final remark regarding the current

ratings of the switches in the back-to-back converter it should be noted that since the

converter has to handle a bi-directional power flow, the diodes and transistors have to

be rated for almost the same current13.

Voltage ratings

In order to be able to control the generated power in a certain slip range, the rotor

side inverter has to be able to generate voltages higher than the voltage appearing on

the rotor terminal of the generator. Assuming an ideal generator, the voltage at the

rotor terminals of the generator can be approximated by:

|Ṽ r(s)| = s · |V s| ·Ngen (3.60)

Further to control the power flow to/from the grid, the grid side inverter has to be

capable of generating voltages higher than the grid voltage. The necessary grid inverter

phase voltage Vgc can be approximated by:

|Ṽ gc| = |V g3 + j · ωs · Lg · Ĩg(ŝ)| (3.61)

where |V g3| is the transformer phase voltage at the grid side of the inverter and Ĩg(ŝ)

is the grid current appearing at the maximum slip, c.f. Fig. 3.38. Hence the DC-link

voltage of the back-to-back two-level voltage source converter has to obey the following

13In conventional drives and in wind turbines based on full-scale converters the power flow is normally
uni-directional and hence the current shear between transistor and diodes is unequal, cf. section 3.4.
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constrains:

VDC > ŝ ·
√

6|V s| ·Ngen (3.62)

∧
VDC >

√
6|V g3 + j · ωs · Lg · Ĩg(ŝ)| (3.63)

The grid side voltage |V g3| should be the maximum appearing value for which the tur-

bine is expected to be in normal operation, c.f. section 2.6.2.

The selection of a switch for a certain DC-link voltage has to incorporate some voltage

margin to cope with the transient voltage spikes occurring at each switching instant due

to stray inductances, both inside the switch and in the surrounding DC-link circuit. This

voltage design margin especially has to include the overvoltages arising from the turn-

off transients in case of short circuit failures. Fig. 3.39 shows typical relation between

output inverter voltage (phase-phase) and voltage ratings of an applicable switch [25].

However it should be noted that the necessary voltage design margin is very dependent

on the DC-link design and the switch turn-off behavior in case of a failure.

3.5.2 Design of boost inductance

In order to be able to design the boost inductance, the necessary inductance value and

inductance current rating have to be found. Having the desired inductance and the cur-

rent rating, the boost inductance can be designed according to the procedure described

in Appendix B. Further, from the design procedure the loss parameters necessary for

the loss calculations can be determined.

Inductance value

In dynamic operation, i.e. when the rotational speed varies up to the maximum specified

slip ŝ, the grid inverter still has to be able to control the power to/from the DC-link.

From eq. (3.63) it appears that the maximum inductance value depends on the DC-link

voltage and the grid voltage. Rearranging eq. (3.63) the following constrain regarding

the boost inductance is obtained:

Lg ≤
−Q̂∗

g3 +

√
9| ˆ̃V gc|2| ˆ̃Ig3|2 − ˆ̃P 2r − 2 ˆ̃PrQ̂∗

g3

ωg| ˆ̃Ig3|2
(3.64)

where | ˆ̃Vgc| and | ˆ̃Ig3| are the maximum necessary grid inverter voltage and current given

by eq. (3.61) and eq. (3.59) respectively.

Current rating

The current ratings of the boost inductance has to be designed for the current given by

eq. (3.59).
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Figure 3.40: Core designs. Losses vs. mass of the three-phase inductor plotted for

current densities between 1.5 - 8 A/mm2.

By use of the iterative design procedure described in Appendix B, it is possible to de-

sign an inductor complying with the specifications. Fig. 3.40 shows an example of the

outcome of the present design procedure.

Fig. 3.40 shows the calculated losses for 7 different inductances14 (0.3mH to 0.6mH

stepped by 50µH) as a function of the mass of the inductor. The calculations are

repeated for different current densities (1.5 A/mm2 to 8 A/mm2). The bold lines cor-

responds to core designs where the temperature is kept below the maximum allowable

temperature while thin lines corresponds to designs which do not comply with the tem-

perature specifications.

3.5.3 Design of DC-link

Although the design of the DC-link is not a necessary task for the loss calculation

approach, it is a general issue in the converter design. Especially, the presence of the

two active inverters feeding harmonic currents into the DC-link capacitors make the DC-

link design a little more complex than the DC-link design of conventional uni-directional

drives. In general, the DC-link design include the following considerations [19]:

• Harmonic current ratings in steady-state operation.

• Peak-voltage suppression in case of a grid failure.

• Suppress the effect of a transient power mismatch between grid side inverter and

rotor side inverter.

14In the present example, the product of the inductance and the switching frequency is kept constant
at 2.0
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Figure 3.41: Definition of the DC-link currents.

In this context, only the design considerations regarding the steady state operation are

discussed. In the harmonic current calculation, the current definitions in Fig. 3.41 are

used.

Current contribution from the two-level rotor side inverter

The current fed from the rotor side to the DC-link IDC,r can be calculated from the

switch states presented in section 3.3. Due to the six fold symmetry, it is sufficient to

consider only the interval from 0 to π
3

[20]:

IDC,r =

√
6

2π

∫ π/3

0

(δ1 · i2A + δ2(−iC)2)d∆s (3.65)

where the duty-cycle functions δ1 and δ2 is given by:

δ1 = Mr · sin
(π

3
− ∆s

)
(3.66)

δ2 = Mr · sin (∆s)

and the phase currents are given by:

iA =
√

2 · Ir · cos(∆s + φr)

(3.67)

iC =
√

2 · Ir · cos

(
∆s + φr − 4π

3

)
By insertion of eq. (3.66) and eq. (3.67) into eq. (3.65), the following closed form

expression is obtained:

IDC,r = Ir

√
Mr

π
(1 + 4 cos2(φr)) (3.68)

Fig. 3.42 shows the RMS DC-link current from the rotor side inverter as a function of

the load angle φr and the modulation index Mr. The DC-link current IDC,r calculated

by eq. (3.68) can be considered as being composed of an average value IDC,r= and a

ripple current IDC,r̃ related by:

IDC,r =
√
I2DC,r= + I2DC,r̃ (3.69)
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Figure 3.42: The DC-link current IDC,r

(RMS) due to the switching operation of

the rotor inverter.
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Figure 3.43: The DC-link capacitor

current IDC,r̃ (RMS) due to the switching

operation of the rotor inverter.

The average current IDC,r= fed from the rotor circuit to the DC-link is by:

IDC,r= =
6

2π

∫ π
3

0

(δ1 · iA + δ2(−iC))d∆s (3.70)

On a closed for, the average current IDC,r= becomes:

IDC,r= =

√
6

2
Mr · cos(φr) · Ir (3.71)

Since the current through the DC-link capacitors do not contain any DC-component, the

current through the capacitors originating from the rotor side inverter can be derived

as:

IDC,r̃ =
1

2
Ir

√(
16

π
− 6Mr

)
Mr · cos2(φr) +

4

π
Mr (3.72)

Fig. 3.43 shows the harmonic DC-link capacitor current originating from the rotor side

inverter as a function of the load angle φr and the modulation index Mr.

Current contribution from the two-level grid side inverter

The current contribution from the grid side inverter is derived similar to the derivation

of the current contribution from the rotor side inverter. The harmonic capacitor current

originating from the grid side inverter is given by:

IDC,g̃ =
1

2
Ig

√(
16

π
− 6Mg

)
Mg · cos2(φg) +

4

π
Mg (3.73)

where φg is the angle between the grid inverter reference voltage and the grid current

and Mg is the modulation index of the grid side inverter.
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Current stresses on the DC-link capacitors

Although having the current contribution from both the grid side inverter and the rotor

side inverter, the current stress on the DC-link is still quite complex to derive. Actually,

in the general form, each harmonic component (h) of the grid- and rotor side inverter

has to be added vectorially. That is [33, 32]:

I2DC̃ =
∞∑
h=1

(IDC,g̃(h) + IDC,r̃(h))
2

=
∞∑
h=1

(I2DC,g̃(h) + I2DC,r̃(h) + 2 · IDC,g̃(h) · IDC,r̃(h) cos(θg(h) − θr(h))) (3.74)

where θg(h) and θr(h) is the angle of the individual harmonic. The angle of the har-

monics depend on the synchronization of the grid side modulator and rotor side mod-

ulator. Clearly, the expression of the DC-link harmonic current, involving the need for

a harmonic analysis is of limited value in a rough DC-link design. However, with the

assumption that the grid side inverter and rotor side inverter are operated at differ-

ent switching frequencies and in addition, contains no common higher harmonics, the

current stress on the DC-link capacitors can be approximated by:

IDC̃ =
√
I2DC,g̃ + I2DC,r̃ (3.75)

From eq. (3.74) it appears that selecting the switching frequencies of the grid side

inverter and rotor side inverter with an integer multipla in difference and further syn-

chronizing the modulators the DC-link capacitor current may be reduced from the values

obtained by the expression in eq. (3.75). Fig. 3.44 shows an example of the DC-link

capacitor current as a function of the wind speed for a typical wind turbine application

when using eq. (3.75).

3.5.4 Modulation strategy and switching frequency

From the evaluation of harmonic flux distortion discussed in section 3.3.4 it appears that

in order to obtain the same harmonic performance in a nominal working condition, i.e.

for a nominal modulation index, the switching frequency should be selected according

to both the chosen modulation method and the nominal modulation index. For this

purpose it is convenient to establish an expression for a switching frequency correction

factor ksw,v. Hence, using the suboptimal modulation method as basis, the switching

frequency correction factor expresses the factor by which the switching frequency has

to be increased for any other modulation method in order to obtain the same harmonic

performance as for the suboptimal modulation method. Using the result of the harmonic

flux distortion evaluation presented in Fig. 3.11 on page 59 and evaluating the ratio

between the harmonic flux distortion of the suboptimal modulation method and any of

the other modulation methods, the switching frequency correction factor can be found.
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For the symmetrical flat top modulation method, the switching frequency correction

factor can be approximated by:

ksw,v = 6.236M5
0 − 13.730M4

0 + 9.603M3
0 − 3.338M2

0 + 0.291M0 + 1.987 (3.76)

where M0 is the modulation index at nominal working conditions. For the two asym-

metrical modulation methods (aslft and asrft) the switching frequency correction factor

can be approximated by:

ksw,v = 7.088M5
0 − 15.15M4

0 + 10.51M3
0 − 3.696M2

0 + 0.291M0 + 1.982 (3.77)

Fig. 3.45 shows the switching frequency correction factor as a function of the nominal

modulation index. From Fig. 3.45 it appears, that depending on the nominal modulation

index, the switching frequency for the discontinuous modulation methods should be

between 1.05 and 2 times higher than for the for the suboptimal modulation method in

order to achieve the same harmonic performance.

3.6 Model of the back-to-back two level voltage

source converter

Input to the back-to-back two-level voltage source converter model are both given from

the generator side and from the grid side, i.e. from the transformer. Input to the rotor

side inverter are the rotor voltage, rotor current, load angle and frequency, all given

by the generator modeling approach described in section 2.4. Input to the grid side

inverter are the grid voltage, i.e. the voltage on the tertiary side of the transformer, c.f

section 2.5, the grid frequency and the desired reactive power generation from the grid
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side inverter. Based on these input, the converter model has to output the resulting grid

current supplied to the tertiary transformer windings along with internal values such as

the converter losses and temperatures.

3.6.1 Converter losses

Depending on the chosen modulation method (can be selected differently for the grid

side inverter and the rotor side inverter), the total converter losses can be derived from

the equations given in section 3.4. The losses of the rotor side inverter, Pinv,r, is given

by:

Pinv,r = 6 (Pcond,tr + Pcond,dr + Psw,tr + Psw,dr)

= 6
(
Vtr0(T ) · Iavg,tr +Rtr(T ) · I2tr + Vd0(T ) · Iavg,dr +Rdr(T ) · I2dr

)
+ (3.78)

6 · VDC · fswr · (Esw0,tr(T ) + Esw0,dr(T )) Iswr,avg

The current quantities in eq. (3.78) has to be evaluated according to the chosen modu-

lation strategy. The modulation method dependent expression for the current quantities

were derived in section 3.4.

Similarly, the grid side inverter losses may be evaluated:

Pinv,g = 6 (Pcond,tg + Pcond,dg + Psw,tg + Psw,dg)

= 6
(
Vtg0(T ) · Iavg,tg +Rtg(T ) · I2tg + Vd0(T ) · Iavg,dg +Rdg(T ) · I2dg

)
+ (3.79)

6 · VDC · fswg · (Esw0,tg(T ) + Esw0,dg(T )) Iswg,avg

The grid inductor power losses PL are calculated according to eq. (3.51) on page 73.

3.6.2 Power transferred to the transformer

According to eq. (2.47) on page 39 input to the transformer modeling approach is the

grid inverter current Ig3, the stator current Is and the primary side voltage V g1. Hence,

besides the converter losses, the only necessary output from the converter modeling is

the grid inverter current.

Ig3 =
(Pr − (Pinv,r + Pinv,g + PL)) + j ·Q∗

g

3 · V g3

(3.80)

3.7 Summary

This chapter has provided a comprehensive overview of the back-to-back two-level volt-

age source converter, conventionally used in variable speed wind turbines. The section

was introduced by an explanation of the operating principles followed by a detailed

description of the most commonly used modulation methods. For the considered mod-

ulation methods, harmonic performance were evaluated in order to be able to select a
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switching frequency with comparable harmonic distortion. Further, closed form analyt-

ical expressions for the modulation method dependent conducting losses and switching

losses has been derived. With the purpose of including the switch temperature in the

converter loss evaluation, analytical expressions for the average switch temperature has

been derived. Further, due to the fact that the rotor inverter in the doubly-fed sys-

tem is operated at low frequencies the peak temperature deviate quite much from the

average temperature. Hence for the purpose of a fast validation of a certain converter

design, some analytical approximations has been proposed. Finally, to be able to pre-

dimension the back-to-back two-level voltage source converter, some rules of thumb

regarding switch current ratings, switch voltage ratings, DC-link design and inductor

design have been presented.
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Chapter 4

The matrix converter

SINCE the early nineties matrix converters have received considerable attention and

especially in applications requiring bi-directional power flow, the matrix converter

might become a competitive alternative to the conventional back-to-back voltage source

converter. A forte of the matrix converter is the direct AC to AC conversion, by which

the large energy storage element of conventional converters is avoided. Due to this lack

of the energy storing element, many publications express expectations of a higher effi-

ciency and a more compact design [6, 15, 20, 51].

The main purpose of this chapter is to derive some tools enabling an investigation

on whether the matrix converter is competitive to the two-level back-to-back voltage

source converter with regards to efficiency - especially when considered in the specific

application of a wind turbine based on the doubly-fed induction generator. The chapter

starts with a historical review on the matrix converter which in brief terms presents

the evolution of the converter and lists the most significant publications. As the matrix

converter is a quite rarely used and unknown type of power converter in a commercial

aspect, the operating principles of the converter are explained in detail. This explanation

especially focuses on the control of the switches - known as modulation - which for the

matrix converter is a little more complex than for the two-level inverter as the grid

current and generator voltage has to be shaped by the same switch combinations. The

chapter includes a discussion of known modulation principles as well as development of

three new modulation schemes. To be able to compare and select a modulation strategy

for the matrix converter, the discussed modulation strategies are evaluated with regard

to their waveform quality - both on the grid side and on the generator side - as well

as their influence on power loss generation. Then, some aspects regarding component

ratings and filter design are outlined and finally, to be used in a converter evaluation

and converter comparison, the losses of the matrix converter are modeled.

4.1 Previous work

The fundamental ideas behind the matrix converter are quite old, indeed the first theo-

retical work was carried out during the 1920´s and 1930´s. Nevertheless, in almost any
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literature concerning the matrix converter, the work done by Pelly and Gyugyi [23] is

honoured as the invention of the matrix converter. At that time the lack of suitable

switches with intrinsic turn-off capability had a restrictive influence on the further de-

velopment within the field. Ten years after the publication of Pelly and Gyugyi´s work,

only about ten papers have treated the matrix converter. Among these, especially the

work carried out by Venturini and Alesina [57, 58] has contributed to the development

of the matrix converter. In fact, the conventional matrix converter topology was intro-

duced by Venturini in 1980 [57]. Fig. 4.1 shows the basic topology of the conventional

matrix converter used in a doubly fed system. Each of the switches in Fig. 4.1 represents

a bi-directional switch.

Besides the problems concerning the switches,

Figure 4.1: Topology of the conventional

matrix converter.

a major problem at this early stage was the

restriction in the output voltage and the lack-

ing ability of independent control of the input

power factor. The output voltage was lim-

ited to half the input voltage and the input

power factor was restricted to above the out-

put power factor. To overcome these prob-

lems, a number of different conversion algo-

rithms had been proposed, among others in

[30, 35, 51]. A common drawback of these at-

tempts was that the improved output perfor-

mance was achieved at the expense of the input waveform and/or the converter complex-

ity. In 1988 Alesina and Venturini [1, 2] presented a new conversion algorithm utilizing

the theoretical maximum output voltage of
√

3/2 of the input voltage with sinusoidal

input current. In addition full control of the power factor was achieved, however at

the expense of the amplitude of the output voltage. Whether this publication was the

breakthrough for the matrix converter is uncertain, but from about 1989 the amount of

publications concerning the conventional matrix converter has increased significantly.

Today more than 400 papers concerning the matrix converter have been published,

where the majority treats the matrix converter for implementation in a conventional

three phase motor drive. Only about six publications have treated the matrix converter

in a wind turbine application [3, 17, 22, 34, 67, 68], where the bi-directional power flow

(almost) is a necessity. Regarding practical use, the 3MW Growian turbine erected in

the early eighties was based on the cyclo-converter1 [60].

1The cyclo-converter is based on the same principles as the matrix converter but without the pos-
sibility of force commutating the involved switches
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Figure 4.2: Operation principles of the matrix converter.

4.2 Operating principles

Compared to the operating principles of the back-to-back two-level voltage source con-

verter which can be treated as two separate inverters, the operating principles of the

matrix converter is rather complicated due to the fact that both input and output wave-

forms have to be shaped in the same conversion step. This section pursues to explain

the basic operating principles of the matrix converter and to define the switch-state

notation which will be used throughout the chapter. Besides the rather theoretical ex-

planation of the basic operating principles the chapter includes a review on issues such

as bi-directional switch realization, commutation strategies, unbalanced supply condi-

tions and shut down procedures - issues necessary to consider if the matrix converter is

to be operative.

4.2.1 Reference voltage and current generation

The aim for the matrix converter is to synthesize a rotor voltage that generates the

desired generator active- and reactive power at the desired rotational speed and at

the same time synthesize a sinusoidal input current matching the desired power factor

demand on the grid side of the converter. Considering the generation of a rotor voltage

reference, this task is equivalent to the case of the back-to-back two-level voltage source

converter. Hence the control structure illustrated in Fig. 3.4 on page 49 may very well

suit the purpose of generating a voltage reference for the matrix converter as well. At

the grid side, the matrix converter is to be considered as a current source and hence one

could expect that the control of the matrix converter would have to generate a current

reference. However, due to the fact that the matrix converter does not include an energy

storing element no active power can be stored and hence the active current generated to

the grid will at any time have to represent the active power processed on the rotor side.
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Hence the matrix converter is to be controlled without actually having an amplitude

for a desired grid current. As will be shown in section 4.3 concerning the modulation of

the matrix converter, the only references needed in order to control the grid current are

the instantaneous angle of the voltage vector measured between the grid filter and the

matrix converter and the desired power factor at the grid side of the input filter whereas

the amplitude of the input current is inherently generated by controlling the switches

of the matrix converter to generate the desired generator rotor voltage. The control of

the grid side power factor may either be realized as an open loop control using the filter

component values to calculate the phase shift across the grid filter or as a closed loop

control using the currents measured at the grid side of the grid filter.

4.2.2 Voltage and current synthesizing

The basic idea of the matrix converter is, that a desired input current i!gp, output

voltage v!rp and output frequency f !
r can be obtained by properly connecting the output

terminals to the input terminals. Fig. 4.2 on the page before illustrates the operating

principles for the matrix converter. The switching pattern in Fig. 4.2 serves only as

illustration of the operating principles of the matrix converter. From Fig. 4.2 it appears

that 29 different switch state combinations exist, although the most of these switch state

combinations are invalid. In order to protect the converter, two basic control rules have

to be obeyed:

Short circuit of the supply: From the matrix converter topology shown in Fig. 4.2

it is obvious that two switches in the same output leg are not allowed to be in a

conducting state at the same time.

Braking an inductive current: Due to the inductive nature of the load of the matrix

converter, all output phases have to be connected to an input phase.

Complying with these two control rules, the allowable switch state combinations are

reduced to 27. Fig. 4.3 summarizes the allowed switch combinations. Each of these

switch combinations are characterized by a three letters code, -one per rotor side phase,

where each letter denotes to which grid phase the respective rotor phase is connected.

Since no internal energy storage is present, the relation between input quantities and

output quantities is clear. From Fig. 4.2 the transfer matrix in eq. (4.1) can be obtained.

vAvB
vC

 =

mAa mAb mAc

mBa mBb mBc

mCa mCb mCc

vavb
vc

 and

iaib
ic

 =

mAa mBa mCa

mAb mBb mCb

mAc mBc mCc

iAiB
iC

 (4.1)

where mxy represents either the switch state at any instant of time or the duty-cycle

for switch sxy in a switching period. Complying with the two control rules above, the
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Figure 4.3: The 27 allowed switch combinations.

constraint in eq. (4.2) is derived.

c∑
y=a

mxy ≡ 1 x ∈ [A,B,C] (4.2)

The procedure for filling out the transfer matrix depends on the modulation strategy

[48] and will be discussed in section 4.3.

4.2.3 Switch configuration

In the converter topology treated in the previous chapter only unidirectional switches

were required. A unidirectional switch offers the opportunity of conducting bi-directional

current and withstand unipolar voltage. For the matrix converter, the need for a switch

which in addition can block bipolar voltages and control bi-directional current flow arises.

Until recently (about 2003) a bidirectional switch had to be built up from several stan-

dard semiconductor devices. In [49] three different bidirectional switch configurations

were presented. Fig. 4.4a-c show these configurations. Fig. 4.4d shows a bi-directional

switch realized by use of a standard H-bridge transistor module.

The diode embedded switch shown in Fig. 4.4a consists of only one transistor and four

diodes. In early papers dealing with the matrix converter this switch configuration was

preferred because it only requires one active switch [5]. In a three-phase to three-phase

matrix converter based upon the diode embedded switch a total number of transistors,

diodes and gate drive supplies amounts to 9, 36 and 9 respectively. Whenever a diode

embedded switch is conducting, the conducting path involves three semiconductors -the

transistor and two diodes. Hence the on-state losses become relatively large compared

to the other switch cell configurations. Since the diode embedded switch acts as a true

bidirectional switch, the direction of the current cannot be controlled and every switch-

ing becomes a hard-switching. Because of the hard-switchings, the switching losses of

the diode embedded switch becomes relatively large [63]. In addition, the property as a

true bi-directional switch constitutes a problem for the commutation between two input
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a) b) c) d)

Figure 4.4: Bi-directional switch topologies. a) Diode embedded switch. b) Anti

parallel switch with common emitter. c) Anti parallel switch with common collector.

d) Standard H-bridge module.

phases. To deal with the commutation problem either a snubber circuit or additional

line inductances have to be added. The commutation problem is treated in the next

section.

The common emitter switch shown in Fig. 4.4b consists of two transistors and two

diodes. The presence of the diodes ensures that the reverse voltages across the tran-

sistors are limited to the on-state voltage drop of the diodes. By use of the common

emitter switch cell only one gate drive supply per cell is required. The total number

of transistors, diodes and gate drive supplies for a three-phase to three-phase matrix

converter amounts to 18, 18 and 9 respectively. The conducting path of the common

emitter switch involves only one transistor and one diode. The common emitter switch

cell does not act as a true bi-directional switch because the direction of the current is

controllable. By use of this property, the commutation problems can be solved by a

proper switching pattern, which is treated in the next section.

The characteristics of the common collector switch cell in Fig. 4.4c is to a great extent

similar to the common emitter switch cell. Dependent on the number of input- and

output lines of the matrix converter, the number of gate drive supplies can be reduced

in comparison with the common emitter switch cell. In the case of a three-phase to

three-phase matrix converter based upon the common collector switch, the number of

gate drive supplies may ideally be reduced2 to 6.

Fig. 4.4d shows a bi-directional switch, constructed from a standard H-bridge semicon-

ductor device. By this arrangement a standard module forms two parallel bi-directional

switches - one based on the common-emitter approach and one based on the common

collector approach. By this switch realization, a three-phase to three-phase matrix con-

verter can be realized by 9 standard H-bridge modules and 15 isolated gate drive supplies.

2In a high current application as discussed herein, the voltage drop across stray inductances will
constitute a serious problem for the establishment of a common-emitter potential and hence the matrix
converter in the present application may not benefit from this opportunity.
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Figure 4.5: Illustration of the semi-soft switching algorithm based upon the output

current.

In present semiconductor technology, a true bi-directional switch with current direc-

tion control is actually available [44] and clearly such a switch built into a phase-leg

switch cell or even integrated as an embedded matrix converter will clearly increase the

competitiveness of the matrix converter.

4.2.4 Commutation strategy

Since the switches of the matrix converter do not offer ideal switching characteristics,

i.e. instantaneous turn-on and turn-off, the two basic control rules can not both be full

filled. Hence a quandary of the matrix converter is the phase commutations. The com-

mutation problem is treated in several of the papers concerning the matrix converter

[51]. However, the proposed solutions to the commutation problem is only divided into

five different strategies. Four of these strategies are briefly explained in the following.

Furthermore current reversals may constitute a problem for the switch cells in Fig. 4.4b

- 4.4d.

In [5] and [63] a phase commutation method termed overlap current commutation or

make before break is discussed. In this method the incoming switch cell is fired before

the outgoing switch cell is turned off. This causes a momentary short circuit of the

supply. To avoid damaging over currents during the short circuit, inductors have to

be added at the supply side of the converter. The presence of inductors of the supply

side of the matrix converter demands snubber circuits to avoid overvoltages across the

transistors. These additional components increases the losses of the matrix converter

[19]. In the overlap current commutation, current reversals do not present a problem

since all transistors in the switch cell are fired.

In [46] a dead time or break before make commutation strategy is mentioned. In this

strategy the commutation problem is handled by introducing a delay between the turn
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Figure 4.6: Illustration of the semi-soft switching algorithm based upon the phase

voltages.

on of the incoming switch cell and the turn off of the outgoing switch cell. To avoid

over voltages across the semiconductors caused by the inductive load current, a snubber

network must be used to provide a current path. In [55] and [62] it is stated that this

commutation strategy also introduces additional losses of the matrix converter. Since all

transistors in a switch cell are fired in the dead time commutation strategy, this method

does not present a current reversal problem either.

A third and more reliable commutation strategy, based on the switch cell configuration

in Fig. 4.4b - Fig. 4.4d was proposed almost contemporary in [7, 29, 51], and subse-

quently treated in several papers. In this method the transistors in the switch cell are

controlled independently. Current reversals are achieved by gating both transistors in

the conducting cell. A phase commutation is achieved by turning off the non-conducting

transistor in the outgoing cell before the right transistor in the incoming cell is fired. By

this, the phase commutation becomes a four step process. This commutation process is

shown in Fig. 4.5 on the preceding page. Because the half of the phase commutation

will be natural commutations i.e. the potential of the incoming switch is higher than

the outgoing switch, the switching losses might be reduced by use of this commutation

strategy [4, 5, 63]. Due to this property, the commutation strategy is often termed the

semi-soft switching strategy. A problem with the semi-soft switching strategy is the

detection of the current direction at low current levels and at current reversal. These

problems are treated in [18, 19].

Contrary to the semi-soft switching algorithm in Fig. 4.5 where the phase commutation

depends on the current direction, [42] proposed a different semi-soft switching algorithm,

where the phase commutation depends on the input phase voltage. This algorithm is

illustrated in Fig. 4.6. The commutation strategy in Fig. 4.6 requires knowledge of the

instantaneous phase voltages.

Finally, closely related to the commutation is the voltage error introduced by the time

interval occupied by the commutation sequence. Especially at low output voltages
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for the simulation in Fig. 4.7.

(which actually are likely to be present in the doubly-fed system) the problems related

to such an issue may be critical. Analysis and solutions of such problems are among

others addressed in [24, 64, 65].

4.2.5 Unbalanced supply- and load conditions

The absent of the energy storing elements in the matrix converter causes that unbalanced

or distorted conditions in the input voltage are transferred to the output of the matrix

converter. In [20], the effects of unbalanced input conditions were analyzed, and it

was found, that output harmonics foh appears from the following frequencies (if no

compensation is performed):

foh = 2fg ± fr; (4.3)

where fg is the input frequency and fr is the desired output frequency. From eq. (4.3) it

is evident that for output frequencies lower than the input frequency, the emitted output

harmonics are higher than the fundamental of the output frequency, while for output fre-

quencies higher than the input frequency subharmonics are introduced. Fig. 4.7 shows

the simulated output voltage (phase-phase) of the matrix converter when the input

voltage is 6% unbalanced and the desired output frequency fr is 30 Hz. The imbalance

ratio is determined in accordance with [10]. From eq. (4.3) the expected harmonics is

at 70 Hz and 130 Hz. Fig. 4.8 shows the frequency spectrum from 40 Hz to 500 Hz.

Similar, the input current of the matrix converter contains undesirable harmonics under

unbalanced input voltages. Fig. 4.9 and Fig. 4.10 shows the simulated input current

and input current spectrum respectively.

Because the instantaneous input power must equal the instantaneous output power,

it is obvious that the matrix converter cannot be controlled to achieve both balanced

sinusoidal input currents and balanced sinusoidal output voltages, when the input volt-
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age is unbalanced. In the literature, several compensation techniques are proposed

[10, 11, 48, 50, 69], all achieving sinusoidal balanced output voltages. The difference

between the proposed methods are the direction along which the input current is modu-

lated while the difference between the performance of the compensation methods is the

degree of distortion and the RMS value of the input current. In the following a brief

presentation of the three proposed methods is given.

The first compensation method was proposed in [10] and the objective of this strategy

was to achieve the minimum RMS input current for a given output power, thus achieving

minimum line losses. Based upon measurements of the instantaneous input voltage the

modulation index has to be recalculated in every switching period in order to achieve

balanced output voltages and to keep the input current angel equal to the input voltage

angel. In order to evaluate the compensation technique the emission of input current

harmonics are calculated3. In [10] it was found that this compensation technique only

gives rise to emission of positive odd harmonics with amplitudes given by:

Ihk = I1u
(k−1)/2 k = [3, 5..∞] (4.4)

where u is the degree of imbalance. Furthermore it was found that the total harmonic

distortion THDi of the input current is given by:

THDi =
u√

1 − u2
(4.5)

An extension to the work in [10] is given by [12] where the matrix converter operation

is analyzed under unbalanced input voltage and unbalanced load. By the unbalanced

3The evaluation of current harmonics in a three phase unbalanced system is a hard topic because
the harmonics may be balanced as well as unbalanced with regard to the three phases. In [21], the
harmonics are evaluated in the complex space vector plane. By this the harmonics in the three phase
system can be evaluated as positive and negative rotating space vectors. That is: the presence of both
a positive and negative rotating space vector at a given frequency describes an unbalanced harmonic
while the presence of only a positive or a negative vector describes a balanced harmonic.
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Figure 4.11: Simulated input currents for the three compensation techniques. The

unbalanced ratio u is 10%. From left, the method proposed by [10], the method

proposed by [11] and the method proposed by [48].

load several sub- as well as super harmonics are added to the harmonic content given

in eq. (4.4).

In [11] a slightly different approach were considered. The main strategy in this tech-

nique is to achieve the minimum harmonic distortion of the input current, however at

the expense of a higher and unbalanced RMS line current. By this method only the

fundamental harmonic is represented but with a positive and a negative sequence. The

amplitude of the negative sequence is given by:

Ihk = u · I1 ; k = −1 (4.6)

Since the method in [11] does not emit higher harmonics, the total harmonic distortion

of the input current equals zero.

A third compensation technique was proposed in [48] and [50]. The objective was to

achieve a method for simple implementation. In [50] the current is simply modulated

along one of the phase voltages (a, b or c). The performance of this method depends

on both the unbalanced ratio u and upon the direction of imbalance4. However, in [48]

it is stated that the performance of this method seems to be a compromise between

the method proposed by [10] and the method proposed by [11]. The current waveform

for each of the proposed compensation techniques is illustrated in Fig. 4.11. In [48],

and [50] the three compensation techniques are explained in detail and a comparison

is performed. It is stated that the first method ([10]) and the third method ([48]) is

the most straight forward to implement, while the method by [11] takes more on-line

computations.

In the three methods presented above, the displacement angel of the input current

4The direction of imbalance is the direction of the major ellipse axis in the complex space vector
plane.
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Figure 4.12: The clamp circuit proposed by [2]

is predetermined. A compensation technique was proposed by [53] where the input

displacement angle was controllable, but the performance obtained by this method is

not comparable to the results obtained by the other three methods. The presence

of harmonic distorted and unbalanced input voltage is analyzed in [14]. Based upon

analytical expressions, the major content of harmonics in the input current can be

predicted, but no compensation technique was developed.

4.2.6 Protection and shut down

Another crucial problem of the matrix converter is the shut down. In a fault situa-

tion, a momentary shut down of the matrix converter may be unavoidable. In the basic

topology, cf. Fig. 4.1 on page 90, such a shut down would cause over voltages across

the switches due to the magnetic energy stored in the load. Adding the clamp circuit

in Fig. 4.12, the stored energy in the load is transferred to the clamp capacitor Cc. The

voltage across the switches during a shut down can then be controlled by the size of

the clamp capacitor and the clamp resistor. In order to reduce the size of the clamp

capacitor, and to eliminate the continuous power dissipation in the clamp resistor Rc, an

active clamp circuit was proposed in [48]. In this configuration, a transistor is placed in

series with the clamp resistor. The transistor is turned on whenever the voltage across

the clamp capacitor is above the normal voltage level. In [48] it is suggested that the

rectified voltage in the clamp circuit might be used for internal supply of the control-

and driver circuits.

In [54], the shut down of the converter is actively controlled, thereby reducing the need

for a clamp circuit. The philosophy in [54] is, that during a transitional phase, the load

is de-magnetized by applying reverse biased voltages. (The technique is very similar

to the shut down of a conventional PWM-VSI, where the free-wheeling diodes induces

the de-magnetizing voltage.) When the load is de-magnetized, the control signals are

removed.
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4.3 Modulation

During the past, the modulation of the matrix converter has evolved from complicated

modulation expressions based on transfer function approaches to modern space-vector

modulation. Actually, the literature distinguish between the following modulation meth-

ods.

• Direct transfer function approach: In the early research phases of the matrix

converter, the modulation was based on solving the nine equations in (4.1) and eq.

(4.2) with a sinusoidal reference for the input current and the output voltage [57].

By this method the output voltage was restricted to 0.5 times the input voltage.

In [1] the voltage transfer ratio was increased to 0.866 times the input voltage by

adding a harmonic component to the output reference voltage. The direct transfer

function approach comprehends all the desirable properties, i.e. maximum voltage

transfer ratio, sinusoidal input/output, and adjustable power factor. However, the

formulae for the duty cycle computation are complicated and require considerable

computational power for real time implementation [66]. In addition the switching

losses by this method are rather high due to a high number of switch commutations

per switching cycle [61].

• Indirect transfer function approach: The indirect modulation was used in

[37] and [46]. By this method, the matrix converter is separated in a rectifier part

and an inversion part, which are modulated separately. Compared to the direct

transfer function approach, the indirect transfer function approach requires less

computational power [33].

• Carrier based modulation: From modulation of conventional converters, the

carrier based modulation was adapted for use in matrix converters. The first

attempts [36] and [56] mainly focused on the modulation of the output voltage,

at which a relatively simple modulation was achieved. Extensions to the carrier

based modulation was added by [52], where the modulation also included the input

current.

• Conventional space vector modulation: The conventional space vector mod-

ulation [9, 28, 30], utilizes that all the switch combinations in the stationary vector

group in Fig. 4.3 results in position-stationary vectors for both input current and

output voltages when transformed to the complex space vector plane. By this, the

normally known space vector approach can be used to modulate both the input

current and the output voltage. In [45] a space vector modulator, which also uti-

lizes the six rotating vectors of the matrix converter was proposed, by which the

harmonic content was reduced.

• Indirect space vector modulation: Combining the principles of the indirect

transfer function approach with the principles of space vector modulation leads

to the indirect space vector modulation. In the indirect space vector modulation
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Figure 4.13: The rotor voltage space vectors and the grid current space vectors

for the active switch combinations, c.f. Fig. 4.3.

the SVM is performed individually for the rectification and the inversion. The

indirect modulation is among others treated in [31, 32, 33, 47]. In [48] the number

of switchings in the indirect space vector modulation was optimized, achieving

lower switching losses.

In [13], an approach is presented allowing a space-vector-like implementation of the

earlier carrier based modulation schemes and thereby a straight forward comparison of

the early and recent modulation schemes. In modern control of matrix converters, the

first three modulation strategies are no longer of importance and only the latter two are

used in recent papers. The difference between the conventional space vector modulation

and the indirect space vector modulation is only a matter of abstraction level while

the performance is completely identical. In this thesis, the conventional space vector

modulation approach will be used.

4.3.1 Space vector representation for matrix converters

The space vector approach is based on the transformation of the time varying quantities

into the complex space vector plane. For the space-vector modulation of the matrix

converter it is appropriate to define the following four space vectors.

V gp =
2

3
(va + vbe

j 2π
3 + vce

j 4π
3 ) (4.7)

V rp =
2

3
(vA + vBe

j 2π
3 + vCe

j 4π
3 ) (4.8)
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Igp =
2

3
(ia + ibe

j 2π
3 + ice

j 4π
3 ) (4.9)

Irp =
2

3
(iA + iBe

j 2π
3 + iCe

j 4π
3 ) (4.10)

where V gp is the space-vector representation for the grid phase voltage, V rp is the space-

vector representation for the rotor phase voltage, Igp is the space-vector representation

for the grid current and Irp is the space-vector representation for the rotor current. Ap-

plying eq. (4.8) on the active switch combinations shown in Fig. 4.3 on page 93 it turns

out that all these combinations become stationary vectors in the space vector plane,

however with time varying amplitudes. The rotor voltage vectors for the active switch

combinations are shown in Fig. 4.13a. Similar, by utilizing eq. (4.9) it appears that the

active switch combinations correspond to position stationary grid current vectors in the

complex space vector plane. The grid current space vectors are shown in Fig. 4.13b.

Due to these properties of the active switch combinations, the well known space vector

modulation principles can be applied to the matrix converter, although the modulation

has to consider both the grid current and the rotor voltage.

In the following, two different approaches are presented, one named the conventional

space-vector modulation [9] and an alternative method named the modified space vector

modulation [27].

4.3.2 Conventional space vector modulation

In the conventional space vector modulation, the sectors are defined as shown in Fig.

4.14. It should be noted that the amplitudes of both the rotor voltage vectors and

the grid current vectors are varying, depending on the grid voltage angle, ∆g, and the

rotor current angle. (The rotor current angle is not defined in Fig. 4.14 because the

modulation are to be independent of this angle, i.e. independent of the load). In the

derivation of the space vector modulation, it is appropriate to define the angles ∆g and

∆r to be independent of, in which sector they are located. Hence the grid angle ∆g used

in the conventional space vector modulation is defined as:

∆g = mod
(
ωgt,

π

3

)
(4.11)

where ωgt = 0 is defined as the positive zero crossing of the phase a grid voltage

(va = v̂g · sin(ωgt)) and the operator ”mod” is the modulus after division. Similar, the

rotor voltage angle ∆r is defined as:

∆r = mod
((
ωrt+

π

6

)
,
π

3

)
(4.12)

where ωrt = 0 is defined as the positive zero crossing of the phase A rotor reference

voltage (v!A = v̂A·sin(ωrt)). For an arbitrary sector location of the rotor voltage reference
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Figure 4.14: Angle and sector definitions for the conventional space vector modu-

lation.

and the grid current reference, the following equations can be derived (V !
rp = V r1+V r2):

V r1 = |V !
rp| · sin

(π
3
− ∆r

)
· 2√

3

= δ1 · cos
(
∆g − π

3

)
|V gp| ·

2√
3
− δ2 · cos (∆g − π) |V gp| ·

2√
3

(4.13)

V r2 = |V !
rp| · sin (∆r) · 2√

3

= δ3 · cos
(
∆g − π

3

)
· |V gp| ·

2√
3
− δ4 · cos (∆g − π) · |V gp| ·

2√
3

(4.14)

where δ1..4 are the on-time duration for the four applied vectors in a switching period.

In each input sector, only the two line-line voltages with the highest amplitudes are

used. This is illustrated in the lower part of Fig. 4.14. By similar considerations the

input current vectors can be calculated (I!gp = Ig1 + Ig2):

Ig1 = |I!gp| · sin
(π

3
− ∆g

)
· 2√

3

= δ2 · ix · 2√
3
− δ4 · iy · 2√

3
(4.15)

Ig2 = |I!gp| · sin (∆g) · 2√
3

= δ1 · ix · 2√
3
− δ3 · iy · 2√

3
(4.16)
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where ix and iy are the instantaneous value of a rotor phase current. Assuming that the

rotor currents are sinusoidal and symmetrical, the relation between ix and iy becomes:{
ix = îr · sin(ωrt)

iy = îr · sin
(
ωrt± 2π

3

)
⇓
iy = ix

sin
(
ωrt± 2π

3

)
sin(ωrt)

(4.17)

Combining eq. (4.15), eq. (4.16) and eq. (4.17) and rearranging, the following rotor

current position dependent expressions are obtained:

0 =
δ2

sin
(
π
3
− ∆g

) − δ4 · sin
(
ωrt± 2π

3

)
sin
(
π
3
− ∆g

) · sin(ωrt)
−

(4.18)

δ1
sin(∆g)

+
δ3 · sin

(
ωrt± 2π

3

)
sin(ωrt) · sin(∆g)

In order to achieve a solution for the modulation functions δ1..4 which is independent of

the rotor current position, eq. (4.18) is separated into the following two equations:

0 =
δ2

sin
(
π
3
− ∆g

) − δ1
sin(∆g)

(4.19)

0 =
δ3 · sin

(
ωrt± 2π

3

)
sin(ωrt) · sin(∆g)

− δ4 · sin
(
ωrt± 2π

3

)
sin
(
π
3
− ∆g

) · sin(ωrt)
(4.20)

where the position of the rotor current can be eliminated. Solving the equations (4.13),

(4.14), (4.19) and (4.20) for the modulation functions δ1..4 gives:

δ1 =
2 · |V !

rp|√
3 · |V gp|

sin(∆g) · sin
(π

3
− ∆r

)
δ2 =

2 · |V !
rp|√

3 · |V gp|
sin
(π

3
− ∆g

)
· sin
(π

3
− ∆r

)
δ3 =

2 · |V !
rp|√

3 · |V gp|
sin(∆g) · sin (∆r) (4.21)

δ4 =
2 · |V !

rp|√
3 · |V gp|

sin
(π

3
− ∆g

)
· sin (∆r)

δ0 = 1 − (δ1 + δ2 + δ3 + δ4)

It should however be noted that the modulation functions at any time instant are limited

by the following constraint:

δ0..4 ≥ 0

Taking this constraint into account, it is found that the maximum reference voltage

|V !
rp| are limited to

√
3
2

of the input voltage. Using only the two line-line voltages with

maximum amplitudes (which was a precondition for the derivation of the duty-cycles in

eq. (4.21)), the sector-dependent switch combination for each duty-cycle function δ1..4
are summarized in Table I. The sectors refer to the sector location in Fig. 4.14.
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TABLE I: Switching table for the conventional space vector modulation.

→Rec Sector 0 Sector I Sector II Sector III Sector IV Sector V
↓Inv δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4

0 abb cbb aab ccb acc abb aac aab bcc acc bbcaac baabcc bbabbc caa baacca bbacbbcaa ccb cca
I aab ccb bab bcb aac aab cac bab bbc aac cbc cac bbabbcabacbc cca bbaaca aba ccb cca bcbaca
II bab bcb baa bcc cac bab caa baa cbc cac cbbcaa abacbc abbcbb aca abaacc abbbcbaca bcc acc
III baa bcc bba bbc caa baa cca bba cbb caa ccb cca abbcbbaabccb acc abbaac aab bcc acc bbcaac
IV bba bbc aba cbc cca bba aca aba ccb cca bcbaca aabccb babbcbaac aabcac babbbcaac cbc cac
V aba cbc abb cbb aca aba acc abb bcb aca bcc acc babbcbbaabcc cac babcaa baa cbc cac cbbcaa

4.3.3 Modified space vector modulation

The main idea in the modified space vector modulation is to make use of the minimum

line-line-voltage (contrary to the conventional space vector modulation which utilizes

the two maximum line-line voltages) whenever the rotor voltage reference is lesser than

half of the grid voltage. The advantages of this new modulation strategy are that the

harmonic content of the rotor side voltages are reduced and additionally the switching

losses are decreased. A disadvantage of the proposed modulation strategy is that the

harmonic current spectra on the grid side of the converter is slightly increased. Fig.

4.15 shows the modified space vector modulation approach. The line-line voltages used

within each of the sectors are indicated by the increased linewidth. The procedure for

deriving the duty-cycle functions for the modified space vector modulation approach is

almost similar to the procedure in the conventional space vector modulation. However

for completion of the modulation description, the derivation of the modified duty-cycle

function are given below.

The grid angle ∆g used in the modified space vector modulation is defined as5:

∆g = mod
((
ωgt+

π

6

)
,
π

3

)
(4.22)

where ωgt = 0 is defined as the positive zero crossing of the phase a grid voltage

(va = v̂g · sin(ωgt)). Similar, the rotor voltage angle ∆r is defined:

∆r = mod
((
ωrt+

π

6

)
,
π

3

)
(4.23)

For an arbitrary sector location of the rotor voltage reference and the grid current

5Please note that the grid side space vector hexagon by this definition is rotated π/6 compared to
the conventional space vector approach.
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Figure 4.15: Angle and sector definitions for the modified space vector modulation.

reference, the following equations can be derived (V ∗
rp = V r1 + V r2):

V r1 = |V !
rp| · sin

(π
3
− ∆r

)
· 2√

3

= −δ1 · cos
(
∆g +

π

2

)
|V gp| ·

2√
3
− δ2 · cos

(
5π

6
− ∆g

)
|V gp| ·

2√
3

(4.24)

V r2 = |V !
rp| · sin (∆r) · 2√

3

= −δ3 · cos
(
∆g +

π

2

)
|V gp| ·

2√
3
− δ4 · cos

(
5π

6
− ∆g

)
|V gp| ·

2√
3

(4.25)

In each input sector, only the two line-line voltages with the lowest amplitudes are

used. This is illustrated in the lower part of Fig. 4.15. By similar considerations the

input current vectors can be calculated (I!gp = Ig1 + Ig2):

Ig1 = |I!gp| · cos (∆g) · 2√
3

= δ2 · ix · 2√
3
− δ4 · iy · 2√

3
(4.26)

Ig2 = |I!gp| · cos
(π

3
− ∆g

)
· 2√

3

= δ1 · ix · 2√
3
− δ3 · iy · 2√

3
(4.27)
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TABLE II: Switching table for the modified space vector modulation.

→Rec Sector 0 Sector I Sector II Sector III Sector IV Sector V
↓Inv δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4

0 acc cbb aac ccb bcc abb bbc aab baa acc bbaaac caa bcc cca bbc cbbbaaccb bbaabbcaa aabcca
I aac ccb cac bcb bbc aab cbc bab bba aac abacac cca bbcaca cbc ccb bbabcbaba aabcca babaca
II cac bcb caa bcc cbc bab cbb baa aba cac abbcaa aca cbc acc cbb bcbababcc abbbabaca baaacc
III caa bcc cca bbc cbb baa ccb bba abb caa aabcca acc cbbaac ccb bcc abbbbcaab baaacc bbaaac
IV cca bbc aca cbc ccb bba bcb aba aab cca babaca aac ccb cac bcbbbcaabcbc babbbaaac abacac
V aca cbc acc cbb bcb aba bcc abb bab aca baaacc cac bcbcaa bcc cbc babcbbbaa abacac abbcaa

where ix and iy are the instantaneous value of a rotor phase current. By use of the

relationship in eq. (4.17) and then separating eq. (4.26) into rotor current position

independent expressions gives:

0 = δ2 · cos
(π

3
− ∆g

)
− δ1 · cos (∆g) (4.28)

0 = δ3 · cos (∆g) − δ4 · cos
(π

3
− ∆g

)
(4.29)

Solving the equations (4.24), (4.25), (4.28) and (4.29) for the modulation functions δ1..4:

δ1 =
2 · |V !

rp|√
3 · |V gp|

cos
(π

3
− ∆g

)
· sin
(π

3
− ∆r

)
δ2 =

2 · |V !
rp|√

3 · |V gp|
cos (∆g) · sin

(π
3
− ∆r

)
δ3 =

2 · |V !
rp|√

3 · |V gp|
cos
(π

3
− ∆g

)
· sin (∆r) (4.30)

δ4 =
2 · |V !

rp|√
3 · |V gp|

cos (∆g) · sin (∆r)

δ0 = 1 − (δ1 + δ2 + δ3 + δ4)

Also for the modified space vector modulation approach is should be noted that the

modulation functions at any time instant are limited by the following constraint:

δ0..4 >= 0

Taking this constraint into account, it is found that the maximum reference voltage

|V !
rp| are limited to half the input voltage. Table II summarizes the sector dependent

switch combinations for each of the four active duty-cycle functions. The sectors in

table II refers to the sector location in Fig. 4.15. The modified space vector approach

were presented in the paper entitled A novel loss reduced modulation strategy matrix

converters [27], c.f. Appendix D on page 335.
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4.3.4 Modulation index

When comparing different modulation strategies for one type of converter, it is often

convenient to normalize the output voltage to some reference voltage. This normalized

voltage is named Modulation index M . The choice of reference voltage can be arbitrary

and in the literature different choices exits which leads to some confusion. In this context

however, the choice of reference voltage are to be done in accordance with the choice of

modulation index definition for the other converters in order to be able to compare the

different modulation methods for the different converters. Hence the modulation index

for the matrix converter will be defined to be unity at the boundary between the linear

and non-linear modulation region for the conventional space vector modulation. From

eq. (4.21), the modulation index for the matrix converter becomes:

M =
2 · |V !

rp|√
3 · |V̂ rp|

(4.31)

Further, for comparison, the input voltage of the matrix converter are to be designed

such, that a given modulation index for the different converters correspond to the same

rotor voltage.

4.3.5 Vector sequences

Like the modulation of the back-to-back voltage source converter, the vector sequences

and the placement of the zero vectors have a high influence on the performance, efficiency

and common-mode voltage generation of the matrix converter [16]. In the first papers

concerning space vector modulation, single-sided modulation was used [9], but at the

expense of only a slight increase in the number of branch switch over (BSO) per switching

period, double sided modulation has become the prevalent method although a few recent

papers [39, 38] have re-introduced the single sided modulation sequence. In double-sided

modulation, the switching period is divided in two equal periods and in both these

periods the four selected active vectors are applied. In the last of the two periods, the

sequence order is reversed. The zero-vectors can be applied anywhere in the switching

sequence. Due to the better harmonic performance at the grid side and at the rotor

side, only double sided modulation is considered in this thesis. Specific, the following

five double-sided modulation strategies will be treated:

• Conventional double sided modulation (8 BSO).

• Double sided modulation for the modified space-vector algorithm (8 BSO).

• Conventional double sided modulation with distributed zero vectors (10 BSO).

• Low distortion modulation method (8 BSO).

• Double sided modulation with distributed zero vectors for the modified space

vector algorithm (10 BSO).
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a) b)

Figure 4.16: Measured waveforms for the conventional 8 BSO scheme. Left: Input

current and input voltage. Right: Output current and output voltage.

Conventional double sided modulation

In the conventional modulation presented in [47] the switching sequence for the conven-

tional modulation was optimized with regards to the BSOs per switching fundamental,

giving a minimum number of 8 BSO. Following this switching procedure, there is still

one degree of freedom left and that is the position of the zero-vector within the switching

sequence. The zero vector could either be applied in the beginning of the sequence or

in the center of the sequence. Regarding the converter efficiency, the switched voltage

when changing to/from the zero-vector can be used to determine the zero-vector place-

ment, c.f. the lower part of Fig. 4.14. Hence, for even sector sums, the half of the

switching sequence is:

δ0
iC−→
vab

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4 when ∆g <
π

6
(4.32)

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4
iC−→
vbc

δ0 when ∆g >
π

6
(4.33)

and for odd sector sums, the half of the switching sequence is:

δ0
iA−→
vca

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2 when ∆g <
π

6
(4.34)

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2
iA−→
vab

δ0 when ∆g >
π

6
(4.35)

For each BSO in eq. (4.32) to eq. (4.35) the switched current and the switched line-

line voltage are shown, valid for sector 0rec-0inv and Irec − 0inv respectively. By use of

table I on page 106, the switched voltages and switched currents for an arbitrary sector

location can be determined. This will be used when evaluating the switching losses of

the different modulation methods. Fig. 4.16 show the measured current and voltage

waveforms when using the conventional 8 BSO modulation method.
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a) b)

Figure 4.17: Measured waveforms for the modified 8 BSO scheme. Left: Input

current and input voltage. Right: Output current and output voltage.

Modified double sided modulation

By inspection of Table II it appears that the switching sequences of the modified

modulation strategy are to be changed in order to obtain the minimum of 8 BSOs per

switching fundamental. Hence, for even sector sums, the half of the switching sequence

should be:

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2 (4.36)

which assures 8 BSOs per switching fundamental. For odd sector sums, the half of the

switching sequence should be:

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4 (4.37)

Compared to the conventional method it appears that only the two minimum line-line

voltages are switched which presumably decreases the switching losses. The switched

currents and voltages listed in eq. (4.36) and eq. (4.37) are valid for sector 0rec-0inv and

Irec−0inv respectively. By use of table II on page 108 the switched voltages and currents

can be determined for an arbitrary sector location of the rotor reference vector and the

grid current vector. Fig. 4.17 shows the measured current and voltage waveforms when

using the modified 8 BSO modulation method.

Conventional double sided modulation with distributed zero vectors

The third method to be treated takes advantages of that the switching sequence can be

used to increase the switching frequency seen from the grid side, which is advantageous

when considering the input filter design. However, this is achieved at the expense of a
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a) b)

Figure 4.18: Measured waveforms for the conventional 10 BSO scheme. Left:

Input current and input voltage. Right: Output current and output voltage.

higher number of BSOs per switching fundamental. In [41] different distributions of the

zero vector were discussed and it was concluded that the most significant improvements

are obtained by distributing the zero-vector at the beginning and in the center of the

switching sequence. By this, the dominant switching frequency seen from the grid side

is doubled at the expense of only two additional switchings per switching fundamental.

With the constraint of only one BSO per switch-state shift, there is no degree of freedom

left in the order of the switching sequence. According to [41], the half of the switching

sequence for even sector sums is:

δ0
iC−→
vab

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4
iC−→
vbc

δ0 (4.38)

And for odd sector sums:

δ0
iA−→
vca

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2
iA−→
vab

δ0 (4.39)

The switched currents and voltages listed in eq. (4.38) and eq. (4.39) are valid for sector

0rec-0inv and Irec − 0inv respectively. Fig. 4.18 shows the measured current and voltage

waveforms when using the conventional 10 BSO modulation method.

Low distortion modulation method

Inspired from the method proposed in [41] where the use of additional zero vectors were

used to reduce the harmonic content, the ”Low distortion modulation method” was

developed [43]. Besides adding additional zero vectors, the proposed method aims to

reduce the number of switchings per switching period from 10 to 8. For even sector

sums, the half of the switching sequence should be realized by:

δ3
iB−→
vab

δ1
iA−→
vab

δ0
iA−→
vbc

δ2
iB−→
vbc

δ4 (4.40)
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Figure 4.19: Measured waveforms for the low distortion modulation scheme [43].

and for odd sector sums, the half of the switching sequence is:

δ1
iA−→
vab

δ3
iB−→
vab

δ0
iB−→
vbc

δ4
iA−→
vbc

δ2 (4.41)

The switched currents and voltages listed in eq. (4.40) and eq. (4.41) are valid for sector

0rec-0inv and Irec − 0inv respectively. Fig. 4.19 shows the measured current and voltage

waveforms when using the low distortion modulation method. The distortion approach

were presented in the paper entitled Analysis of Symmetrical Pulse Width Modulation

Strategies for Matrix Converters [43], c.f. Appendix I on page 383.

Double sided modulation with distributed zero vectors for the modified space

vector algorithm

Adopting the method from [41] for use in the modified modulation approach is not as

simple as for the conventional modulation due to a higher degree of freedom in the order

of the switching sequence. According to the sequences in eq. (4.36) and eq. (4.37) the

zero-vector could be applied in either the beginning of the sequence or in the center of

the sequence. In order to explain the differences in the zero-vector placement, the half

of the switching sequence for sector 0rec-0inv is listed in eq. (4.42) where the optional

zero-vector placement is marked with the red and green δ0 respectively.

δ0
iC−→
vca

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2
iA−→
vbc

δ0 (4.42)

From eq. (4.42) it appears that the positioning of the zero-vector can be done either

with regard to the switched current or with regard to the switched voltage.

Switched voltage: Regarding the switched voltage, it appears from the lower part of

Fig. 4.15 on page 107 that the half of the switching sequence for even sectors should be:

δ0
iC−→
vca

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2 when ∆g <
π

6
(4.43)

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2
iA−→
vbc

δ0 when ∆g >
π

6
(4.44)
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Figure 4.20: Simulated current and voltage waveforms when using the modified

modulation with distributed zero-vectors (SV). Left: Input current and input volt-

age. Right: Output current and output voltage.

in order to assure that the lowest voltage is switched when applying the zero-vector.

For odd sectors, the sequence should be:

δ0
iA−→
vbc

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4 when ∆g <
π

6
(4.45)

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4
iC−→
vab

δ0 when ∆g >
π

6
(4.46)

The modulation method described by the sequences in eq. (4.43) - eq. (4.46) are in

the further denoted modified modulation with distributed zero-vectors (SV), where the

abbreviation SV indicates that the modulation regards the switched voltage. Fig. 4.20

shows the simulated current and voltage waveforms when using the modified modulation

with distributed zero-vectors (SV).

Switched Current: Regarding the switched current, the modified modulation with

distributed zero-vectors can adopt some of the features from the discontinuous modula-

tion strategies of the conventional voltage source inverter, c.f. section 3.3.3 on page 53.

In other words, the placement of the zero-vector can be determined such that the min-

imum current is switched. By this, the optional placement of the zero-vector becomes

dependent of the angle φr between rotor current and rotor voltage. This is illustrated

in Fig. 4.21. Fig. 4.21 shows the rotor current and rotor phase voltage space vector

diagram. For illustration purposes, the rotor voltage reference vector V !
rp is located in

sector 0 and the angle between the rotor voltage reference and the rotor current is φr.

In order to assure that the minimum rotor current is switched when switching to/from

the zero-vector, the switching sequence in eq. (4.42) should be altered between the red

and green sequence in accordance with the rotor current position in Fig. 4.21.

Generalizing to an arbitrary sector location of the rotor voltage vector the half of the
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Figure 4.21: Rotor current and rotor voltage space vector diagram.

vector sequence for even sectors sums becomes:

δ0
iC−→
vca

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2 when

{ −π
3
< (∆r + φr) <

π
6

2π
3

< (∆r + φr) <
7π
6

(4.47)

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2
iA−→
vbc

δ0 when

{
π
6

< (∆r + φr) <
2π
3

7π
6

< (∆r + φr) <
5π
3

(4.48)

and for odd sector sums the switching sequence becomes:

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4
iC−→
vab

δ0 when

{ −π
3
< (∆r + φr) <

π
6

2π
3

< (∆r + φr) <
7π
6

(4.49)

δ0
iA−→
vbc

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4 when

{
π
6

< (∆r + φr) <
2π
3

7π
6

< (∆r + φr) <
5π
3

(4.50)

Following the switching sequences in eq. (4.47) - eq. (4.50), the modulator need informa-

tion about the instantaneous angle between rotor voltage and rotor current. However,

it is easily realized, that the angle φr can be pre-set to a fixed value representing the

steady-state nominal value of the load angle.

The modulation method described by the sequences in eq. (4.47) - eq. (4.50) are in

the further denoted modified modulation with distributed zero-vectors (SC), where the

abbreviation SC indicates that the modulation regards the switched current.

4.3.6 Evaluation of modulation methods

An evaluation of the modulation methods for the matrix converter has to consider both

the quality of the generated generator voltage and the quality of the generated input

current. An evaluation of the generated generator voltage is directly comparable with

the voltage generated by the two-level inverter treated in chapter 3 and the three-level

inverter to be treated in chapter 5 whereas an evaluation of the generated input current

quality is only suitable for an internal comparison of the matrix converter modula-

tion methods and can be used as a hint for determining the filter requirements and/or

switching frequency requirements associated with the different modulation methods.
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Generator side harmonic performance

To evaluate the output voltage quality, the harmonic flux is considered [25]. In the Nth

carrier cycle the harmonic flux ψ̃ is calculated by:

ψ̃ =

∫ (N+1)Ts

NTs

(V rp − V !
rp)dt (4.51)

where V rp is a stationary output vector. To be able to compare the different modulators

for the different converters, the per carrier harmonic flux error ψ̃ in eq. (4.51),is nor-

malized to the product of the maximum rotor voltage amplitude |V̂ rp| and the switching

period. That is:

ψ̃n =
2√

3Ts|V̂ rp|
· ψ̃ (4.52)

The normalized per-carrier cycle RMS value of the harmonic flux ψ̃RMS,n can be calcu-

lated by:

〈ψ̃RMS,n〉Ts =

√∫ 1

0

(
ψ̃n · ψ̃∗

n

)
dt (4.53)

where ψ̃∗
n is the complex conjugate of ψ̃n. Fig. 4.22 and Fig. 4.23 shows the per-

carrier cycle RMS value of the harmonic flux as a function of the input angle and

the output angle. The figures are valid for conventional double sided modulation and

the modified double sided modulation and are plotted for modulation indexes of 1 and

0.577 respectively. Evaluating for a general case, where input frequency and the output

frequency has no common period time, the RMS value of the harmonic flux is obtained
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Figure 4.24: The harmonic flux as a function of the modulation index, c.f. eq.

(4.31)

by integrating over the entire surface. The RMS value of the harmonic flux is calculated

by:

ψ̃RMS,n =

√
9

π2

∫ π
3

0

∫ π
3

0

(
〈ψ̃RMS,n〉Ts

)2
d∆g d∆r (4.54)

Fig. 4.24 shows the RMS-value of the harmonic flux as a function of the modulation

index. From Fig. 4.24 it appears that the conventional double sided modulation with

distributed zero vectors shows the best output harmonic performance in the entire linear

modulation range. The harmonic flux curves in Fig. 4.24 are directly comparable to

the harmonic flux levels calculated for the two-level inverter, c.f. Fig. 3.11 on page 59.

Finally, it should be noted that for cos(φi) �= 1 at the input, all the curves in Fig. 4.24

would be changed.

Grid side harmonic performance

In principle, the evaluation of the input current follows the same procedure as for the

output voltage, however the evaluation parameter is changed from harmonic flux to

harmonic charge Q̃. Further, the evaluation of the input current becomes a little more

complex than the evaluation of the output voltage due to the fact that the amplitudes

of the stationary input current vectors are affected by the load angle (cos(φr)). Fig.

4.25 shows the normalized harmonic charge Q̃RMS vs. the modulation index M . In

the calculation of the results in Fig. 4.25 the harmonic charge Q̃ is normalized by Ts
2

√
3îr
2

.

The paper entitled Evaluation of Modulation Schemes for Three-phase to Three-phase

Matrix Converters [26] provides a thorough explanation of the evaluation method dis-

cussed in this section along with a detailed comparison of selected modulation methods.
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(4.31).

4.4 Loss evaluation

With the purpose of obtaining a fast method for comparing the power losses generated

by the matrix converter with the power losses generated by an alternative converter

configuration, analytical expressions for the power losses within the matrix converter

has to be derived. Considering the matrix converter, the power losses to be concerned

with are the conducting losses and switching losses of the semiconductor devices as well

as the losses dissipated by the input filter. As discussed in section 3.4.3, the temperature

of the semiconductor devices has a significant influence on the generated losses and is

crucial when evaluating a certain converter design. Hence the derivation of power losses

has to take into consideration the temperature of the semiconductor devices. Hence, the

purpose of this section is to derive analytical expressions for the losses generated by the

matrix converter and based on these loss expressions to end up with some expressions

relating the generated losses to the temperature of the semiconductor devices.
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4.4.1 Conducting losses of the switches

The conduction losses in the transistors and diodes of the matrix converter are approx-

imated by:

Pt,cond = Vt0(T ) · It,avg +Rt(T ) · I2t (4.55)

Pd,cond = Vd0(T ) · Id,avg +Rd(T ) · I2d (4.56)

where Ix,avg is the average current through the considered component, Ix is the RMS cur-

rent through the considered component, Vx0(T ) is the temperature dependent threshold

voltage of the considered component and Rx0(T ) is the temperature dependent resis-

tance of the considered component. The threshold voltage and on-resistance can either

be found from data sheets or derived by the procedure described in Appendix A.

So far, every aspect treated for the matrix converter has seemed to be a little more

complicated than for the previously considered back-to-back two-level voltage source

converter. However, considering the derivation of the average- and RMS currents for

the transistors and diodes within the matrix converter it turns out that these expressions

are far more simple than the expressions derived in chapter 3 for the two-level inverter.

Further, the expressions become independent of the modulation scheme and since the

current through a diode at any time instant equals the current through a transistor, the

following relations apply:

Id,avg = It,avg (4.57)

Id = It (4.58)

Fig. 4.26 defines the notation used when deriving the individual currents through the

components. From eq. (4.57) and eq. (4.58) the only exercise left is to derive the

expressions for the average- and RMS current through the transistor. The average
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current Ibd,avg through one of the bi-directional switches can be calculated by:

Ibd,avg =
1

T

∫ T

0

ibddt (4.59)

where T is a period time common for both the grid frequency and the rotor frequency.

The output phase current ir is at any instant of time the sum of the currents in an

output leg. That is:

ir = ibd1 + ibd2 + ibd3 (4.60)

For symmetrical input and output conditions the average current through a switch cell

can be calculated as [48]:

Ir =
π

2
√

2

3∑
x=1

(
1

T

∫ T

0

ibd,xdt

)
=

3π

2
√

2
· Ibd,avg

⇓ (4.61)

Ibd,avg =
2
√

2

3π
Ir

Assuming that a bidirectional switch is realized as a full controllable bi-directional

switch, c.f. Fig. 4.4b-d, the average current through the individual transistors is given

by:

It,avg =

√
2

3π
Ir (4.62)

Considering the RMS current through one of the bi-directional switches, the same con-

siderations apply:

Ibd =

√
1

T

∫ T

0

i2bddt (4.63)

where T is a period time common for both the grid frequency and the rotor frequency.

Using the information given by eq. (4.60), and assuming symmetrical input and output

conditions the RMS current through a switch cell can be calculated as [48]:

Ir =

√√√√ 3∑
x=1

(
1

T

∫ T

0

i2bd,xdt

)
=
√

3 · I2bd

⇓ (4.64)

Ibd =
Ir√
3

The RMS current through a transistor in a bi-directional switch realized by one of the

configurations shown in Fig. 4.4b-d is then given by:

It =
1√
6
Ir (4.65)
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Figure 4.27: Contour plot of the switching losses of the conventional modulation

method for φr = π/6.

4.4.2 Switching losses

Assuming the switch devices of the matrix converter to have linear current and voltage

turn-on and turn-off characteristics with respect to time and accounting only for the

fundamental component of the rotor current, the per component switching energy dis-

sipated by every hard commutated turn-on and turn-off6 of the matrix converter can be

analytically modeled as:

Esw,t ∝ |vsw| · |isw| · Esw0,t(T ) (4.66)

Esw,d ∝ |vsw| · |isw| · Esw0,d(T ) (4.67)

where Et,sw0 is the sum of the per unit VA transistor turn-on and turn-off switching

energy, Ed,sw0 is sum of the per unit VA diode turn on and turn off switching energy,

vsw is the instantaneous voltage switched by the considered component and isw is the

instantaneous current switched by the considered component. The per unit VA switching

energies can either be found from data sheets or derived by the procedure described in

Appendix A. Since the switched current isw and switched voltage vsw are un-correlated

time varying functions, the exact average switching losses will depend on the specific

working condition. To illustrate this problem, Fig. 4.27 shows the switched volt-amperes

(hard-switched) as a function of the grid angle ∆g and the rotor angle ∆r when using

the conventional double sided modulation. The switched volt-ampere surface in Fig.

4.27 is calculated for a rotor load angle of π/6. Clearly, from Fig. 4.27 it appears that

the average switched volt-amperes depend on the actual course across the surface, i.e.

input- and output frequency and the initial angle conditions. To avoid the need for initial

angle conditions when calculating the average switched volt-amperes, a general case is

assumed where the grid frequency and the rotor frequency have no common time period

and hence the average switched volt-amperes can be calculated by integrating over the

6It appears that half of the switchings when using either the commutation procedure given in Fig.
4.5 or Fig. 4.6 are hard commutated while the latter switchings appear to be soft switchings.
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amperes when using the conventional dou-

ble sided modulation.
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amperes when using the modified double

sided modulation.

entire surface. Hence, to evaluate the different modulation methods with regards to

the switching losses, the average switched volt-amperes will have to be calculated as

a function of the rotor load angle7. The average switched volt-amperes Ssw,avg can be

calculated by:

Ssw,avg =
1

4π2

∫ 2π

0

∫ 2π

0

(|usw| · |isw|) d∆g d∆r (4.68)

By use of eq. (4.68) analytical expressions for the average switching losses of the con-

sidered modulation method can be obtained:

Pt,sw =
1

18
Ssw,avg · Esw0,t(T ) · fsw (4.69)

Pd,sw =
1

18
Ssw,avg · Esw0,d(T ) · fsw (4.70)

where Pt,sw is the average switching losses of a single transistor in the matrix converter

and Pd,sw is the average switching losses of a single diode in the matrix converter when

the matrix converter is realized from 18 diodes and 18 transistors. Hence the only

exercise left is to derive the analytical expressions for the average hard switched volt-

amperes Ssw,avg.

Conventional double sided modulation

Considering the switching sequences of the conventional double sided modulation

method as described on page 110, the hard switched volt-amperes can be calculated for

every combination of input angle ∆g and output angle ∆r. Fig. 4.28 illustrates the

switched volt-ampere surface when the load angle φr of the matrix converter is zero.

Using the sequences given by eq. (4.32) - eq. (4.35) in combination with the information

7For simplicity, the input load angle is assumed to be unity.
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in Table I, analytical expression for the hard switched volt-amperes can be derived from

eq. (4.68):

Ssw,avg =


9

√
3 (−6 cos(φr)+

√
3 cos(φr)+4

√
3)

π2 Vgp · Ir |φr| < π
6

9
√
3 (2−sin(|φr|)+2

√
3 sin(|φr|))

π2 Vgp · Ir |φr| ≥ π
6

(4.71)

where Vgp is the RMS phase voltage at the input to the matrix converter and Ir is the

RMS phase current at the output of the matrix converter.

Modified double sided modulation

Similarly, the hard-switched volt-amperes when using the modified double sided mod-

ulation method can be calculated. Fig. 4.29 shows an example of the hard switched

volt-amperes as a function of the input angle ∆g and output angle ∆r when the load

angle is zero. Evaluating eq. (4.68) with the sequences given by eq. (4.36) and eq. (4.37)

in combination with the switch states in Table II, the analytical expressions for the

hard switched volt-amperes Ssw,avg when using the modified double sided modulation

method can be derived:

Ssw,avg =

 9
√
3 (4−

√
3 cos(φr))
π2 Vgp · Ir |φr| < π

6

9
√
3 (2+sin(|φr|))

π2 Vgp · Ir |φr| ≥ π
6

(4.72)

Conventional double sided modulation with distributed zero vectors

The conventional double sided modulation with distributed zero vectors added an

additional zero-vector to the conventional double sided sequence whereby the number of
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switchings per switching period was increased from 8 to 10, Hence it must be expected

that the average switched volt-amperes will increase more or less correspondingly. Fig.

4.30 illustrates the hard-switched volt-amperes for a load angle of zero. Evaluating eq.

(4.68) with the sequences given by eq. (4.38) and eq. (4.39) in combination with the

switch states in Table I, the analytical expressions for the hard switched volt-amperes

Ssw,avg when using the conventional double sided modulation method with distributed

zero vectors can be derived:

Ssw,avg =


18

√
3 (2

√
3+

√
3 cos(φr)−3 cos(φr))

π2 Vgp · Ir |φr| < π
6

18
√
3 (

√
3 sin(|φr|)+2−sin(|φr|))

π2 Vgp · Ir |φr| ≥ π
6

(4.73)

Low distortion modulation method

The idea of the low distortion modulation method was to improve the quality of the gen-

erated input current and output voltage by adding an additional zero-vector while still

keeping the number of switchings per switching period at 8. Evaluating the switching

sequence given by eq. (4.40) and eq. (4.41) with regard to the switched volt-amperes

and with a load angle of zero, the surface in Fig. 4.31 is obtained. Averaging the surface

in Fig. 4.31 by use of eq. (4.68) and calculating for arbitrary load angles, the following

expression for the hard-switched volt-amperes is obtained:

Ssw,avg =

 9
√
3 (−3 cos(φr)+4

√
3)

π2 Vgp · Ir |φr| < π
6

27 (2+sin(|φr|))
π2 Vgp · Ir |φr| ≥ π

6

(4.74)

Double sided modulation with distributed zero vectors for modified space

vector algorithm (SV)

Likewise, inspired from the conventional double sided modulation with distributed zero

vectors, the harmonic content of the modified space-vector modulation approach was

improved by adding an additional zero-vector to the switching sequence. As discussed

in section 4.3.5 on page 113, the location of this additional zero-vector leave some

degree of freedom and as discussed one way to choose the location is to look at the

switched voltage associated with the location of the additional zero-vector and then

select the location associated with the lowest switched voltage. This approach is given

by the sequences in eq. (4.43) - eq. (4.46). Fig. 4.32 shows the hard switched volt-

amperes as a function of the input angle ∆g and output angle ∆r when the load-angle is

zero. Calculating the hard switched volt-amperes for arbitrary values of the load angle

and evaluating the average switched volt-amperes by use of eq. (4.68) the following

expression is obtained:

Ssw,avg =


9

√
3 (4+

√
3 cos(φr)−3 cos(φr))

π2 Vgp · Ir |φr| < π
6

9
√
3 (6−2

√
3+

√
3 sin(|φr|)−sin(|φr|))
π2 Vgp · Ir |φr| ≥ π

6

(4.75)
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Figure 4.32: Hard switched volt-

amperes when using the double sided

modulation with distributed zero vectors

for modified space vector algorithm (SV).
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Figure 4.33: Hard switched volt-

amperes when using the double sided

modulation with distributed zero vectors

for modified space vector algorithm (SC).

Double sided modulation with distributed zero vectors for modified space

vector algorithm (SC)

Finally, considering the double sided modulation with distributed zero vectors for the

modified space vector algorithm where the switching sequence is chosen in order to

minimize the switched current, the switched volt-ampere surface for a load angle of zero

will appear as illustrated in Fig. 4.33. Evaluating eq. (4.68) on the sequences given

in eq. (4.47)- eq. (4.50) in combination with Table II the following expression for the

hard switched volt-amperes is obtained:

Ssw,avg =


27

√
3

π2 Vgp · Ir |φr| ≤ π
6

9
2

√
3 (8−

√
3 cos(φr)−sin(|φr|))

π2 Vgp · Ir π
6
< |φr| ≤ π

3

9
√
3 (4+sin(|φr|)−

√
3)

π2 Vgp · Ir |φr| ≥ π
3

(4.76)

By use of eq. (4.71)- eq. (4.76) the average hard switched volt-amperes (switched by the

entire matrix converter) can be calculated and hence a measure of the switching losses

associated with the different modulation methods can be obtained. Fig. 4.34 shows the

hard switched volt-amperes as a function of the load angle φr evaluated for the different

modulation methods.

4.4.3 Thermal modeling

The thermal modeling for calculating the temperature of the switches in the matrix

converter very much depend on the switch configuration, c.f. Fig. 4.4. In the following,

it is assumed that a bi-directional switch is realized from a standard H-bridge module

as illustrated in Fig. 4.4d. The purpose of the thermal model of the matrix converter
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Figure 4.34: The switching losses of the four different modulation functions for

the matrix converter.

is to calculate the diode and transistor average temperature in order to determine the

temperature dependent component resistances and threshold voltages. To validate a

certain matrix converter design, a secondary purpose of the thermal modeling is to be

able to calculate the component peak temperature for a given load condition.

Fig. 4.35a illustrates a simple one dimensional approach to calculate the junction tem-

perature of the semiconductor components in a full bridge module where the component

notation follows the notation given in Fig. 4.35c. Each of the semiconductor power losses

are modeled as a current source feeding into a thermal impedance denoted by Zthxx. As

illustrated in Fig. 4.35b, the thermal impedances can be composed of one or more

parallel connected RC-elements. The temperature source k · Txx represents a thermal

coupling from other transistors and diodes and the temperature source Tamb makes it

possible to offset the temperature estimation by the ambient temperature. Based on the

thermal modeling approach in Fig. 4.35 the goal is to derive a method which enables

estimation of the average and peak junction temperatures, only with information on the

modulation dependent semiconductor losses calculated in section 4.4 and the thermal

parameters in Fig. 4.35.

Average temperatures

Neglecting the thermal coupling between the components in the half bridge module, the

average temperature of the individual components can simply be calculated by:

Ttx = Ptx ·
y∑

w=1

Rthxw,t + 4 · (Ptx + Pdx) · (Rthch +Rthha) + Tamb (4.77)

Tdx = Pdx ·
y∑

w=1

Rthxw,d + 4 · (Ptx + Pdx) · (Rthch +Rthha) + Tamb (4.78)
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Figure 4.35: Illustration of the simple thermal models used to estimate switch

temperatures. a) Thermal model of a half bridge module. b) model of a thermal

impedance Zth. c) Component name notation.

where Ttx is the average transistor temperature, Tdx is the average diode temperature,

Rthxx,x is the thermal resistances in the thermal model in Fig. 4.35 and Ptx and Pdx are

the average transistor and diode losses derived form eq. (4.55), eq. (4.56), eq. (4.69)

and eq. (4.70).

Peak temperatures

Estimation of the peak temperatures in the matrix converter is a little more complex

than for the two-level converter treated in chapter 3. Actually, as the peak power loss

experienced by the individual components depend on the input and output frequency,

an exact prediction of the peak temperatures is not possible. For instance, Fig. 4.36

illustrates an example of the per switching period switched volt-amperes experienced by

a transistor (or diode) in switch8 Sa1 when the load angle is π/6 and the switches are

controlled according to the conventional 8 BSO modulation method. Correspondingly,

Fig. 4.37 shows the per switching period RMS current through a transistor (or diode)

in switch Sa1.

8The switch notation refer to the notation used in Fig. 4.5 on page 95.
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riod switched volt-amperes experienced by

switch Sa1 when the load angle is π/6
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method.
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Figure 4.37: the per switching period

RMS current through switch Sa1 when the

load angle is π/6 and the switches are

controlled according to the conventional

8 BSO modulation method.

Besides the fact that the peak power losses experienced by one of the switches in

the matrix converter depend on the actual course across the surface in Fig. 4.36 and

Fig. 4.37 it appears that the peak of the switched volt-amperes and the peak of the

conducted current are not necessarily located in the same position and furthermore, the

locations are moving, depending on the load angle. Finally, it appears that for some of

the modulation methods, the peak value of the switched volt-amperes (switched by the

individual switches) depend on the load angle while the peak of the per switching pe-

riod conducted current appears to be both modulation index dependent and load angle

dependent.

Due to the above described complexity in calculating the peak power losses of the

individual components in the matrix converter, a more pragmatic approach will be

applied. The approach is to describe the time varying losses of the transistor, ptx, and

of the diode, pdx, as sinusoidal functions given by:

ptx = Ptx + (〈P̂t,sw〉Ts + 〈P̂t,cond〉Ts − Ptx) · sin(ωgt) (4.79)

pdx = Pdx + (〈P̂d,sw〉Ts + 〈P̂d,cond〉Ts − Pdx) · sin(ωgt) (4.80)

where Ptx and Pdx are the average transistor- and diode losses , 〈P̂t,sw〉Ts and 〈P̂d,sw〉Ts are

the peak switching losses of a transistor and diode, evaluated for each switching period

while , 〈P̂t,cond〉Ts and 〈P̂d,cond〉Ts are the peak conducting losses of the transistor and

diode, evaluated for each switching period. In the present approach, the peak switching
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Figure 4.38: The peak of the switched volt-amperes versus load angle when eval-

uated in each switching period.

losses per switching fundamental is calculated by:

〈P̂t,sw〉Ts = 〈Ŝsw,Sa1〉Ts · Esw0,t · fsw (4.81)

〈P̂d,sw〉Ts = 〈Ŝsw,Sa1〉Ts · Esw0,d · fsw (4.82)

As discussed above, the per switching period switched volt-amperes depend on both

the load angle and the modulation method. Fig. 4.38 shows the peak value of the per

switching period switched volt-amperes as a function of the load angle. The peak value

of the per switching period switched volt-amperes when using the conventional 8 BSO

modulation method can be approximated by:

〈Ŝsw,Sa1〉Ts ≈
{

3 + 3 · ∣∣sin (3
2
· φr

)∣∣Vgp · Ir |φr| < π
6

6 · Vgp · Ir π
6
≤ |φr| ≤ π

2

(4.83)

The peak value of the per switching period switched volt-amperes when using the mod-

ified 8 BSO modulation method can be approximated by:

〈Ŝsw,Sa1〉Ts ≈


3 · Vgp · Ir |φr| < π

6(
3 + 0.461 · ∣∣sin (3 · φr − π

2

)∣∣)Vgp · Ir π
6
≤ |φr| < π

3

3.461 · Vgp · Ir π
3
≤ |φr| ≤ π

2

(4.84)

Considering the conventional 10 BSO modulation method and the low distortion mod-

ulation method, the peak value of the per switching period switched volt-amperes is

constant and can be approximated by:

〈Ŝsw,Sa1〉Ts ≈ 6 · Vgp · Ir (4.85)

Finally, for the modified modulation methods involving 10 BSO′s the peak value of the

per switching period switched volt-amperes can be approximated by:

〈Ŝsw,Sa1〉Ts ≈ 3.461 · Vgp · Ir (4.86)
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The solid lines in Fig. 4.38 are derived directly from surfaces lake that in Fig. 4.36 while

the values marked with (*) represents the modeling of the peak value of the switched

volt-amperes as given by eq. (4.83) - eq. (4.86).

The peak value of the per switching period conducting losses are derived by:

〈P̂t,cond〉Ts = Vt0(T ) · 〈Ît,avg〉Ts +Rt(T ) · 〈Ît〉2Ts
(4.87)

〈P̂d,cond〉Ts = Vd0(T ) · 〈Îd,avg〉Ts +Rd(T ) · 〈Îd〉2Ts
(4.88)

where 〈Îx,avg〉Ts and 〈Îx〉Ts are the maximum appearing value of the per switching pe-

riod average and RMS current through the considered component. Fig. 4.39 shows the

peak value of the per switching period average current through a transistor (and diode)

while Fig. 4.40 shows the peak value of the per switching period RMS current through

a transistor (and diode). As appear from Fig. 4.39 and Fig. 4.40 the peak value of

the per switching period average transistor- and diode current is dependent on the load

angle, the modulation index and the chosen modulation method.

For the modulation functions involving 8 BSO, the peak value of the per switching

period average current can be approximated by:

〈Ît,avg〉Ts ≈


√
2 · Ir |φr| < π

3(√
2 − 0.1892 · √M |1 + cos(3φr)|

)
Ir |φr| ≥ π

3

(4.89)

while for the modulation functions involving 10 BSO′s, the peak value of the per switch-

ing period average current can be approximated by:

〈Ît,avg〉Ts ≈
(

1√
2
+0.37M1.5+0.39M ·sin

(
φr+

π

2

)
+0.065M · sin

(
3φr+

π

2

))
Ir (4.90)
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Similarly, approximations for the peak value of per switching period RMS current can

be found. For the modulation functions involving 8 BSO, the peak RMS current is

approximated by:

〈Ît〉Ts ≈


√
2 · Ir |φr| < π

3(√
2 − 0.1892 ·M 2

3 · |1 + cos(3 · φr)|
)
· Ir |φr| ≥ π

3

(4.91)

while for the modulation functions involving 10 BSO′s, the peak value of the per switch-

ing period RMS current can be approximated by:

〈Ît〉Ts ≈
(
1+

(
2√
3
−1

)
M+0.30M · sin

(
φr+

π

2

)
+0.05M · sin

(
3φr+

π

2

))
Ir (4.92)

Assuming that the thermal capacitance of the case to ambient structure of the semicon-

ductor module is sufficiently large to suppress temperature variations in the considered

frequency range, the peak junction temperature of the transistor and diode can be esti-

mated by:

T̂tx = Ptx

y∑
w=1

Rthxw,t +
(
〈P̂t,sw〉Ts + 〈P̂t,cond〉Ts − Ptx

)
|Zthxw,t(ωg)| + Tc (4.93)

T̂dx = Pdx

y∑
w=1

Rthxw,d +
(
〈P̂d,sw〉Ts + 〈P̂d,cond〉Ts − Pdx

)
|Zthxw,d(ωg)| + Tc (4.94)

With the assumption of sufficiently large thermal capacity of the case to ambient struc-

ture, the case temperature Tc is given by:

Tc = 4 · (Ptx + Pdx) · (Rthch +Rthha) + Tamb (4.95)

To justify the above described rough approach for estimating the peak temperatures, it

should be noted that according to Fig. 4.36 and Fig. 4.37 the peak power losses can

never appear as a static value due to the high frequency on the grid side of the matrix

converter and hence the peak temperature of the matrix converter components is not as

crucial as for the switches of the back-to-back converter. This statement is very much

supported by the results obtained in [8].

4.4.4 Filter power losses

In the modeling approach of the power losses within the grid filter for the matrix con-

verter, it is assumed that only the inductor resistances are contributing significantly

to the filter power losses. Further, it is assumed that any filter damping necessary for

the functionality of the matrix converter can be achieved by active control, without

sacrificing the quality of the generated waveforms to considerable extent. Hence the

modeling approach for the power losses within matrix converter filter will follow the

same procedure as for the back-to-back two-level converter as discussed in section 3.4.4.
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The inductor power losses PL are composed of copper losses, hysteresis losses and eddy

current losses:

PL = Pcu + Phy + Ped (4.96)

Copper losses

The copper losses in the inductor are due to the effective resistance RL of the windings.

Pcu = 3RLI
2
L (4.97)

Where the effective resistance is a function of the inductor design, the inductor temper-

ature and the frequency of the inductor current. For a given load current and a desired

inductor value, Appendix B provides a detailed inductor design tool from which the

effective resistance RL of the inductor is extracted.

Hysteresis losses

The empirical Steinmetz equation expresses the specific hysteresis loss as an exponential

function of the frequency f and the maximum flux density B̂c. Provided that the

magnetizing current is purely sinusoidal, the hysteresis loss can be expressed by:

Phy = ML · cm · fα · B̂β
c (4.98)

where ML is the weight of the core material cm, α and β are material property constants.

Despite, the formula in (4.98) is a well established expression for the hysteresis losses,

manufactures of iron cores rather provide graphical presentation of the loss character-

istic than providing the material property constants. Appendix B provides a detailed

description on the extraction of the material property constants cm, α and β as well

as a design procedure for determining core material mass, given the nominal current

and the desired inductance value. The design values for the current and inductance are

discussed in section 4.5.2.

Eddy current losses

To account for the eddy current losses the empirical Steinmetz equation is used:

Ped = ML · σc · τ
12ρc

(
dB

dt

)2
(4.99)

where σc is the conductivity of the core material, τ is the thickness of the lamination

and ρc is the mass density of the iron. For a more detailed description on the modeling

of the inductor power losses, see Appendix B.
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Figure 4.41: Realization of a bi-directional switch from a standard full-bridge

module.

4.5 Design aspects

Based on the modeling approach described in the previous sections, especially section

4.4, the loading of individual components within the matrix converter can be estimated

for a certain load profile. Hence, in many aspects, a rough design guideline for current-

and voltage ratings of the matrix converter components can be obtained by combining

the modeling approach of the surrounding turbine components as described in chapter

2 with the equations obtained from the loss modeling approach in section 4.4. Nev-

ertheless, from an initial design point of view it may seem a little overwhelming and

confusing to select and combine the necessary equations - equations which in some cases

were derived for a slightly different purpose. Hence a short summary on the design

aspects regarding selection of an appropriate switch will be provided. Then some guide-

lines regarding filter design will be outlined and finally some consideration regarding

selection of switching frequency will be discussed.

4.5.1 Design of the bi-directional switches

As discussed in section 4.4.3, dealing with the thermal modeling approach, it is provided

that the bi-directional switch is realized from a standard H-bridge module as shown in

Fig. 4.41. Using an H-bridge module actually forms a bidirectional switch with two

parallel branches - one branch consisting of a common collector bi-directional switch

and another branch consisting of a common emitter bi-directional switch. Fig. 4.41

shows the realization of a bi-directional switch from a standard full-bridge module.

Current ratings

Provided that the power factor at the input of the matrix converter is restricted to

unity, the RMS current loading of each transistor and diode in a bidirectional switch

was derived in section 4.4.1 and given by:

It =
1√
6
Ir (4.100)

However, to select an appropriate switch it is worthwhile to notice that the time period

for which the RMS current is evaluated is a time period common for both the input

side and output side. Since the frequency at the generator in the doubly-fed system is
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rather low the design should take into account that the RMS current loading evaluated

on a more local basis will be up to a factor of 2 higher than the value calculated by

eq. (4.100). Using the simplified modeling approach of the generator, as discussed in

section 2.4.4 on page 37 the RMS rotor current Ir, can then be estimated by:

Ĩr =
1

Ngen

·
√
P̃ 2r + Q̃2r

3 · s · |V s|
(4.101)

where the ”˜” indicates that the quantity is an estimated value and s is the slip of the

generator. Neglecting the generator power losses, the rotor power Pr is estimated by:

P̃r =
s(ωgenTgen)

1 + s
(4.102)

where ωgenTgen is the power applied at the shaft of the generator9. The reactive rotor

power Qr is estimated by:

Q̃r = s ·
(
Q∗

s +
3|V |2s
ωsLm

)
(4.103)

where Q∗
s is the desired reactive power to be generated from the stator.

Voltage ratings

Considering the voltage ratings of the matrix converter, the reduced voltage gain plays

an important role. As discussed in section 4.3 the actual voltage gain of the matrix

converter depend on the chosen modulation strategy but can never exceed
√

3/2 unless

entering the non-linear over modulation range. Hence, to obtain the same operating

speed range as for the two-level back-to-back voltage source converter two possibilities

can be considered: 1) Selecting an appropriate input voltage, in order to obtain the

same output voltage as for the 2-level back-to-back voltage source converter or 2) select

a generator winding ration Ngen which is 2/
√

3 lower than for the generator used in the

2-level back-to-back voltage source converter. The latter will clearly increase the rotor

current by a factor of 2/
√

3.

Neglecting the overvoltages arising from stray inductances between the input filter ca-

pacitors and the switches and overvoltages caused by oscillations in the input filter,

the transistors and diodes within the matrix converter should be designed to withstand

the phase-phase peak voltage at the input side of the matrix converter. The minimum

required input voltage to the matrix converter |V ′
g3| depends on the operating condition

and is generally estimated by:

|V ′
g3,min| =

2√
3

(|ŝ| ·Ngen · |V s|) (4.104)

9Neglecting power losses in the system , the power applied at the shaft of the generator is equal to
the turbine power.
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where |ŝ| is the maximum occurring slip. Assuming that the filter is realized by a 2-stage

LC filter as shown in Fig. 4.42 and having the minimum required input voltage to the

matrix converter, the required transformer voltage |V g3| can be calculated from:

|V g3| =

∣∣∣∣ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd

ZbZd

V ′
g3,min+

(4.105)

(ZaZbZd + ZaZcZd + ZbZcZd)

ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd

I ′g3

∣∣∣∣
where the impedances Za...Zd are given in accordance with Fig. 4.42:

Za = j · ωg · La (4.106)

Zb = Rb +
1

j · ωg · Cb

(4.107)

Zc = j · ωg · Lc (4.108)

Zd = Rd +
1

j · ωg · Cd

(4.109)

The current from the matrix converter |I ′g3(s)| can be estimated by:

|Ĩ ′g3(s)| =
P̃r

2 · √3 · |s| · |V s|
(4.110)

Having the required transformer voltage from eq. (4.105) the load dependent voltage at

the matrix converter terminals can be calculated by:

|V ′
g3| =

∣∣∣∣ ZbZd

ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd

V g3 +

(4.111)

(ZaZbZd + ZaZcZd + ZbZcZd)

ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd

I ′g3

∣∣∣∣
Hence the switches of the matrix converter should at least be capable of withstanding

a voltage of
√

6 · |V ′
g3| as given by eq. (4.111). However as was the case for the back-

to-back two-level voltage source converter, the selection of appropriate switches should

incorporate some design margin in order to cope with the transient voltage spikes occur-

ring at each switching instant due to stray inductances and voltage oscillations in the

input filter. As the stray inductances depend on the specific hardware layout it is not

possible to come up with a watertight design rule but since the stray inductances in the

matrix converter design inevitable will be larger than in the back-to-back two-level volt-

age source converter where the stray inductances can be clamped at the DC-terminals

of the half-bridge module, the design margin should be larger than the corresponding

design margin applied to the back-to-back two-level voltage source converter. The volt-

age margin design rule for the back-to-back two-level voltage source converter was based

on common practice and was illustrated in Fig. 3.39 on page 76.
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Figure 4.42: Filter topology for the matrix converter.

4.5.2 Filter design

As the matrix converter acts as a current source on the grid side, the matrix converter

has to be connected to a pure voltage source in order to obtain a proper operation. Due

to line impedance and stray inductances in the transformer, the grid itself can not be

considered as a pure voltage source and hence the input filter has to provide this feature.

Further, since the matrix converter itself generates a high amount of current harmonics

the filter has to attenuate these current harmonics to an acceptable amount. Finally,

considering the fundamental frequency, the filter design should take into account the

reactive power consumption and the voltage drop across the filter. Fig. 4.42 shows the

considered filter topology.

In the following, some guidelines regarding the filter design is provided [59]. Besides

these general design guidelines, some practical filter issues regarding grid voltage distor-

tions, filter resonance and power-up should be addressed [40]. However, these practical

issues will not be treated in this thesis.

Fundamental frequency considerations

Due to a highly increased complexity in the calculation of losses and waveform quality, it

was decided to restrict the controllable power factor at the input of the matrix converter

to be unity. This implies that the current I ′g3 is always in phase with the voltage V ′
g3,

c.f. Fig. 4.42. This restriction further implies that the matrix converter is not able to

compensate the reactive power absorption in the grid filter and hence this compensation

has to be done through the generator. The reactive power absorbed by the filter depends

on the operating conditions but in general is given by:

Qg = 3 · �m(V g3 · I!g3) (4.112)

where the ! denotes the complex conjugate. The current Ig3 is given by:

Ig3 =
(ZaZbZd+Z

2
bZd)I

′
g3 − (Z2b +ZaZd+ZbZd+ZaZb+ZaZc+ZbZc)V g3

(ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd)(Za + Zb)
(4.113)

To determine the actual orientation of the current I ′g3, the voltage V ′
g3 has to be calcu-

lated. The voltage at the matrix converter side of the filter is given by:

V ′
g3 =

ZbZdV g3 + (ZaZbZd + ZaZcZd + ZbZcZd)I
′
g3

ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd

(4.114)



4.5. Design aspects 137

Besides determining the orientation of the voltage V ′
g3, eq. (4.114) gives the voltage rat-

ings for which the switches of the matrix converter has to be designed, c.f. section 4.5.1

on page 133.

Frequency analysis

Besides establishing a pure voltage source at the input of the matrix converter, the

aim of the filter was to reduce the amount of current harmonics emitted to the supply

grid. Considering the transfer function from converter harmonic current I ′g3,h to grid

harmonic current Ig3,h, this is given by:

Ig3,h =
ZbZd

ZaZd + ZaZc + ZbZc + ZaZb + ZbZd

I ′g3,h (4.115)

where the impedances Za - Zd is given by eq. (4.106) - eq. (4.109). Another important

aspect when considering the filter design is the interaction with harmonics on the grid.

Clearly, if harmonics are present in the grid voltage these harmonics will for a certain

filter design be able to resonate with the LC-LC filter circuit. Hence an important

aspect when designing the filter is to locate the resonance frequencies of the filter in a

frequency range where 1: No harmonics are present in the grid voltage or 2) in a range

where the matrix converter is able to actively damp the resonance. Alternatively (or in

combination) The passive damping resistors can be designed to attenuate the resonance

of the filter. Considering the relation between harmonic voltage on the grid V g3,h and

harmonic voltage present at the terminals of the matrix converter V ′
g3,h, this is given

by:

V ′
g3,h =

ZbZd

ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd

V g3,h (4.116)

Finally, the current harmonics I ′g3,h fed from the matrix converter to the filter may cause

resonance problems in the filter. Assuming ideal supply voltage, the relation between

current harmonics and harmonic voltage present at the matrix converter terminals is

given by:

V ′
g3,h =

(ZaZbZd + ZaZcZd + ZbZcZd)

ZaZb + ZaZc + ZaZd + ZbZc + ZbZd + ZcZd

I ′g3,h (4.117)

4.5.3 Modulation strategy and switching frequency

To this stage, the different modulation methods have been evaluated with regard to

harmonic performance and generated power losses, assuming the same switching fre-

quency for all the modulation methods. However as it appeared when evaluating with

regard to these criteria, the modulation methods behave quite different when evaluated

over the operative modulation range and hence a fair comparison is not directly obtain-

able. Actually, in order to be able to compare the different modulation methods - and

in a final stage compare different converters, one evaluation parameter has to form a

common basis. In some prior art documents [25, 40], the number of switchings for the
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Figure 4.43: The switching frequency correction factor where output voltage dis-

tortion is normalized to the suboptimal modulation method of the two-level voltage

source inverter, c.f. section 3.3.3 on page 53.

different modulation methods has been used to form a common basis for the comparison.

Equaling the number of switchings seems however to be a strange common basis for a

comparison as the number of switchings in it self is not an interesting parameter. In

the previous chapter treating the back-to-back two-level voltage source converter, the

common basis was formed by evaluating the generated harmonic distortion and then ad-

justing the switching frequency for the different modulation methods in order to obtain

the same harmonic distortion in the entire modulation range. Considering the matrix

converter, the selection of an appropriate switching frequency is a little more tricky as

the switching frequency for the matrix converter influences both the quality of the gen-

erated generator voltage and the quality of the generated grid current. Hence, adopting

the same ideas as used in chapter 3, two approaches appear. Either, the switching

frequency for the different modulation methods can be adjusted to generate the same

harmonic distortion in the generator voltage or adjusted to generate the same harmonic

distortion in the grid current.

Using the generated harmonic voltage distortion as a common basis for the converter

evaluation, the switching frequency for the different modulation methods has to be ad-

justed by a switching frequency correction factor ksw,v. Fig. 4.43 shows the switching

frequency correction factor as a function of the modulation index for the considered

modulation methods where the switching frequency correction factor is adjusted to gen-

erate the same harmonic voltage distortion as generated by the suboptimal modulation

scheme for the back-to-back two-level converter10 , c.f. section 3.3.4. Having the mod-

ulation index M0 for the nominal working condition, the switching frequency correction

factor for the different modulation methods can be fitted by a polynomial. The switch-

ing frequency correction factor for the conventional double sided modulation method

10The harmonics are evaluated for the same output voltage capability.
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can be approximated by:

ksw,v = 3.333M5
0 − 7.897M4

0 + 5.769M3
0 − 2.055M2

0 + 0.239M0 + 1.145 (4.118)

where M0 is the modulation index when operating at nominal conditions. Similarly, the

switching frequency correction factor for the modified double sided modulation method

can be approximated by:

ksw,v = 1.002M5
0 − 0.463M4

0 − 0.341M3
0 − 0.0570M2

0 − 0.277M0 + 0.852 (4.119)

while the correction factor for the conventional double sided modulation method with

distributed zero vectors becomes:

ksw,v = 0.910M5
0 − 2.137M4

0 + 1.589M3
0 − 0.578M2

0 + 0.089M0 + 0.573 (4.120)

Considering the low distortion modulation method, the switching frequency correction

factor can be approximated by:

ksw,v = 1.883M5
0 − 4.516M4

0 + 3.253M3
0 − 1.105M2

0 + 0.142M0 + 0.846 (4.121)

The switching frequency correction factor for the modified double sided modulation

method with distributed zero vectors when optimized for the switched voltage can be

approximated by:

ksw,v = 0.720M5
0 − 0.476M4

0 − 0.331M3
0 − 0.113M2

0 − 0.272M0 + 0.897 (4.122)

and finally the switching frequency correction factor for the modified double sided mod-

ulation method with distributed zero vectors and optimized for the switched current can

be approximated by:

ksw,v = 1.66M5
0 − 0.695M4

0 + 0.012M3
0 − 0.094M2

0 − 0.264M0 + 0.727 (4.123)

Alternatively, the switching frequency correction factor could be calculated to obtain

comparable grid current harmonic distortion. Using this approach, the different modula-

tion methods for the matrix converter is still comparable but a comparison with e.g. the

two-level inverter is not directly obtainable. Fig. 4.44 shows the switching frequency

correction factor as a function of the modulation index for the different modulation

methods when the input current characteristics are used as a common basis. In Fig.

4.44 the conventional double sided modulation method is used as a reference. Having

the modulation index M0 for the nominal working condition, the switching frequency

correction factor ksw,c for the different modulation methods can be polynomial-fitted.

As the conventional double sided modulation method was chosen as basis, the switching

frequency correction factor for this method simply becomes:

ksw,c = 1 (4.124)

The switching frequency correction factor for the modified double sided modulation

method can be approximated by:

ksw,c = −1.962M5
0 + 2.042M4

0 − 1.029M3
0 + 0.372M2

0 + 0.246M0 + 1.527 (4.125)
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Figure 4.44: The switching frequency correction factor where the input current

distortion is normalized to the conventional double sided modulation method.

while the correction factor for the conventional double sided modulation method with

distributed zero vectors becomes:

ksw,c = −1.066M5
0 + 3.113M4

0 − 2.529M3
0 + 0.964M2

0 − 0.094M0 + 0.504 (4.126)

Considering the low distortion modulation method, the switching frequency correction

factor can be approximated by:

ksw,c = −2.299M5
0 + 5.004M4

0 − 3.788M3
0 + 1.381M2

0 − 0.096M0 + 0.829 (4.127)

The correction factor for the modified double sided modulation method with distributed

zero vectors when optimized for the switched voltage can be approximated by:

ksw,c = 0.556M5
0 + 0.281M4

0 + 0.149M3
0 + 0.417M2

0 + 0.279M0 + 1.224 (4.128)

and finally the switching frequency correction factor for the modified double sided mod-

ulation method with distributed zero vectors and optimized for the switched current can

be approximated by:

ksw,c = 0.716M5
0 + 0.110M4

0 + 0.331M3
0 + 0.437M2

0 − 0.344M0 + 1.136 (4.129)

4.6 Model of the matrix converter

Input to the matrix converter model are given, both from the generator side and from

the grid side, i.e. from the transformer. Input from the rotor side are the rotor voltage,

rotor current, load angle and frequency, all given by the generator modeling approach

described in section 2.4. Input from the grid side are the grid voltage, i.e. the voltage

on the tertiary side of the transformer, c.f section 2.5 and the grid frequency. Based on

these input, the converter model has to output the resulting grid current supplied to

the tertiary transformer windings along with the converter losses.
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4.6.1 Converter losses

Depending on the chosen modulation method, the total converter losses can be derived

from the equations given in section 4.4. The power losses of the semiconductors within

the matrix converter, Pcon, is given by:

Pcon = 18 (Pt,cond + Pt,cond + Pt,sw + Pd,sw)

= 18
(
(Vt0(T ) + Vd0(T )) · It,avg + (Rt(T ) +Rd(T )) · I2t

)
+ (4.130)

Ssw,avg(Esw0,t + Esw0,d) · fsw
The current quantities involved for calculating the conducting losses are independent of

the chosen modulation method and can be calculated by eq. 4.62 and eq. 4.65 whereas

the expression for the switched volt-amperes Ssw,avg has to be calculated according to

the chosen modulation method. The modulation method dependent expressions for the

switched volt-amperes are given by eq. 4.71 - eq. 4.76. The grid inductor power losses

PL are calculated according to eq. (4.96) on page 132.

4.6.2 Power transferred to the transformer

According to eq. (2.47) on page 39 input to the transformer modeling approach is the

grid inverter current Ig3, the stator current Is and the primary side voltage V g1. Hence,

besides the converter losses, the only necessary output from the converter modeling is

the grid inverter current.

Ig3 =
(Pr − (Pcon + PL)) + j ·Qg

3 · V g3

(4.131)

where Qg is the reactive power consumed by the filter of the matrix converter. The

reactive power consumed by the grid filter can be calculated from eq. (4.112).

4.7 Summary

This chapter has treated the three-phase to three-phase matrix converter for use in

a wind turbine application based on the doubly-fed induction generator. Specifically,

the aim of the chapter was to be able to compare the matrix converter with the more

matured back-to-back two-level converter conventionally used in said application. The

chapter was introduced by a short review on previous work within the field of matrix

converters but as the use of matrix converters in wind turbine applications appeared to

be almost unknown, the survey has focused on matrix converters in general. The survey

on previous work was followed up by an explanation of the basic working principles of

the converter. The explanation of the basic working principles is a pure mathematical

exercise and although complicated at a first glance, the real obstacles for the matrix

converter occur due to non-ideal conditions. These non-ideal conditions involves consid-

erations such as commutation strategy, bi-directional switch realization and operation
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with unbalanced or faulty input- and output conditions. These working principle related

issues are addressed in the major part of previous work. Closely related to the working

principles are the modulation of the matrix converter which has to take into considera-

tion both the generation of a sinusoidal input current and a sinusoidal output voltage

and unlike the previously considered back-to-back two-level converter this has to be

done without an intermediate energy storage. To obtain a fair comparison between the

quite un-matured matrix converter and the conventionally used back-to-back two-level

voltage source converter, a lot of efforts in this chapter was dedicated to develop new

modulation methods for the matrix converter - modulation methods aiming to minimize

the generated power losses [27] and/or the generated harmonic distortion [43]. To be

able to compare the considered modulation methods internally as well as comparing

the matrix converter with the other converter topologies, the modulation methods were

evaluated with regard to harmonic performance [26] on both the grid side and generator

side as well as with regard to the generated power losses. Regarding the power losses

generated by the matrix converter, analytical expressions were derived taking into ac-

count the modulation method as well as the temperature of the considered components.

Finally, to be able to design the matrix converter, some rules of thumb regarding switch

current ratings, switch voltage ratings, choice of switching frequency and input filter

design has been presented.
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Chapter 5

The back-to-back three-level voltage

source converter

THE third and last power converter to be treated in this thesis is the back-to-back

three-level voltage source converter. The configuration of the back-to-back three-

level voltage source converter is in many aspects very similar to the back-to-back two-

level voltage source converter treated in chapter 3 and hence the three-level converter

adopts many of the nice features represented by the two-level counterpart. For instance

the input side and output side of the converter are de-coupled and the converter control

can be separated into a grid side inverter control and a rotor side inverter control work-

ing almost independently. Further, the voltage waveform synthesizing is better which

may be used to decrease the switching frequency and/or reduce the size of the filters.

This better voltage waveform is however obtained at the expense of a more complex

hardware and control structure and problems such as voltage imbalance in the DC-link.

The chapter is introduced by a short review on the previous work in the field of three-

level inverters followed by an explanation of the operating principles. Compared to

the conventional two-level voltage source inverter, modulation schemes for use in three-

level inverters are not as well exploited and hence a quite large part of the chapter

is dedicated to the explanation of existing strategies and to the development of new

modulation strategies. To be able to compare and in a final stage select an appropriate

modulation method, the methods are evaluated with regard to their waveform quality,

DC-link balancing capability, conducting losses, switching losses and influence on the

switch temperature variation. Finally, to be used in a converter evaluation and converter

comparison, the losses of the back-to-back three-level voltage source converter are mod-

eled and some design aspects and design guidelines regarding component ratings are

outlined.

5.1 Previous work

The three-level neutral point clamped (NPC) inverter was introduced by Nabae et. al.

[24] in 1981 as an alternative to the conventional two-level voltage source inverter, of-

fering high efficiency and improved harmonic performance. Fig. 5.1a shows one phase
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a) b) c)

N AA AN

Figure 5.1: Three-level structures (one phase-leg). a) Diode clamped inverter

[24]. b) Capacitor clamped inverter. c) Transistor clamped inverter [35].

leg of the three-level NPC voltage source inverter. Since the introduction, the NPC

inverter has been re-introduced in a couple of alternative configurations, diverging more

or less from the original NPC-inverter. Fig. 5.1b and 5.1c show two of these configu-

rations derived from the original NPC topology. The topology shown in Fig. 5.1b is

called the three-level flying capacitor inverter and uses additional capacitors instead of

diodes to provide a neutral level output voltage. The third alternative configuration,

shown in Fig. 5.1c, was originally also proposed by Nabae et. al. back in 1981 but

often the author of [35] is acknowledged as the inventor - maybe due to the fact that

this author actually holds a US-patent (US4961129) specifically disclosing the present

topology configuration. Besides the closely related converter topologies shown in Fig.

5.1, several topologies based on interconnection of conventional two-level inverters have

been proposed, for instance such as those described in [5] and [26].

Originally, the NPC inverter was intended for high voltage- and low switching frequency

power conversion applications but progressing advance in computational power proces-

sors and in solid state switching devices, such as the IGBT, has made the NPC in-

verter applicable also in low- and medium voltage high switching frequency applications

[39, 41, 43]. Considering low switching frequency applications (fsw < 1 kHz), a lot of

research have been concerned about calculating optimal switching patterns to eliminate

low order harmonics in the output voltage [8, 12, 23] but as the switching frequency

increases, research on harmonic voltage elimination recedes while problems like e.g. re-

duction of switching losses becomes more urgent [6].

Another important issue regarding three-level inverters (and multi-level inverters in

general) is the DC-link balancing problem. Without entering details at this point, it

may appear from e.g. Fig. 5.1a that an unbalanced loading of the DC-link capacitors

may occur due to:

• Unequal capacitor values due to manufacturing tolerances.

• Unequal loading of the capacitors due to un-intended switching delays.
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Figure 5.2: Illustration of the back-to-back three-level voltage source converter.

• Unequal loading of the capacitors due to e.g. non-linear loads containing even

order harmonics [20].

Actually, a major part of papers concerning modulation of three-level inverters deals

with the DC-link balancing issue, among these [4, 7, 18, 21, 25, 27, 29, 43, 46].

Along with the prevalent use of voltage source inverters and the enhancement of semi-

conductor devices a couple of secondary problems have appeared, among these an in-

creasingly number of early bearing failures due to bearing currents. The bearing current

arises from the voltage built up across the bearing due to electro-static couplings between

machine windings and machine shaft/frame causing randomly appearing bearing current

spikes. These bearing currents lead to bearing material erosion known as pitting and

fluting and recent motor reliability studies have clarified that bearing failures account

for about 40% of all motor failures [9]. Besides the steep voltage gradients and machine

asymmetry, the inherent generation of common-mode voltages between the inverter neu-

tral point and the motor neutral point is a certain cause of early bearing failures. With

the purpose of reducing these early bearing failures in electrical machines, [31, 44] both

proposed a modulation scheme for three-level NPC inverters with a complete elimina-

tion of the common-mode voltage. The elimination of common-mode voltage is however

obtained at the expense of a reduced voltage gain of the three-level inverter but since it

is likely to believe that the bearing current problem is even more severe in doubly-fed

machines were the switched voltages are applied on the rotor windings, having much

higher winding-shaft capacitance than the stator windings, the reduced inverter voltage

gain may be justified by an extended bearing lifetime.

Although the three-level converter is widely used in applications such as traction and

standard medium voltage converter applications the three-level converter is relatively

untreated for wind turbine applications. Recently a few papers [28, 42] have been

published concerning the back-to-back three-level converter for use in a wind turbine

application while commercially, the Z72 2MW wind turbine from Harakosan (former

Zephyros) is based on the ABB ACS1000 three-level converter [13, 37, 38].

5.2 Operating principles

As the name implies, the back-to-back three-level voltage source converter consists of

two three-level inverters coupled in a back-to-back fashion as shown in Fig. 5.2. The

two inverters of the back-to-back converter may be realized from any of the inverter legs
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Figure 5.3: The three-level NPC inverter. a) Diode clamped NPC inverter [24].

b) Transistor clamped NPC inverter [35].

shown in Fig. 5.1 but since the operating principles are a little different, at least for the

flying capacitor topology in Fig. 5.1b, this chapter is limited to treat the topologies built

on the inverter legs in Fig. 5.1a and Fig. 5.1c. Actually, these two inverter topologies

are illustrated on Fig. 5.3. Fig. 5.3a shows the diode clamped three-level NPC inverter

as proposed by [24] while Fig. 5.3b shows the transistor clamped NPC inverter. In

the diode clamped NPC inverter topology, each of the switches S1A..S4C and the diodes

D′
2A..D

′
3C only have to block half the DC-link voltage and hence, the diode clamped

NPC inverter is well suited for high voltage applications. Further, it appears that the

diode clamped NPC inverter can be extended to an arbitrary number of voltage levels -

still with the advantage that the individual switch only needs to block a voltage given

by (VDC/(Nlevels − 1)). As an alternative to the diode clamped NPC inverter, Fig. 5.3b

shows the transistor clamped NPC inverter. It appears that the transistor clamped

NPC inverter is built from the same number of components although the anti-parallel

diodes in the neutral point clamping transistor, i.e. S2x and S3x, are of no use - at least

with regard to the current flow. Like the diode clamped NPC inverter, the transistor

clamped NPC inverter only switches half the DC-link voltage (if modulated properly),

but concerning the voltage ratings of the switches it appears that the upper and lower

switches (S1x and S4x) in the transistor clamped NPC inverter need the ability to block

the full DC-link voltage. Hence, the transistor clamped NPC inverter is not as well suited

for high voltage applications. Despite, the higher voltage ratings, a salient feature of

the three-level transistor clamped NPC inverter is that only one semiconductor provides

the conducting path to the upper and lower DC-bus thereby having the possibility of

reducing the conducting losses, especially when a high modulation index is required

(which typically is the case for the grid side inverter). This particular issue is treated in

section 5.4.1. Finally, the transistor clamped NPC inverter can be extended to a higher

number of voltage levels by adding diode clamped circuits for the additional levels.

5.2.1 Reference voltage generation

As in the case with the back-to-back two-level converter, the aim for the grid side inverter

and the rotor side inverter in the back-to-back three-level converter is to synthesize a
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Figure 5.4: The 27 possible switch configurations with the three level inverter.

voltage that generates the desired grid current and rotor current respectively. Typically,

the grid side inverter is operated to keep the DC-link voltage at a certain level while

the rotor side inverter is operated to control the active and reactive power flow to/from

the generator. Due to the similarities between the two-level and three-level converter, a

more detailed explanation of the reference voltage generation is referred to section 3.2

on page 49.

5.2.2 Voltage synthesizing

As the two inverters of the back-to-back three-level converter are operated individu-

ally -at least with regards to the voltage synthesizing, the voltage synthesizing can be

explained by inspection of only one of the inverters. With reference to Fig. 5.3 and

with the restriction of not short circuiting the DC-link, the three-level inverter has 27

allowable and meaningful switch states. These switch states are shown in Fig. 5.4.

Each of the illustrated switch states, are identified by a three letter code, represent-

ing the connection of phase leg A, B and C respectively. For instance, the code (+-0)

represents a switch state where output phase A is connected to the positive DC-link,

output phase B is connected to the negative DC-link and output phase C is connected

to the center point. The switch states in Fig. 5.4 are categorized as ”Small vectors”,

”Medium vectors” and ”Large vectors”, named after their location in the complex space

vector plane, and as will be shown later, each vector category shows different properties

with regard to the loading of the DC-link capacitors and with regards to common-mode

voltage generation. By a proper control of the switch states in Fig. 5.4, the three-level

inverter is able to synthesize the desired output voltage. The control of the switch states

are known as modulation and will be treated in details in section 5.3.

5.2.3 DC-link imbalance

According to Fig. 5.3a an excessive high voltage may be applied to the switching devices

if the neutral pointN varies from the center potential of the DC-link. Further, both NPC
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type inverters in Fig. 5.3 may be unable to synthesize the reference voltage if too large

neutral point voltage variations occur. By inspection of Fig. 5.4 it appears that with

regards to output voltage (phase-phase), several of these switch states are redundant (in

pairs). For instance, the switch combinations v0−− and v+00 produce exactly the same

output voltage (provided that the neutral point voltage is balanced) but with regards

to the current flowing to/from the neutral point these two switch states behaves in the

opposite manner. Hence, the selection among the redundant switch states has a vital

influence on the neutral point potential and can actively be used to control/reestablish

the neutral point voltage. An in-depth explanation of the DC-link balancing principles

will be presented in section 5.3.5.

5.3 Modulation

As discussed above, an important feature of modulation schemes for three-level con-

verters with split capacitor DC-link is the ability to control and stabilize the DC-link

neutral point in case of an unbalanced loading condition. Unlike the two-level inverter

where the redundancy in switching states v000 and v111, c.f. section 3.3.3 on page 53, can

be exclusively dedicated to e.g. switching loss reduction, the redundant switch states in

the three-level inverter also have to be attributed to DC-link neutral potential stabiliza-

tion [43]. In this section two basically different space vector approaches are presented.

The first method is based on the conventional space vector approach while the latter

is applicable to modulation with common mode voltage elimination. Since the vector

sequences for both modulation methods can be altered resulting in different properties,

the resulting amount of considered modulation strategies becomes about six. All the six

modulation schemes are applicable for both of the inverters in Fig. 5.3 and with regard

to harmonic performance and DC-link stabilizing ability both inverters behaves iden-

tical while with regards to conducting losses the two inverter topologies show different

behaviour, depending on the chosen modulation method.

5.3.1 Conventional space vector approach

For the space vector approach, the following transformation of the time domain inverter

output voltages is useful:

V !
s =

2

3

(
v!A + v!B · ej· 2π

3 + v!C · ej· 4π
3

)
(5.1)

where v!A, v!B and v!C are the three reference phase voltages given by:

v!A =
√

2V !
A · sin(ωst)

v!B =
√

2V !
B · sin

(
ωst− 2π

3

)
(5.2)

v!C =
√

2V !
C · sin

(
ωst− 4π

3

)
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Figure 5.5: a) The voltage space vectors for the three-level inverter. b) The

definition of the segment independent angle ∆s.

By this transformation, the inverter output voltages become a vector with constant am-

plitude, rotating with a constant angular speed in the complex space vector plane.

Applying eq. (5.1) on the 27 possible switch combinations, c.f. Fig. 5.4, the space vector

hexagon in Fig. 5.5a is obtained. With reference to Fig. 5.5b, which shows one of the

main sectors in Fig. 5.5a, the reference voltage vector V !
s can be obtained by applying

the three adjacent stationary vectors for an angle dependent time duration. For a given

reference voltage vector V !
s, the fractional on-times for the adjacent stationary vectors

can be calculated and in general the following matrix equation has to be solved:|V !
s| · sin(∆s)

|V !
s| · cos(∆s)

1

 =

Im(V 1) Im(V 2) Im(V 3)

Re(V 1) Re(V 2) Re(V 3)

1 1 1

δ1δ2
δ3

 (5.3)

where V 1, V 2 and V 3 are the three stationary vectors closest to the reference vector

and δ1..3 are the fractional on-time duration for the three stationary vectors. In order

to solve eq. (5.3), the first step is to identify the sector location in order to determine

the three adjacent vectors V 1, V 2 and V 3.

Sector location

To establish expressions for the duty-cycles which are independent of, in which main

sector 0-V the voltage reference vector is located, the angle ∆s is defined as:

∆s = mod
(
ωst+

π

6
,
π

3

)
(5.4)

where ωst = 0 is defined as the positive zero crossing of the phase A reference voltage

(v!A =
√

2VA · sin(ωst)). By this, the angle ∆s is in the interval: ∆s ∈ [0..π
3
]. Due to the
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six fold symmetry and the angle definition in eq. (5.4) it is only necessary to monitor

the six basic sectors 0-V and then identify whether the sector location is a, b, c or d.

Simply, by applying the law of sines, the following constrains are obtained:

Sector=



a if
(
M ≤ 1

2 sin(2π/3−∆s)

)
b if

(
M > 1

2 sin(π/3−∆s)

)
c if
(
M > 1

2 sin(2π/3−∆s)

)
∧
(
M ≤ 1

2 sin(π/3−∆s)

)
∧
(
M ≤ 1

2 sin(∆s)

)
d if

(
M > 1

2 sin(∆s)

) (5.5)

On-time duration

Based on the sector identification, the on-time ratios δ1..3 can be calculated. Basically,

the on-time durations are found by solving eq. (5.3) but because the angles and am-

plitudes of the selected vectors, V 1 − V 3, depend on, in which sub-sector the reference

voltage vector is located, the expressions for the on-times becomes sector dependent.

Solving eq. (5.3) for the voltage reference vector located in sector Xa gives:

δ1a = 2 ·
√

3|V !
s|

VDC

· sin
(π

3
− ∆s

)
δ2a = 2 ·

√
3|V !

s|
VDC

· sin(∆s) (5.6)

δ3a = 1 − δ1 − δ2

Solving for the reference vector located in sector Xb:

δ1b = 2 − 3|V !
s|

VDC

· cos(∆s) −
√

3|V !
s|

VDC

· sin(∆s)

δ2b =
3|V !

s|
VDC

cos(∆s) −
√

3|V !
s|

VDC

· sin(∆s) − 1 (5.7)

δ3b = 2

√
3|V !

s|
VDC

· sin(∆s)

Solving for the reference vector located in sector: Xc

δ1c = (1 − 2 ·
√

3|V !
s|

VDC

· sin(∆s))

δ2c = (2 ·
√

3|V !
s|

VDC

· sin
(
∆s − π

3

)
+ 1) (5.8)

δ3c = (2 ·
√

3|V !
s|

VDC

· sin
(
∆s +

π

3

)
− 1)

And finally, solving for the reference vector located in sector Xd:

δ1d = (2 ·
√

3|V !
s|

VDC

· sin(∆s) − 1)

δ2d = (2 − 3|V !
s|

VDC

cos(∆s) −
√

3|V !
s|

VDC

· sin(∆s)) (5.9)

δ3d = (
3|V !

s|
VDC

· cos(∆s) −
√

3|V !
s|

VDC

· sin(∆s))
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The duty-cycle expressions in eq. (5.6) - eq. (5.9) are at any instant of time limited by

the following two constrains:

3∑
n=1

δnj � 1 (5.10)

δnj ≥ 0 j ∈ [a, b, c, d] (5.11)

To comply with the constrains above, the maximum obtainable reference space vector

is given by:

|V̂ ∗
s| =

VDC√
3

(5.12)

5.3.2 Space vector modulation with common-mode voltage elim-

ination

In the conventional modulation of the three level inverters and in fact all modulation

schemes for the matrix converter and the two-level voltage source inverter treated in

the two preceding chapters, a common-mode voltage is injected, both between the cen-

ter point of the converter and the center point of the rotor circuit and between the

center point of the converter and the center point of the grid side transformer. As dis-

cussed earlier this applied common mode voltage may cause generator shaft voltages

and premature bearing failures [45]. In fact, [30] has shown that the bearing damaging

common-mode voltage is twice as severe in a regenerative converter, eg. a back-to-back

converter as in a non-regenerative converter. Further, the reasonable assumption, that

the bearing current problem is even more severe in doubly-fed machines may justify to

look for a method to reduce the common-mode voltage problems.

A salient feature of the three-level inverter is the possibility to reduce [17] or to eliminate

[14] the common-mode voltage by use of a proper modulation scheme. Defining the

common-mode voltage as:

v0 =
1

3
(vAN + vBN + vCN) (5.13)

where N refers to the DC-link center point of the inverter, c.f. Fig. 5.3. It appears, that

among the 27 allowable switch states in Fig. 5.4, only 7 of these switch states result

in zero common-mode voltage [14, 44]. These switch states are: (+0-), (0+-), (-+0),

(-0+), (0-+), (+-0) and (000) where the first six of these vectors are those categorized as

”medium vectors”, cf. Fig. 5.4 and the latter is a zero vector. Restricting the modulation

strategy to concern only these 7 switching states, the resulting space-vector hexagon is

reduced to the hexagon shown in Fig. 5.6. The reference space vector voltage V ∗
s is

obtained in the same way as for the conventional space vector approach, c.f. eq. (5.1)

on page 154, implying the steps of determining the sector location and then calculating

the on-time durations.
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Figure 5.6: a) The voltage space vectors for the space-vector modulation with

common-mode voltage elimination. b) The definition of the segment independent

angle ∆′
s.

Sector location

To obtain duty-cycle expressions which are independent of the sector location, the angle

∆′
s is defined as:

∆′
s = mod

(
ωst,

π

3

)
(5.14)

where ωst = 0 is defined as the positive zero crossing of the phase A reference voltage

v!A =
√

2Vs sin(ωst). The apostrophe is used to indicate the difference between the

conventional space vector approach and the present approach.

On-time duration

The sector independent duty-cycle expressions can then be derived by use of simple

trigonometric considerations, c.f. Fig. 5.6:

δ′1 =
2|V !

s|
VDC

· sin
(π

3
− ∆′

s

)
δ′2 =

2|V !
s|

VDC

· sin(∆′
s) (5.15)

δ′0 = 1 − δ′1 − δ′2

At all time instant the duty-cycle functions in eq. (5.15) are limited by:

0 ≤ δ′x ≤ 1 where x = [0, 1, 2] (5.16)

From eq. (5.15) and eq. (5.16) it appears that the penalty to be paid for the elimination

of the zero-sequence is, that the maximum output voltage is limited to half the DC-link

voltage or
√
3
2

the output voltage of the conventional space vector modulation schemes.
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Figure 5.7: Illustration of the field strength of a bearing lubricant film as a function

of the pulse width [1].

Transient common mode voltage effects

According to Fig. 5.6a each change in switch state, say from v+0− to v0+−, involves

two branch switch over (BSO). If a slight mismatch of the switchings occur due to e.g.

different delays in the gate drivers, a short common-mode voltage pulse is introduced at

the motor terminals. Fortunately, regarding the break down voltage of bearing lubricant

oil, the fields strength increases as the pulse width decreases [1], c.f. Fig. 5.7. Alter-

natively, the transient common-mode voltage can be eliminated by a snubber-circuit as

described in [31] or by a common-mode voltage filter as described in [30, 32], but this

clearly adds to the complexity of the system.

5.3.3 Modulation index

As in the case with the two-level voltage source inverter, the modulation index M for

the three-level inverter is defined to be unity at the boundary where the conventional

space vector modulation enters overmodulation. This boundary is shown as the circle in

Fig. 5.5b. By this definition, the magnitude of the space vector voltage |V s| is related

to the modulation index by:

M =

√
3|V ∗

s|
VDC

(5.17)

From the constrains given in eq. (5.16) it should be noted that the modulation index

for the common-mode elimination method is limited to
√

3/2.

From the definition of the space vector voltage, c.f. eq. (5.1), the inverter RMS output

phase voltage V ∗
A is related to the modulation index by:

V ∗
A =

M√
6
VDC (5.18)
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TABLE I: Switching table for modulation method 1 (Inner sectors).

→Sector a
↓Even δ1 δ2 δ3 δ′1 δ′2

0 0−− 00− 000 +00 ++0

II −0− −00 000 0+0 0++

IV −−0 0−0 000 00+ +0+

↓Odd δ′2 δ1 δ3 δ2 δ′1
I −0− 00− 000 0+0 ++0

III −−0 −00 000 00+ 0++

V 0−− 0−0 000 +00 +0+

5.3.4 Vector sequences

Having the fractional on-times for the identified voltage vectors, there is still one de-

gree of freedom left and that is the composition of the voltage vector sequence. The

composition of the vector sequence can be done in an arbitrary number of ways and as

the case with the two-level voltage source inverter and the matrix converter, a clever

arrangement of the vector sequence may result in different salient properties such as

reduced switching losses or improved harmonic performance.

In the following, six different vector sequences are described. The first five vector se-

quences are applicable for the conventional modulation method, while the last one can

be applied on the modulation method with common-mode voltage elimination. All

the discussed vector sequences are distributed symmetrically around the center of the

switching period and for the vector sequences applicable for the conventional modulation

method, any shift between switch states are only allowed to involve one branch switch

over. The last restriction can however not be accomplished for the vector sequence with

common-mode voltage elimination.

Finally, since the modulation methods for use with the three-level inverter is not matured

to the same extent as in the case with the two-level voltage source inverter, there exists

no common naming convention for the different vector sequences and hence the naming

convention used in this thesis can in general not be referred to any prior art material.

Space vector modulation method 1 (SVPWM1)

The first vector sequence, named SVPWM1, is applicable for the conventional space

vector approach and utilizes all possible switch states representing the three adjacent

stationary vectors, in each switching cycle, e.g. none of the redundant switching states

are omitted. As an example, considering sector 0a in Fig. 5.5a, the half of the switching

sequence is given by:

v0−−
iB−→

1
2
VDC

v00−
iC−→

1
2
VDC

v000
iA−→

1
2
VDC

v+00
iB−→

1
2
VDC

v++0 (5.19)
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TABLE II: Switching table for modulation method 1 (Outer sectors).

→Sector b c d
↓Even δ1 δ2 δ3 δ′1 δ1 δ2 δ3 δ′1 δ′2 δ2 δ3 δ1 δ′2

0 0−− +−− +0− +00 0−− 00− +0− +00 ++0 00− +0− ++− ++0

II −0− −+− −+0 0+0 −0− −00 −+0 0+0 0++ −00 −+0 −++ 0++

IV −−0 −−+ 0−+ 00+ −−0 0−0 0−+ 00+ +0+ 0−0 0−+ +−+ +0+

↓Odd δ1 δ3 δ2 δ′1 δ2 δ1 δ3 δ′2 δ′1 δ2 δ1 δ3 δ′2
I 00− 0+− ++− ++0 −0− 00− 0+− 0+0 ++0 −0− −+− 0+− 0+0

III −00 −0+ −++ 0++ −−0 −00 −0+ 00+ 0++ −−0 −−+ −0+ 00+

V 0−0 +−0 +−+ +0+ 0−− 0−0 +−0 +00 +0+ 0−− +−− +−0 +00

Considering sector 0b, the half of the switching sequence is given by:

v0−−
iA−→

1
2
VDC

v+−−
iB−→

1
2
VDC

v+0−
iC−→

1
2
VDC

v+00 (5.20)

Considering sector 0c, the half of the switching sequence is given by :

v0−−
iB−→

1
2
VDC

v00−
iA−→

1
2
VDC

v+0−
iC−→

1
2
VDC

v+00
iB−→

1
2
VDC

v++0 (5.21)

And finally for sector 0d, the half of the switching sequence is given by:

v00−
iA−→

1
2
VDC

v+0−
iB−→

1
2
VDC

v++−
iC−→

1
2
VDC

v++0 (5.22)

For each of the switch state shifts above, the switched current and switched voltage

are listed. Table I and Table II summarizes the sector dependent switch states where

the switch states colored in red and green indicates the redundant switch states. An

inspection of the table further indicates that the switch states colored in green load the

DC-link in an opposite manner than the switch states colored in red. This property will

be used in order to stabilize the DC-link neutral potential, c.f. section 5.3.5.

Although, the modulation scheme SVPWM1 can be implemented from the information

in Table I and Table II along with eq. (5.5) - eq. (5.9), and analytical expressions for e.g.

the current through the individual switches can be established, it may for some purposes

be convenient to have analytical expressions of the modulation functions. Considering

the modulation scheme SVPWM1, the modulation function for the upper switch S1A is

given by:

S1A =

√
2√
3

v∗A
V ∗
A

M + v∗1A (5.23)

It should be noted that unlike the modulation functions for the two-level inverter, the

signal v∗1A is not a common-mode signal in an ordinary sense. For the purpose of deriving

an analytical expression for the signal v∗1A it is convenient to define the following six
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Figure 5.8: Modulation function (M = 0.8) for the SVPWM1 method. a) Mod-

ulation function for the upper switch S1A. b) Modulation function for the center

switch S3A.

signals:

v∗Am =
1

2VDC

v∗A v∗Bm =
1

2VDC

v∗B v∗Cm =
1

2VDC

v∗C (5.24)

v∗min = min

 v∗Am

v∗Bm

v∗Cm

 v∗max = max

 v∗Am

v∗Bm

v∗Cm

 v∗mid = −v∗min − v∗max (5.25)

If the modulation index M is less than 1/2, the signal v∗1A can be obtained from:

v∗1A = max

 v∗Bm

v∗Cm

−2v∗Am

 (5.26)

On the other hand, if the modulation index exceeds 1/2, the signal v∗1A is composed

by:

v∗1A = max



v∗mid

min


−min

( −v∗Bm

−v∗Cm

)
min

(
v∗Bm

v∗Cm

)
+ 1

2


−2v∗Am


(5.27)

The modulation function S3A is given by:

S3A = S1A (5.28)

Finally, the modulation function for the switches S2A and S4A can be derived by mul-

tiplying the reference signals v∗Am, v∗Bm and v∗Cm by -1. Fig. 5.8a and Fig. 5.8b shows

an example of the modulation functions S1A and S3A when the modulation index equals

0.8. More precisely, Fig. 5.8a and Fig. 5.8b is an illustration of eq. (5.27) and eq.

(5.28) respectively.
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TABLE III: Switching table for modulation method 2 (Inner sectors).

→Sector a1 a2

↓Even δ1 δ2 δ3 δ′1 δ2 δ3 δ1 δ′2
0 0−− 00− 000 +00 00− 000 +00 ++0

II −0− −00 000 0+0 −00 000 0+0 0++

IV −−0 0−0 000 00+ 0−0 000 00+ +0+

↓Odd δ1 δ3 δ2 δ′1 δ2 δ1 δ3 δ′2
I 00− 000 0+0 ++0 −0− 00− 000 0+0

III −00 000 00+ 0++ −−0 −00 000 00+

V 0−0 000 +00 +0+ 0−− 0−0 000 +00

Space vector modulation method 2 (SVPWM2)

The second vector sequence, in this context named SVPWM2, is also applicable for the

conventional space vector approach but contrary to the SVPWM1 method discussed

above, the present sequence only utilizes one of the redundant switch states within a

switching period [22, 47]. Considering sector 0a, the half of the switching sequence is

given by:

v0−−
iB−→

1
2
VDC

v00−
iC−→

1
2
VDC

v000
iA−→

1
2
VDC

v+00 for ∆s <
π

6
(5.29)

v00−
iC−→

1
2
VDC

v000
iA−→

1
2
VDC

v+00
iB−→

1
2
VDC

v++0 for ∆s ≥ π

6
(5.30)

Considering sector 0b, the half of the switching sequence is given by:

v0−−
iA−→

1
2
VDC

v+−−
iB−→

1
2
VDC

v+0−
iC−→

1
2
VDC

v+00 (5.31)

Considering sector 0c, the half of the switching sequence is given by:

v0−−
iB−→

1
2
VDC

v00−
iA−→

1
2
VDC

v+0−
iC−→

1
2
VDC

v+00 for ∆s <
π

6
(5.32)

v00−
iA−→

1
2
VDC

v+0−
iC−→

1
2
VDC

v+00
iB−→

1
2
VDC

v++0 for ∆s ≥ π

6
(5.33)

And finally for sector 0d, the half of the switching sequence is given by:

v00−
iA−→

1
2
VDC

v+0−
iB−→

1
2
VDC

v++−
iC−→

1
2
VDC

v++0 (5.34)

Table III and Table IV summarize the sector- and angle dependent switch states.

Sector a and sector c are divided into two sub-sectors, the first sub-sector being valid

for the first half of the sector and the other being valid for the last half of the sector.

For some purposes an analytical expression for the modulation function is convenient and

in general, the modulation function for the upper switch is given by eq. (5.23). However,

the signal v∗1A has to be shaped in a different way than signal generation applied for the
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TABLE IV: Switching table for modulation method 2 (Outer sectors).

→Sector b c1 c2 d
↓Even δ1 δ2 δ3 δ′1 δ1 δ2 δ3 δ′1 δ2 δ3 δ1 δ′2 δ2 δ3 δ1 δ′2

0 0−− +−− +0− +00 0−− 00− +0− +00 00− +0− +00 ++0 00− +0− ++− ++0

II −0− −+− −+0 0+0 −0− −00 −+0 0+0 −00 −+0 0+0 0++ −00 −+0 −++ 0++

IV −−0 −−+ 0−+ 00+ −−0 0−0 0−+ 00+ 0−0 0−+ 00+ +0+ 0−0 0−+ +−+ +0+

↓Odd δ1 δ3 δ2 δ′1 δ1 δ3 δ2 δ′1 δ2 δ1 δ3 δ′2 δ2 δ1 δ3 δ′2
I 00− 0+− ++− ++0 00− 0+− 0+0 ++0 −0− 00− 0+− 0+0 −0− −+− 0+− 0+0

III −00 −0+ −++ 0++ −00 −0+ 00+ 0++ −−0 −00 −0+ 00+ −−0 −−+ −0+ 00+

V 0−0 +−0 +−+ +0+ 0−0 +−0 +00 +0+ 0−− 0−0 +−0 +00 0−− +−− +−0 +00

SVPWM1 method, c.f. eq. (5.26) and eq. (5.27). In case the modulation index M is

less than 1/
√

3 , the signal v∗1A is given by:

v∗1A = max


sign(3ωst) · min


min

 −|v∗Am|
−|v∗Bm|
−|v∗Cm|

+ 1
2

v∗max

−v∗min


−2v∗Am


(5.35)

while in case the modulation index M exceeds 1/
√

3, the signal v∗1A is given by:

v∗1A = max


sign(3ωst) · max


∣∣∣∣∣∣min

 −|v∗Am|
−|v∗Bm|
−|v∗Cm|

+ 1
2

∣∣∣∣∣∣
|v∗mid|


−2v∗Am

 (5.36)

The modulation function S3A is given by:

S3A = S1A (5.37)

Fig. 5.9a and Fig. 5.9b shows an example of the modulation functions S1A and S3A
when the modulation index equals 0.8, i.e. Fig. 5.9a and Fig. 5.9b is an illustration

of eq. (5.36) and eq. (5.37) respectively. Actually it turns out, that the space-vector

approach given by the above described modulation method (SVPWM2) turns out to be

identical with the carrier based modulation method discussed in [36].

Symmetrical flat top modulation (DPWM1)

Like for the two-level voltage source inverter, the redundant switching states can be

used to omit switchings in one phase leg for a certain period [3]. To obtain this feature,

each switching period has to prevent the use of redundant switch states. Unfortunately,
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Figure 5.9: Modulation function (M = 0.8) for the SVPWM2 method. a) Mod-

ulation function for the upper switch S1A. b) Modulation function for the center

switch S3A.

as discussed in section 5.2.3, the three-level voltage source inverter may have a problem

of a drifting DC-link neutral potential and normally this problem is solved by cleverly

controlling the redundant switch states. However, at the present stage, ideal conditions

are assumed, i.e. no drifting DC-link neutral potential, and the issue regarding DC-link

balancing is left for section 5.3.5. The present modulation strategy clamps each phase

leg around the peak of the phase voltage reference and hence, the present method can

be used to minimize the switching losses when reference voltage and load current are

in phase (or counter phase). The modulation method is applicable for the conventional

space vector modulation approach. Considering sector 0a, the half of the switching

sequence is given by:

v+++
iC−→

1
2
VDC

v++0
iB−→

1
2
VDC

v+00 for ∆s <
π

6
(5.38)

v−−−
iA−→

1
2
VDC

v0−−
iB−→

1
2
VDC

v00− for ∆s ≥ π

6
(5.39)

Considering sector 0b, the half of the switching sequence is given by:

v+−−
iB−→

1
2
VDC

v+0−
iC−→

1
2
VDC

v+00 for ∆s <
π

6
(5.40)

v0−−
iA−→

1
2
VDC

v+−−
iB−→

1
2
VDC

v+0− for ∆s ≥ π

6
(5.41)

Considering sector 0c, the half of the switching sequence is given by:

v+0−
iC−→

1
2
VDC

v+00
iB−→

1
2
VDC

v++0 for ∆s <
π

6
(5.42)

v0−−
iB−→

1
2
VDC

v00−
iA−→

1
2
VDC

v+0− for ∆s ≥ π

6
(5.43)
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And finally for sector 0d, the half of the switching sequence is given by:

v+0−
iB−→

1
2
VDC

v++−
iC−→

1
2
VDC

v++0 for ∆s <
π

6
(5.44)

v00−
iA−→

1
2
VDC

v+0−
iB−→

1
2
VDC

v++− for ∆s ≥ π

6
(5.45)

Table V on page 170 summarizes the sector and angle dependent switching states for

the symmetrical flat top modulation method. Since Table V is a general table valid

for all the discontinuous modulation schemes, the angle φ′s actually defines the type of

discontinuous modulation. To obtain the symmetrical flat top modulation, the angle

φ′s equals zero. Table V further specify the DC-link balancing angle φc, but since the

considerations so far assumes ideal conditions, this angle is zero. The DC-link balancing

angle will be discussed in section 5.3.5.

For some implementation purposes as well as illustrative purposes it is convenient to

have an analytical expression of the modulation function for the switches. In general,

the modulation function S1A for the upper switch is given by eq. (5.23) where the signal

v∗1A in the entire modulation range is given by:

v∗1A = max

 −2 · sign(sin(3ωst)) · min

 −|v∗Am|
−|v∗Bm|
−|v∗Cm|

+ 1

−2v∗Am

 (5.46)

The modulation function for the center switch S3A is given by:

S3A = S1A (5.47)

Fig. 5.10a and Fig. 5.10b illustrates the modulation signals for the upper switch S1A
and the center switch S3A respectively, when the modulation index M is 0.8.

Asymmetrical shifted left flat top modulation (DPWM0)

Depending on the nature of the load (capacitive or inductive) the clamping interval can

be moved forth and back compared to the symmetrical flat top modulation, thereby

obtaining a further switching loss reduction. For a capacitive (or leading) current, the

clamping interval will have to be moved to the left compared to the symmetrical flat top

modulation - whereby the asymmetrical shifted left flat top modulation is obtained. The

asymmetrical shifted left flat top modulation is applicable for the conventional space

vector modulation. To exemplify the switching sequence for the asymmetrical shifted

left flat top modulation, the half of the sequence for sector 0a is given by:

v+++
iC−→

1
2
VDC

v++0
iB−→

1
2
VDC

v+00 (5.48)

while the half of the switching sequence for sector 0b, is given by:

v+−−
iB−→

1
2
VDC

v+0−
iC−→

1
2
VDC

v+00 (5.49)
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Figure 5.10: Modulation function (M = 0.8) for the DPWM1 method. a) Mod-

ulation function for the upper switch S1A. b) Modulation function for the center

switch S3A.

Considering sector 0c, the half of the switching sequence is given by:

v+0−
iC−→

1
2
VDC

v+00
iB−→

1
2
VDC

v++0 (5.50)

and finally for sector 0d, the half of the switching sequence is given by:

v+0−
iB−→

1
2
VDC

v++−
iC−→

1
2
VDC

v++0 (5.51)

Table V shows the switching sequences to be used in each of the sectors in the space

vector hexagon, c.f. Fig. 5.5. Since Table V is a general table, common for all the

discontinuous modulation methods, the parameter φ′ (which actually determines the

position of the clamping interval) has to be π/6 in order to obtain the asymmetrical

shifted left flat top modulation.

As for the previously discussed modulation methods, the carrier based version of the

asymmetrical shifted left flat top modulation is simply given by eq. (5.23) but with the

signal v∗1A generated by:

v∗1A = max

 −2 · sign(sin(3ωst)) ·
 v∗Cm if |v∗Am| > |v∗Bm| < |v∗Cm|
v∗Am if |v∗Am| > |v∗Cm| < |v∗Bm|
v∗Bm if |v∗Bm| > |v∗Am| < |v∗Cm|


−2v∗Am

 (5.52)

The modulation function S3A for the center switch is then given by:

S3A = S1A (5.53)

Fig. 5.11a and Fig. 5.11b illustrates the modulation signals for the upper switch S1A
and the center switch S3A respectively, when the modulation index M is 0.8.
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Figure 5.11: Modulation function (M = 0.8) for the DPWM0 method. a) Mod-

ulation function for the upper switch S1A. b) Modulation function for the center

switch S3A.

Asymmetrical shifted right flat top modulation (DPWM2)

The last discontinuous modulation method to be treated in this section is the method

named asymmetrical shifted right flat top modulation. As the name implies, the clamp-

ing interval is shifted to the right making this modulation method suitable for an in-

ductive load, i.e. a lagging current. The asymmetrical shifted right modulation method

is applicable for the conventional space vector modulation. Considering the half of the

vector sequence for sector 0a:

v−−−
iA−→

1
2
VDC

v0−−
iB−→

1
2
VDC

v00− (5.54)

while the half of the switching sequence for sector 0b, is given by:

v+0−
iB−→

1
2
VDC

v+−−
iA−→

1
2
VDC

v0−− (5.55)

Considering sector 0c, the half of the switching sequence is given by:

v+0−
iA−→

1
2
VDC

v00−
iB−→

1
2
VDC

v0−− (5.56)

And finally for sector 0d, the half of the switching sequence is given by:

v++−
iB−→

1
2
VDC

v+0−
iA−→

1
2
VDC

v00− (5.57)

Table V shows the switching sequences to be used in each of the sectors in the space

vector hexagon, c.f. Fig. 5.5. Since Table V is a general table, common for all the

discontinuous modulation methods, the parameter φ′ (which actually determines the

position of the clamping interval) has to be −π/6 in order to obtain the asymmetrical

shifted right flat top modulation.
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Figure 5.12: Modulation function (M = 0.8) for the DPWM2 method. a) Mod-

ulation function for the upper switch S1A. b) Modulation function for the center

switch S3A.

The signal v∗1A for the asymmetrical shifted right flat top modulation is generated by:

v∗1A = max

 −2 · sign(sin(3ωst)) ·
 v∗Bm if |v∗Am| > |v∗Bm| < |v∗Cm|
v∗Cm if |v∗Am| > |v∗Cm| < |v∗Bm|
v∗Am if |v∗Bm| > |v∗Am| < |v∗Cm|


−2v∗Am

 (5.58)

and the modulation function for the middle switch S3A is then given by:

S3A = S1A (5.59)

Fig. 5.12a and Fig. 5.12b illustrates the modulation signals for the upper switch S1A
and the center switch S3A respectively, when the modulation index M is 0.8.

The latter three modulation methods - known as the discontinuous modulation meth-

ods can be generalized in such a way that the clamping interval continuously tracks

the current amplitude in order to minimize the switching losses [15, 16]. Further, this

generalized method and its ability to balance the DC-link is discussed in the publica-

tion ”Generalized Discontinuous DC-link Balancing Modulation Strategy for Three-level

Inverters” [11], c.f. Enclosure F.

Vector sequence for common mode voltage elimination (CMPWM)

The last vector sequence to be treated for the three level inverter is a vector sequence

applicable for the space vector modulation with common mode voltage elimination.

According to the space vector hexagon in Fig. 5.6 and the switching vectors forming

the hexagon, there is no smart way to arrange the switching vectors in order to minimize

the number of switchings. Actually in each of the six sectors, a shift between any of the

three adjacent vectors involve two switchings and hence the ordering of the switching



170 Chapter 5. The back-to-back three-level voltage source converter

TABLE V: Switching table for the discontinuous modulation methods.

→Sub sector a b c d
↓ if ∆s ≤ π

6 +φ
′+n ·φc δ3 δ1 δ2 δ2 δ3 δ1 δ3 δ1 δ2 δ3 δ1 δ2

Sector 0 +++ +00 ++0 +−− +0− +00 +0− +00 ++0 +0− ++− ++0

Sector I −−− 00− −0− ++− 0+− 00− 0+− 00− −0− 0+− −+− −0−
Sector II +++ 0+0 0++ −+− −+0 0+0 −+0 0+0 0++ −+0 −++ 0++

Sector III −−− −00 −−0 −++ −0+ −00 −0+ −00 −−0 −0+ −−+ −−0
Sector IV +++ 00+ +0+ −−+ 0−+ 00+ 0−+ 00+ +0+ 0−+ +−+ +0+

Sector V −−− 0−0 0−− +−+ +−0 0−0 +−0 0−0 0−− +−0 +−− 0−−
↓ if ∆s > π

6 +φ
′+n ·φc δ3 δ2 δ1 δ3 δ2 δ1 δ3 δ2 δ1 δ1 δ3 δ2

Sector 0 −−− 00− 0−− +0− +−− 0−− +0− 00− 0−− ++− +0− 00−
Sector I +++ 0+0 ++0 0+− ++− ++0 0+− 0+0 ++0 −0− 0+− 0+0

Sector II −−− −00 −0− −+0 −+− −0− −+0 −00 −0− −++ −+0 −00
Sector III +++ 00+ 0++ −0+ −++ 0++ −0+ 00+ 0++ −−+ −0+ 00+

Sector IV −−− 0−0 −−0 0−+ −−+ −−0 0−+ 0−0 −−0 +−+ 0−+ 0−0
Sector V +++ +00 +0+ +−0 +−+ +0+ +−0 +00 +0+ +−− +−0 +00

TABLE VI: Switching table for modulation method with common-mode voltage

elimination.

↓Even δ1 δ2 δ3
0 +−0 +0− 000

I +0− 0+− 000

II 0+− −+0 000

III −+0 −0+ 000

IV −0+ 0−+ 000

V 0−+ +−0 000

sequence with regard to switching losses does not matter very much. The half of the

switching sequence for sector 0 is:

v000−→v+−0−→v+0−−→v000 (5.60)

Table VI summarizes the sector dependent switching sequences. To obtain the car-

rier based modulation method with common-mode voltage elimination is a little more

tricky than the preceding methods as each transition between switch states involves

two switchings. A method for handling this particular issue was proposed in [44] using

two intermediate reference signals to generate modulation signals for one phase. These

two intermediate reference signals are in fact the sine wave reference signals for the two

remaining phases shifted by π/2. The intermediate reference signals are then compared

to the triangular carrier and finally the two obtained intermediate PWM signals are

then subtracted by which the gate signals for considered phase is obtained. For further

explanation, see [44].
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Figure 5.13: Definitions of the currents and voltages used for DC-link balancing.

5.3.5 DC-link balancing techniques

As discussed previously, the balance of the DC-link can either be performed by a hard-

ware modification or by making use of the redundant switch states. In this thesis only

the latter method will be treated. This actually implies a slight modification of the mod-

ulation schemes discussed so far. For the purpose of explaining the DC-link balancing

approaches Fig. 5.13 illustrates the loading of the DC-link when considering only one

of the inverters in the back-to-back three-level converter. Using the current definitions

in Fig. 5.13, it appears that DC-link voltage equilibrium is obtained when the following

condition is satisfied:

〈IC1〉T0 +
1

2
〈Id〉T0 = 〈IC2〉T0 −

1

2
〈Id〉T0

⇓ (5.61)

〈Id〉T0 = 〈IC2〉T0 − 〈IC1〉T0

where IC1 and IC2 are the DC-link currents originating from the linear balanced load of

the three level inverter and Id represents the unbalanced loading of the inverter. The

notation 〈X〉T0 indicates that the quantity is averaged over a time period T0. From eq.

(5.61) it appears that an imbalance may be compensated by adjusting the ratio between

〈IC1〉T0 and 〈IC2〉T0 . However, dependent on the considered modulation method there

are major differences in the way such DC-link balancing feature can be implemented.

Actually three different approaches have to be considered, one for the continuous mod-

ulation methods, another for the discontinuous methods and finally a third approach

for the method with common mode voltage elimination.

Continuous modulation schemes

Considering the continuous modulation schemes. i.e. the space vector modulation

method 1 (SVPWM1) and the space vector modulation method 2 (SVPWM2) it ap-

pears that within each switching cycle, the modulation schemes are able to perform a

balancing action by adjusting the ratio between the different redundant switch vectors,

i.e. the ratio between the switch states marked in green and red respectively in Table I

- Table IV. Referring to Table I - Table IV the DC-link balancing can be implemented

by:

V s = k1 · (δ1 · V 1 + δ2 · V 2)) + k2 · (δ′1 · V 1 + δ′2 · V 2)) + δ3V 3 (5.62)
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Figure 5.14: DC-link load imbal-

ance for which the modulation scheme

SVPWM1 is able to compensate.
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Figure 5.15: DC-link load imbal-

ance for which the modulation scheme

SVPWM2 is able to compensate.

In a physical implementation, a PI-controller may be used to adjust the ratio between

k1 and k2 based on the degree of imbalance [20].

To evaluate the ability of the above explained DC-link balancing technique, the current

through capacitor C1 and C2 have to be calculated for the extreme situation where k1
equals 1 and k2 equals 0 (or vice versa). Eq. (5.65) is only formulated for modulation

method SVPWM1 with the voltage reference vector located in sector 0a:

〈IC1〉T0 =
1

2π

(
k2

∫ π
3

0

(δ1 · iA − δ2 · iC)d∆s + ....

(5.63)

〈IC2〉T0 =
1

2π

(
k1

∫ π
3

0

(δ1 · iA − δ2 · iC)d∆s + ....

Extending eq. (5.63) to arbitrary values of the modulation index M , the maximum

imbalance, for which the continuous modulation schemes are able to compensate can

be calculated. Fig. 5.14 shows the ability of the SVPWM1 modulation scheme to

compensate DC-link imbalance. Similar, Fig. 5.15 shows the ability of the SVPWM2

modulation scheme to compensate DC-link imbalance. In Fig. 5.14 and Fig. 5.15 the

unbalanced current Id is normalized to the output current Ir originating from the linear

loading of the inverter and plotted against the modulation index M and load angle φ.

In terms of DC-link balancing ability it appears that the SVPWM1 method has up to

30% better performance compared to the SVPWM2 method due to the use of double

redundant switch states in sector a and sector c.

Discontinuous modulation schemes

Unlike the continuous modulation methods, i.e. SVPWM1 and SVPWM2, the discon-

tinuous modulation methods do not allow the use of redundant switch states within a
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Figure 5.16: Definitions of the DC-link balancing angle φc. a) in the complex

space vector domain. b) in the time domain.

TABLE VII: Definition of the sign operator n.

a b c d
Even Sec. -Sign(Po) Sign(Po) Sign(Po) Sign(Po)
Odd Sec. Sign(Po) -Sign(Po) -Sign(Po) -Sign(Po)

switching period and hence the DC-link cannot be stabilized during a switching period.

As an alternative, the length of the clamping interval may be used to alter the loading

of the upper and lower DC-link capacitors. For this purpose, the angle n · φc is intro-

duced, c.f. Fig. 5.16, where the sign operator n is defined in accordance with Table

VII and φc is defined in the interval φc ∈ [−π
6
..π
6
]. From Fig. 5.16, Table V and Table

VII it appears that by increasing/decreasing the angle φc, the load on capacitor C1 can

be increased/decreased. Hence, the angle φc can be used to compensate unbalanced

loading of the DC-link. Adjusting the clamping interval according to Fig. 5.16 makes

it necessary also to adjust the angle φ′ defining the center of the clamping interval - at
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Figure 5.17: Simulation results. a) Simulation results without DC-link compen-

sation. b) Simulation results with the DC-link balancing technique applied.

least for the asymmetrical modulation methods. The angle φ′ is given by:

φ′ =


π
6
− φc For DPWM0

0 For DPWM1

−π
6

+ φc For DPWM2

(5.64)

To demonstrate the functionality of the proposed DC-link balancing method for the

discontinuous modulation methods the three-level inverter was simulated. Fig. 5.17a

shows a simulation of the effect of an unbalanced loading of the DC-link without com-

pensating the imbalance. At time (t = 1.1), an unbalanced loading is introduced. Due

to the unbalanced load between capacitor C1 and C2, the voltage at the center point N

starts to drift towards the voltage of the positive bus-bar. The upper plot in Fig. 5.17a

shows the phase current, the upper middle plot shows the voltage vaN , the lower middle

plot shows the voltages across capacitor C1 and capacitor C2 while the lower plot shows

the current through the resistor used to establish the imbalance. Applying the proposed

modulation technique for DC-link balancing, the voltage in the center-point N can be
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Figure 5.18: Measured waveforms for the proposed DC-link balancing method

applicable for the discontinuous modulation schemes.

re-established. Fig 5.17b shows the effects of an unbalanced loading, similar to the case

in Fig. 5.17a, where the proposed balancing technique is applied. From Fig. 5.17b it

clearly appears that the clamping interval of the upper and lower transistors are changed

and the DC-link neutral point is re-established despite the heavy unbalanced loading

of the DC-link. To further demonstrate the proposed DC-link balancing method, the

scheme was implemented in an experimental test setup. Fig. 5.18 shows the measured

phase voltage (-), the inverter load current (-) and the DC-link voltage (-) when an

unbalanced loading of the DC-link capacitors was introduced, i.e. a resistor loading the

lower DC-link capacitor. From Fig. 5.18 it also appears that the clamping interval of

the upper and lower transistors are different in order to compensate the DC-link imbal-

ance.

To evaluate the ability of the proposed DC-link balancing technique, the current through

capacitor C1 and C2 have to be calculated. Eq. (5.65) is only formulated for sector 0a
and further it is provided that the modulation index is below 0.5:

〈IC1〉T0 =
1

2π

(∫ π
6

π
6
+φ′+nφc

(δ1 · iA − δ2 · iC)d∆s + ....

(5.65)

〈IC2〉T0 =
1

2π

(∫ π
6
+φ′+nφc

0

(δ1 · iA − δ2 · iC)d∆s + ....

Extending 5.65 to arbitrary values of the modulation index M , and calculating for φc =

±π
6

the maximum imbalance, for which the modulation scheme is able to compensate

may be calculated. Fig. 5.19 shows the ability of the proposed modulation scheme to

compensate DC-link imbalance. In Fig. 5.19 the unbalanced current Id is normalized

to the output current Ir originating from the linear loading of the inverter and plotted
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Figure 5.19: DC-link load imbalance for which the discontinuous modulation

schemes are able to compensate.

against the modulation index M and load angle φ. For a more detailed explanation

of the DC-link balancing strategy for discontinuous modulation methods, is referred

to the paper ”Generalized Discontinuous DC-link Balancing Modulation Strategy for

Three-level Inverters” [11], c.f. Enclosure F.

Modulation scheme with common mode elimination

So far the modulation scheme with common mode voltage elimination is equal to the

modulation scheme described by [31] and [44] but since no redundant switch states are

used within a switching period, DC-link balancing can not be obtained by adjusting

the on-times for such redundant switch states. Instead, a kind of redundancy can

be introduced by using three active vectors to form the reference vector V s. This is

illustrated in Fig. 5.20. By use of three vectors the freedom to choose either vector V ′
3

or vector V ′′
3 is obtained. By inspection of Fig. 5.6 it appears that the voltage vectors

V ′
3 and V ′′

3 for all sectors charges the DC-link capacitors in opposite manners. By this,

the use of either V ′
3 or V ′′

3 can be used to control the DC-link voltages. According to

Fig. 5.20 the reference vector V !
s is synthesized by:

V !
s = δ1 · V 1 + δ2 · V 2 + δ3 · V 3 + δ0 · V 0 (5.66)

where V 3 can be either V ′
3 or V ′′

3. Independent of the choice of vector V ′
3 or V ′′

3 the

on-time ratio δ3 is calculated by:

δ3 = k · (1 − δ′1 − δ′2) (5.67)

where k is a constant proportional to the degree of imbalance. The calculations of the

duty-cycles δ1 and δ2 depends on the choice of vector V 3. If V ′
3 is be used to compensate
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Figure 5.20: Illustration of the proposed DC-balancing technique. a) Using voltage
vector V ′

3. b) Using voltage vector V ′′
3.

DC-link imbalance, the duty-cycles δ1 and δ2 becomes:

δ1 = δ′1 + δ3

δ2 = δ′2 − δ3

(5.68)

where δ′1 and δ′2 refer to the duty-cycles calculated without considering any unbalanced

conditions, c.f. section 5.3.2. Complying with the restriction in (5.16) the limit for k

becomes dependent of the modulation depth M and the angular position of the voltage

reference vector. Combining (5.15) and (5.67) the limit for k when using voltage vector

V ′
3 becomes:

1 ≥ k̂ ≤ M · sin (∆′
s)

1 −M · (sin (π
3
− ∆′

s

)
+ sin(∆′

s)
) (5.69)

If the unbalanced condition requires voltage vector V ′′
3 to be used, the duty-cycles δ1

and δ2 becomes:

δ1 = δ′1 − δ3

(5.70)

δ2 = δ′2 + δ3

Again, complying with the restriction in (5.16) the limit for k becomes:

1 ≥ k̂ ≤ M · sin (π
3
− ∆′

s

)
1 −M · (sin (π

3
− ∆′

s

)
+ sin(∆′

s)
) (5.71)

The on-time ratio for the zero vector is finally calculated by:

δ0 = 1 − δ1 − δ2 − δ3 (5.72)

By the restrictions on k formulated in (5.69) and (5.71) the voltage gain ratio of the

proposed modulation scheme is not further reduced and the DC-link voltage can be
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Figure 5.21: Simulation results. a) Simulation results without DC-link compen-

sation. b) Simulation results with the DC-link balancing technique applied.

balanced, even if an un-balanced loading of the DC-link capacitors occur. Fig. 5.21a

shows the effect of an unbalanced loading of the DC-link without compensating the

unbalance. At time (t = 1.1), a resistor is connected across capacitor C1. Due to the

unbalanced load between capacitor C1 and C2, the voltage at the center point N starts

to drift towards the voltage of the positive bus-bar. The upper plot in Fig. 5.21a shows

the phase current, the upper middle plot shows the voltage vab, lower middle plot shows

the voltages across capacitor C1 and capacitor C2 while the lower plot shows the current

through the resistor used to establish the DC-link imbalance. Applying the proposed

modulation technique for DC-link balancing, the voltage in the center-point N can be

re-established. Fig 5.21b shows the effects of an unbalanced loading, similar to the case

in Fig. 5.21a, where the proposed balancing technique is applied.

To evaluate the ability of the proposed DC-link balancing technique, the current through

capacitor C1 and C2 have to be calculated. Eq. (5.73) is only formulated for sector 0
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Figure 5.22: DC-link load imbalance for which the CMPWM modulation scheme

is able to compensate.

and only valid when using voltage vector V ′
3 for DC-link balancing:

〈IC1〉T0 =
1

2π

(∫ π
3

0

(δ1 · iA + δ2 · iA + d3 · iB)d∆′
s + ....

(5.73)

〈IC2〉T0 =
1

2π

(∫ π
3

0

(δ1 · iC + δ2 · iB + d3 · IA)d∆′
s + ....

Extending eq. (5.73) to include all six sectors the maximum imbalance, for which the

modulation scheme is able to compensate can be calculated. Fig. 5.22 shows the ability

of the proposed modulation scheme to compensate DC-link imbalance. In Fig. 5.22 the

unbalanced current Id is normalized to the output current Ir originating from the linear

loading of the inverter and plotted against the modulation index M and load angle φ.

For a more detailed explanation of the DC-link balancing strategy for the modulation

method with common mode voltage elimination, is referred to the paper ”Modulation

Scheme with Common Mode-Voltage Elimination and DC-link Balancing for Three-Level

Inverters”, c.f. Enclosure G.

5.3.6 Evaluation of the modulation methods

From the preceding sections, it appears that the discussed modulation methods involve

different numbers of switch states in each switching period and hence it is likely to ex-

pect that the modulation methods have different salient properties. When considering

modulation methods for the three-level voltage source inverter the following four prop-

erties are important, - the harmonic performance, the switching losses, the conducting

losses and the DC-link balancing capability. In this section, the harmonic content for

the different modulation methods are evaluated in order to be able to select a switch-

ing frequency which for a certain modulation method generates an acceptable harmonic

content. The switching losses and conducting losses and their relation to the selected
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modulation method are discussed in section 5.4 while the DC-link balancing capability

were discussed in section 5.3.5.

Harmonic performance

When modulating the three-level converter in order to synthesize a desired output volt-

age, harmonics are introduced at integer multiples of the switching frequency and at

the side bands of all these frequencies. The harmonic content depends on the chosen

modulation scheme and since this undesirable frequency content causes torque ripple

and additional copper losses in the generator (or any other load connected thereto), it

is convenient to have a method to compare the harmonic behavior of different modu-

lation schemes. In general, harmonic analysis can be done by either FFT or harmonic

flux distortion (HFD). For a quantitative analysis, HFD is most suitable and hence the

proposed modulation scheme is evaluated with regards to the HFD.

In the Nth carrier cycle the harmonic flux ψ̃ is calculated by:

ψ̃ =

∫ (N+1)Ts

NTs

(V s − V !
s)dt (5.74)

where V s is a stationary output voltage vector. To generalize the performance character-

ization, the per carrier harmonic flux error ψ̃ in eq. (5.74), is normalized to the product

of the nominal output voltage amplitude |V̂ ∗
s| and the switching period Ts. That is:

ψ̃n =
1

Ts|V̂ ∗
s|
· ψ̃ (5.75)

The normalized per-carrier cycle RMS value of the harmonic flux ψ̃RMS,n can now be

calculated by:

〈ψ̃RMS,n〉Ts =

√∫ 1

0

(
ψ̃n · ψ̃∗

n

)
dt (5.76)

where ψ̃∗
n is the complex conjugate of ψ̃n. Due to the six fold symmetry of the space-

vector modulation, the per fundamental RMS harmonic flux may be calculated by:

ψ̃RMS,n =

√
3

π

∫ π
3

0

(
〈ψ̃RMS,n〉Ts

)2
d∆s (5.77)

Fig. 5.23 shows the RMS-value of the harmonic flux as a function of the modulation

index for the different modulation methods. It is worthwhile to notice, that the harmonic

flux levels in Fig. 5.23 is directly comparable with the calculated harmonic flux levels

of the back-to-back two-level voltage source converter shown in Fig. 3.11 on page 59

and the harmonic flux levels of the matrix converter shown in Fig. 4.22 on page 116.

For instance, the dotted line in Fig. 5.23 indicates the harmonic flux distortion for

the two-level inverter when using the suboptimal modulation method. The evaluated

harmonic flux distortions in Fig. 5.23 can be used to decide an appropriate switching

frequency dependent on the chosen modulation method and nominal modulation index.

This issue is discussed in section 5.5.4.



5.4. Loss evaluation 181

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

Modulation index M

ψ
RMS

 [pu]

SVPWM1
SVPWM2
DPWM0
DPWM2
DPWM1
CMPWM

~ 

Figure 5.23: Evaluation of the modulation methods for the multi-level converter.

5.4 Loss evaluation

As it appeared from the discussion of the different modulation methods, the converter

losses and to some extent the loss distribution over time depends on the chosen mod-

ulation strategy, the modulation index M and the load angle φ. In order to be able

to evaluate this dependency in an RMS value model, analytical expressions have to be

established for both the conducting losses and the switching losses. The purpose of this

section is to derive these analytical expressions.

5.4.1 Conducting losses of the switches

Like for the previously considered converter topologies, the conducting losses of a semi-

conductor device, i.e. transistor or diode, are simply modeled by [40]:

Pt,cond = Vt0(T ) · It,avg +Rt(T ) · I2t (5.78)

Pd,cond = Vd0(T ) · Id,avg +Rd(T ) · I2d (5.79)

where Ix,avg is the average current through the considered component, Ix is the RMS cur-

rent through the considered component, Vx0(T ) is the temperature dependent threshold

voltage of the considered component and Rx0(T ) is the temperature dependent resis-

tance of the considered component. The threshold voltage and on-resistance can either

be found from data sheets or derived by the procedure described in Appendix A.

Since both the RMS current and the average current through each individual switch

(transistor and diode) depends on the chosen modulation method as well as modulation

index and load angle, the calculation of these currents are rather complex. Actually,

the calculations involve piecewise integration with modulation index dependent integra-

tion limits as can be derived from eq. (5.5) as well as load angle dependent integration

limits. However, for the purpose of avoiding time consuming simulations it is worth-
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Figure 5.24: Current definitions for the considered three-level inverter topologies.

a) Inverter leg of the diode clamped three-level inverter. b) Inverter leg of the

transistor clamped three-level inverter.

while to derive these closed form expression for the average current and the RMS current.

Considering the modulation function for each individual component it is possible to

derive the independent expressions for all the involved components. However inspection

of the considered three-level inverter topologies reveals some simple relationships. For

instance, since all the considered modulation methods assures an equal loading of the

upper and lower part of the three level inverter, it is only necessary to calculate the

current through the components in the upper (or lower) part1. Further, considering the

topology redrawn in Fig. 5.24a and using the current definition hereof, it appears that

the current id3 through the center diode, at any time is equal to the current through diode

D4 and hence when evaluated for a fundamental, equal to the current id1 through the

top diode. Hence the average current Id3,avg and the RMS current Id3 simply becomes:

Id3,avg = Id1,avg (5.80)

Id3 = Id1 (5.81)

Moreover, considering the current it3 through the center transistor it appears that during

the negative half period of the output current ir, the transistor current is given by:

it3 = ir − id2 while equaling zero during the positive half period of the output current.

Hence, the average- and RMS current through the center transistor can be calculated

by:

It3,avg =

√
2

π
Ir − Id1,avg (5.82)

It3 =

√
1

2
I2r − I2d1 (5.83)

Further, the current i′d3 through the clamping diodes in Fig. 5.24a is at any time instant

given by: i′d3 = it3 − it1. By this and by using the relationship in eq. (5.82) and eq.

1Like for the two level inverter it is possible to establish modulation methods which have an unequal
loading of the upper and lower inverter parts. In such case, the current through each individual switch
should be calculated separately.
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(5.83) the average diode current I ′d3,avg and the RMS diode current I ′d3 can be derived

as:

I ′d3,avg =

√
2

π
Ir − (Id1,avg + It1,avg) (5.84)

I ′d3 =

√
1

2
I2r − (I2t1 + I2d1) (5.85)

The expressions in eq. (5.84) and eq. (5.85) are also valid for the diodes connected to

the center point in the topology shown in Fig. 5.24b. Finally, it is easily recognized

that the current i′t3 through the center transistor in the topology shown in Fig. 5.24b is

equal to the diode current i′d3. That is:

I ′t3,avg = I ′d3,avg (5.86)

I ′t3 = I ′d3 (5.87)

By these relationships, and by recognizing that the current through the top (and bottom)

transistors it1 and diodes id1 are equal for both of the topologies in Fig. 5.24, it is

only necessary to derive the analytical expressions for these currents. However, this

has to be done for each of the considered modulation methods. Before entering the

analytical derivations of the remaining currents, it is appropriate to define the following

six integration limits which are commonly used during the derivations.

θ1 =
π

2
− sin−1

(
1

2M

)
(5.88)

θ2 = sin−1
(

1

2M

)
− π

6
(5.89)

θ3 =
5π

6
− sin−1

(
1

2M

)
(5.90)

θ4 = sin−1
(

1

2M

)
− π

6
(5.91)

θ5 = π − sin−1
(

1

2M

)
(5.92)

θ6 = sin−1
(

1

2M

)
+
π

6
(5.93)

Actually, these integration limits represents the angle at which the space vector makes

a transition between the sub-sectors, c.f. Fig. 5.4 on page 153. Finally, it is important

to note that the expressions being derived in the following sections are valid for power

flowing out of the inverter while for power entering the inverter, the diode and transistor

current expressions have to be exchanged.
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Space vector modulation method 1 (SVPWM1)

Using the switching pattern for the space vector modulation method 1, cf. Table I and

Table II and the modulation functions given by eq. (5.6) - eq. (5.9) the average current

through the top (and bottom) transistors and diodes can be calculated by piecewise

integration. The average current Id1,avg through the top diode is given by:

Id1,avg = It1,avg −
(√

6

6
M cos(φ)

)
Ir (5.94)

while the expression for the average current It1,avg through the top transistor are to be

calculated by either eq. (5.95), eq. (5.96) or eq. (5.98), depending on the modulation

index.

Modulation index lower than 1/2: If the modulation index is lower than 1/2, the

average currents through the top transistor can be derived by:

It1,avg =


M

√
2((2+π

√
3) cos(φ)+2|φ| sin(|φ|))

8π
Ir |φ| ≤ π

6

M
√
2((6+7π

√
3−6 |φ| √3) cos(φ)+(π+6 |φ|+6

√
3) sin(|φ|))

48π
Ir

π
6
< |φ| ≤ π

2

(5.95)

Modulation index between 1/2 and 1/
√
3: If the modulation index is between 1/2

and 1/
√

3, the average current It1,avg through the top (and bottom ) transistor is given

by:

It1,avg =



(M2π
√
3−2M2−1) cos(φ)−2M2|φ| sin(|φ|)+4M√

32Mπ
Ir |φ| ≤ θ1

M(2+
√
3π) cos(φ)+

(√
4 M2−1

M2 +2M(|φ|−π+2θD)

)
sin(|φ|)

√
32π

Ir θ1 < |φ| ≤ π
6

M(1+
√
3( 7π

6
−|φ|)) cos(φ)√
32π

+(√
4M2−1

M2 +M(
√
3− 11

6
π+|φ|+4θD)

)
sin(|φ|)

√
32π

Ir
π
6
< |φ| ≤ π

2

(5.96)

where the angle θD is defined by:

θD = sin−1
(

1

2M

)
(5.97)

and the angle θ1 is given by eq. (5.88).
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Figure 5.25: Per unit average current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.26: Per unit average current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.95].

Modulation index higher than 1/
√
3: Finally if the modulation index is above

1/
√

3 the average current It1,avg through the top transistor becomes:

It1,avg =



(√
3M2

(
5π
6
− 1√

3
−θD

)
−
√

12M2−3
16M2 M− 1

4

)
cos(φ)+M(2−M |φ| sin(|φ|))

2
√
8Mπ

Ir |φ| ≤ θ4

M2
(

2π√
3
−|φ|√3

)
cos(φ)+

(
M2(π

6
−θD+

√
3)−
√

4M2−1
16M2 M+

√
3

4

)
sin(|φ|)

2
√
32πM

Ir θ4 < |φ| ≤ π
6(

M2(π
6
−2θD+

√
3+|φ|)−

√
4 M2−1

4M2 M+
√

3
2

)
sin(|φ|)

√
32πM

+

√
3M2

(
1√
3
−|φ|+ 7π

6

)
cos(φ)

√
32πM

Ir
π
6
< |φ| ≤ π

2

(5.98)

where the angle θ4 is given by eq. (5.91). Fig. 5.25 shows the average current It1,avg
through the top (and bottom) transistors as a function of the load angle, i.e. the current

calculated by the expressions given by eq. (5.95), (5.96) and (5.98). The currents are

shown for different values of the modulation index M where the blue curve represents

the lowest value of the modulation index. Similarly, Fig. 5.26 shows the average current

Id1,avg through the top (and bottom) diode as a function of the load angle, i.e. the

current calculated by eq. (5.94). To validate the closed form expressions, the transistor-

and diode current has been obtained from numerical simulations. These results are

shown by the marks in Fig. 5.25 and Fig. 5.26.

By use of the expressions for currents trough the top (and bottom) transistor and

diode, the average current It3,avg through the center transistor can be calculated from

eq. (5.82). Fig. 5.27 shows the average current It3,avg through the center transistors as a

function of the load angle. Similarly, the current I ′d3,avg through the clamping diode can

be calculated by use of eq. (5.84). Fig. 5.28 shows the average current I ′t3,avg through

the clamping diode as a function of the load angle. In both figures, the currents are
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Figure 5.27: Per unit average current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

Load angle [rad]

AVG current through center switch [pu] (SVPWM1)

Figure 5.28: Per unit average current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

shown for different values of the modulation index M where the blue curve represents

the lowest modulation index.

Similarly to the average currents through the top (and bottom) transistors and diodes,

the expressions for the RMS values can be derived.

Modulation index lower than 1/2: For instance, if the modulation index is less

than 1/2, the RMS current through the top transistor and diode becomes:

It1 =


√

M(2−cos(φ)2+2
√
3 cos(φ))

3π
Ir |φ| ≤ π

6√
M(13−2 cos(φ)2+

√
3 sin(2|φ|)+4√3 cos(φ)−4 sin(|φ|))

12π
Ir

π
6
< |φ| ≤ π

2

(5.99)

Id1 =

√
3M

2π
I2r − I2t1 (5.100)

Modulation index between than 1/2 and 1/
√
3: If the modulation index is between

1/2 and 1/
√

3, the RMS current through the top (and bottom ) transistor It1 and diode

Id1 is given by:

It1=



(√
4 M2−1

M2 ((4M2−1) cos(φ)2−8M2+ 1
2)

12πM
+

4M2(2−cos(φ)2+2
√
3 cos(φ))+3M(π−2θD)

12πM

) 1
2

Ir |φ| ≤ π
6(√

4 M2−1

M2 ((4M2−1) cos(φ)2−8M2+ 1
2)+3M(π−2θD)

12πM
+

M2(4
√
3 cos(φ)+

√
3 sin(2|φ|)−2(cosφ)2−4 sin(|φ|)+13)

12πM

) 1
2

Ir
π
6
< |φ| ≤ π

2

(5.101)
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Figure 5.29: Per unit RMS current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.30: Per unit RMS current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.95].

Id1=

√(√
4 M2−1

M2 (1+8M2 cos(φ)2−16M2−2 cos(φ)2)+18M2+6Mπ−12θDM

12πM

)
I2r − I2t1 (5.102)

Modulation index higher than 1/
√
3: Finally if the modulation index is above

1/
√

3 the current through the top (and bottom) transistor It1 and diode Id1 becomes:

It1=



(
M2(12

√
3 cos(φ)2+24θD−4π−6√3)+8M3(4

√
3 cos(φ)−4 cos(φ)2−1)

48πM2 +

√
3−2√3 cos(φ)2+

√
4M2−1

M2 (2(4M3−M) cos(φ)2+20M3+M)
48πM2

) 1
2

Ir |φ| ≤ π
6(

M2(24θD−4π−6√3+12√3 cos(φ)2)
48πM2 +

4M3(
√
3 sin(2|φ|)+4√3 cos(φ)−6 cos(φ)2−4 sin(|φ|)+3)

48πM2 + π
6
< |φ| ≤ π

2
√
3−2√3 cos(φ)2+

√
4M2−1

M2 (2(4M3−M) cos(φ)2+20M3)+M

48πM2

) 1
2

Ir

(5.103)

Id1=

((√
4 M2−1

M2 M(1+20M2+(8M2−2) cos(φ)2)−M3(4+16 cos(φ)2)
24πM2 +

M2(12
√
3 cos(φ)2−4π+24θD−6√3)+

√
3−2√3 cos(φ)2

24πM2

)
I2r − I2t1

) 1
2

(5.104)

Fig. 5.29 shows the RMS current It1 through the top (and bottom) transistors as a

function of the load angle, i.e. the current calculated by the expressions given by eq.

(5.99), (5.101) and (5.103). Similarly, Fig. 5.30 shows the RMS current Id1 through the

top (and bottom) diode as a function of the load angle, i.e. the current calculated by

eq. (5.100), (5.102) and (5.104). In both figures, the currents are shown for different

values of the modulation index M where the blue curve represents the lowest value of
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Figure 5.31: Per unit RMS current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.32: Per unit RMS current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

the modulation index. To validate the closed form expressions, the transistor- and diode

current was obtained from numerical simulations. These results are shown by the marks

in Fig 5.29 and Fig. 5.30.

By use of the expressions for RMS currents through the top (and bottom) transistor

and diode, the RMS current It3 through the center transistor can be calculated from

eq. (5.83). Fig. 5.31 shows the RMS current It3 through the center transistors as a

function of the load angle. Similarly, the current I ′d3 through the clamping diode can

be calculated by use of eq. (5.85). Fig. 5.32 shows the RMS current I ′d3 through the

clamping diode as a function of the load angle. In both figures, the currents are shown

for different values of the modulation indexM where the blue curve represents the lowest

modulation index.

Space vector modulation method 2 (SVPWM2)

Using the switching pattern for the space vector modulation method 2 (SVPWM2), cf.

Table III and Table IV and the modulation functions given by eq. (5.6) - eq. (5.9) the

average current through the top (and bottom) transistors and diodes can be calculated

by piecewise integration. For the entire modulation index range, the average current

Id1,avg through the top diodes are given by:

Id1,avg = It1,avg −
(√

6

6
M cos(φ)

)
Ir (5.105)

while the expression for the average current It1,avg through the top transistor are to be

calculated for three different modulation index ranges.
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Modulation index lower than 1/2: If the modulation index is lower than 1/2, the

average currents through the top transistor can be derived by:

It1,avg =



M(
√
3(4π−3|φ|) cos(φ)+3(

√
3+|φ|) sin(|φ|))

12
√
2π

Ir |φ| ≤ π
6

M((9
√
3π−6−12√3|φ|) cos(φ)+(12

√
3+π) sin(|φ|))

24
√
2π

Ir
π
6
< |φ| ≤ π

3

M((7
√
3π−6−6|φ|√3) cos(φ)+(3π−6|φ|+12

√
3) sin(|φ|))

24
√
2π

Ir
π
3
< |φ| ≤ π

2

(5.106)

Modulation index between 1/2 and 1/
√
3: If the modulation index is between 1/2

and 1/
√

3, the average current through the top (and bottom ) transistor It1,avg is given

by:

It1,avg =



(3M(
√
3−|φ|) sin(|φ|)+(4

√
3Mπ−6−3√3M |φ|) cos(φ)+6)

12
√
2π

Ir |φ| ≤ θ1(
M2(|φ|+2θD−π+

√
3)+
√

4 M2−1
4M2 M

)
sin(|φ|)

4
√
2πM

+(
M2
(
2+ 4π√

3
−√

3|φ|
)
−2M+ 1

2

)
cos(φ)

4
√
2πM

Ir θ1 < |φ| ≤ π
6(

M2(4θD− 5π
3
+4

√
3)+
√

4 M2−1

M2 M

)
sin(|φ|)

8
√
2πM

+

(M2(2+3
√
3π−4√3|φ|)−4M+1) cos(φ)

8
√
2πM
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π
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√
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√
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3
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16
√
2πM
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4M2
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3θD
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(√
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M2

√
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)
+1
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16
√
2πM
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3(
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√
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√
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√
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√
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√
4 M2−1
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√
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)
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16
√
2πM
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π
3
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M2(4θD−π−2|φ|)+M

(
4
√
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√
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−√

3
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√
2πM
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7π√
3
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)
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8
√
2πM

Ir θ3 < |φ| ≤ π
2

(5.107)

where the angles θ1 - θ3 are given by eq. (5.88) - eq. (5.90).
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Figure 5.33: Per unit average current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.34: Per unit average current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.95].

Modulation index higher than 1/
√
3: Finally if the modulation index is above

1/
√

3 the average current through the top (and bottom) transistor It1,avg becomes:

It1,avg =
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(5.108)

where the angles θ4 - θ6 are given by eq. (5.91) - eq. (5.93). Fig. 5.33 shows the average

current It1,avg through the top (and bottom) transistors as a function of the load angle,
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Figure 5.35: Per unit average current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.36: Per unit average current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

i.e. the current calculated by the expressions given by eq. (5.106), (5.107) and (5.108).

The currents are shown for different values of the modulation index M where the blue

curve represents the lowest value of the modulation index. Similarly, Fig. 5.34 shows

the average current Id1,avg through the top (and bottom) diode as a function of the load

angle, i.e. the current calculated by eq. (5.105). To validate the closed form expressions,

the transistor- and diode current was derived from numerical simulations. These results

are shown by the marks in Fig. 5.33 and Fig. 5.34.

By use of the expressions for currents trough the top (and bottom) transistor and

diode, the average current It3,avg through the center transistor can be calculated from

eq. (5.82). Fig. 5.35 shows the average current It3,avg through the center transistors as a

function of the load angle. Similarly, the current I ′d3,avg through the clamping diode can

be calculated by use of eq. (5.84). Fig. 5.36 shows the average current I ′t3,avg through

the clamping diode as a function of the load angle. In both figures, the currents are

shown for different values of the modulation index M where the blue curve represents

the lowest modulation index.

As in the case for the average currents, the RMS values are to be derived for three

different modulation index ranges.

Modulation index lower than 1/2: For instance, if the modulation index is less

than 1/2, the RMS current through the top transistor becomes:

It1=
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192 Chapter 5. The back-to-back three-level voltage source converter

while the RMS current Id1 through the top diode is given by:

Id1=
√

M((2−
√
3) cos(φ)2+2

√
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2)
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I2r − I2t1
(5.110)

Modulation index between 1/2 and 1/
√
3: If the modulation index is between 1/2

and 1/
√

3, the RMS current through the transistors in the top (and bottom) switch

becomes:

It1=
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where the angles θ1 - θ3 are given by eq. (5.88) - eq. (5.90). The RMS diode current
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Id1 becomes:
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Modulation index higher than 1/
√
3: If the modulation index is above 1/

√
3, the

RMS current through the transistors in the top and bottom switch becomes:

It1=
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where the angles θ4 - θ6 are given by eq. (5.91) - eq. (5.93). The current through the

top diode then becomes:
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Figure 5.37: Per unit RMS current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.38: Per unit RMS current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.95].
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Fig. 5.37 shows the RMS current It1 through the top (and bottom) transistors as a

function of the load angle, i.e. the current calculated by the expressions given by eq.

(5.109), (5.111) and (5.113). Similarly, Fig. 5.38 shows the RMS current Id1 through

the top (and bottom) diode as a function of the load angle, i.e. the current calculated

by eq. (5.110), (5.112) and (5.114). In both figures, the currents are shown for different

values of the modulation index M where the blue curve represents the lowest value of

the modulation index. To validate the closed form expressions the transistor- and diode

current was derived from numerical simulations. These results are shown by the marks

in Fig 5.37 and Fig. 5.38.

By use of the expressions for RMS currents through the top (and bottom) transistor

and diode, the RMS current It3 through the center transistor can be calculated from

eq. (5.83). Fig. 5.39 shows the RMS current It3 through the center transistors as a

function of the load angle. Similarly, the current I ′d3 through the clamping diode can

be calculated by use of eq. (5.85). Fig. 5.40 shows the RMS current I ′d3 through the

clamping diode as a function of the load angle. In both figures, the currents are shown

for different values of the modulation indexM where the blue curve represents the lowest

modulation index.



5.4. Loss evaluation 195

−1.5 −1 −0.5 0 0.5 1 1.5
0.55

0.6

0.65

0.7

0.75

Load angle [rad]

RMS current through center transistor [pu] (SVPWM2)

Figure 5.39: Per unit RMS current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.40: Per unit RMS current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

Asymmetrical shifted left flat top modulation (DPWM0)

Considering the asymmetrical shifted left flat top modulation given by the upper part

of Table V, the average current through the top diode is given by:

Id1,avg = It1,avg −
(√

6

6
M cos(φ)

)
Ir (5.115)

while the average current through the top transistor has to be calculated separately for

three different modulation index ranges.

Modulation index less than 1/2: If the modulation index is less than 1/2, the

average current It1,avg can be calculated by:

It1,avg =
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Modulation index between 1/2 and 1/
√
3: If the modulation index is between

1/2 and 1/
√

3, the average current through the transistors in the top (and bottom)
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Figure 5.41: Per unit average current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.42: Per unit average current

through the top diode as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].

switch becomes:

It1,avg =



M

(
4π−12θD−3

√
4M2−1

M4 −3√3
)
sin(|φ|)

12
√
2π

+

M

(
8π

√
3−3√3

√
4 M2−1

M4 −12θD

√
3−9
)
cos(φ)+12

12
√
2π

Ir −π
2
≤ φ ≤ −π

6

M

(
5π
6
−√

3−
√

4M2−1
4M4 −2θD−|φ|

)
sin(|φ|)

2
√
2π

+

√
3M

(
7π
6
−
√

4M2−1

4M4 −2θD− 1√
3
+|φ|

)
cos(φ)+2

2
√
2π

Ir −π
6
< φ ≤ 0

√
6

(
7Mπ−3

√
4 M2−1

M2 −12MθD−6M |φ|− 6√
3
M

)
cos(φ)

24π
+

√
2

(
6M

√
3−5Mπ+3

√
4 M2−1

M2 +12MθD−6M |φ|
)
sin(|φ|)+12√2

24π
Ir 0 < φ ≤ π

6

√
6

(
5Mπ−3

√
4 M2−1

M2 −12MθD+
√
3M+6M |φ|

)
cos(φ)

24π
+

√
2

(
3
√

4 M2−1

M2 −5Mπ+12MθD−6M |φ|−3M√
3

)
sin(|φ|)+12√2

24π
Ir

π
6
< φ ≤ θ2

√
6
(

1√
3
+M2

(
5√
3
+π−2|φ|

))
cos(φ)

8πM
+

√
6
(
1+M2

(
2√
3
|φ|− π√

3
+3
))
sin(|φ|)−4√2M

8Mπ
Ir θ2 < φ ≤ θ3

√
6

(√
3M+3

√
4 M2−1

M2 −7Mπ+12MθD+6M |φ|
)
cos(φ)

24π
+

√
2

(
7Mπ−3

√
4 M2−1

M2 −12MθD−3M√
3−6M |φ|

)
sin(|φ|)+12√2

24π
Ir θ3 < φ ≤ π

2

(5.117)



5.4. Loss evaluation 197

Modulation index higher than 1/
√
3: If the modulation index is higher than 1/

√
3,

the average current through the transistors in the top (and bottom) switch becomes:

It1,avg =
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Fig. 5.41 shows the average current It1,avg through the top (and bottom) transistors

as a function of the load angle, i.e. the current calculated by the expressions given by

eq. (5.116), (5.117) and (5.118). The currents are shown for different values of the

modulation index M where the blue curve represents the lowest value of the modulation

index. Similarly, Fig. 5.42 shows the average current Id1,avg through the top (and bot-

tom) diode as a function of the load angle, i.e. the current calculated by eq. (5.115). To

validate the closed form expressions, the transistor- and diode current has been obtained

from numerical simulations. These results are shown by the marks in Fig.5.41 and Fig.

5.42.

By use of the expressions for currents trough the top (and bottom) transistor and

diode, the average current It3,avg through the center transistor can be calculated from

eq. (5.82). Fig. 5.43 shows the average current It3,avg through the center transistors as a

function of the load angle. Similarly, the current I ′d3,avg through the clamping diode can

be calculated by use of eq. (5.84). Fig. 5.44 shows the average current I ′t3,avg through

the clamping diode as a function of the load angle. In both figures, the currents are

shown for different values of the modulation index M where the blue curve represents
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Figure 5.43: Per unit average current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.44: Per unit average current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

the lowest modulation index.

Considering the RMS currents when using the asymmetrical shifted left flat top mod-

ulation method, the calculations are to be carried out for three different modulation

index ranges.

Modulation index less than 1/2: The RMS current through the top (and bottom)

transistors when the modulation index is below 0.5 is given by:

It1=
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√
3−3) sin(|2φ|)+5π−6|φ|+3

√
3−11M

12
√
3π

Ir −π
2
≤φ≤−π

6√
(
√
3M−3) sin(|2φ|)−2M cos(φ)2+4M

√
3 cos(φ)−4M sin(|φ|)+ 3π

2
+3|φ|−5M

6
√
3π

Ir −π
6
<φ≤0√

(6−2M
√
3) sin(|2φ|)−4M cos(φ)2+8M

√
3 cos(φ)+8M sin(|φ|)−10M+3π−6|φ|

12π
Ir 0<φ≤ π

6√(
6− 14√

3
M
)
cos(φ)2+

(
1√
3
+M
)
sin(|2φ|)+8M

(
cos(φ)− 1√

3
sin(|φ|)

)
−3+π+6|φ|+M√

3

4
√
3π

Ir
π
6
<φ≤ π

2

(5.119)

while the RMS current through the top (and bottom) diodes can be calculated by:

Id1=

√
3π − 9M + 2

√
3M sin(|2φ|)

6π
I2r − I2t1 (5.120)

Modulation index between 1/2 and 1/
√
3: If the modulation index is between

1/2 and 1/
√

3 and when using the asymmetrical shifted left flat top modulation method,
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Figure 5.45: Per unit RMS current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.46: Per unit RMS current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.95].

the RMS current through the transistors in the top (and bottom) switch becomes:

It1=
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(5.121)

while the RMS current through the top (and bottom) diode becomes:

Id1=

((√
4M2−1

M2 ((8M2−2) cos(φ)2+(
√
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(5.122)

Modulation index higher than 1/
√
3: If the modulation index is above 1/

√
3, the
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RMS current through the transistors and diodes in the top and bottom switch becomes:

It1=
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Id1 =
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(5.124)

Fig. 5.45 shows the RMS current It1 through the top (and bottom) transistors as a

function of the load angle, i.e. the current calculated by the expressions given by eq.

(5.119), (5.121) and (5.123). Similarly, Fig. 5.46 shows the RMS current Id1 through

the top (and bottom) diode as a function of the load angle, i.e. the current calculated

by eq. (5.120), (5.122) and (5.124). In both figures, the currents are shown for different

values of the modulation index M where the blue curve represents the lowest value of

the modulation index. To validate the closed form expressions, the transistor- and diode

current was derived from numerical simulations. These results are shown by the marks

in Fig 5.45 and Fig. 5.46.

By use of the expressions for RMS currents through the top (and bottom) transistor

and diode, the RMS current It3 through the center transistor can be calculated from

eq. (5.83). Fig. 5.47 shows the RMS current It3 through the center transistors as a
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through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.48: Per unit RMS current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

function of the load angle. Similarly, the current I ′d3 through the clamping diode can

be calculated by use of eq. (5.85). Fig. 5.48 shows the RMS current I ′d3 through the

clamping diode as a function of the load angle. In both figures, the currents are shown

for different values of the modulation indexM where the blue curve represents the lowest

modulation index.

Symmetrical flat top modulation (DPWM1)

Using the switching pattern for the symmetrical flat top modulation, cf. Table V and

the modulation functions given by eq. (5.6) - eq. (5.9) the average current through

the top (and bottom) transistors and diodes can be calculated by piecewise integration.

The average current Id1,avg through the top diode is given by:

Id1,avg = It1,avg −
(√

6

6
M cos(φ)

)
Ir (5.125)

while the expression for the average current It1,avg through the top transistor are to be

calculated by either eq. (5.126), eq. (5.127) or eq. (5.128), depending on the modulation

index.

Modulation index lower than 1/2: If the modulation index is lower than 1/2, the

average currents through the top transistor can be derived by:

It1,avg =
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(5.126)
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Modulation index between 1/2 and 1/
√
3: If the modulation index is between 1/2

and 1/
√

3, the average currents through the top transistor can be derived by:

It1,avg =
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(5.127)

Modulation index higher than 1/
√
3: If the modulation index higher than and

1/
√

3, the average currents through the top transistor can be derived by:

It1,avg =
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(5.128)

Fig. 5.49 shows the average current It1,avg through the top (and bottom) transistors

as a function of the load angle, i.e. the current calculated by the expressions given by

eq. (5.126), (5.127) and (5.128). The currents are shown for different values of the

modulation index M where the blue curve represents the lowest value of the modulation

index. Similarly, Fig. 5.50 shows the average current Id1,avg through the top (and bot-

tom) diode as a function of the load angle, i.e. the current calculated by eq. (5.125). To

validate the closed form expressions, the transistor- and diode current has been obtained

from numerical simulations. These results are shown by the marks in Fig.5.49 and Fig.

5.50.

By use of the expressions for currents trough the top (and bottom) transistor and

diode, the average current It3,avg through the center transistor can be calculated from
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Figure 5.49: Per unit average current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.50: Per unit average current

through top diode as a function of the load
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eq. (5.82). Fig. 5.51 shows the average current It3,avg through the center transistors as a

function of the load angle. Similarly, the current I ′d3,avg through the clamping diode can

be calculated by use of eq. (5.84). Fig. 5.52 shows the average current I ′t3,avg through

the clamping diode as a function of the load angle. In both figures, the currents are

shown for different values of the modulation index M where the blue curve represents

the lowest modulation index.

Similarly to the average currents through the top (and bottom) transistors and diodes,

the RMS values can be derived.

Modulation index lower than 1/2: For instance, if the modulation index is less

than 1/2, the RMS current through the top transistor and diode becomes:

It1=
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(5.129)

Id1=

√(
3π−8M√

3+4M
√
3 cos(φ)2

6π

)
I2r − I2t1 (5.130)

Modulation index between 1/2 and 1/
√
3: If the modulation index is between

1/2 and 1/
√

3, the RMS current through the transistors in the top and bottom switch
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Figure 5.51: Per unit average current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.52: Per unit average current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

becomes:

It1=
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(5.131)

while the diode current through the top (and bottom) diode becomes:

Id1=
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(5.132)

Modulation index higher than 1/
√
3: If the modulation index is above 1/

√
3, the
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through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.95].

RMS current through the transistors in the top and bottom switch becomes:

It1=
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while the diode current through the top (and bottom) diode becomes:

Id1=

((√
4 M2−1
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(5.134)

Fig. 5.53 shows the RMS current It1 through the top (and bottom) transistors as a

function of the load angle, i.e. the current calculated by the expressions given by eq.

(5.129), (5.131) and (5.133). Similarly, Fig. 5.54 shows the RMS current Id1 through

the top (and bottom) diode as a function of the load angle, i.e. the current calculated

by eq. (5.130), (5.132) and (5.134). In both figures, the currents are shown for different

values of the modulation index M where the blue curve represents the lowest value of

the modulation index. To validate the closed form expressions, the transistor- and diode

current was derived from numerical simulations. These results are shown by the marks

in Fig 5.53 and Fig. 5.54.
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Figure 5.55: Per unit RMS current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.56: Per unit RMS current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

By use of the expressions for RMS currents through the top (and bottom) transistor

and diode, the RMS current It3 through the center transistor can be calculated from

eq. (5.83). Fig. 5.55 shows the RMS current It3 through the center transistors as a

function of the load angle. Similarly, the current I ′d3 through the clamping diode can

be calculated by use of eq. (5.85). Fig. 5.56 shows the RMS current I ′d3 through the

clamping diode as a function of the load angle. In both figures, the currents are shown

for different values of the modulation indexM where the blue curve represents the lowest

modulation index.

Asymmetrical shifted right flat top modulation (DPWM2)

Considering the asymmetrical shifted right flat top modulation given by the lower part

of Table V, the average current through the top diode is given by:

Id1,avg = It1,avg −
(√

6

6
M cos(φ)

)
Ir (5.135)

while the average current through the top diode has to be calculated separately for three

different modulation index ranges.



5.4. Loss evaluation 207

Modulation index less than 1/2: If the modulation index is less than 1/2, the

average current It1,avg can be calculated by:

It1,avg =



√
2(M(3−π

√
3+6|φ| √3) cos(φ)+M(π−6|φ|−3

√
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24π
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(5.136)

Modulation index between 1/2 and 1/
√
3: If the modulation index is between 1/2

and 1/
√

3, the average current through the transistors in the top (and bottom) switch

becomes:

It1,avg =



√
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(√
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√
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(5.137)

Modulation index higher than 1/
√
3: If the modulation index is higher than 1/

√
3,
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Figure 5.57: Per unit average current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.58: Per unit average current

through the top diode as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].

the average current through the transistors in the top (and bottom) switch becomes:

It1,avg =
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(5.138)

Fig. 5.57 shows the average current It1,avg through the top (and bottom) transistors

as a function of the load angle, i.e. the current calculated by the expressions given by

eq. (5.136), (5.137) and (5.138). The currents are shown for different values of the
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modulation index M where the blue curve represents the lowest value of the modulation

index. Similarly, Fig. 5.58 shows the average current Id1,avg through the top (and bot-

tom) diode as a function of the load angle, i.e. the current calculated by eq. (5.135). To

validate the closed form expressions, the transistor- and diode current has been obtained

from numerical simulations. These results are shown by the marks in Fig. 5.57 and Fig.

5.58.

By use of the expressions for the currents trough the top (and bottom) transistor and

diode, the average current It3,avg through the center transistor can be calculated from

eq. (5.82). Fig. 5.59 shows the average current It3,avg through the center transistors as a

function of the load angle. Similarly, the current I ′d3,avg through the clamping diode can

be calculated by use of eq. (5.84). Fig. 5.60 shows the average current I ′t3,avg through

the clamping diode as a function of the load angle. In both figures, the currents are

shown for different values of the modulation index M where the blue curve represents

the lowest modulation index.

Considering the RMS currents when using the asymmetrical shifted right flat top mod-

ulation method, the calculations are to be carried out for three different modulation

index ranges.

Modulation index less than 1/2: The RMS current through the top (and bottom)

transistors when the modulation index is below 0.5 is given by:

It1=
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(5.139)

while the RMS current through the top (and bottom ) diode can be calculated by:

Id1=
√

3π−9M−2M√
3 sin(|2φ|)

6π
I2r − I2t1 (5.140)

Modulation index between 1/2 and 1/
√
3: If the modulation index is between

1/2 and 1/
√

3, the RMS current through the transistors in the top and bottom switch
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Figure 5.59: Per unit average current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.60: Per unit average current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

becomes:

It1=
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(5.141)

and the RMS current through the top diode becomes:

Id1=

((√
4M2−1

M2 ((8M2−2) cos(φ)2+(
√
3+4M2) sin(|2φ|)+20M2+1)
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(5.142)

Modulation higher than 1/
√
3: If the modulation index is above 1/

√
3, the RMS
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Figure 5.61: Per unit RMS current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.62: Per unit RMS current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.95].

current through the transistors in the top and bottom switch becomes:

It1=
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(5.143)
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Figure 5.63: Per unit RMS current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.95].
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Figure 5.64: Per unit RMS current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.95].

The RMS current through the top diode becomes:

Id1=
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(5.144)

Fig. 5.61 shows the RMS current It1 through the top (and bottom) transistors as a

function of the load angle, i.e. the current calculated by the expressions given by eq.

(5.139), (5.141) and (5.143). Similarly, Fig. 5.62 shows the RMS current Id1 through

the top (and bottom) diode as a function of the load angle, i.e. the current calculated

by eq. (5.140), (5.142) and (5.144). In both figures, the currents are shown for different

values of the modulation index M where the blue curve represents the lowest value of

the modulation index. To validate the closed form expressions, the transistor- and diode

current was derived from numerical simulations. These results are shown by the marks

in Fig. 5.61 and Fig. 5.62.

By use of the expressions for the RMS currents through the top (and bottom) transistor

and diode, the RMS current It3 through the center transistor can be calculated from

eq. (5.83). Fig. 5.63 shows the RMS current It3 through the center transistors as a

function of the load angle. Similarly, the current I ′d3 through the clamping diode can

be calculated by use of eq. (5.85). Fig. 5.64 shows the RMS current I ′d3 through the

clamping diode as a function of the load angle. In both figures, the currents are shown

for different values of the modulation indexM where the blue curve represents the lowest

modulation index.
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Figure 5.65: Per unit average current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.75].
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Figure 5.66: Per unit average current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.75].

Common mode voltage elimination modulation (CMPWM)

As the modulation scheme with common-mode voltage elimination only operates with six

active vectors and one zero vector, the derivation of the currents through the individual

switches becomes far more simple compared to the previously discussed modulation

strategies. Although the present modulation strategy in many aspects are very different

from the conventional methods, the relations given by eq. (5.80) - eq. (5.87) between

currents through the different switches are still valid and hence the only expressions to

be derived are those describing the currents through the top transistor T1 and top diode

D1. The average current It1,avg through the top transistor is given by:

It1,avg =

√
3M

√
2 (sin (|φ|) + cos (φ)π − cos (φ) |φ|)

6π
(5.145)

while the average current Id1,avg through the top diode is given by:

Id1,avg =

√
3M

√
2 (sin (|φ|) − cos (φ) |φ|)

6π
(5.146)

Like for the modulation schemes based on the conventional space vector approach, the

expressions in eq. (5.145) and eq. (5.146) are only valid when active power flows

from the DC-link and out of the inverter. For a power flow entering the inverter, the

expressions in eq. (5.145) and eq. (5.146) are to be exchanged. Fig. 5.65 shows the

average current It1,avg through the top transistor as a function of the load angle and

plotted for different modulation indexes. The continuous line represents the current

values calculated by eq. (5.145) while the values presented by marks are derived from

numerical simulations of the three-level inverter. Similarly, Fig. 5.66 shows the average

current through the top diode. Using the expressions given by eq. (5.80), (5.82), (5.84)

and (5.86) the average current through the remaining switches can be calculated. Fig.

5.67 shows the average current through the center transistor T3 when using the diode
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Figure 5.67: Per unit average current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.75].
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Figure 5.68: Per unit average current

through clamping diode as a function of

the load angle. M ∈ [0.15, 0.35 ...0.75].

clamped topology whereas Fig. 5.68 shows the average current through the clamping

diode D′
3. Considering the RMS current through the top transistor when using the

modulation scheme with common-mode voltage elimination, this is given by:

It1 =

√
2 4
√

3
√
M (cos (φ) + 1)2

3
√
π

(5.147)

whereas the RMS current through the top diode is given by:

Id1 =

√
2 4
√

3
√
M (cos (φ) − 1)2

√
3π

(5.148)

Using eq. (5.147) and eq. (5.148) to calculate the RMS currents, Fig. 5.69 and Fig.

5.70 shows the RMS currents through the top transistor and top diode as a function of

the load angle. The values plotted by marks are derived from a numerical simulation of

the three-level inverter and is used to validate the derived expressions. Similarly, Fig.

5.71 shows the RMS currents through the center transistor T3 of the diode clamped

topology. Fig. 5.72 shows the RMS current through the clamping diode D′
3

5.4.2 Switching losses

Assuming the switching devices of the NPC inverter to have linear current and voltage

turn-on and turn-off characteristics with respect to time and accounting only for the

fundamental component of the output current, the switching losses of the NPC inverter

can be analytically modeled for any given modulation strategy. The transistor and diode

switching losses per fundamental can be evaluated by:

Pt,sw =
1

2
VDC · Esw0,t(T ) · fsw · It,swavg (5.149)

Pd,sw =
1

2
VDC · Esw0,t(T ) · fsw · Id,swavg (5.150)
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Figure 5.69: Per unit RMS current

through top transistor as a function of the

load angle. M ∈ [0.15, 0.35 ...0.75].
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Figure 5.70: Per unit RMS current

through top diode as a function of the load

angle. M ∈ [0.15, 0.35 ...0.75].
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Figure 5.71: Per unit RMS current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.75].
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Figure 5.72: Per unit RMS current

through center transistor as a function of

the load angle. M ∈ [0.15, 0.35 ...0.75].

where Et,sw0 is the sum of the per unit VA transistor turn on and turn off switching

energy, Ed,sw0 is sum of the per unit VA diode turn on and turn off switching energy, VDC

is the DC-link voltage, fsw is the switching frequency, It,swavg is the average switched

transistor current and Id,swavg is the average switched diode current. The per unit VA

switching energies can either be found from data sheets or derived by the procedure

described in Appendix A. The average switched device current is given by:

Isw,avg =
1

2π

∫ 2π

0

ĩsw(θ)dθ (5.151)

where ĩsw(θ) is the switching current function The switching current function equals zero

in the intervals where modulation function for the considered component ceases, c.f. the

graphical illustrations of the modulation functions in section 5.3.4, and the absolute
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value of the corresponding phase current value elsewhere. To obtain a closed form

expression for the switching losses, the switching current function has to be evaluated

for the different modulation methods. However, it turns out that a common trade for

all the modulation methods is, that the average switched current of the center switches

has the following properties:

Id3,swavg = 0 (5.152)

It3,swavg = I ′t3,swavg = Id1,swavg (5.153)

I ′d3,swavg = It1,swavg (5.154)

where the indices refer to Fig. 5.24 on page 182. Hence the only exercise left is to derive

the switched current It1,swavg through the top transistor and Id1,swavg through the top

diode. As a final remark, it is important to note that all the derived expressions for the

average switched current are valid when active power flows out of the inverter. If active

power is entering the inverter, the expressions for transistor and diode switched current

have to be exchanged.

Space vector modulation method 1 (SVPWM1)

Evaluating eq. (5.151) for the space vector modulation method 1 (SVPWM1) it turns

out that the switching current function for both top transistor and top diode becomes

modulation index dependent as well as load angle dependent. If the modulation index

M is less than 1/
√

3 the average switched current through the top transistor becomes:

It1,swavg =


√
2

π
Ir |φ| ≤ π

6
√
2(sin(|φ|)+2+

√
3 cos(φ))

4π
Ir

π
6
< |φ| ≤ π

2

(5.155)

while the average current switched by the top diode becomes:

Id1,swavg =


√
2(2−

√
3 cos(φ))
2π

Ir |φ| ≤ π
6

√
2(2+sin(|φ|)−

√
3 cos(φ))

4π
Ir

π
6
< |φ| ≤ π

2

(5.156)

If the modulation index M is more than 1/
√

3 the average current switched by the top

transistor becomes:

It1,swavg =


√
2

π
Ir |φ| ≤ θ1

√
2(sin(θD+

π
3
−|φ|)+1)

2π
Ir θ1 < |φ| ≤ π

2

(5.157)

where the angle θ1 is give by eq. (5.88) and the angle θD is given by eq. (5.97). The

average current switched by the top diode when the modulation index is above 1/
√

3

can be calculated by:

Id1,swavg =


√
2(2−sin(θD+

π
3
−|φ|)−cos(π

6
−|φ|−θD))

2π
Ir |φ| ≤ θ1

√
2(1−cos(π

6
−|φ|−θD))

2π
Ir θ1 < |φ| ≤ π

2

(5.158)
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Figure 5.73: Average switched current

in top transistor when using SVPWM1.
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Figure 5.74: Average switched current

in top diode when using SVPWM1.

Fig. 5.73 shows the average current It1,swavg switched by the top transistor while Fig.

5.74 shows the current Id1,swavg switched by the top diode. The results represented by

marks are obtained from numerical simulation and validates the analytical expressions

for the average switched currents.

Space vector modulation method 2 (SVPWM2)

Using the space vector modulation method 2 (SVPWM2), the switchings of each device

are clamped during half of the fundamental period. This in turn results in a load angle

dependent switching current function while being independent of the modulation index.

The switching current function It1,swavg for the upper (and lower) transistors are given

by:

It1,swavg =

√
2

2

(
1 + cos(φ)

π

)
Ir (5.159)

while the switching current function Id1,swavg for the upper (and lower) diodes are given

by:

Id1,swavg =

√
2

2

(
1 − cos(φ)

π

)
Ir (5.160)

Fig. 5.75 shows the average current It1,swavg switched by the top transistor while Fig.

5.76 shows the current Id1,swavg switched by the top diode. The results represented by

marks are obtained from numerical simulation and validates the analytical expressions

for the average switched currents.

Asymmetrical shifted left flat top modulation (DPWM0)

Considering the asymmetrical shifted left flat top modulation (DPWM0) the average

switched current depends on both the modulation index and the load angle. If the mod-

ulation index is lower than 1/2, the average switched current through the top transistor
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Figure 5.75: Average switched current

in top transistor when using SVPWM2.
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Figure 5.76: Average switched current

in top diode when using SVPWM2.

can be calculated by:

It1,swavg =



√
2(

√
3 cos(φ)+sin(|φ|)−2)

4π
Ir −π

2
≤ φ ≤ 0

√
2(2−cos(φ)

√
3+sin(|φ|))

4π
Ir 0 < φ ≤ π

6
√
2 sin(|φ|)
2π

Ir
π
6
< φ ≤ π

2

(5.161)

while the switched current through the top diode can be calculated by:

Id1,swavg =


√
2
2π
Ir −π

2
≤ φ ≤ 0

√
2
2π
Ir 0 < φ ≤ π

6
√
2(cos(φ)

√
3+sin(|φ|))

4π
Ir

π
6
< φ ≤ π

2

(5.162)

If the modulation index is in the range between 1/2 and 1/
√

3, the switched current

through the top transistor can be derived as:

It1,swavg =



−√
3 cos(φ)−sin(|φ|)+2+2 cos(π

6
+θD+|φ|)+2 cos(π

6
−θD+|φ|)

2
√
2π

Ir −π
2
≤ φ ≤ 0

2 cos(π
6
−θD−|φ|)+2 sin(π

3
−θD+|φ|)+2−cos(φ)

√
3+sin(|φ|)

2
√
2π

Ir 0 < φ ≤ π
6

cos(π
6
−θD−|φ|)+sin(π

3
−θD+|φ|)+sin(|φ|)√

2π
Ir

π
6
< φ ≤ π

2

(5.163)

and the diode current as:

Id1,swavg =



1−cos(π
6
−θD+|φ|)−cos(π

6
+θD+|φ|)√

2π
Ir −π

2
≤ φ ≤ 0

1−sin(π
3
−θD+|φ|)−cos(π

6
−θD−|φ|)√

2π
Ir 0 < φ ≤ π

6

−2 sin(π
3
−θD+|φ|)+sin(|φ|)+cos(φ)

√
3−2 cos(π

6
−θD−|φ|)

2
√
2π

Ir
π
6
< φ ≤ π

2

(5.164)
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Figure 5.77: Average switched current

in top transistor when using DPWM0.
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Figure 5.78: Average switched current

in top diode when using DPWM0.

Finally, if the modulation index is above 1/
√

3, the switched transistor current It1,swavg

and switched diode current Id1,swavg can be calculated by:

It1,swavg =



−√
3 cos(φ)−sin(|φ|)+2+2 sin(π

3
+θD+|φ|)

2
√
2π

Ir −π
2
≤ φ ≤ 0

− cos(φ)√3+sin(|φ|)+2 sin(θD+
π
3
−|φ|)+2

2
√
2π

Ir 0 < φ ≤ π
6

sin(|φ|)+sin(θD+
π
3
−|φ|)√

2π
Ir

π
6
< φ ≤ π

2

(5.165)

Id1,swavg =


−−1+sin(π

3
+θD+|φ|)√
2π

Ir −π
2
≤ φ ≤ 0

−−1+sin(θD+
π
3
−|φ|)√

2π
Ir 0 < φ ≤ π

6

cos(φ)
√
3+sin(|φ|)−2 sin(θD+

π
3
−|φ|)

2
√
2π

Ir
π
6
< φ ≤ π

2

(5.166)

Fig. 5.77 shows the switched current through the top transistor when using the asym-

metrical shifted left flat top modulation (DPWM0) where the green curve is valid for

a modulation index below 1/2, the red curve represents the current switching func-

tion when the modulation index is 0.55 while the cyan and magenta curves represent

the switching current function for a modulation index of 0.75 and 0.95 respectively.

Similarly, Fig. 5.78 shows the switched current through the top diode when using the

asymmetrical shifted left flat top modulation (DPWM0). The marks in the figures rep-

resent results obtained from numerical simulations and are used to validate the derived

expressions.

Symmetrical flat top modulation (DPWM1)

Using the symmetrical flat top modulation (DPWM1) the average switched currents

have to be calculated for three different modulation index ranges. Whenever the modu-

lation index is lower than 1/2, the average switched current through the top transistor
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is given by:

It1,swavg =


1−cos(φ)√

2π
Ir |φ| ≤ π

3

√
3 sin(|φ|)−cos(φ)

2
√
2π

Ir
π
3
< |φ| ≤ π

2

(5.167)

while the average switched top diode current can be calculated by:

Id1,swavg =


√
2
2π
Ir |φ| ≤ π

3

cos(φ)+
√
3 sin(|φ|)

2
√
2π

Ir
π
3
< |φ| ≤ π

2

(5.168)

In case the modulation index is between 1/2 and 1/
√

3, the average switched current

through the top transistor can be calculated by:

It1,swavg =


−2 cos(φ)−cos(π

6
−θD+|φ|)−cos(π

6
−θD−|φ|)−1√

2π
Ir |φ| ≤ π

3

2 cos(π
6
−θD−|φ|)−3 cos(φ)+sin(|φ|)

√
3+2 cos(π

6
−θD+|φ|)

2
√
2π

Ir
π
3
< |φ| ≤ π

2

(5.169)

and for the top diode, the corresponding average switched current becomes:

Id1,swavg =


1−cos(π

6
−θD+|φ|)−cos(π

6
−θD−|φ|)+cos(φ)√

2π
Ir |φ| ≤ π

3

−2 cos(π
6
−θD−|φ|)+3 cos(φ)+sin(|φ|)

√
3−2 cos(π

6
−θD+|φ|)

2
√
2π

Ir
π
3
< |φ| ≤ π

2

(5.170)

Finally if the modulation index is above 1/
√

3, the average switched top transistor

current can be calculated by:

It1,swavg =


−2 cos(φ)+cos(π

6
−θD+|φ|)+sin(π

3
+θD+|φ|)+1√

2π
Ir |φ| ≤ π

3

−−2 sin(π
3
+θD+|φ|)+3 cos(φ)−

√
3 sin(|φ|)−2 cos(π

6
−θD+|φ|)

2
√
2π

Ir
π
3
< |φ| ≤ π

2

(5.171)

while the average switched top diode current can be calculated by:

Id1,swavg =


1−cos(π

6
−θD+|φ|)−sin(π

3
+θD+|φ|)+cos(φ)√

2π
Ir |φ| ≤ π

3

−2 sin(π
3
+θD+|φ|)+3 cos(φ)+

√
3 sin(|φ|)−2 cos(π

6
−θD+|φ|)

2
√
2π

Ir
π
3
< |φ| ≤ π

2

(5.172)

Fig. 5.79 shows the average current It1,swavg switched by the top transistor when using

the symmetrical flat top modulation method while Fig. 5.80 shows the current Id1,swavg

switched by the top diode. The results represented by marks are obtained from numerical

simulation and validates the analytical expressions for the average switched currents.

Asymmetrical shifted right flat top modulation (DPWM2)

As was the case for the asymmetrical shifted left flat top modulation, the average

switched current functions for the asymmetrical shifted right flat top modulation are

not symmetrically distributed across the considered load angle range. Actually the ex-

pressions for these asymmetrical modulation methods are very much equal although
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Figure 5.79: Average switched current

in top transistor when using DPWM1.
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Figure 5.80: Average switched current

in top diode when using DPWM1.

mirrored through a load angle of zero. As for the previously discussed modulation

methods, the average switched currents are modulation index independent as long as

the modulation index is below 1/2. In such case, the average switched top transistor

current becomes:

It1,swavg =



√
2 sin(|φ|)
2π

Ir −π
2
≤ φ ≤ −π

6

−
√
2(−2+cos(φ)

√
3−sin(|φ|))

4π
Ir −π

6
< φ ≤ 0

−
√
2(

√
3 cos(φ)+sin(|φ|)−2)

4π
Ir 0 < φ ≤ π

2

(5.173)

and the average switched top diode current becomes:

Id1,swavg =


√
2(cos(φ)

√
3+sin(|φ|))

4π
Ir −π

2
≤ φ ≤ −π

6
√
2
2π
Ir −π

6
< φ ≤ 0

√
2
2π
Ir 0 < φ ≤ π

2

(5.174)

When the modulation index exceeds 1/2, the average switched currents becomes mod-

ulation index dependent as the intersections from one sub-sector to another depends

on the modulation index. When the modulation index is between 1/2 and 1/
√

3 the

space vector are located in both sub-sector a and sub-sector c and since the switching

sequences within these sub-sectors are not equal the average switched current becomes

dependent of the modulation index. This modulation index dependency actually reflects

the intersection between sub-sector a and sub-sector c and is represented by the angle

θD, c.f. eq. (5.97). The average switched current through the top transistor can be
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Figure 5.81: Average switched current

in top transistor when using DPWM1.
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Figure 5.82: Average switched current

in top diode when using DPWM2.

derived as:

It1,swavg =



cos(π
6
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−θD+|φ|)+sin(|φ|)√
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(5.175)

while the average switched top diode current can be calculated by:

Id1,swavg =
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√
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(5.176)

In case the modulation index is above 1/
√

3 the average switched current through the

top transistor can be calculated by:

It1,swavg =
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2π
Ir −π
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(5.177)

while the average switched diode current through the top diode can be calculated by:

Id1,swavg =



cos(φ)
√
3+sin(|φ|)−2 sin(θD+
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2
√
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6

−−1+sin(θD+
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(5.178)



5.4. Loss evaluation 223

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Load angle [rad]

AVG switched current in top transistor (CMPWM)

Figure 5.83: Average switched current

in top transistor when using CMPWM.
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Figure 5.84: Average switched current

in top diode when using CMPWM.

Fig. 5.81 shows the switched current through the top transistor when using the asym-

metrical shifted right flat top modulation (DPWM2) where the green curve is valid

for a modulation index below 1/2, the red curve represents the current switching func-

tion when the modulation index is 0.55 while the cyan and magenta curves represent

the switching current function for a modulation index of 0.75 and 0.95 respectively.

Similarly, Fig. 5.82 shows the switched current through the top diode when using the

asymmetrical shifted right flat top modulation (DPWM2). The marks in the figures rep-

resent results obtained from numerical simulations and are used to validate the derived

expressions.

Common mode voltage elimination modulation (CMPWM)

Unlike the switched current functions for the other considered modulation methods, the

average switched current when using the common mode voltage elimination modulation

(CMPWM) becomes only load angle dependent while being independent of the modu-

lation index. Evaluating eq. (5.151) with respect to the switching sequences given by

Table VI gives the following average switched current for the top transistors.

It1,swavg =

√
2 (1 + cos (φ))

π
(5.179)

Similarly, the average switched current for the top diode becomes:

Id1,swavg =

√
2 (1 − cos (φ))

π
(5.180)

Fig. 5.83 shows the average current switched by the top transistor when the load angle

is between ±π
2

while Fig. 5.84 shows the averaged switched current through the top

diode.
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Figure 5.85: Illustration of the simple thermal model used to estimate switch

temperatures in the three-level inverter. a) Thermal model of a half bridge module.

b) Model of a thermal impedance Zth.

5.4.3 Thermal modeling

The thermal modeling of the switches for use in the three-level inverter is in many aspects

very similar to the modeling approach described for the two-level inverter. However as

the thermal model for the three-level inverter are based on some crucial assumptions -

assumptions not as present for the two-level inverter - the thermal modeling approach

for the switches in the three-level inverter will be discussed in the same details as was

the case in chapter 3.

The thermal modeling of the switches has two purposes:

1. To calculate the per fundamental average temperature in order to derive the correct

values for resistances and on-state voltage drops under the actual temperature

conditions2.

2Assuming the resistances and on-state voltage drops to be linear dependent on the component
temperature, this approach will generate the correct per fundamental power losses.
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2. To calculate the peak temperature within a fundamental period in order to validate

a certain converter design3.

Fig. 5.85a illustrates a simple one dimensional approach to calculate the junction tem-

perature of the semiconductor components in a three-level inverter leg module, where

the index notation of the power losses, e.g. Pt1, follows the notation in Fig. 5.24 on

page 182. The simple approach described by Fig. 5.85a relies on the assumption that

an inverter phase leg is realized in a single module4 mounted on a heatsink with suf-

ficiently high thermal capacitance to suppress temperature variations due power loss

variations within a fundamental cycle and with sufficient heat conducting properties

to suppress local hotspots on the heatsink due to the loss cycle within the individual

components.

Considering Fig. 5.85 each of the semiconductor power losses are modeled as a current

source feeding into a thermal impedance denoted by Zthxx. As illustrated in Fig. 5.85b,

the thermal impedances can be composed of one or more series connected RC-elements.

The temperature source k·Txx illustrates a thermal coupling between components having

current conduction in the same half period of a fundamental and finally the tempera-

ture source Tamb makes it possible to offset the temperature estimation by the ambient

temperature. Based on the thermal modeling approach in Fig. 5.85 the goal is to derive

a method which enables estimation of the average and peak junction temperatures, only

with information on the modulation dependent average semiconductor losses calculated

by the expressions derived in section 5.4 and the thermal parameters in Fig. 5.85.

Average temperatures

Neglecting the thermal coupling between the components in the half bridge module, the

average temperature of the individual components can simply be calculated by:

Ttx = Ptx ·
y∑

w=1

Rthxw,t+2·(Pt1+Pd1+Pt3+Pd3+P
′
d3)·(Rthch+Rthha)+Tamb (5.181)

Tdx = Pdx ·
y∑

w=1

Rthxw,d+2·(Pt1+Pd1+Pt3+Pd3+P
′
d3)·(Rthch+Rthha)+Tamb (5.182)

where Ttx is the average temperature of the considered transistor, Tdx is the average

temperature of the considered diode and Rthxx,x is the thermal resistances in the thermal

model as given in Fig. 5.85.

3Especially in the doubly-fed system, this seems to be a very important issue due to the low fun-
damental frequency of the rotor inverter. Due to the low frequency, very high temperature variations
within a fundamental period can be expected.

4This assumption is fictitious as no such module is available on the marked. However, since the
conventional half bridge module is very much optimized for use in the two-level inverter a similar
module should be developed for the inverter leg of the three-level inverter in order to obtain a fair
comparison.
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Figure 5.86: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using the

SVPWM1 modulation.
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Figure 5.87: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using the

SVPWM2 modulation.

Peak temperatures

During operation at low frequencies (fs < 10 − 20 Hz) the temporal variability of the

power losses within a fundamental causes similar junction temperature variations. As

the peak temperature during operation at very low frequencies may vary quite much

from the average temperature and since such temperature variations will have a very

high influence on the lifetime of the semiconductors5 it is important to be able to es-

timate the peak temperatures. As discussed in chapter 3 several approaches exist to

estimate the temperature within a semiconductor but in order to suit the goal for the

present calculation tool, the approach has to be very simple and only acquire knowledge

of the most fundamental component properties.

The approach considered in this context is based on the one-dimensional thermal model

illustrated in Fig. 5.85, and the approach is to model the losses as sinusoidal functions

with a DC-offset representing the average losses. By this approach, the thermal problem

is reduced from a complex numerical iteration task to simple scalar expressions. By the

present approach, the transistor losses p̃tx and diode losses p̃dx are estimated by:

p̃tx(t) = Ptx +
∞∑
n=1

(pt,an · cos (n · ωs · t) + pt,bn · sin (n · ωs · t)) (5.183)

p̃dx(t) = Pdx +
∞∑
n=1

(pd,an · cos (n · ωs · t) + pd,bn · sin (n · ωs · t)) (5.184)

5Thermal cycling and power cycling represents structural stresses on the different materials used to
built the module. These effects are crucial mechanisms when considering the life time of a module.
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Figure 5.88: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using the

DPWM1 modulation.
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Figure 5.89: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using the

DPWM0 modulation.
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Figure 5.90: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using the

DPWM2 modulation.
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Figure 5.91: Example of estimated (-)

and simulated (-) IGBT losses as a func-

tion of the modulation angle, using the

CMPWM modulation.

where the coefficients pt,an, pt,bn, pd,an and pd,bn are found from a Fourier analysis of the

actual transistor losses and diode losses. The actual transistor- and diode losses where

derived in section 5.4 and are given by:

ptx(θ) =
(
VDC · Esw0,t(T ) · fsw · ĩsw,t(θ)+SxA

(
Vt0(T ) · it(θ) +Rt · i2t (θ)

))
(5.185)

pdx(θ) =
(
VDC · Esw0,d(T ) · fsw · ĩsw,d(θ)+SxA

(
Vd0(T ) · id(θ) +Rd · i2d(θ)

))
(5.186)

Fig. 5.86 - Fig. 5.91 illustrates the present approach calculated for the top tran-

sistor T1 when applied on the six considered modulation strategies. The blue curves

show the real losses derived from a numerical simulation whereas the red curves show
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Figure 5.92: Example of calculated

(-) and simulated (*) peak power losses

as a function of the load angle, using the

SVPWM1 modulation.
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Figure 5.93: Example of calculated

(-) and simulated (*) peak power losses

as a function of the load angle, using the

SVPWM2 modulation.
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Figure 5.94: Example of calculated

(-) and simulated (*) peak power losses

as a function of the load angle, using the

DPWM1 modulation.

−1.5 −1 −0.5 0 0.5 1 1.5
1000

2000

3000

4000

5000

6000

7000

8000

Load angle φ [rad]

Peak loss [W]

Figure 5.95: Example of calculated

(-) and simulated (*) peak power losses

as a function of the load angle, using the

DPWM0 modulation.

the losses calculated from eq. (5.183) - eq. (5.186) when the number of harmonics n

is limited to 25. The different curves correspond to different modulation indexes. To

further demonstrate the strength of the present approach, Fig. 5.92 - Fig. 5.97 shows

the peak power losses in a transistor. The peak power losses are calculated as a function

of the load angle φ and shown for different values of the modulation index. The power

losses marked with (*) are simulated losses using a numerical simulation model while

peak powers calculated by the present approach are shown by solid lines.

Assuming that the thermal capacitance of the case to ambient structure of the semicon-

ductor module is sufficiently large to suppress temperature variations in the considered
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Figure 5.96: Example of calculated

(-) and simulated (*) peak power losses

as a function of the load angle, using the

DPWM2 modulation.
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Figure 5.97: Example of calculated (-)

and simulated (*) peak power losses as a

function of the load angle, using the CM-

PWM modulation.
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Figure 5.98: Example of calculated (-)

and simulated (*) IGBT junction temper-

atures as a function of the fundamental

frequency, using the SVPWM1 modula-

tion.

10
0

10
1

0

20

40

60

80

100

120

Fundamental frequency [Hz]

Peak temperature [°C]

Figure 5.99: Example of calculated (-)

and simulated (*) IGBT junction temper-

atures as a function of the fundamental

frequency, using the SVPWM2 modula-

tion.

frequency range, the peak junction temperature of the transistor and diode can be esti-

mated by:

T̃tx = Ttx+
∞∑
n=1

(
(pt,an ·cos (n·ωs ·t) + pt,bn ·sin (n·ωs · t))

y∑
w=1

Zthxw(n·ωs)

)
(5.187)

T̃dx = Tdx+
∞∑
n=1

(
(pd,an ·cos (n·ωs ·t) + pd,bn ·sin (n·ωs ·t))

y∑
w=1

Zthxw(n·ωs)

)
(5.188)

where Ttx and Tdx are the average component temperature calculated by the expressions
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Figure 5.100: Example of calculated

(-) and simulated (*) IGBT junction tem-

peratures as a function of the fundamental

frequency, using the DPWM1 modulation.
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Figure 5.101: Example of calculated

(-) and simulated (*) IGBT junction tem-

peratures as a function of the fundamental

frequency, using the DPWM0 modulation.
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Figure 5.102: Example of calculated

(-) and simulated (*) IGBT junction tem-

peratures as a function of the fundamental

frequency, using the DPWM2 modulation.
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Figure 5.103: Example of calculated

(-) and simulated (*) IGBT junction tem-

peratures as a function of the fundamental

frequency, using CMPWM modulation.

given in eq. (5.181) and eq. (5.182). Fig. 5.98 - Fig. 5.103 demonstrate the present

approach for calculating peak junction temperature. The junction temperatures are cal-

culated as a function of the fundamental frequency and shown for different values of the

modulation index. The temperatures marked with (*) are simulated temperatures using

the real loss distribution on a thermal model as shown in Fig. 5.85 while temperatures

calculated by the approach given in eq. (5.187) and eq. (5.188) are shown by unbroken

lines.

The thermal parameters used to exemplify the peak temperature estimation approach
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TABLE VIII: Thermal parameters used in the example of Fig. 5.98 - Fig. 5.103.

Symbol Value Unit Symbol Value Unit
Rthjc1,t 3.4 [K/kW] Cthjc1,t 107 [K/mWs]
Rthjc2,t 9.6 [K/kW] Cthjc2,t 18.8 [K/Ws]
Rthjc3,t 7.0 [K/kW] Cthjc3,t 5.7 [K/Ws]
Rthca 11 [K/kW] Cthca −− [K/Ws]

are listed in Table VIII.

5.4.4 Inductor power losses

In principle, the modeling of the inductor power losses for the three-level inverter is

equivalent to the modeling approach described in chapter 3 concerning the inductor

power losses for the two-level inverter although the design and hereby the loss coefficients

will differ. However, for completeness of the treatment of the back-to-back three-level

converter the loss-modeling is repeated. The inductor power losses PL are composed of

three loss components - copper losses, hysteresis losses and eddy current losses:

PL = Pcu + Phy + Ped (5.189)

where each of the loss components Pcu, Phy and Ped may be estimated as described

below.

Copper losses

The copper losses in the inductor are due to the effective resistance RL of the windings

and given by.

Pcu = 3RLI
2
L (5.190)

where the effective resistance is a function of the inductor design, the inductor temper-

ature and the frequency components of the inductor current. For a given load current

and a desired inductor value, Appendix B provides a detailed inductor design tool from

which the effective resistance RL of the inductor can be extracted.

Hysteresis losses

The empirical Steinmetz equation expresses the specific hysteresis loss as an exponential

function of the frequency f and the maximum flux density B̂c. Provided that the

magnetizing current is purely sinusoidal, the hysteresis loss can be expressed by:

Phy = ML · cm · fα · B̂β
c (5.191)

where ML is the weight of the core material cm, α and β are material property constants.

Despite, the formula in (5.191) is a well established expression for the hysteresis losses,
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manufactures of iron cores rather provide graphical presentation of the loss character-

istic than providing the material property constants. Appendix B provides a detailed

description on the extraction of the material property constants cm, α and β as well

as a design procedure for determining core material mass, given the nominal current

and the desired inductance value. The design values for the current and inductance are

discussed in section 5.5.2.

Eddy current losses

To account for the eddy current losses the empirical Steinmetz equation is used:

Ped = ML · σc · τ
12ρc

(
dB

dt

)2
(5.192)

where σc is the conductivity of the core material, τ is the thickness of the lamination

and ρc is the mass density of the iron. For a more detailed description on the modeling

of the inductor power losses, see Appendix B.

5.5 Design aspects

Although the modeling approach concerning component losses, described in the preced-

ing sections, in some sense has provided most of the equations for use in the converter

design it may be difficult to extract the essential parts and for that reason it may be

convenient to have some less complex design guidelines, at least for an initial design

approach. This section is aimed to provide such design guidelines for the components

in the back-to-back three-level voltage source converter. Having this rough converter

design, the loss- and temperature modeling approach described in the previous sections

of this chapter can then be used to evaluate whether the rough converter design complies

with the specified performance specification.

5.5.1 Design of switches

The aspects regarding the switch design describes some rough current rating estimations

based on the ideal generator model discussed on page 37 and the current loading of the

individual switches as calculated in section 5.4.1. Further, some rules of thumb regarding

choice of switch for a given DC-link voltage is provided. Regarding the latter aspect it

is important to note that the voltage design margin very much depend on the specific

power layout - especially the presence of stray inductances. As no switches are optimized

for use in the three-level inverter6 this aspect is very crucial for the three-level inverter

design and may de-rate the switch voltage rating.

6Regarding stray inductances, the half bridge modules very much favours the two-level inverter as
the voltage across the module can be clamped at the terminals of the module and hence the only stray
inductances to be concerned with are the well defined stray inductances within the module.
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Current ratings

As a fast but quite accurate estimation of the rotor current, the following expression

can be used:

|Ĩr| =

√
P̃ 2r + Q̃2r

3 ·Ngen · |s| · |V s|
(5.193)

where Ngen is the winding ratio between rotor and stator, Pr is the active rotor power,

Qr is the reactive rotor power, s is the slip7 and |V s| is the RMS stator phase voltage.

Neglecting the generator losses, the active power Pr to be handled by the back-to-back

three-level rotor inverter is given by:

P̃r =
s(ωgenTgen)

1 + s
(5.194)

where ωgen is the angular velocity of the generator shaft and Tgen is the torque applied on

the generator shaft. Further, the reactive power Q̃r to be handled by the rotor inverter

can be estimated by:

Q̃r = |s| ·
(
Q∗

s +
3|V s|2
ωsLm

)
(5.195)

where Q∗
s is the desired reactive power to be generated from the stator, and Lm is the

magnetizing inductance of the generator. Neglecting the converter losses, the power to

be handled by the grid side inverter equals the rotor power P̃r. Hence the grid inverter

current Ĩg3 can the be estimated by:

|Ĩg3| =

√
P̃ 2r + (Q∗

g3)
2

3 · |V g3|
(5.196)

where Q∗
g3 is the reactive power generated to the grid by the grid side inverter. As was

shown in Fig. 3.38 in chapter 3, these simple relations calculates the output current to

be handled with an inaccuracy of less than 5%. From the calculations of the current

through the individual switches in the 3-level inverter, c.f. section 5.4.1, it appeared that

for specific operation conditions, i.e. a specific power factor, a specific modulation index

and a specific modulation method, the individual switches in the three-level inverter

may be designed for different current ratings8. This is in particular interesting for the

grid side inverter which is operating at a high and nearly constant modulation index.

For the rotor side inverter, the situation is quite different as the entire modulation range

is to be used and the power factor is varying with the load conditions of the generator.

Hence, for the rotor side inverter it appears that all switches are loaded almost equally

7Please note that the definition of slip is positive for super synchronous speed - a definition contrary
to the definition normally used in text books concerning electrical machinery. The slip was defined in
eq. (2.16) on page 33.

8Alternatively, the loss balancing control method suggested in [2] although the control method is
applied at the expense of additional switches in the clamp circuit.
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and hence all the switches should have the same current ratings. Further, compared to

the two-level inverter, the currents through the switches in the three-level inverter is

somewhat comparable. However, since the switching losses of the individual switches in

the three-level inverter may be assumed to be less than for the two-level counterpart,

the switches for use in the three-level inverter may have 10-25% lower current ratings

than those selected for the two-level inverter. Finally, as was the case for the two-level

inverter, the current ratings of the switches in the back-to-back three-level converter

should be able to handle a bi-directional power flow and hence the diodes and transistors

have to be rated for almost the same current9.

Voltage ratings

In order to be able to control the generated power in a certain slip range, the rotor side

inverter has to be able to generate voltages higher than the voltage appearing on the

rotor terminal of the generator. Assuming an ideal generator, the voltage at the rotor

terminals of the generator can be approximated by:

|Ṽ r(s)| = s · |V s| ·Ngen (5.197)

Further to control the power flow to/from the grid, the grid side inverter has to be

capable of generating voltages higher than the grid voltage. The necessary grid inverter

phase voltage Vgc can be approximated by:

|Ṽ gc| = |V g3 + j · ωs · Lg · Ĩg3(ŝ)| (5.198)

where |V g3| is the transformer phase voltage at the grid side of the inverter and Ĩg3(ŝ)

is the grid current appearing at the maximum slip. Hence the DC-link voltage of the

back-to-back two-level voltage source converter has to obey the following constrains:

VDC > |ŝ| ·
√

6|V s| ·Ngen (5.199)

∧
VDC >

√
6|V g3 + j · ωs · Lg · Ĩg3(ŝ)| (5.200)

The grid side voltage |V g3| should be the maximum appearing value for which the tur-

bine is expected to be in normal operation, c.f. section 2.6.2.

The selection of a switch for a certain DC-link voltage has to incorporate some voltage

margin to cope with the transient voltage spikes occurring at each switching instant

due to stray inductances, both inside the switch and in the surrounding DC-link circuit.

This voltage design margin especially has to include the overvoltages arising from the

turn-off transients in case of short circuit failures. In Fig. 3.39 on page 76 typical

relations between maximum output inverter voltage and voltage ratings of an applicable

switch for the two-level inverter topology was shown. As a rough estimate, the switch

9In conventional drives and in wind turbines based on full-scale converters the power flow is normally
uni-directional and hence the current shear between transistor and diodes is unequal.
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Figure 5.104: Core designs. Losses vs. mass of the three-phase inductor plotted

for current densities between 1.5 - 8 A/mm2.

voltage ratings for the diode clamped inverter should be half the ratings in Fig. 3.39.

Considering the transistor clamped inverter, the voltage ratings for the two switches

connected to the upper and lower DC-link should be the same as for the two-level

counterpart.

5.5.2 Design of boost inductance

In order to be able to design the boost inductance, the necessary inductance value and

inductance current rating have to be found. Once having the desired inductance and

the current rating, the boost inductance can be designed in accordance with the proce-

dure described in Appendix B. Further, from the design procedure the loss parameters

necessary for the loss calculations can be derived.

Inductance value

In dynamic operation, i.e. when the rotational speed varies up to the maximum specified

slip ŝ, the grid inverter still has to be able to control the power to/from the DC-link.

From eq. (5.200) it appears that the maximum inductance value depends on the DC-link

voltage and the grid voltage. Rearranging eq. (5.200) the following constrain regarding

the boost inductance is obtained:

Lg ≤
−Q̂∗

g3 +

√
9| ˆ̃V gc|2| ˆ̃Ig3|2 − ˆ̃P 2r − 2 ˆ̃PrQ̂∗

g3

ωg| ˆ̃Ig3|2
(5.201)

where | ˆ̃Vgc| and | ˆ̃Ig3| are the maximum necessary grid inverter voltage and current given

by eq. (5.198) and eq. (5.196) respectively.
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Current rating

The current ratings of the boost inductance has to be designed for the current given by

eq. (5.196).

By use of the iterative design procedure described in Appendix B, it is possible to

design an inductor complying with the specifications. Fig. 5.104 shows an example

of the outcome of the present design procedure when using the SVPWM1 modulation

method10. In Fig. 5.104 the inductor losses are calculated for 7 different inductor

designs and shown as a function of the corresponding mass of the inductor design11

(0.1mH to 0.4mH stepped by 50µH). The calculations are repeated for different current

densities (1.5 A/mm2 to 8 A/mm2). The bold lines correspond to core designs where

the temperature is kept below the maximum allowable temperature while thin lines

correspond to designs which do not comply with the temperature specifications.

5.5.3 Design of DC-link

As was the case for the two-level converter the design of the DC-link for the three-level

converter is not a necessary task for the loss calculation approach. However, as it is a

general issue in the converter design and involves some non-trivial considerations, the

current loading for which the DC-link needs to be designed will be derived. As discussed

in section 3.5.3 when treating the DC-link design for the two-level converter the pres-

ence of the two active inverters feeding harmonic currents into the DC-link capacitors

make the DC-link design a little more complex than the DC-link design of conventional

uni-directional drives. Further due to the presence of the DC-link neutral connection,

the calculation of the DC-link current stress seems to be even more complicated than

for the two-level counterpart - at least from an initial point of view.

In general, the DC-link design include the following considerations [19]:

• Harmonic current ratings in steady-state operation.

• Peak-voltage suppression in case of a grid failure.

• Suppress the effect of a transient power mismatch between grid side inverter and

rotor side inverter.

In this context, only the design considerations regarding the steady state operation are

discussed. In the harmonic current calculation, the current definitions in Fig. 5.105 are

used.

10As the current ripple is taken into consideration in the core design procedure described in Appendix
B the calculated losses may slightly vary for different modulation methods.

11In the present example, the product of the inductance and the switching frequency is kept constant
at 2.0.
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Figure 5.105: Definition of the DC-link currents.

Current contribution from the three-level rotor side inverter

The current fed from the rotor side to the DC-link IDC,r can be calculated from the

switch states presented in section 5.3. Equation (5.202) below is valid for modulation

method SVPWM1 and partly written for sector 0a

IDCr =

√
1

2π

∫ π/3

0

(
1

2
δ1 · i2A +

1

2
δ2(−iC)2 + .....)d∆s (5.202)

where the duty-cycle functions δ1 and δ2 is given by eq. (5.6) - (5.9) when considering

the conventional modulation method and by eq. (5.15) when considering the modulation

method with common mode voltage elimination. Evaluating the current originating from

the rotor side inverter in the three-level inverter, it turns out that all the modulation

schemes based on the conventional space vector modulation approach generates the

same amount of DC-link current. The entire DC-link current IDC,r when considering

the conventional modulation schemes is given by:

IDCr = Ir

√
Mr

π
(1 + 4 cos2(φr)) (5.203)

whereas for the modulation method with common mode voltage elimination, the DC-link

current IDC,r is given by:

IDCr =
2

3

3
3
4

√
Mr

(
1 + (cos (φr))

2)
√
π

(5.204)

Fig. 5.106 shows the RMS DC-link current from the rotor side inverter as a function of

the load angle φr and the modulation index Mr when using the conventional modulation

methods. Similarly, Fig. 5.107 shows the RMS DC-link current from the rotor side

inverter as a function of the load angle φr and the modulation index Mr when using

the modulation method with common mode elimination. The DC-link current IDC,r

calculated by eq. (5.203) and eq. (5.204) can be considered as being composed of an

average value IDC,r= and a ripple current IDC,r̃ related by:

IDC,r =
√
I2DC,r= + I2DC,r̃ (5.205)

The average current IDC,r= fed from the rotor circuit to the DC-link is independent of

the modulation method and is given by:

IDC,r= =
6

2π

∫ π
3

0

(δ1 · iA + δ2(−iC))d∆s (5.206)
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Figure 5.106: The DC-link current

IDC,r (RMS) due to the switching oper-

ation of the rotor inverter when using the

conventional modulation methods.

−2
0

2

0

0.5

0

0.5

1

1.5

φ  [rad]M
r

I
DC,r

 [pu]

Figure 5.107: The DC-link current

IDC,r (RMS) due to the switching oper-

ation of the rotor inverter when using the

modulation method with common mode

elimination.

On a closed for, the average current IDC,r= becomes:

IDC,r= =

√
6

2
Mr · cos(φr) · Ir (5.207)

Since the current through the DC-link capacitors do not contain any DC-component,

the current through the capacitors can be derived from eq. (5.205). For the modulation

schemes based on the conventional modulation approach, the RMS-current through the

capacitors is given by:

IDC,r̃ =
1

2
Ir

√(
16

π
− 6Mr

)
Mr · cos(φr)2 +

4

π
Mr (5.208)

Considering the RMS current through the capacitors when using the modulation method

with common-mode voltage elimination the expression is given by:

IDC,r̃ = Ir

√
Mr

(
8
√

3
(
1 + cos (φr)

2)− 9Mrπ cos (φr)
2)

6π
(5.209)

Fig. 5.108 and Fig. 5.109 show the harmonic DC-link capacitor current originating from

the rotor side inverter as a function of the load angle φr and the modulation index Mr.

Current contribution from the three-level grid side inverter

The current contribution from the grid side inverter is derived similar to the derivation

of the current contribution from the rotor side inverter. The RMS capacitor current

originating from the grid side inverter when using the modulation schemes based on the

conventional space vector approach is given by:

IDC,g̃ =
1

2
Ig

√(
16

π
− 6Mg

)
Mg · cos2(φg) +

4

π
Mg (5.210)
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Figure 5.108: The DC-link capacitor

current IDC,r̃ (RMS) due to the switching

operation of the rotor inverter when using

the conventional modulation schemes.
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Figure 5.109: The DC-link capacitor

current IDC,r̃ (RMS) due to the switching

operation of the rotor inverter when us-

ing the modulation method with common

mode voltage elimination.

where φg is the angle between the grid inverter reference voltage and the grid current

and Mg is the modulation index of the grid side inverter. Using the modulation method

with common-mode voltage elimination, the RMS capacitor current originating from

the grid side inverter becomes:

IDC,g̃ = Ig

√
Mg

(
8
√

3
(
1 + cos (φg)

2)− 9Mgπ (cos (φg))
2)

6π
(5.211)

Current stresses on the DC-link capacitors

Although having the current contribution from both the grid side inverter and the rotor

side inverter, the current stress on the DC-link is still quite complex to derive. Actually,

in the general form, each harmonic component (h) of the grid- and rotor side inverter

has to be added vectorially. That is [33, 34]:

I2DC̃ =
∞∑
h=1

(IDC,g̃(h) + IDC,r̃(h))
2

=
∞∑
h=1

(I2DC,g̃(h) + I2DC,r̃(h) + 2 · IDC,g̃(h) · IDC,r̃(h) cos(θg(h) − θr(h)))(5.212)

where θg(h) and θr(h) is the angle of the individual harmonic. The angle of the

harmonics depend on the synchronization of the grid side modulator and rotor side

modulator. Clearly, the expression of the DC-link harmonic current, involving the need

for a harmonic analysis is of limited value in a rough DC-link design. However, with the

assumption that the grid side inverter and rotor side inverter are operated at different

switching frequencies and in addition, contains no common higher harmonics, the current



240 Chapter 5. The back-to-back three-level voltage source converter

0 5 10 15 20 25
0

0.5

1

1.5

2

Wind speed [m/s]

DC−link capacitor current [pu]

Figure 5.110: The current through the DC-link capacitors as a function of the

wind speed in a typical wind turbine application.

stress on the DC-link capacitors can be approximated by:

IDC̃ =
√
I2DC,g̃ + I2DC,r̃ (5.213)

From eq. (5.212) it appears that selecting the switching frequencies of the grid side

inverter and rotor side inverter with an integer multipla in difference and further syn-

chronizing the modulators the DC-link capacitor current may be reduced from the values

obtained by the expression in eq. (5.213). Fig. 5.110 shows an example of the DC-link

capacitor current as a function of the wind speed for a typical wind turbine applica-

tion. The blue curve shows the DC-link RMS current when using the conventional space

vector approach while the green curve shows the DC-link RMS current when using the

modulation scheme with common mode voltage elimination. Both curves are normalized

to the DC-link current in nominal operation when using the conventional modulation

method.

5.5.4 Modulation strategy and switching frequency

As it appeared from the evaluation of the harmonic distortion, c.f. section 5.3.6, the

modulation methods for the three-level inverter behave quite different and varies with

the modulation index. To obtain a fair comparison between the modulation methods

-including a comparison of modulation methods between different converters - one of

the evaluation parameters has to form a common basis for the comparison. Using the

harmonic performance as a comparison basis, the switching frequency of the different

modulation methods are to be adjusted for obtaining the same evaluation basis. Using

the suboptimal modulation method for the two-level inverter as the basis, the switching

frequency for the three-level inverter modulation schemes have to be adjusted according

to Fig. 5.111. Fig. 5.111 shows the switching frequency correction factor ksw,v as a

function of the modulation index M . Having the modulation index M0 for the nominal

working condition, the switching frequency correction factor for the different modulation
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Figure 5.111: The switching frequency correction factor normalized to the subop-

timal modulation method of the two-level voltage source inverter, c.f. section 3.3.3

on page 53.

methods can be polynomial-fitted. The switching correction factor for the SVPWM1

method can be approximated by:

ksw,v = 45.40M6
0−139.0M5

0+155.27M4
0−75.41M3

0+15.74M2
0−2.57M0+1.06 (5.214)

where M0 is the modulation index when operating in nominal conditions. Similarly,

switching correction factor for the SVPWM2 modulation method can be approximated

by:

ksw,v = 68.4M6
0−205.7M5

0+226.4M4
0−108.9M3

0+22.07M2
0−3.01M0+1.21 (5.215)

while the correction factor for the DPWM0 and DPWM2 method becomes:

ksw,v = 82.67M6
0−254.1M5

0+282.7M4
0−135.9M3

0+27.86M2
0−4.80M0+2.09 (5.216)

The correction factor for the DPWM1 method are approximated by:

ksw,v = 89.92M6
0−290.2M5

0+342.6M4
0−178.6M3

0+40.63M2
0−6.08M0+2.12 (5.217)

and finally, for the CMPWM, the switching frequency correction factor can be approx-

imated by:

ksw,v = −0.532M6
0−1.02M5

0+0.46M4
0−1.00M3

0+0.36M2
0−0.211M0+1.01 (5.218)

5.6 Model of the back-to-back three-level voltage

source converter

Input to the converter model are given, both from the generator side and from the grid

side, i.e. from the transformer. Input to the rotor side inverter are the rotor voltage,
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rotor current, load angle and frequency, all given by the generator modeling approach

described in section 2.4. Input to the grid side inverter are the grid voltage, i.e. the

voltage on the tertiary side of the transformer, c.f section 2.5, the grid frequency and

the desired reactive power generation from the grid side inverter. Based on these input,

the converter model has to output the resulting grid current supplied to the tertiary

transformer windings along with the converter losses and internal temperatures.

5.6.1 Converter losses

Depending on the chosen modulation method (can be selected differently for the grid

side inverter and the rotor side inverter), the total converter losses can be derived from

the equations given in section 5.4. The losses of the rotor side inverter, Pinv,r, is given

by:

Pinv,r = 6
(
Pcond,t1r + Pcond,d1r + Pcond,t3r + Pcond,d3r + P ′

cond,d3r+

Psw,t1r + Psw,d1r + Psw,t3r + Psw,d3r + P ′
sw,d3r

)
= 6
(
Vtr0(T ) · It1r,avg +Rtr(T ) · I2t1r + Vdr0(T ) · Id1r,avg +Rdr(T ) · I2d1r+

Vtr0(T ) · It3r,avg +Rtr(T ) · I2t3r + Vdr0(T ) · Id3r,avg +Rdr(T ) · I2d3r+ (5.219)

Vdr0(T ) · I ′d3r,avg +Rdr(T ) · I ′2d3r+
VDC

2
· fswr · (Esw0,tr(T ) · It1r,swavg + Esw0,dr(T ) · Id1r,swavg+

Esw0,tr(T ) · It3r,swavg + Esw0,dr(T ) · Id3r,swavg + Esw0,dr(T ) · I ′d3r,swavg

))
The current quantities in eq. (5.219) has to be evaluated according to the chosen modu-

lation strategy. The modulation method dependent expression for the current quantities

are derived in section 5.4.

Similarly, the grid side inverter losses may be evaluated:

Pinv,g = 6
(
Pcond,t1g + Pcond,d1g + Pcond,t3g + Pcond,d3g + P ′

cond,d3g+

Psw,t1g + Psw,d1g + Psw,t3g + Psw,d3g + P ′
sw,d3g

)
= 6
(
Vtg0(T ) · It1g,avg +Rtg(T ) · I2t1g + Vdg0(T ) · Id1g,avg +Rdg(T ) · I2d1g+

Vtg0(T ) · It3g,avg +Rtg(T ) · I2t3g + Vdg0(T ) · Id3g,avg +Rdg(T ) · I2d3g+ (5.220)

Vdg0(T ) · I ′d3g,avg +Rdg(T ) · I ′2d3g+
VDC

2
· fswg · (Esw0,tg(T ) · It1g,swavg + Esw0,dg(T ) · Id1g,swavg+

Esw0,tg(T ) · It3g,swavg + Esw0,dg(T ) · Id3g,swavg + Esw0,dg(T ) · I ′d3g,swavg

))
The grid inductor power losses PL are calculated according to eq. (5.189) on page 231.

5.6.2 Power transferred to the transformer

According to eq. (2.47) on page 39 input to the transformer modeling approach is the

grid inverter current Ig3, the stator current Is and the primary side voltage V g1. Hence,
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besides the converter losses, the only necessary output from the converter modeling is

the grid inverter current. The grid inverter current is given by:

Ig3 =
(Pr − (Pinv,r + Pinv,g + PL)) + j ·Q∗

g

3 · V g3

(5.221)

5.7 Summary

The aim of this chapter was to establish a foundation for a fair and direct comparison of

the three level voltage source inverter with the more matured two-level voltage source

inverter. Although an inverter with three-level properties can be realized by several

topologies, the chapter has focused on only two three-level inverter topologies, namely

the diode clamped three-level inverter and the transistor clamped three-level inverter.

The chapter was introduced by a brief survey on previous work, trends and focus ar-

eas in the field of three level inverters. However, as three-level inverters are relatively

unknown in wind turbine applications the survey covered activities within other tech-

nical areas. Then the basic working principles was discussed followed by a thorough

explanation of the modulation principles especially with focus on the space vector ap-

proach12. As the modulation schemes for the three-level inverters are not as matured

as the corresponding modulation schemes for the two-level inverter, a lot of efforts have

been dedicated to the development of modulation schemes comparable to the schemes

for the two-level counterpart. The developed modulation schemes included discontinu-

ous schemes [11] and schemes with complete common-mode voltage elimination [10]. As

the DC-link balance is a major issue for three-level inverters, all the developed schemes

included active DC-link balancing capabilities. As discussed in chapter 3 one criteria

for comparison is the harmonic distortion of the generated output voltage and hence the

discussed modulation schemes were evaluated with respect to this distortion. Further,

in order to use an RMS model for the purpose of comparing the different modulation

methods as well as the different topologies the inverter losses were to be calculated. This

involved derivation of analytical expressions for both RMS current and average current

through each individual component - expressions which turned out to be modulation

method dependent, load angle dependent as well as modulation index dependent. For

the purpose of including the switch temperature in the converter loss evaluation, ana-

lytical expressions for the average switch temperature has been derived. Further, due

to the fact that the rotor inverter in the doubly-fed system is operated at variable but

low frequencies the peak temperature deviate quite much from the average temperature.

Hence for the purpose of a fast validation of a certain converter design, some analytical

approximations for the peak temperature has been proposed. Finally, to be able to pre-

dimension the back-to-back three-level voltage source converter, some rules of thumb

regarding switch current ratings, switch voltage ratings, DC-link design and inductor

design has been presented.

12For completeness, the carrier based modulation functions of the considered modulation methods
were also derived.
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Chapter 6

The wind turbine comparison tool

D′rives

SO far all efforts have been dedicated to the derivation of suitable models describing

the individual wind turbine components. Although the purpose of the modeling ap-

proach was to obtain a fast and simple calculation tool, it turned out that the number

of equations and parameters involved are quite high. To obtain a usable calculation tool

it seems necessary to have a graphical interface providing a well-arranged overview of

the involved parameters and at the same time linking the right equations depending on

the chosen turbine configuration and control method. The purpose of this chapter is

to describe the simulation tool D′rives which is a simulation package with a graphical

user interface linking the turbine models derived in chapter 2-5. In many aspects the

functionality of D′rives is comparable to existing simulation tools such as MELCOSIM

[1, 2] and SEMISEL [3, 4] provided by Mitsubishi and Semikron respectively. However

MELCOSIM and SEMISEL both require converter loading conditions which require

time consuming and potential erroneously pre-calculations whereas D′rives calculates

all converter loading from the equations describing the surrounding components. Even

though the D′rives program takes into account all the main components of the wind

turbine, the simulation speed is still very high due to the explicit analytical expres-

sions for the component loadings and component losses. For instance, a simulation of

peak temperatures of the semiconductors in a converter design calculated for the entire

power/speed operating range has been reduced from a day-long simulation task into a

simulation time of few seconds.

As the D′rives is considered as a property of Vestas Wind Systems A/S, the program is

not publicly available and hence some aspects of the chapter may be of limited interest

for readers not employed by Vestas. Nevertheless, besides providing a ”Getting started”

manual, the chapter provides an overview on the flexibility and facilities in D′rives -

facilities used for the converter comparison in chapter 7.
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Figure 6.1: User interface of the wind turbine comparison tool.

6.1 Main user interface in D′rives

Fig. 6.1 shows the main user interface of the comparison tool ”D′rives”. Considering

the user interface, the left part concerns the main turbine characteristics, the center

part concerns the individual turbine components and the right part provides a graphical

representation of the obtained results.

6.1.1 Menu

The top menu contains the following items: File, Edit config, Tools, Simulation, Data

and Help. The content of the menu items are shown in Fig. 6.2. In the File menu the

following actions are available:

File‖New company: Create your own library for your own turbine models. A library

contains one ore more turbines (or turbine models). For instance, one library could

contain the Vestas turbine portfolio while another library could be created by a

user and used for investigation of customized turbines/future turbines. A library
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a)

d)

b)

e)

c)

f)

Figure 6.2: The content of the menu items. a) The File menu. b) The Edit config
menu. c) The Tools menu. d) The Simulation menu. e) The Data menu. f) The

Help menu.

can be password protected to avoid unauthorized editing. However the password

do not protect the library from being used by others or from being imported to

other users libraries.

File‖Load: Load a new turbine library. Be aware that libraries of other users may

be password protected preventing unauthorized editing in turbine models. The

load command actually performs the same action as obtained by selecting a new

company from the company popup menu, c.f. Fig 6.1.

File‖Import: The import function allows the user to import a turbine model from

another turbine library. This action is allowed despite the imported turbine model

is located in a password protected library.

File‖Save: The save function save the changes made to the main turbine, i.e changes

made from the main page shown in Fig. 6.1. All changes made in the user

interfaces for the individual components have to be saved from the individual

component user interfaces, c.f. section 6.2. Saving may require a password if

the current turbine library is password protected. The save action can also be

performed by pushing the save button.

File‖Save as: The ”save as” function save the changes made to the main turbine as

a new turbine into the current library. Only changes made from the main page

shown in Fig. 6.1 are saved whereas all changes made in the user interfaces for

the individual components have to be saved from the individual component user

interfaces. The saving action may require a password if the current turbine library

is password protected. The ”save as” action can also be performed by pushing the

button ”Save as”, c.f. Fig 6.1.
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File‖Protect: Allows the user to password protect the current library (company).

File‖Exit: Terminates the Drives program. If changes have been made without saving

the user is prompted for a saving action.

In the Edit config menu, the following actions are available:

Edit‖Wind specification: Opens the wind parameter specification dialog. This ac-

tion corresponds to the action obtained by pushing the parameter button in the

wind specification box and will be discussed further in section 6.2.1.

Edit‖Rotor specification: Opens the rotor parameter specification dialog. This ac-

tion corresponds to the action obtained by pushing the parameter button in the

rotor specification box and will be discussed further in section 6.2.2.

Edit‖Gear specification: Opens the gear parameter specification dialog. This action

corresponds to the action obtained by pushing the parameter button in the gear

specification box and will be discussed further in section 6.2.3.

Edit‖Converter specification: Opens the converter parameter specification dialog.

This action corresponds to the action obtained by pushing the parameter button

in the converter specification box and will be discussed further in section 6.2.6.

Edit‖Generator specification: Opens the generator parameter specification dialog.

This action corresponds to the action obtained by pushing the parameter button

in the generator specification box and will be discussed further in section 6.2.4.

Edit‖Transformer specification: Opens the transformer parameter specification di-

alog. This action corresponds to the action obtained by pushing the parameter

button in the transformer specification box and will be discussed further in section

6.2.5.

In the Tools menu, the following actions are available:

Tools‖Annual wind regime: In this mode, the simulation programme performs a

sweep for the specified wind speed range and calculates the loading on the indi-

vidual components. This mode allows calculation of annual energy production.

Tools‖Thermal limits: In this mode the specified wind speed range is disregarded and

the simulation program performs a sweep within the specified speed range and then

determines the power capability of the considered component. The speed range is

determined by the minimum allowed tip speed and the maximum allowed tip speed.

In fact this mode can be used to calculate the power limits of the turbine due to

e.g. the converter design and hence determining the safety margin of the actual

design. Actually, as shown in Fig. 6.2b, the power capability determined by any

of the main components can be calculated, although the validity of the obtained

results are dependent on the thermal model of the considered component. During
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simulations of the power capability determined by one of the main components,

the simulator suggests that all other models are calculated without considering

the thermal calculations. This suggestion is due to the fact that challenging one

components power capability in the entire speed range may very well force other

components to be operated in a range where their thermal model is no longer

valid, i.e. corresponding to a physical break down of the component.

In the Simulation menu, the following actions are available:

Simulation‖Calculate: This action starts the calculation. This action can also be

activated by pushing the calculation button.

Simulation‖Run sequence: This action allows a sequential calculation of different

designs and/or different operation conditions. The sequences to be calculated are

loaded from a text file. Before entering a sequential calculation, the results to be

shown in the graphical part has to be chosen. Once a sequence has been run any

change in the graphical interface will only display the result from the last run in

the sequence.

Simulation‖Simulation control: This action opens a dialog enabling the user to

modify the aggressiveness of the solver and to set the acceptable tolerance on

the simulation result. This may speed up/slow down the simulation time. This

action can also be used in cases where the actual simulation seems troublesome

for the solver. Besides tolerances, the simulation control dialog is used to limit

the number of iterations and/or the limit the maximum allowed simulation time.

Further, the number of data to be exported along with the data format is con-

trolled from this dialog box. Finally, the filenames used for error log file, default

export data file and net list file is specified from the Simulation control dialog.

Simulation‖Generate report: The generate report action creates a net list of the

parameters and configurations used in the last simulation. This net list can be

used for later reference. The file name for the net list is specified in the simulation

control dialog, c.f. item above.

In the Data menu, the following actions are available:

Data‖Export data in plot 1: Exports the content of plot #1 to a fixed space de-

limited text file. The number of data and the data format are specified in the

simulation control dialog. The first column of the text file contains the x-axis

data whereas the remaining columns contains the y-axis data. The export data

action will prompt the user for a filename to be used. The default appearing

filename is specified in the simulation control dialog. If the data to be exported

are distinct, i.e. the x-data are in an increasing order, the data are curve fitted

in order to obtain an equal spacing between the exported data. For non-distinct

data the export function picks out the necessary number of data.
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Data‖Export data in plot 2: Exports the content of plot #2 to a fixed space de-

limited text file. The number of data and the data format are specified in the

simulation control dialog. The first column of the text file contains the x-axis

data whereas the remaining columns contains the y-axis data. The export data

action will prompt the user for a filename to be used. The default appearing

filename is specified in the simulation control dialog. If the data to be exported

are distinct, i.e. the x-data are in an increasing order, the data are curve fitted

in order to obtain an equal spacing between the exported data. For non-distinct

data the export function picks out the necessary number of data.

Data‖Export plot 1 to new figure: Opens a new external figure and reprints the

content of plot #1 into this figure. The new figure contains a legend explaining

the different plots.

Data‖Export plot 2 to new figure: Opens a new external figure and reprints the

content of plot #2 into this figure. The new figure contains a legend explaining

the different plots.

Data‖Export plot 1 to active figure: If a figure is open this action reprints the con-

tent of plot #1 into this figure. If more figures are open, the last activated figure

will receive the data from plot #1. If no figure is open, this action correspond to

the ”Data—Export plot 1 to new figure” action.

Data‖Export plot 2 to active figure: If a figure is open this action reprints the con-

tent of plot #2 into this figure. If more figures are open, the last activated figure

will receive the data from plot #2. If no figure is open, this action correspond to

the ”Data—Export plot 2 to new figure” action.

In the Help menu, the following actions are available:

Help‖D′rives help: Provides a functional description of the D′rives programme. The

description corresponds to the content of this chapter.

Help‖About D′rives: Displays the actual version of the programme D′rives.

6.1.2 Main turbine specification

The main turbine specification area (left part of the main user interface) allows the user

to change the main characteristics of the considered wind turbine including change of

generator1- and converter topology, connection condition such as voltage level, nominal

active and reactive power production. Further, the main turbine specification includes

control parameters such as cut-in and cut-out wind speed, maximum and minimum

tip speed, including noise limiting operating conditions and Y-∆ connection control of

1Since only the doubly-fed induction generator is treated in this report, this description will not
contain the remaining generator topologies.
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the generator. Finally, the main turbine specification includes change of parameters

impacting on the availability of the turbine and specification of the auxiliary power

consumption. The auxiliary power consumption includes several auxiliary components

with separate specification of their operation condition dependent power consumption.

Generator config.: The program support the following generator topologies, doubly-

fed induction generator, induction generator, synchronous generator, permanent

synchronous generator and variable rotor resistor induction generator. The mod-

eling of the generator is described in section 2.4.

Converter config.: The program supports the following converter topologies: 2-level

back-to-back voltage source converter, three-level back-to-back voltage source con-

verter, matrix converter, 2-level voltage source converter with passive generator

side inverter, 2-level voltage source converter with passive grid side inverter and

without any power converter. The modeling of the power converter is described

in chapter 3 - chapter 5.

6.2 Model of the wind turbine components

In the center part of the main user interface, the main components of the turbine can

be changed and parameters of the existing models can be modified. At this stage it is

important to note that any change made within the parameters describing the individual

main components will affect all turbines using the particular component. If a parameter

change is only to affect one single turbine, the component for which the parameters were

changed has to be saved as a new component and then to be included in the particular

turbine.

6.2.1 Wind parameters

Entering the dialog box for the wind conditions allows the user to modify the wind

distribution. More specific the dialog allows specification of the parameters a and c

in the Weibull distribution, c.f. eq. (2.4) on page 25. The programme includes four

standard annual wind distributions ”IEC class I” - ”IEC class IV” having the parameters

given i Table I on page 26.

6.2.2 Blade parameters

The popup menu in the rotor specification box allows the user to select among the avail-

able blade designs by pushing the popup menu. Entering the blade parameter wizard

by pushing the parameter button provides a graphical view of the power performance

profile of the selected blade. Alternatively, the user can specify a user defined power

performance profile versus tip speed ratio and indicate whether the profile is pitchable.

The blade specification dialog is shown in Fig. 6.3.
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Figure 6.3: Rotor parameter wizard.

6.2.3 Gear parameters

From the main menu, the choice of gear type can be altered by pushing the popup menu

in the gear parameter box. This action allows the user to select a gear type from a list

of available gear boxes. Modification of gear parameters or establishment of a new gear

model are to be done from the gear box parameter wizard. The gear box parameter

wizard is entered by pushing the parameter button in the gear specification box or al-

ternatively from the menu ”Edit config‖Gear specification”. The gear box parameter

wizard is shown in Fig. 6.4. In the gear box parameter wizard the user can choose

another gear box from the list, change the gear ratio and select an appropriate gear loss

model. Actually, the user can opt to use the standard equation given by eq. 2.9 on page

29, make use of a look up table or alternatively make use of a self made model, provided

that this model respect the required input and output interface.
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Figure 6.4: Gear box parameter wizard.

Enabling the gear box model to include thermal effects, the model based on the standard

loss equation simply uses a one dimensional thermal model where the thermal resistance

is calculated from the gear losses at nominal operating conditions and the correspond-

ing temperature rice. The parameter ”Max oil temp” is used to specify the maximum

allowed gear oil temperature and a simulation of conditions where this temperature is

exceeded will generate a warning to the user.

On exit the user can choose to save the changes to the existing gear type by pushing

the ”save” button. This action will overwrite existing data for the particular gear

type without any notification. Alternatively the user can choose to push the ”Save as”

button. By this action, the user will be prompted for a name for the new gear box

whereupon the gear box model is added to the working library. It should be noted that
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Figure 6.5: Generator parameter wizard for the DFIG.

if the current working library is password protected, the save and save as action is not

possible. Pushing the ”OK” button generates a temporary gear box model (prototype

model) which will be used for the next simulation. It must be noted that any action in

the main menu forcing the simulator to reload gear data will overwrite this temporary

file with the gear data store in the working library. Such actions include change of

company, change of turbine, change of gear type and entrance of the gear box wizard.

Pushing the ”OK” button automatically closes the gear box wizard.

6.2.4 Generator parameters

From the main user interface, the user can select a new generator from the list in the

popup menu whereas change of generator parameters or registration of a new generator

is to be done by entering the generator parameter wizard. The generator parameter

wizard for the doubly-fed induction generator is shown in Fig. 6.5. The generator pa-

rameter wizard for the doubly-fed induction generator is divided into four main groups,

one group relating to the electrical model of the generator, another group relating the

mechanical modeling a third group relating to the slip rings and finally a group where

additional power losses of the generator can be entered.

In the group ”Electrical parameters” all parameters relating to the equations in sec-
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tion 2.4 on page 30 are to be entered. The check box ”Include rotor skin effects” forces

the simulator to take eq. (2.32) on page 35 into account whereas the check box ”In-

clude saturation” varies the magnetizing inductance in accordance with the calculated

magnetizing current. Applying the thermal calculations of the stator and rotor temper-

ature by checking the ”Include thermal effects”, the simulator makes use of the simple

one-dimensional approach given by eq. (2.33) and eq. (2.34) on page 36. The thermal

impedances αs and αr are derived from the temperature rice in stator and rotor at nom-

inal conditions. Specifying a maximum allowed temperature for the stator- and rotor

winding will generate a warning message if a simulated condition generates a tempera-

ture exceeding the specified values.

In the group ”Mechanical parameters” the parameters describing the rotational losses

are to be entered. Two approaches are available, either the use of the standard equation

for the rotational losses given by eq. (2.12) on page 31 or an approach based on a

simple look up table. Applying the thermal calculation by checking the ”Include ther-

mal effects” the bearing temperatures are calculated. The calculations of the bearing

temperatures are based on the same simple one-dimensional model as described for the

calculation of winding temperatures and uses the temperature rice at nominal conditions

to determine the thermal impedance of the bearings.

The third box ”Slip rings” include the parameters determining the voltage drop and

power losses of the slip rings.

Since generators in this size typically requires internal and/or external cooling means,

the forth group ”Additional losses” can be used to enter power losses related to such

cooling means. The additional losses are based on a two dimensional look-up table

using the generated power to determine the additional losses. It could be argued that

since the additional losses may be used to describe the ventilation losses of an internal

cooling fan the look-up table should be three-dimensional where the third dimension

should represent the rotational speed of the generator. In the present approach, these

additional ventilation losses are to be added in the mechanical parameters describing

the rotational losses.

On exit the user can choose to save the changes to the present generator type by pushing

the ”save” button hereby overwriting existing data or alternatively save the changes to

a new generator type. The latter action will add a new generator type to the list

of available generator types in the actual company library. The ”save as” action will

prompt the user for a name for the new generator. In case the working library is password

protected, the save and save as buttons are not available. Omitting the ”save” and

”save as” and simply just pushing the ”OK” button on exit will generate a temporary

file for the generator model. This temporary file is used in the simulations as long as no

action forces the simulator to reload generator data. Such actions include change/reload
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Figure 6.6: Transformer parameter wizard.

of company and turbine, change of generator and generator configuration and finally

entrance of the generator wizard.

6.2.5 Transformer parameters

In the transformer specification box, the user can select any of the transformers appear-

ing in the transformer popup menu. If changing the type of transformer, it is important

to note that the transformer terminal voltages should match the HV-voltage setting,

the generator stator voltage setting and the converter voltage setting. Any mismatch

between the HV voltage settings in the left part of the main user interface and the pri-

mary voltage settings for the transformer will produce simulation results representing a

steady state over- or under voltage situation. Entering the transformer parameter wiz-

ard, the user interface shown in Fig. 6.6 appears. As discussed in chapter 2 the model

of the transformer is based on the equivalent circuit in Fig. 2.16 on page 38 and requires

parameters such as inductances and resistances. However typical data sheets for trans-

formers implies short circuit conditions and no-load conditions rather than equivalent

circuit parameters. Hence the transformer parameter wizard prompt for such data and

then subsequently calculates the equivalent circuit parameters from these inputs. Re-

garding the resistances to be entered it is important to note that all values are physical

per phase values measured at the considered tap, i.e. no transformation from one side

to the other is needed.

On exit the user can choose to save changes to the existing transformer type by pushing
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the ”save” button. This action will overwrite existing data for the particular transformer

type without any notification. Alternatively the user can choose to push the ”Save as”

button. By this action, the user will be prompted for a name for the new transformer

type whereupon the transformer type is added to the working library. Pushing the

”OK” button generates a temporary transformer model (prototype model) which will

be used for the next simulation. It must be noted that any action in the main menu

forcing the simulator to reload transformer data will overwrite this temporary file with

transformer data stored in the working library. Such actions include change of company,

change of turbine, change of transformer type and entrance of the transformer parameter

wizard. Pushing the ”OK” button automatically closes the parameter wizard for the

transformer.

6.2.6 Converter parameters

The actual converter wizard appearing when pressing the parameter button in the con-

verter specification box depend on the converter topology chosen in the left part of the

main user interface. In the succeeding sections follow a description of the parameter wiz-

ards applicable for the topologies treated in this thesis, i.e. the back-to-back two-level

converter, the matrix converter and the back-to-back three-level converter. The latter

incorporates both the diode-clamped topology and the transistor clamped topology.

Parameters for back-to-back two-level voltage source converter

The parameter wizard for the back-to-back two-level voltage source converter is shown

in Fig. 6.7. Besides some general settings such as DC-ink voltage, DC-link voltage

control and choice of method for the thermal calculations, the wizard for the back-

to-back two-level converter is divided into a grid inverter part (upper left part of the

user interface), a generator inverter part (lower left part of the user interface), a grid

inductor part (upper right part) and a rotor inductor part (lower right part). The user

interface for the two inverters are identical and allows the user to specify switching

frequency, modulation method, semiconductor component and/or semiconductor com-

ponent characteristics along with the thermal characteristics hereof. In the present

version of D′rives, only the thermal resistances are available for modification whereas

the data determining the transient thermal characteristics are to be read from the data

file containing the semiconductor characteristics.

In the right part of the user interface, it is possible to specify a grid side and a rotor side

inductor. The thermal modeling of the inductors are based on a simple one-dimension

approach using the nominal losses and temperature rice to calculate an equivalent ther-

mal impedance of the inductors.

Besides the transient thermal characteristics of the semiconductors, the user interface

illustrated in Fig. 6.7 contains all the information needed for the modeling approach
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Figure 6.7: Back-to-back two-level voltage source converter wizard.

described in chapter 3.

On exit, the user can choose to save modifications in the existing converter identification

name by pushing the ”save” button thereby overwriting existing data without further

notification. It should be noted that any changes saved by the save-action applies to all

turbines in the present working library using the particular converter type. Alternatively

the user can create a new converter type by pushing the ”save as” button. This action

adds a new two-level converter topology to the list of available converters in the active

company directory. By this action, the changes only affects the present turbine while

other turbine types are unaffected by the changes. Pushing the ”OK” button closes the

back-to-back two-level converter wizard. This action, without previous save- or save-as

action, generates a temporary converter design file which will be used in the further

simulations until the simulator is forced to reload converter data. The following actions

force the simulator to reload converter data: Change of company library, change of

turbine, change (or reload) of converter topology, change (or reload) of converter type

and opening of the converter wizard. On opening of the converter wizard, the temporary

converter data is lost and the data presented in the user interface corresponds to the

last-saved data for the particular converter type within the working library.
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Figure 6.8: Matrix converter wizard.

Parameters for matrix converter

Selecting the matrix converter from the list of available converter topologies in the left

part of the main user interface, c.f. Fig. 6.1, the parameter wizard in Fig. 6.8 will appear

when pushing the parameter button on the converter specification field. The parameter

wizard for the matrix converter is divided in four parts. The left concerns main data such

as modulation method, switching frequency and input filter type, whereas the upper cen-

ter part concerns switch characteristics such as number of parallel switches, switch type

and switch type characteristics. Regarding the number of parallel components it should

be noted that a bi-directional switch realized from a standard H-bridge as discussed in

section 4.2.3 on page 93 inherently will imply two parallel components. Further the pa-

rameter wizard only allows the user to modify the static thermal characteristics of the

semiconductors whereas the parameters determining the transient thermal behaviour

are loaded directly from the data file containing the switch data. Changing or reloading

the switch type by pushing the switch type-popup menu will overwrite any switch data

modified by the user.

The lower center part concerns the input filter. Depending of the chosen number of

filter stages the user has to enter filter parameters for one or two LCR circuits including
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the resistance of the inductor(s). Changes of the filter parameters are immediately re-

flected in the transfer function depicted in the plot window and given by eq. (4.115) on

page 137. Along with the electrical filter parameters it is possible to enter the thermal

characteristics for the inductor(s) in the input filter. The thermal approach is simply

based on a steady-state one dimensional approach using nominal losses and nominal

temperature rise. The right part of the matrix converter wizard is dedicated for the

generator side inductor (if any).

Besides the transient thermal characteristics of the semiconductors, the user interface

illustrated in Fig. 6.8 contains all the information needed for the modeling approach

described in chapter 4.

As for all the previously discussed parameter wizards the user has three possibilities

when leaving the parameter wizard for the matrix converter. Either use the ”save”

button, the ”save as” button or the ”OK” button. The ”save” action overwrites existing

parameters for the particular matrix converter type without any notification whereas the

”save as”action adds a new converter type to the list of available matrix converters in

the working library. Pushing the ”save as” button, the user will be prompted for a new

converter type name. The ”OK” button closes the matrix converter parameter wizard

and saves any changes made to a temporary converter file which are used in simulations

as long as the simulator is not forced to reload converter data. Actions forcing the

simulator to reload converter data include change/reload of company, change/reload of

turbine type, change/reload of converter topology, change/reload of converter type and

finally entrance to the converter parameter wizard.

Parameters for back-to-back three-level voltage source converter

The parameter wizard for the three-level converter topology - valid for both the diode-

clamped and the transistor-clamped topology - is shown in Fig. 6.9. The left part of

the parameter wizard is a static part containing data such as DC-link-voltage, DC-link

voltage control, choice of thermal calculation method and type of three-level converter

topology (diode-clamped or transistor clamped). The fields to the right of the static part

contain inverter parameters. However, due to the high number of parameters involved

(compared to the previously discussed converter topologies) the parameter wizard for the

back-to-back three-level converter is split into two parts where only one part is visible at

the time. One part concerns the grid side inverter and one concerns the generator side

inverter. To change between viewing grid inverter parameters and generator inverter

parameters, the two upper radiobuttons in the main part is used.

The structure for the grid inverter wizard and the generator inverter wizard is com-

pletely identical and contains a section describing characteristics for the upper (and

lower) switches, a section for the center switches and finally a part containing data for

the clamping diodes. It should be noted that in the present version of D′rives only

the static thermal characteristics can be modified from the user interface whereas the
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Figure 6.9: Back-to-back three-level voltage source converter wizard.

data determining the transient thermal behaviour are to be modified in the data file

containing the switch data.

Tabulating between the grid inverter page and the generator inverter page saves data

from the closing page into a temporary file. On re-entrance these data are reloaded

into the user interface. On exit the user can choose to save changes to the existing

back-to-back three-level converter type by pushing the ”save” button. This action will

overwrite existing data for the particular converter type, both data from the grid side

inverter and the generator side inverter. Data are overwritten without any notification.

Alternatively the user can choose to push the ”Save as” button. By this action, the user

will be prompted for a name for the new back-to-back three-level converter whereupon

the converter type is added to the working library. Pushing the ”OK” button generates

a temporary converter type (prototype model) which will be used for the next simu-

lations. It must be noted that any action in the main menu forcing the simulator to

reload converter data will overwrite this temporary file with converter data store in the

working library. Such actions include change of company, change of turbine, change of

converter topology/type and entrance of the converter parameter wizard. Pushing the

”OK” button automatically closes the parameter wizard for the back-to-back three-level
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converter.

6.3 Data representation

Returning to the main page, c.f. Fig. 6.1, the right part is dedicated to presentation

of simulation results and contains two identical plot areas. In each plot area, the user

can plot almost any internal simulation variables against another, simply by use of the

popup menus below the plot windows. Checking the check box ”Freeze” allows the user

to plot several variables in the same plot. However, a change of the x-axis variable will

reset the current plot. Data can be exported to external figures by use of the buttons

”Plot” and ”Plot new fig.”. Using the ”Plot” button plots the current content of the

plot window in the last activated external figure (if any). If no external figure is present,

a new external figure is created and data is exported to this figure. The ”Plot new fig.”

creates a new external figure and exports data into this figure. The ”Clear” button

simply deletes the content of the current plot window.

6.4 Summary

This chapter has provided an introduction to the wind turbine simulation tool D′rives
or at least to that part of the tool concerning the models described in this thesis. In

summary, D′rives is a package with a graphical interface linking all the modeling ap-

proaches described throughout this report in a user-friendly and well-arranged manner.

The simulation tool provides easy access for changing the topology configuration and

change of main characteristics such as power-speed curve, star-delta connection and ac-

tive/reactive power generation. Further, each of the main components, i.e. blades, gear

box, generator, converter and transformer have a separate page allowing change of all

the parameters involved in the modeling approaches described in chapter 2 - chapter5.

The representation of simulation results is very flexible as most internal simulation vari-

ables can be plotted against each other. As a final remark, it should be noted that due

to the explicit analytical expressions for component currents and component losses, the

simulation speed of the D′rives program is extremely high. For instance, a simulation of

peak temperatures of the semiconductors in a converter design calculated for the entire

power/speed operating range has been reduced from a day-long simulation task into a

simulation time of about 2 seconds.
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Chapter 7

Topology comparison

AS discussed previously, the result of a comparison between different converter

topologies may vary depending on the specific application. To handle this un-

certainty, the main components of the wind turbine were modeled throughout chapter

2. However, even for a specific application such as the wind turbine application equipped

with a doubly-fed induction generator, the result may vary depending on the choice of

the surrounding components, e.g. generator voltage level, gear ratio, choice of semicon-

ductor component etc. Hence this chapter will not end up by recommending a specific

converter topology but rather demonstrate the functionality of the program D′rives link-

ing all the modeling approaches described in this thesis.

In this chapter, the four converter topologies discussed until now will be designed for a

2 MW wind turbine and compared in a wind turbine application. The chapter begins

with a specification example for a 2 MW turbine, defining the main characteristics of the

interfacing components. Based on this specification, an initial design of the considered

converters are carried out using the design guidelines presented throughout the thesis.

Each of the designs are validated by calculating the turbine power limits set by the

actual converter design and the limiting components are identified within the considered

speed range. Finally, the four converters are compared in terms of power losses, system

efficiency, power capability, component count and switch utilization.

7.1 Turbine specification - an example

For the present design example, the surrounding turbine components, i.e. blades, gear

box, generator and transformer will be selected without entering a discussion on the

actual choices. Further, although the reader - based on the content of chapter 2 - could

expect a detailed presentation of the loss models used in the considered design example,

such a presentation is omitted. The reason for this omission is, that most of the specific

material related to the modeling of component losses are to be considered as confidential

information. Accordingly, the loss modeling which could be presented in this chapter

would have to be normalized and hence it would not contain further details than already

presented in chapter 2. Nevertheless, the calculations of system power capability, energy
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Figure 7.2: Power speed curve for the

turbine designs.

production etc. include the power losses generated by the individual components.

7.1.1 Turbine blades

In the present example, the turbine is equipped with three 39m long pitch controlled

blades corresponding to those used in the Vestas V80 2 MW turbine. Fig. 7.1 shows

the power performance coefficient Cp versus tip speed ratio λ, plotted for different pitch

angles. The solid line shows the maximum achievable blade efficiency which is to be

used as long as the turbine operates in partial load. In full load operation, the blades

are pitched out of the wind corresponding to a Cp curve shown by the dotted lines.

7.1.2 Gear ratio and speed operating range

As discussed in chapter 1 and chapter 2, the most efficient energy capture for a certain

blade design is obtained by keeping a constant tip-speed ratio, c.f. Fig. 7.1. However, in

a practical design several issues are constraining the allowable speed range and thereby

the range where the turbine can achieve maximum aerodynamic efficiency. These con-

strains are given by issues such as:

• Emitted noise.

• Tear and wear on the blades edges due to hail and other airborne particles.

• Tear and wear on turbine structure.

Hence in a turbine design a trade off has to be made. In the present example the

maximum steady state tip speed is limited to 72 m/s whereas the turbine design should

allow transient tip speeds of 80 m/s due to turbulence. For a specific blade layout, the

gear box ratio combined with the restrictions concerning maximum tip speed actually
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defines the speed range in which the generator of the turbine will have to operate. For

the present example, a gear box ratio of 1:100 is chosen by which the nominal speed for

the generator becomes 1719 RPM. Using the chosen maximum steady state tip speed,

the selected gear ratio and the chosen blade profile, the turbine power-speed curve can

be obtained. Fig. 7.2 shows the power speed curve for which the turbine in this example

should be designed.

7.1.3 Generator interface

In section 2.4 a quite detailed model of the generator was derived. For the initial con-

verter design however, the only necessary characteristics are the nominal stator voltage

Vs the generator winding ratio Ngen and the pole number Np which in combination de-

fines the voltage, current and frequency for which the converters are to be designed. The

generator used in this design example is a 2MW 4 pole doubly-fed induction generator

from ABB with a winding ratio1 of 2.6 and a nominal stator phase voltage of 400 V.

Combining these generator characteristics with the power-speed curve in Fig. 7.2, the

rotor current and rotor voltage can be found as a function of the rotor frequency. Fig.

7.3 shows the generator rotor current (-) and generator rotor voltage (-) as a function

of the applied frequency, for which the considered converters will have to be designed.

The dashed line in Fig. 7.3 represent an expectable transient overload current which

may occur due to turbulence - a current for which the converters should be designed.

1The true winding ratio is actually 1.5 but since the generator is operated in a ∆-Y connection the
winding ratio has been transformed to an equivalent Y-Y connection
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7.1.4 Transformer interface

The transformer used in the present design example is a three-winding transformer for

connection on an 11 kV supply grid. The secondary winding phase voltage is 400 V

in order to match the chosen generator. For the back-to-back two-level converter and

the back-to-back three-level converter, the tertiary winding voltage (phase) is 277 V

whereas for the matrix converter, the tertiary winding voltage (phase) is 380 V. The

latter voltage choice is due to the reduced voltage gain inherently connected with the

use of the matrix converter. Fig. 7.4 shows the grid voltage and grid current for which

the converters are to be designed. The solid green line represents the grid voltage for

the back-to-back two-level converter and the back-to-back three-level converter while

the dashed green line represents the grid voltage for the matrix converter. The blue

curve shows the corresponding grid current for which the grid side inverters in the back-

to-back two-level converter and the back-to-back three-level converter must be designed.

The dashed line in Fig. 7.4 represent an expectable transient overload current which

may occur due to turbulence - a current for which the grid side inverters should be

designed.

7.2 Design of the back-to-back two-level converter

The design of the back-to-back two-level voltage source converter follows the rough de-

sign guide line provided in section 3.5 on page 74. Having the rough converter design

the more comprehensive modeling approach along with the chosen operating conditions

will be used to determine the present design margin and to investigate to what extent

the choice of modulation method actually influences the design margin. Based on this

investigation, this section is concluded by a finalized pre-design of the back-two-back

two-level converter which will be used in the comparison with the other converter can-

didates.

TABLE I: Converter ratings.

Grid inverter Generator inverter
Nom. current [A] 314 593
Max. current [A] 518a 673b

Nom. frequency [Hz] 50 7.5
DC-link voltage [V] > 697 > 695
Inductance [mH] < 3.2c -

aCurrent calculated at full power and 27.4% slip.
bCurrent calculated at full power and 0.1% slip.
cProvided a DC-link voltage of 800V.
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TABLE II: Switching frequencies in [kHz].

Subopt. Sft Aslft Asrft
Grid inverter 5 6.4 5.75 5.75
Generator inverter 3 5.5 5.34 5.34

7.2.1 Component ratings

To be able to select suitable switches for the back-to-back two-level voltage source

converter, the necessary current and voltage ratings have to be determined. Following

the rough design approach given in section 3.5 on page 74 along with the specification

of the interfacing component characteristics, the necessary current and voltage ratings

can be determined. Table I summarizes the calculated component ratings.

7.2.2 Selection of switching frequencies

When selecting a switching frequency for the two inverters in the back-to-back two-level

converter, several practical issues should be considered. For instance control band width,

sampling of signals and emission of switching harmonics are issues to be concerned with

when selecting switching frequencies. Further, for comparison purposes a focus area of

this thesis has been to be able to select switching frequencies making different converter

designs and even different converter topologies comparable in terms of harmonic distor-

tion. Only the latter aspect will be considered in this design example as the purpose

is to demonstrate the evaluation tool rather than ending up with a functional design

taking all practical issues into consideration.

In the present approach, all the modulation methods for all the converter topologies

have been evaluated with regard to the associated harmonic voltage distortion and

to obtain comparable performance, a switching frequency correction factor ksw,v has

been introduced. Hence choosing switching frequency for one specific converter design

actually defines the switching frequency for all the other designs. In the design example

for the back-to-back two-level voltage source converter using the sub-optimal modulation

method in both inverters, a switching frequency of 5 kHz is to be used in the grid side

inverter whereas a switching frequency of 3 kHz is to be used in the generator side

inverter. Using eq. (3.76) and eq. (3.77) on page 82, the switching frequencies for the

three discontinuous modulation methods can be found. Table II shows the switching

frequencies to be used for the different modulation methods in order to obtain the same

harmonic distortion as for the suboptimal modulation method.
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Figure 7.5: Power capability of the system when considering the limits determined

by the converter design.

7.2.3 Power capability

As discussed previously, the doubly-fed system is a quite unusual system when consid-

ering the loading conditions of the converter. For instance, operation near synchronous

speed puts a quite heavy load - both in terms of frequency and current level - on the

rotor side inverter while the grid side inverter is nearly unloaded. On the other hand,

increasing the speed above synchronous speed relieves the stress level on the rotor side

inverter while increasing the load on the grid side inverter. For a certain converter de-

sign these properties clearly will changes the overall turbine power capability depending

on the operating conditions and choice of modulation method. Fig. 7.5 shows the tur-

bine power capability when considering the limits determined by the present converter

design. Especially near synchronous speed the discontinuous modulation methods ”fail”

due to the relatively low fundamental frequency on the rotor inverter combined with the

fact that these modulation methods clamps a phase-leg for one-sixth of the fundamental

period. Besides operation near synchronous speed, the present converter designs seem

to provide a sufficient design margin.

Having the system power limits set out by the converter design, another important

investigation concerns the origin of the power limits - an origin which is not directly

readable from Fig. 7.5. In fact, a proper design of the back-to-back two-level converter

should assure that not only one component defines the power limit in the entire operating

range. Fig. 7.6 to Fig. 7.9 shows the limiting component when applying the four

considered modulation methods. As expected, the rotor side inverter components

are the limiting components when operating around synchronous speed whereas for an

increasing slip (sub- and super synchronous speed) the grid inverter becomes the limiting

component. Whether, the diode or the IGBT turns out to be the limiting factor depend

on the power factor, the power flow direction and the thermal characteristics of the

diode and IGBT respectively.
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Figure 7.7: Limiting components when

using the DPWM1 modulation method.

Grid diode: (-), Grid IGBT: (-), Gen.

diode: (- -) and Gen. IGBT: (- -).

1200 1400 1600 1800
60

70

80

90

100

110

120

130

Rotational speed [RPM]

Temperature [°C]

Figure 7.8: Limiting components when

using the DPWM0 modulation method.

Grid diode: (-), Grid IGBT: (-), Gen.

diode: (- -) and Gen. IGBT: (- -).

1200 1400 1600 1800
60

70

80

90

100

110

120

130

Rotational speed [RPM]

Temperature [°C]

Figure 7.9: Limiting components when

using the DPWM2 modulation method.

Grid diode: (-), Grid IGBT: (-), Gen.

diode: (- -) and Gen. IGBT: (- -).

7.2.4 Power losses

Finally, besides the power capability set out by the converter design, the absolute power

losses are an important aspect when choosing the modulation method. Fig. 7.10 shows

the converter losses as a function of the wind speed when the turbine follows the power

speed curve given by Fig. 7.2. In the calculation of the converter power losses in

Fig. 7.10 it is provided that both the grid side inverter and the rotor side inverter are

using the same modulation methods. To achieve a more detailed ”picture” of the losses

and to have a better foundation for the selection of modulation methods, Fig. 7.11 and
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ulation methods.

Fig. 7.12 shows the grid inverter losses and rotor inverter losses associated with the

use of the considered modulation methods. Combining the information on converter

power capability read out from Fig. 7.5 with the inverter losses in Fig. 7.12 the rotor

inverter in the present design example should make use of the sub-optimal modulation

method due to quite good power loss properties and the good thermal distribution

properties associated with this modulation method. On the other hand, since the grid

inverter operates at 50 Hz the selection of modulation method can be made based on

the calculated inverter losses without looking at the turbine power capability. Hence,

according to Fig 7.11 the grid inverter in the back-to-back two-level voltage source

inverter should make use of the asymmetrical shifted right flat top modulation method.
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TABLE III: Pre-design of the two-level converter.

Grid inverter Generator inverter
Switch type SkiiP 942GB120 SkiiP 942GB120
# of parallel modules 1 2
Inductor [µH] 400 60
Modulation method Asrft Subopt
Switching frequency [kHz] 5.75 3
DC-link voltage [V] 800 800

7.2.5 Selection of converter components

Based on the loss evaluation and the evaluation of power capability, the main charac-

teristics of the pre-designed back-to-back two-level converter are listed in Table III and

will be used for the turbine comparison presented in section 7.5.

7.3 Design of the matrix converter

The pre-design of the matrix converter generally concerns the selection of suitable

switches matching the loading conditions discussed in section 7.1 and selection of a

switching frequency matching the harmonic distortion obtained by the two-level con-

verter. Further, since the grid side filter is a crucial part of the matrix converter, a

proposal for a filter design is presented. Having the pre-designs, the power capability of

the designed matrix converters are evaluated and the power losses associated by using

the matrix converter in the wind turbine example is calculated. Based on the power

capability and converter power losses, a design for the matrix converter is chosen for the

further comparison.

TABLE IV: Converter ratings.

Matrix converter
Nom. current (generator) [A] 593
Max. current (generator) [A] 673a

Nom. frequency (grid/generator) [Hz] 50 / 7.5
Grid voltage [V] 380
Grid side PFb 1

aCurrent calculated at full power and 0.1% slip.
bThe power factor reference is evaluated at the input terminals of the matrix

converter switches and hence the reactive power consumed by the input filter
will have to be compensated by the generator reactive power control.
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TABLE V: Switching frequencies in [kHz].

Con 8 BSO Mod 8 BSO Con 10 BSO Ld Mod 8 BSO (SV) Mod 10 BSO (SC)
3.23 1.97 1.70 2.46 2.04 1.74

7.3.1 Component ratings

To be able to select suitable switches for the matrix converter, the necessary current

and voltage ratings are to be determined. Following the rough design approach given in

section 4.5.1 along with the interfacing component characteristics the necessary current

and voltage ratings can be determined. Table IV summarizes the roughly performed

design.

7.3.2 Selection of switching frequency

As discussed previously, a crucial aspect of the converter comparison is the selection of

switching frequencies assuring comparable harmonic distortion from the considered con-

verter topologies and modulation methods. In fact, determining the switching frequency

for one particular converter design actually determines the switching frequencies to be

used for the remaining converters and modulation strategies. For the matrix converter,

eq. (4.118) - eq. (4.123) on page 139, can be used to scale the switching frequency for

the matrix converter modulation methods in order to obtain the same harmonic distor-

tion as obtained by the two-level converter using the sub-optimal modulation method.

Applying eq. (4.118) - eq. (4.123) the switching frequencies for the six considered mod-

ulation schemes applicable for the matrix converter can be found. Table V shows the

switching frequencies to be used for the different modulation methods in order to obtain

the same harmonic distortion as for the suboptimal modulation method applicable for

the two-level converter.

7.3.3 Design of grid side filters

The design procedure for the grid filter, applicable for the matrix converter were

discussed in section 4.5.2. All filters in this section have been designed to have 60dB

attenuation at the switching frequencies and no positive amplification at frequencies

higher than one tenth of the switching frequency. Hence due to the selection of different

switching frequencies for the different modulation schemes, different filter characteristics

are necessary. Table VI shows the filter parameters used in order to realize the filters

for the different modulation methods. Fig. 7.13 shows the attenuation characteristics

of the designed grid side filters for use with the matrix converter.
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7.3.4 Power capability

When evaluating the converter capability of the wind turbine equipped with the matrix

converter, it is important to note that all the modified modulation schemes are not able

to operate in the considered speed range due to the limited voltage gain of 0.5. Fig.

7.14 shows the turbine power capability determined by the matrix converter layout. An

interesting, but at the same time expectable property of the matrix converter is the

imperviousity against the low frequency operation at the generator side. Actually, the

slight decrease in power capability near synchronous speed is merely due to the change

in generator power factor than due to the low frequency operation.

Considering the limiting component of the matrix converter it is reasonable to expect

that the limiting component remains the same in the entire speed range. In fact it turns

out that for the present switch selection, the diodes are the limiting component in the

entire operating speed range. Fig. 7.15 - Fig. 7.20 show the temperature of the diodes

(-) and IGBT′s (-) versus generator speed when operating the turbine at the power

TABLE VI: Grid filter components.

La [µH] Lc [µH] Cb [µF] Cd [µF] Rb [mΩ] Rd [mΩ]
Con. (8 BSO) 200 200 450 450 50 50
Mod. (8 BSO) 350 350 680 680 50 50
Con. (10 BSO) 400 400 800 800 50 50
Ld. (8BSO) 300 300 500 500 50 50
Mod. (10 BSO)(SV) 350 350 630 630 50 50
Mod. (10 BSO)(SC) 400 400 760 760 50 50
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Figure 7.15: Limiting components

when using the conventional 8 BSO mod-

ulation method. Diode: (-), IGBT: (-).
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Figure 7.16: Limiting components

when using the modified 8 BSO modula-

tion method. Diode: (-), IGBT: (-).
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Figure 7.17: Limiting components

when using the conventional 10 BSO mod-

ulation method. Diode: (-), IGBT: (-).
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Figure 7.18: Limiting components

when using the Low distortion modulation

method. Diode: (-), IGBT: (-).

limits set out by the matrix converter design.

7.3.5 Power losses

Besides the limited speed operating range for all the modified modulation methods - a

property that actually may disqualify these modulation schemes for the present design

example - the evaluation of the system power capability did not provide convincing argu-

ments for selection of one particular modulation method. Hence the power losses of the

matrix converter will have to be the major criteria for selecting a modulation method

for the further study. To evaluate the power losses generated by the semiconductors in

the matrix converter, the analytical expressions derived in section 4.4 can be used. Fig.
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Figure 7.19: Limiting components

when using the modified 10 BSO modula-

tion method (SV). Diode: (-), IGBT: (-).
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Figure 7.20: Limiting components

when using the modified 10 BSO modula-

tion method (SC). Diode: (-), IGBT: (-).
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Figure 7.22: Total converter power

losses as a function of the wind speed for

the considered modulation methods.

7.21 shows the power losses generated by the semiconductor components of the matrix

converter. As expected, the modified modulation methods all have a significantly re-

duced power loss level due to the lower switching losses. However, inclusion of the power

losses associated with the filters designed for the different modulation methods actually

changes the picture significantly. Fig. 7.22 shows the losses of the entire converter,

including power losses of the filter components and based on this loss evaluation the

conventionally 8 BSO modulation method is selected for the further study.
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7.3.6 Selection of converter components

Based on the loss evaluation, the main characteristics of the pre-designed matrix con-

verter are listed in Table VII and will be used for the turbine comparison presented in

section 7.5.

7.4 Design of the back-to-back three-level voltage

source converter

The pre-design of the back-to-back three-level voltage source converter actually involves

design of two three-level converters, namely a design for the diode-clamped topology

and a design for the transistor clamped topology.

7.4.1 Component ratings

To be able to select suitable switches for the back-to-back three-level voltage source

converters, the necessary current and voltage ratings have to be determined. Follow-

ing the rough design approach given in section 5.5 on page 232 along with interfacing

component characteristics, the necessary current and voltage ratings can be determined.

Table VIII summarizes the outcome from roughly performed pre-design.

7.4.2 Selection of switching frequencies

Both the transistor clamped three-level converter and the diode clamped three-level

converter show equal harmonic properties when evaluated according to the procedure

described in section 5.3.6 and hence both the topologies should operate at the same

switching frequency. Using eq. (5.214) - eq. (5.218) on page 241, the switching frequen-

cies for the six considered modulation methods can be found. Table IX summarizes the

switching frequencies to be used for the different modulation methods in order to obtain

TABLE VII: Pre-design of the matrix converter.

Switch typea SkiiP 292GH170
# of parallel modules 2b

Modulation method Con. (8 BSO)
Grid filterc 2-stage,
Switching frequency [kHz] 3.23
Grid phase voltage [V] 380

aNote that this component is obsolete.
bThis actually corresponds to 4 parallel bi-directional switches.
cSpecific component values, can be found in Table VI on page 281
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TABLE VIII: Converter semiconductor components.

Grid inverter Generator inverter
Nom. current [A] 314 593
Max. current [A] 518a 673b

Nom. frequency [Hz] 50 7.5
DC-link voltage [V] > 697 > 695
Inductance [mH] < 3.2c -

aCurrent calculated at full power and 27.4% slip.
bCurrent calculated at full power and 0.1% slip.
cProvided a DC-link voltage of 800V.

the same harmonic distortion as for the suboptimal modulation method usable for the

two-level converter. Due to the limited voltage gain of the modulation method with

common mode voltage elimination, this scheme is not applicable for the grid inverter in

the present design example.

TABLE IX: Switching frequencies in [kHz].

SVPWM1 SVPWM2 DPWM0 DPWM1 DPWM2 CMPWM
Grid inv. 2.09 2.09 3.19 3.15 3.19 -
Gen. inv. 1.01 1.05 2.14 2.18 2.14 2.75

7.4.3 Power capability

To determine whether the present three-level converter designs actually suits the present

turbine application, the system power capability set out by the converter design is an

important evaluation criteria. Fig. 7.23 shows the turbine power capability when con-

sidering the limits determined by the diode clamped converter design. As appears from

Fig. 7.23, the three-level diode clamped topology is highly affected by the low frequency

operation - even more affected than the two-level topology. Especially, the discontin-

uous modulation schemes, i.e. DPWM0, DPWM1 and DPWM2 appears to ”fail” in

the low frequency operating range. Considering the transistor clamped topology, the

power capability of the present design is shown in Fig. 7.24. From Fig. 7.24 it appears

that transistor clamped topology suffers from the same low frequency properties as the

diode-clamped counter part. If found necessary, the low frequency properties of the two

three-level converter designs could be improved by identifying the limiting components

and then performing a redesign of the particular components. Further identifying the

limiting components may give a hint about the ”quality” of the design. In fact, for the

present designs not only one component should determine the system power capability
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Figure 7.23: Power capability of the

system when considering the limits deter-

mined by the diode clamped converter de-

sign.
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Figure 7.24: Power capability of the

system when considering the limits deter-

mined by the transistor clamped converter

design.

in the entire operating range. Fig. 7.25 to Fig. 7.30 show the limiting component when

applying the six considered modulation methods in the diode clamped configuration.

Due to the limited available space in Fig. 7.25 to Fig. 7.30 no legend is included inside

the figures. However, for all the six figures, the below listed color codes apply:

— Grid inverter top IGBT.

— Grid inverter top diode.

— Grid inverter center IGBT.

— Grid inverter center diode.

— Grid inverter clamp diode.

- - Gen. inverter top IGBT.

- - Gen. inverter top diode.

- - Gen. inverter center IGBT.

- - Gen. inverter center diode.

- - Gen. inverter clamp diode.

Considering the limiting components of the present diode-clamped design, shown in

Fig. 7.25 to Fig. 7.30, it appears that the continuous modulation schemes, i.e. SVPWM1

and SVPWM2, have a quite good load distribution in the considered operating range.

For instance, at sub-synchronous speed, the center diode (-) and almost the top diode

(-) of the grid side inverter are the limiting component. From about 1200 RPM the

top transistor of the generator inverter takes the position as the limiting component (-

- ). Subsequently follows the center transistor (- -), the clamping diode (- -) and then

again the center transistor. Finally, the top diode of the generator inverter becomes the

limiting component (- -). For the discontinuous modulation schemes, the situation is

quite different. Actually, for the present designs the discontinuous modulation meth-

ods puts a quite high stress on the top diodes and top IGBT in the generator inverter
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Figure 7.25: Limiting components

when using the SVPWM1 modulation

method in the diode clamped configura-

tion.
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Figure 7.26: Limiting components

when using the SVPWM2 modulation

method in the diode clamped configura-

tion.
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Figure 7.27: Limiting components

when using the DPWM0 modulation

method in the diode clamped configura-

tion.
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Figure 7.28: Limiting components

when using the DPWM1 modulation

method in the diode clamped configura-

tion.

and as shown the top transistor (- -) and top diode (- -) are the limiting component

in most of the operating range. Compared to the continuous modulation schemes, i.e.

SVPWM1 and SVPWM2, the high stress when applying the discontinuous modulation

methods is due to the selection of zero vectors in the clamping intervals. Based on Fig.

7.27 to Fig. 7.29 one could argue that the present design of the top-switch in the gen-

erator inverter should be changed when applying the discontinuous modulation schemes.

Considering the transistor clamped configuration, it appears that the operation depen-

dent loading of the individual components are equal to the loading of the diode clamped
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Figure 7.29: Limiting components

when using the DPWM2 modulation

method in the diode clamped configura-

tion.
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Figure 7.30: Limiting components

when using the CMPWM modulation

method in the diode clamped configura-

tion.
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Figure 7.31: Limiting components

when using the SVPWM1 modulation

method in the transistor clamped config-

uration.
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Figure 7.32: Limiting components

when using the SVPWM2 modulation

method in the transistor clamped config-

uration.

configuration. The only exception seems to be the load on the center diode (plotted by

the red curve) which for the transistor clamped configuration is heavily relieved. Fig.

7.31 to Fig. 7.36 show the limiting components of the transistor clamped configuration.

The color codes used in Fig. 7.31 - Fig. 7.36 correspond to those used for the diode

clamped configuration and are explained on page 286.



7.4. Design of the back-to-back three-level voltage source converter 289

1200 1400 1600 1800
60

70

80

90

100

110

120

130

Rotational speed [RPM]

Temperature [°C]

Figure 7.33: Limiting components

when using the DPWM0 modulation

method in the transistor clamped config-

uration.
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Figure 7.34: Limiting components

when using the DPWM1 modulation

method in the transistor clamped config-

uration.
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Figure 7.35: Limiting components

when using the DPWM2 modulation

method in the transistor clamped config-

uration.
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Figure 7.36: Limiting components

when using the CMPWM modulation

method in the transistor clamped config-

uration.

7.4.4 Power losses

Finally, besides the power capability set out by the converter design, the absolute power

losses are an important aspect when choosing the modulation methods. Fig. 7.37 shows

the converter losses of the diode clamped converter topology as a function of the wind

speed when the turbine follows the power speed curve given by Fig. 7.2. Similarly,

7.38 shows the converter losses of the transistor clamped converter configuration. In the

calculation of the converter power losses in Fig. 7.37 and Fig. 7.38 it is provided that

both the grid side inverter and the rotor side inverter are using the same modulation

methods. To achieve a more detailed ”picture” of the losses and to have a better
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Figure 7.37: Total converter power

losses for the diode clamped configuration

as a function of the wind speed for the

considered modulation methods.
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Figure 7.38: Total converter power

losses for the transistor clamped configu-

ration as a function of the wind speed for

the considered modulation methods.
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Figure 7.39: Total grid inverter power

losses for the diode clamped configuration

as a function of the wind speed for the

considered modulation methods.
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Figure 7.40: Total grid inverter power

losses for the transistor clamped configu-

ration as a function of the wind speed for

the considered modulation methods.

foundation for the selection of modulation methods, Fig. 7.39 and Fig. 7.40 show the

grid inverter losses of the two considered three-level topologies whereas Fig. 7.41 and

Fig. 7.42 show the rotor inverter losses. Combining the information on converter

capability read out from Fig. 7.23 and Fig. 7.24 with the inverter losses in Fig. 7.41

and 7.42 the rotor inverter of both the diode clamped configuration and the transistor

clamped configuration in the present design examples should make use of the SVPWM2

modulation method due to good power loss properties and the quite good thermal

distribution properties associated with this modulation method. On the other hand,

selection of a modulation method for the grid inverter can be done without considering

the power capability and hence according to Fig. 7.39 and Fig. 7.40 both the diode
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Figure 7.41: Total generator inverter

power losses for the diode clamped config-

uration as a function of the wind speed for

the considered modulation methods.
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TABLE X: Converter components for the diode clamped topology.

Grid inverter Generator inverter
Top switch type S1 SkiiP 802GB060 SkiiP 802GB060
Center switch type S3 SkiiP 802GB060 SkiiP 1602GB060
Clamp switch type S1 SkiiP 802GB060 SkiiP 1602GB060
Inductor [µH] 400 60
Modulation method DPWM1 SVPWM2
Switching frequency [kHz] 3.15 1.05
DC-link voltage [V] 800 800

clamped topology and the transistor clamped topology should make use of the DPWM1

modulation method.

7.4.5 Selection of converter components

Based on the loss evaluation and the evaluation of power capability, the main character-

istics of the pre-designed back-to-back diode clamped three-level converter are listed in

Table X. Similarly, the main characteristics of the pre-designed back-to-back transistor

clamped three-level converter are listed in Table XI. The designs listed in Table X

and Table XI will be used for the turbine comparison presented in the following section.
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7.5 Converter comparison

In this section, the four considered converters will be evaluated with regard to the

following measures:

• Component count.

• Switch utilization.

• Converter losses.

• Annual energy production.

7.5.1 Component count

As discussed in chapter 1 the turbine reliability is a major issue in a turbine design. A

prediction of the system reliability however requires a detailed investigation. Actually,

such an investigation should include a system level analysis to determine the degree of

redundancy and inherent fault accelerators such as power cycling and thermal cycling

as well as a component level analysis to determine individual component FIT-rates2.

Such an investigation is clearly outside the scope of this thesis. However, if applying

a pragmatic approach assuming that reliability to some extent is related to the num-

ber of involved semiconductor components - that is assuming equal FIT rates, no fault

accelerators and ideal auxiliary components - the considered converter topologies are

easily compared. Table XII shows the comparison of the considered converters listing

the number of involved components. The first number represents the ideal component

count whereas the number in parenthesis represents the actual component count in the

present design example. Evaluating the component count, it appears that the conven-

tional back-to-back two-level converter is clearly the best choice both when considering

the ideal component count and for the actual design example.

2Failure in time

TABLE XI: Converter components for the transistor clamped topology.

Grid inverter Generator inverter
Top switch type S1 SkiiP 942GB120 SkiiP 942GB120
Center switch type S3 SkiiP 802GB060 SkiiP 1602GB060
Clamp switch type S1 SkiiP 802GB060 SkiiP 1602GB060
Inductor [µH] 400 60
Modulation method DPWM1 SVPWM2
Switching frequency [kHz] 3.15 1.05
DC-link voltage [V] 800 800



7.5. Converter comparison 293

7.5.2 Switch utilization

Combined with the number of switching devices, the switch utilization can provide an

indirect measure of the converter cost. Several approaches can be applied for calculating

the switch utilization factor and in this context two approaches will be applied. The

first approach simply gives a measure of the ratio between turbine nominal power and

installed converter volt-amperes:

ν =
Ptur∑

VT · IT + VD · ID (7.1)

The approach in eq. (7.1) gives a single number for each of the considered topologies

and can be calculated quite easily. However, by this simple approach one converter may

be favored over another, simply by the lucky punch that present semiconductor ratings

suits one converter better than another. Further, since the special application of the

doubly-fed induction machine involves quite low frequency operation at the generator

side the above mentioned simple switch utilization approach lacks information about

the present converter topologies ability to handle these frequencies. Hence a more

sophisticated approach can be applied where the actual turbine power capability is

evaluated in relation to the totally installed volt-amperes:

ν =
P̂tur∑

VT · IT + VD · ID (7.2)

where P̂tur is the turbine power to be generated in order to reach the thermal limits

of the converter, VT · IT is the VA-rating for the individual transistors and VD · ID is

the VA-rating for the individual diodes. Fig. 7.43 shows the utilization factor ν. The

utilization factors calculated by the expression in eq. (7.1) are shown by the dashed lines

whereas the utilization factors calculated by eq. (7.2) are shown by the solid lines. For

both approaches, the matrix converter and the transistor clamped three-level voltage

source converter appears to utilize the semiconductor components in the most efficient

way.

TABLE XII: Component counts.

# of diodes # of transistors
Two-level 12 (54) 12 (54)
Matrix 18 (72) 18 (72)
Three-level (DC) 36 (96) 24 (60)
Three-level (TC)a 24 (60) 24 (60)

aIn the component count for the transistor clamped three-level topol-
ogy, the inactive diode connected in parallel with the center switch is
not included.
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Figure 7.43: The switch utilization factor for the considered converter topologies.

Dashed lines are calculated by eq. (7.1) and solid lines are calculated by eq. (7.2).
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tion of the wind speed for the different
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7.5.3 Converter losses

The converter losses of the considered converter designs when operating in the normal

operating range defined by the power speed curve in Fig. 7.2 is shown in Fig. 7.45. The

blue curve represents the calculated losses for the back-to-back two-level voltage source

converter, the green curve represents the losses for the matrix converter while the red

and black curve represents the converter losses for the three-level diode clamped and

transistor clamped converter topologies respectively. From the evaluation of converter

power losses for the present converter lay-outs, the transistor clamped topology seems

to be the best choice.
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TABLE XIII: Annual generated energy [pu] for different sites.

IEC I IEC II IEC III IEC IV
Two-level 100.0 100.0 100.0 100.0
Matrix 99.7 99.5 99.5 99.2
Three-level (DC) 100.0 100.0 100.0 100.1
Three-level (TC) 100.0 100.1 100.1 100.1

7.5.4 Annual energy generation

Besides the reduced cooling needs, the converter losses will influence the annual energy

production. Using standard wind distribution functions like those discussed in section

2.1 the annual energy production for the present turbine examples can be calculated.

Table XIII shows the annual energy production for the considered turbine designs nor-

malized to the expected production for the system based on the conventional two-level

converter. Despite the large difference in converter power losses, the expected annual

energy production is only affected insignificantly. The reason for this insignificant im-

provement is two-fold: firstly, the system based on the doubly-fed system does not

”reward” the gained converter efficiency due to the fact that only 15-20% of the gener-

ated power is actually processed by the converter. Secondly, unlike other applications

efficiency only count in partial load since in full-load operation all the excess of wind

power is ”dissipated” by pitching the blades out of the wind.

7.6 Summary

The purposes of this chapter has been to exemplify the developed comparison tool on

some converter design examples. To perform the comparison, four converter designs

were carried out - one for each of the considered converters. In order to obtain a fair

comparison, each of the designs were evaluated with regards to the power capability

determined by the converter design - an evaluation securing that each of the converter

designs include more or less the same design margin. Considering the power losses of

three converter design examples under the given operating conditions, the three-level

transistor clamped converter is the best choice. However considering the gain in annual

captured energy for a typical site (IEC II), the difference between the considered con-

verter designs are in the order of 0.1-0.5% which is an insignificant improvement and

within the uncertainty on the modeling approaches. As a final remark on the compar-

ison it should be noted that a comparison on wind turbine with full power conversion

through the power converter may give a more significant difference between the consid-

ered converters.





Chapter 8

Conclusion

ON the preceding 295 pages, this report has strictly focused on describing and de-

veloping models for a simulation tool suitable for a fast comparison of converter

topologies for use in a wind turbine based on the doubly-fed induction machine. How-

ever, especially during the maturing efforts carried out on the considered converter

topologies, the treatment has entered into very detailed levels and of course an entrance

into such detailed explanations is done at the risk of loosing the continuity. For the

purpose of remedying this particular issue, a brief summary of the individual chapters

will be outlined. Then, since the present report is submitted as a part of fulfilling the

requirements for the Ph.D-degree in electrical engineering and hence is to be judged on

its contributions, the summary is followed by a list of topics considered to be contribu-

tions. Finally, as the normal outcome when digging into one particular problem seems

to be that two new problems arise, the chapter is closed by pointing out areas for further

investigation - areas closely related to the contributions of the present work.

8.1 Summary

As a general summary, this thesis has described the development of a tool suitable for

comparing different converter topologies for use in a wind turbine application based

on the doubly-fed induction generator. Specifically, the report treated four converter

topologies, namely the back-to-back two level voltage source converter, the matrix con-

verter, the back-to-back diode clamped three-level voltage source converter and the

back-to-back transistor clamped three-level voltage source converter. Actually the back-

bone of the report is the modeling and maturing efforts of these four converters whereas

the remaining chapters describing e.g. the modeling of the components interfacing to the

converter is to be considered as a secondary contribution. The report include 7 chapters

(apart from the present chapter) and the content of each chapter is briefly summarized

below:

Chapter 1 on pages 3-21 ”Introduction”: This chapter presented some factual

trends showing the progress in the wind energy sector as well as national programmes
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and objectives initiated to promote wind energy even further in the future. Then the

salient features of a variable speed wind turbine compared to a constant speed wind tur-

bine were discussed and a brief overview of different variable speed wind turbine topolo-

gies were outlined - an overview which included topologies proposed by the academia

as well as topologies used by the industry. Then the problem statement was presented

and finally the outline for the thesis was discussed, including a short list of focus areas

to which the main efforts in the present work has been dedicated.

Chapter 2 on pages 23-44 ”Modeling of wind turbine system”: This chapter

was dedicated to develop and describe the modeling approaches used to model the indi-

vidual turbine components interfacing directly or indirectly to the power converter. The

purpose of the modeling has been: 1) to identify the power flow and thereby identify the

current and voltage ratings for the considered converter and 2) to calculate the losses

of the different components in order to evaluate the annual energy production. The

loss models for the gear box and generator were based on measured data whereas the

parameters for the transformer model were based on a standard data sheet information.

Finally, since the upcoming national grid codes have a high impact on the necessary

converter rating, the last section of this chapter summarized some of the most impor-

tant steady state grid code requirements.

Chapter 3 on pages 47-87 ”The back-to-back two-level voltage source con-

verter”: This chapter has provided a comprehensive overview of the back-to-back two-

level voltage source converter, conventionally used in variable speed wind turbines. The

section was introduced by an explanation of the operating principles followed by a

detailed description of the most commonly used modulation methods. For the consid-

ered modulation methods, harmonic performance were evaluated in order to be able

to select a switching frequency with comparable harmonic distortion. Further, closed

form analytical expressions for the modulation method dependent conducting losses and

switching losses have been derived. For the purpose of including the switch temperature

in the converter loss evaluation, analytical expressions for the average switch tempera-

ture has been derived. Further, due to the fact that the rotor inverter in the doubly-fed

system is operated at low frequencies the peak temperature deviate quite much from

the average temperature. Hence for the purpose of a fast validation of a certain con-

verter design, some analytical approximations have been proposed. Finally, to be able to

pre-dimension the back-to-back two-level voltage source converter, some rules of thumb

regarding switch current ratings, switch voltage ratings, DC-link design and inductor

design have been presented.

Chapter 4 on page 89-148 ”The matrix converter”: This chapter has treated

the three-phase to three-phase matrix converter for use in a wind turbine application

based on the doubly-fed induction generator. Specifically, the aim of the chapter was to

be able to compare the matrix converter with the more matured back-to-back two-level
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converter conventionally used in said application. The chapter was introduced by a short

review on previous work within the field of matrix converters but as the use of matrix

converters in wind turbine applications appeared to be almost unknown, the survey has

focused on matrix converters in general. The survey on previous work was followed up

by an explanation of the basic working principles of the converter. The explanation of

the basic working principles is a pure mathematical exercise and although complicated

at a first glance, the real obstacles for the matrix converter occur due to non-ideal condi-

tions. These non-ideal conditions involves considerations such as commutation strategy,

bi-directional switch realization and operation with unbalanced or faulty input- and

output conditions. These working principle related issues are addressed in the major

part of previous work. Closely related to the working principles are the modulation

of the matrix converter which has to take into consideration both the generation of a

sinusoidal input current and a sinusoidal output voltage and unlike the previously con-

sidered back-to-back two-level converter this has to be done without an intermediate

energy storage. To obtain a fair comparison between the quite un-matured matrix con-

verter and the conventionally used back-to-back two-level voltage source converter, a

lot of efforts in this chapter were dedicated to develop new modulation methods for the

matrix converter - modulation methods aiming to minimize the generated power losses

[7] and/or the generated harmonic distortion [8]. To be able to compare the considered

modulation methods internally as well as comparing the matrix converter with the other

converter topologies, the modulation methods were evaluated with regard to harmonic

performance [5] on both the grid side and generator side as well as with regard to the

generated power losses. Regarding the power losses generated by the matrix converter,

analytical expressions were derived taking into account the modulation method as well

as the temperature of the considered components. Finally, to be able to pre-design the

matrix converter, some rules of thumb regarding switch current ratings, switch voltage

ratings, choice of switching frequency and input filter design have been presented.

Chapter 5 on pages 149-248 ”The back-to-back three-level voltage source

converter”: The aim of this chapter was to establish a foundation for a fair and direct

comparison of the three level voltage source inverter with the more matured two-level

voltage source inverter. Although an inverter with three-level properties can be realized

by several topologies, the chapter has focused on the diode clamped three-level inverter

and the transistor clamped three-level inverter. The chapter was introduced by a brief

survey on previous work, trends and focus areas in the field of three level inverters.

However, as three-level inverters are relatively unknown in wind turbine applications

the survey covered activities within other technical areas. Then the basic working prin-

ciples were discussed followed by a thorough explanation of the modulation principles

especially with focus on the space vector approach. As the modulation schemes for the

three-level inverters are not as matured as the corresponding modulation schemes for the

two-level inverter, a lot of efforts have been dedicated to the development of modulation

schemes comparable to the schemes for the two-level counterpart. The developed mod-
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ulation schemes included discontinuous schemes and a scheme with complete common-

mode voltage elimination [4]. As the DC-link balance is a major issue for three-level

inverters, all the developed schemes included active DC-link balancing capabilities. All

the considered modulation methods, were evaluated with respect to their harmonic per-

formance in order to be able to select a switching frequency with comparable harmonic

distortion. In order to use an RMS model for the purpose of comparing the different

modulation methods as well as the different topologies the inverter losses were to be

calculated. This involved derivation of analytical expressions for both RMS current and

average current through each individual component - expressions which turned out to

be modulation method dependent, load angle dependent as well as modulation index

dependent. For the purpose of including the switch temperature in the converter loss

evaluation, analytical expressions for the average switch temperature have been derived.

Further, due to the fact that the rotor inverter in the doubly-fed system is operated at

variable but low frequencies the peak temperature deviate quite much from the average

temperature. Hence for the purpose of a fast validation of a certain converter design,

some analytical approximations for the peak temperature has been proposed. Finally,

to be able to pre-dimension the back-to-back three-level voltage source converters, some

rules of thumb regarding switch current ratings, switch voltage ratings, DC-link design

and inductor design have been presented.

Chapter 6 on pages 249-267 ”Wind turbine comparison tool”: This chapter

has provided an introduction to the wind turbine simulation tool D′rives or at least to

that part of the tool concerning the models described in this thesis. In summary, D′rives
is a package with a graphical interface linking all the modeling approaches described

throughout this report in a user-friendly and well-arranged manner. The simulation tool

provides easy access for changing the topology configuration and change of main char-

acteristics such as power-speed curve, star-delta connection and active/reactive power

generation. Further, each of the main components, i.e. blades, gear box, generator,

converter and transformer have a separate page allowing change of all the parameters

involved in the modeling approaches described in chapter 2 - chapter 5. The repre-

sentation of simulation results is very flexible as most internal simulation variables can

be plotted against each other. As a final remark, it should be noted that due to the

explicit analytical expressions for component currents and component losses, the sim-

ulation speed of the D′rives program is extremely high. For instance, a simulation of

peak temperatures of the semiconductors in a converter design calculated for the entire

power/speed operating range has been reduced from a day-long simulation task into a

simulation time of about 2 seconds.

Chapter 7 on pages 271-295 ”Topology comparison”: The purposes of this chap-

ter has been to exemplify the developed comparison tool on some converter design exam-

ples. To perform the comparison, four converter designs were carried out - one for each

of the considered converters. In order to obtain a fair comparison, each of the designs
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were evaluated with regards to the power capability determined by the converter design

- an evaluation securing that each of the converter designs include more or less the same

design margin. Considering the power losses of three converter design examples under

the given operating conditions, the three-level transistor clamped converter is the best

choice. However considering the gain in annual captured energy for a typical site (IEC

II), the difference between the considered converter designs are in the order of 0.1-0.5%

which is an insignificant improvement and within the uncertainty on the modeling ap-

proaches. As a final remark on the comparison it should be noted that a comparison on

wind turbine with full power conversion through the power converter may give a more

significant difference between the considered converters.

8.2 Contributions

Although the preparation of this report aimed to present all the contributions arising

from the executed work some aspects may have been lost or suppressed in the en-

tirety. Especially, contributions from the present work published elsewhere may have

been skipped or simply just referred by a citation. Below follows a list of publications

published or co-published by the author.

Comparison of different converter topologies: Comparison of different converter

topologies for use in a variable speed wind turbine based on the doubly-fed induc-

tion generator [3]

New modulation strategies for the matrix converter : In the efforts on matur-

ing the matrix converter, one task was to investigate and develop new modulation

strategies having better harmonic properties and/or lower switching losses com-

pared to existing strategies. Some of these efforts are described in [7, 8].

Tools for evaluating different modulation strategies: Besides developing new mod-

ulation strategies, a survey on the literature covering matrix converters revealed

that unlike for the two- and three-level inverters, no methods existed for evalu-

ating modulation strategies for the matrix converter. It was found worthwhile to

spend some efforts developing a comparison method similar to those for two- and

three-level inverters. The comparison tool is described in [5].

New modulation strategies for the three-level converter: As for the matrix con-

verter, the study on three-level converters (and multi-level inverters in general)

revealed that the maturing process for the three-level inverters needed a little

injection with regards to modulation strategies. Hence, some efforts were also

dedicated to develop new modulation strategies for the three-level converter, es-

pecially with focus on harmonic properties, switching losses and DC-link balancing

[4, 6].

The citations mentioned above are all enclosed in Appendix C-I. Besides the work

documented in this thesis and in the publications cited above, the intensive work in
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converter topologies for the doubly-fed induction machine has made it possible to partly

contribute to the following work:

Patent WO 01/91279 A1 [10]: The patent entitled ”Variable Speed Wind Turbine

having a Matrix Converter”, International publication number WO 01/91279 A1

was partly initiated by the work described in chapter 4 of the this thesis. The

content of the patent was formulated in co-operation with Anders V. Rebsdorf a

former colleague at Vestas Wind Systems.

The book ”Control in Power Electronics” [9]: Chapter 13 of the book ”Control

in Power Electronics”, covering wind turbine systems was written, based on knowl-

edge obtained during the Ph.D.-programme. The chapter is a general survey over

different wind turbine concepts, including some control aspects and was written

in co-operation with Frede Blaabjerg.

The technical report ”Risø-R-1205(EN)” [2] .Chapter 3 of the technical report

”Risø-R-1205(EN)”, entitled ”Conceptual survey of Generators and Power Elec-

tronics for Wind Turbines” covers different converter topologies for use in variable

speed wind turbines and was based on a preliminary survey report written in the

early stage of the Ph.D-programme.

Finally, apart from the publications etc. listed above, especially the work carried out to

derive the current loading of the individual components as well as the peak temperature

estimation methods are considered to have some novelty over prior art.

8.3 Perspectives

Approaching the end of the thesis the final task left for completing the report is to point

out areas left for further investigation. From the very beginning of project, the scope of

the research was three-fold:

1. Evaluate selected converter topologies for use in wind turbines based on the

doubly-fed induction generator.

2. Design the selected converter.

3. Develop a control scheme for the selected converter, usable in a wind turbine

application.

During the initial work it became clear that fulfilling these three tasks on a sufficiently

detailed level was an overwhelming task. Especially the latter two subjects seemed to

involve tasks already being handled by engineers within the wind industry and hence the

fulfillment of these tasks seemed to be an unfair competition between a Ph.D student

with novice skills in specific wind turbine technology and several experienced wind tur-

bine engineers whereas the converter evaluation and to some extent design issues related



8.3. Perspectives 303

to the specific converters seemed to be a more virginal area. Hence the introductory

part was rewritten to match the reduced content of the thesis.

Pointing out tasks left for further investigation it would be easy to direct such tasks to

the remaining objectives of the original scope of the project. However, with the changed

and limited scope of the thesis and with the present content of the report in mind sev-

eral topics seems quite more obvious to tackle. The following lists these topics and the

expected advantages obtained by solving these issues.

Investigate whether the modulation scheme with common-mode voltage elim-

ination reduces the bearing currents in a doubly-fed induction generator. Al-

though it is uncertain whether the problems regarding bearing currents is more severe

for doubly-fed machines it is likely to believe that this is the case as the winding-to-shaft

capacitance is much larger for the rotor than for the stator. It could be investigated

to what extent the proposed modulation scheme is able to lower the bearing current level.

Harmonic content During the evaluation of the modulation schemes for the different

converters and the selection of an appropriate switching frequency, only the harmonic

distortion factor was considered. For sufficiently high frequencies this approach may

be adequate but for the present application and especially when considering wind tur-

bine applications with full scale power conversion the specific harmonic content is of

interest and may very well favor one particular modulation. Hence the comparison tool

could/should be extended in order to be able to predict the harmonic content emitted

to the grid.

Converter design margin due to speed variations: With an unpredictable power

source such as the wind no such steady-state condition exists and hence the speed and

thereby the rotor inverter frequency will have to vary in order to keep the output power

constant. Presently the modeling approach has concerned steady-state operation, al-

though with the possibility of calculating the per-fundamental temperature variation in

the semiconductor devices. In a practical design the temperature variations due to a

certain rotor speed profile will have to be considered as well and hence without deviating

from the purpose of having a fast model based on analytical expressions the modeling

approach from a converter design point of view would have to be considered.

Estimation of semiconductor lifetime: As pointed out in [1], a potential problem

for wind turbines based on the doubly-fed induction generator is the very low frequency

at which the generator inverter is operated. Depending on the converter design, this low-

frequency operation may cause high temperature variations within the semiconductor

devices of the generator inverter leading to premature failures due to power cycling and

thermal cycling. Extending the evaluation tool to incorporate analysis of a varying rotor

speed profile, the calculation of semiconductor temperatures could be used as input to
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tools able to calculate semiconductor lifetime.
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Appendix A

Extraction of switch parameters

IN the efforts of determining the switching losses of the different converter topologies,

it was chosen to use a method based on a simplified switch model of the converter

combined with parameters obtainable from datasheets. In cases where the data sheet

informations are not sufficient, the parameters can be derived from measured/simulated

loss data. This appendix describes a method usable to derive the necessary switch pa-

rameters. It should be noticed that the loss values used to exemplify the method in

this appendix is calculated from a program supplied by the semiconductor manufacture

SEMIKRON. However the algorithm used to derive the parameters can as well be applied

to measured data.

The appendix is introduced with a description of the modeling approach, followed by a

description of the derivation of the switch parameters.

A.1 Modeling approach

The losses in the switches (transistors and diodes) are modeled by:

Pdx = Vd0(Tdj) · Id,avg +Rd(Tdj) · I2d + Esw0,d(Tdj) · fsw · Isw,avg (A.1)

Pdx = Vt0(Ttj) · It,avg +Rt(Ttj) · I2t + Esw0,t(Ttj) · fsw · Isw,avg (A.2)

where Id,avg and It,avg are the average current through the diode and transistor, Id and

It are the RMS currents and Isw,avg is the average switched current which is equal for

both the diode and the transistor.

A.2 Switch losses

This section describes a procedure for deriving the switch parameters Vd0, Rd, Esw0,d,

Vt0, Rt and Esw0,t by use of the SEMISEL program supplied by SEMIKRON [1]. Fig. A.1

shows the converter topology used to derive the switch parameters.

Knowing the modulation function for one phase leg of the full bridge arrangement in

Fig. A.1 the RMS current and the average current can be calculated as a function of the
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Figure A.1: Test topology for deriving the switch parameters.

output current iout and the modulation index M . The modulation function δ is given

by:

δ =
1

2
(1 +M sin(ωot)) (A.3)

where M is
√
2Vo

VDC
. The average current through the switch It,avg is:

〈It,avg〉To =
1

To

∫ To
2

0

(δ · îo · sin(ωot))dt

=
1

To

∫ To
2

0

(
1

2
(1 +M sin(ωot)) · îo · sin(ωot)

)
dt

=
1

8π
(4 +Mπ) îo (A.4)

The RMS current through the switch is determined by:

〈It〉To =

√
1

To

∫ To
2

0

(δ · î2o)dt

=

√
1

To

∫ To
2

0

(
1

2
(1 +M sin(ωot)) · (̂io · sin(ωot))2

)
dt

=

√
1

24π

(
(3π + 8M )̂i2o

)
(A.5)

Similarly, the average current for the diode is derived:

〈Id,avg〉To =
1

To

∫ To

To
2

((1 − δ) · îo · sin(ωot))dt

=
1

To

∫ To

To
2

(
1

2
(1 −M sin(ωot)) · îo · sin(ωot)

)
dt

=
1

8π
(4 −Mπ) îo (A.6)



A.3. Parameter extraction 309

0
0.5

1

0

250

500

0

500

1000

Modulation index

Transistor losses [W] (T
tj
 = 100°C)

Current [A]

Figure A.2: Simulated transistor losses

(Ttj=100
◦C)

0

0.5

1 0

250

5000

100

200

300

Current [A]

Diode losses [W] (T
dj

 = 100°C)

Modulation index

Figure A.3: Simulated diode losses

(Tdj=100
◦C)

The RMS current through the diode is determined by:

〈Id〉To =

√
1

To

∫ To

To
2

((1 − δ)̂i2o)dt

=

√
1

To

∫ To

To
2

(
1

2
(1 −M sin(ωot)) · (̂io · sin(ωot))2

)
dt

=

√
1

24π

(
(3π − 8M )̂i2o

)
(A.7)

The average switching current is:

〈Isw,avg〉To =
1

To

∫ To
2

0

(̂io sin(ωot))dt

=
2

π
îo (A.8)

Using eq. (A.4) - eq. (A.8) the transistor- and diode current can be calculated for

any given output current Io and output voltage Vo. Fig. A.2 and Fig. A.3 shows the

simulated losses in the a transistor and a diode as a function of the duty-cycle, i.e output

voltage and the output current.

A.3 Parameter extraction

Regardless of the method used to derive the loss data of the transistor and the diode,

the algorithm used to derive the parameters Vd0(T ), Rd(T ), Esw0,d(T ), Vt0(T ), Rt(T )

and Esw0,t(T ) is based on a least square regression model [2]. The algorithm used to
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derive the parameters is shown below.

for k = 1 : N∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = [Id,avg(k) I2d(k) fswVDCIsw,avg(k) ]
T

G = G+ φPD

R = R + φ φT

if det(R) �= 0

| θ = R−1G
end

end

Vd0 = θ(1)

Rd = θ(2)

Esw0,d = θ(3)

Fig. A.4 and A.5 on the next page shows the convergence of the parameter extraction

for the transistors and for the diodes respectively.

Repeating the procedure for different junction temperatures, following expressions for

the switch parameters are derived:

Ut0 = 2.012 · 10−3 · TTj + 1.243 [V]

Rt = 3.242 · 10−6 · TTj + 1.722 · 10−3 [Ω] (A.9)

Esw0,t = 1.616 · 10−9 · TTj + 8.628 · 10−7 [s]

Ud0 = −3.203 · 10−3 · TTj + 1.404 [V]

Rd = 7.913 · 10−7 · TTj + 1.246 · 10−3 [Ω] (A.10)

Esw0,d = 11.038 · 10−11 · TTj + 5.363 · 10−8 [s]
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Appendix B

Inductor design

THIS appendix provides a procedure usable for designing the filter inductors used in

the different converters. Output from the design procedure is, besides the induc-

tor layout in terms of materials , windings and weights, the equivalent loss describing

resistance and the thermal properties of the design. The loss describing resistance in-

corporates both copper losses, hysteresis losses and iron losses.

B.1 Design parameters

The following parameters are input to the inductor design procedure:

• The nominal inductance L

• The maximum flux density B̂

• The maximum nominal inductor current Î, the corresponding current density Ĵ

and the maximum transient current Îmax

• Available cores, including dimensions and magnetic properties

• Maximum allowable inductor temperature and ambient temperature

• The copper fill factor kcu and the stacking factor kst

B.2 Prerequisites and definitions

In order to limit the degree of freedom in the inductor design and reduce the complexity

of the design algorithm, a few simplifications are introduced and the choice of core

configurations are limited.

B.2.1 Assumptions

In the present inductor design approach, the following assumptions are made in order

to simplify the calculations.
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Figure B.1: Standard core configurations. a) Single phase EI-core. b) Single-phase
UI core. c) Three-phase EE core. d) Three-phase EI-core.

Homogeneous temperature throughout the inductor: In steady state conditions,

the temperature throughout the inductor is assumed to be uniform.

Linear magnetic properties: In the design procedure, the magnetic properties of the

core material are assumed to be linear. Depending on the chosen value for the

design parameter B̂, the corresponding parameter Îmax and the chosen magnetic

core material, this assumption might be crucial.

No leakage flux exists: In the design algorithm it is assumed that flux lines follow

the magnetic path defined by the core. Reflecting on this assumption, it appears

that the designed inductance will be slightly lesser than desired due to the fact

that the leakage flux reduces the flux linkage Ntφ and decreases the reluctance in

the magnetic path.

B.2.2 Core configurations

The analysis and design are limited to standard cores defined by the properties in Fig.

B.1 [3]. The dimension parameter d1 is the so-called form-factor.

Besides limiting the inductor design to the standard cores defined on Fig. B.1, only

cores having quadratic cross-sectional area are considered, i.e. the stack width equals

the form-factor d1. Further, the lamination thickness is fixed to 0.3 mm, although

laminations thickness is available in a large range.
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B.3 Design approach

Basically, from Amperes Law:∮
Hdl = Nt · i (B.1)

Using B = µH, the continuity of flux lines and the assumption that no leakage flux

exists, eq. (B.1) may be rewritten in the form:

φ

∮
dl

µA
= Nt · i
= φ · � (B.2)

where A is the cross-sectional area of the circuit at the point under consideration, µ is

property constant depending on the medium in which the magnetic field H propagates

and φ is the flux through the area A. In the actual case, where the magnetic path l is

formed by a core (with an air g) which in turn consist of a number homogeneous pieces,

both with respect to material and cross section, the reluctance � can be approximated

by:

� =
∑
j

lj
µjAj

(B.3)

Relating the above stated equations to the self inductance, Faradays Law is used:

e = Nt
dφ

dt
(B.4)

Assuming that the only flux linking the considered inductor, is the flux produced by the

current in the inductor and that the flux is linearly dependent on the flux producing

current, then eq. (B.4) can be rewritten:

e = −Nt
dφ

dt

= −Nt
dφ

di

di

dt
(B.5)

= −Ldi
dt

For a constant relationship between current changes di
dt

and flux changes dφ
dt

, i.e. linear

magnetic circuit, eq. (B.2) and eq. (B.5) reveal that:

L =
N2

t

� (B.6)

The basic equations in eq. (B.1) - eq. (B.6) form the foundation for the inductor design

procedure described in this section.
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B.3.1 Geometric constraints

Considering the geometric dimensions of the cores in Fig. B.1 it appears that the

maximum number of turns N̂t is limited by:

N̂t = kcu · Aw
Ĵ

Î
(B.7)

where Aw is the winding window of the considered core. The winding window of the

four considered cores is defined on Fig. B.1 as the hatched area. Combining eq. (B.2),

eq. (B.6) and eq. (B.7) and assuming that the flux density inside the core Bc is uniform

and given by Bc = φ
Ac

, the following inequality is obtained:

Nt ≤ N̂t

L · Î · Îmax

√
2 ≤ kcuAwAcB̂J (B.8)

From eq. (B.8), the minimum applicable core size, with respect to magnetic properties,

is found.

B.3.2 Air g

The purpose of the air-g is to increase the reluctance of the magnetic path in order to

assure that the designed inductor is operated in the linear range, i.e. the flux density is

kept below the design parameter B̂ when the inductor carries the current Îmax. The air

g dg is defined on Fig. B.1. The reluctance of the air g �g is calculated by:

�g =
lg

µ0 · Ag

(B.9)

where lg is the length of the air g and Ag is the cross-sectional area of the air g. To ac-

count for the fringing phenomena, the resultant cross-sectional area of the air-g becomes

larger than the area of the core, reducing the flux-density in the air-g . Empirically, the

cross-sectional area Ag of the air-g is determined by [4]:

Ag = (dx + dg)(dy + dg) (B.10)

where dx and dy are the core dimensions and dg is the length of the air-g. From eq.

(B.2):

� =
Nt

√
2Îmax

AcB̂c

(B.11)
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Single phase EI-core

Considering the single-phase EI-core, the reluctance of the center-leg air g �g1, the

outer-leg air gs �g2 and the iron path reluctances �1 and �2 are defined by:

�g1 =
dg

µ0(d1 + dg)2

�g2 =
dg

µ0(d1 + dg)(0.5d1 + dg)

�1 =
2d1
µcd21

�2 =
4.5 · d1
µc0.5d21

The total reluctance �E1 of the single phase E-core is given by:

�E1 = �1 + �g1 + 0.5(�2 + �g2) (B.12)

Inserting eq. (B.12) and eq. (B.12) into eq. (B.11), and solving for the air-g gives a

third-order equation having the following three solutions:

dg,1 = S + T − 2.5d1 − 1.5
k1

3

dg,2 = −1

2
(S + T ) − 2.5d1 − 1.5

k1

3
+ j

√
3

2
(S − T ) (B.13)

dg,3 = −1

2
(S + T ) − 2.5d1 − 1.5

k1

3
− j

√
3

2
(S − T )

where the constants k1, Q, R, S and T are given by:

k1 =
µ0Nt

√
2Î − 6.5d1B̂c

µ0

µc

d21B̂c

Q =
6d21 − 3d1

k1

9

R =
9
((

2.5d1 − 1.5
k1

)(
2d21 − d1

k1

))
− 27

(
d3
1

2

)
− 2
(
2.5d1 − 1.5

k1

)3
54

S =
3

√
R +
√
Q3 +R2

T =
3

√
R−
√
Q3 +R2

Single phase UI-core

For the single phase UI-core, the reluctance of the air g �g1 and the iron path reluctance

�1 is given by:

�g1 =
dg

µ0(d1 + dg)2

(B.14)

�1 =
12d1
µcd21
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The total reluctance �U1 of the single phase UI-core is given by:

�U1 = �1 + 2�g1 (B.15)

Substituting eq. (B.14) and eq. (B.15) into eq. (B.11) and solving for air-g length gives:

dg =
−
(
2d1 − 2

k1

)
±
√(

2d1 − 2
k1

)2
− 4d21

2
(B.16)

where k1 is given by:

k1 =
µ0NtÎ −

(√
72µ0d1B̂c

µc

)
√

2d21B̂c

(B.17)

Three phase EI-core

Assuming that the reluctance in the yoke is negligible (�y = 0) the three phase EI-core

can be considered as three single phase UI-cores having the reluctances defined as:

�1 =
4d1
µcd21

(B.18)

�g1 =
dg

µ0(d1 + dg)2

dg =
−
(
2d1 − 1

k1

)
±
√(

2d1 − 1
k1

)2
− 4d21

2
(B.19)

where k1 is given by:

k1 =
µ0NtÎ

√
2 −
(
4µ0d1B̂c

µc

)
d21B̂c

(B.20)

Three phase EE-core

Assuming that the reluctance in the yoke is negligible (�y = 0) the three phase EI-core

can be considered as three single phase UI-cores having the reluctances defined as:

�1 =
8d1
µcd21

(B.21)

�g1 =
dg

µ0(d1 + dg)2

dg =
−
(
2d1 − 1

k1

)
±
√(

2d1 − 1
k1

)2
− 4d21

2
(B.22)



B.3. Design approach 319

where k1 is given by:

k1 =
µ0NtÎ

√
2 −
(
8µ0d1B̂c

µc

)
d21B̂c

(B.23)

B.3.3 Number of turns

Having the reluctance of the considered core (which in turn involves the number of

turns), the number of turns Nt: can be calculated, c.f. eq. (B.6):

Nt =
√
L · � (B.24)

where � is the reluctance of the magnetic flux path. The reluctance of a magnetic flux

path is given by:

� =
l

µA
(B.25)

where µ is property constant of the considered medium l is the length of the flux path

and A is the equivalent cross-sectional area of the flux path.

B.3.4 Loss mechanisms

In the recursive inductor design procedure it is crucial to determine the losses of a given

design. The following losses are included in the design procedure:

• Copper losses

• Hysteresis losses (major and minor loops)

• Eddy current losses

Hence the total inductor losses PL are modeled by:

PL = Pcu + Phy + Ped (B.26)

where Pcu is the copper losses, Phy are the hysteresis losses, and Ped represent the

eddy-current losses. The succeeding three sections presents the modeling of the three

considered loss mechanisms.

Copper losses

The copper losses in the inductor are due to the effective resistance RL of the windings.

Pcu = RLI
2 (B.27)

At DC-considerations, the resistance of the winding is determined by:

Rcu =
lcu

σcu · Acu

(B.28)
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where lcu is the length of the copper winding and Acu is the cross-sectional area of the

winding. However, the conductivity σcu is a temperature dependent material property

factor which for copper is given by [2]:

σcu =
σcu,20

(1 + 0.00393(T − 20))
[1/(Ωm)] (B.29)

where T is the actual winding temperature in degrees Celsius. Further complications

occur when the inductor current becomes time varying. The time-varying currents

produces an alternating magnetic field which in turn generates eddy currents in the

winding which tends to shield the interior of the winding from the carrying current,

resulting in an increased current density at the exterior of the winding [5]. the skin

depth δskin is used. The skin depth is defined by:

δskin =

√
1

π · f · µcu · σcu (B.30)

where µcu is the permeability of copper1 and f is the frequency of the inductor current.

Considering only the fundamental of the inductor current, the skin depth becomes 10.6

mm. For rectangular conductors with a thickness dcu the consequences of the skin effect

can be neglected if the following inequality is satisfied [5]:

dcu ≤ 2 · δskin (B.31)

In the actual inductor design, conductors which satisfy eq. (B.31) will be used and hence

the skin effect can be omitted in the calculation of the effective winding resistance. Hence

the copper losses in the actual inductor design is calculated by eq. (B.27), eq. (B.28)

and eq. (B.29).

Hysteresis losses

The empirical Steinmetz equation expresses the specific hysteresis loss as an exponential

function of the frequency f and the maximum flux density B̂c. Provided that the

magnetizing current is purely sinusoidal the hysteresis loss can be expressed by:

Phy = cm · fα · B̂β
c (B.32)

where cm, α and β are material property constants. Despite, the formula in eq. (B.32) is

a well established expression for the hysteresis losses, manufactures of iron cores rather

provide graphical presentation of the loss characteristic than providing the material

property constants. Further, eq. (B.32) only applies for a sinusoidal magnetizing current

at a given core temperature2. Hence the calculation of the hysteresis losses in the

inductor involves the following two steps:

• Extraction of the parameters cm, α and β.

1The permeability of copper is [7]: µcu = µ0(1− 0.98e−5).
2Due to insufficient data sheet information, the temperature dependence of the core losses is ne-

glected.



B.3. Design approach 321

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

B
c
 [T]

P
c
 [W/kg]

10
2

10
3

10
4

10
−1

10
0

10
1

f [Hz]

P
c
 [W/kg]

0 2000 4000 6000 8000 10000
10

−1

10
0

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

B
c
 [T]

P
c
 [W/kg]

Material: 30ZH100 Material: 30ZH100 

Material: 30ZH100 Material: 30ZH100 

c
m

 * 1000 

β 
α 

Figure B.2: Extraction of hysteresis loss parameters. a) Reproduction of data

sheet information. Losses vs. induction b) Reproduction of data sheet information.

Losses vs. frequency. c) Convergence of the parameters cm, α and β using the least

square regression model. d) Model validation.

• Extension of eq. (B.32) to account for arbitrary magnetizing currents.

The extraction of the three material property constants is based on the approach de-

scribed in [6] while the extension of basic Steinmetz equation is described in [1].

Fig. B.2a shows a reproduction of the specific core loss as a function of the induction,

plotted for the frequency range 50 Hz to 20 kHz.

Using the least square regression method [8], on the data in Fig. B.2a and Fig. B.2b the

values for cm, α and β can be extracted. The convergence of the least square regression

method is depicted in Fig. B.2c.

Phy = 3.026e−4 · f 1.749 · B̂1.891c (B.33)

Fig. B.2 shows the hysteresis losses calculated by the extracted model (-) along with

the data from the data sheet (*).
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The core loss model given by eq. (B.33) only applies for sinusoidal exitation currents

and to account for non-sinusoidal waveforms and sub-hysteresis loops, the model has to

be extended. Based on the actual shape of the flux density, [6] suggests to determine an

equivalent frequency fsin,eq, given rise to the same hysteresis losses as obtained by the

original signal. The equivalent frequency is determined by:

fsin,eq =
2

π2

N∑
n=2

(
B(n) −B(n− 1)

Bmax −Bmin

)2
· 1

t(n) − t(n− 1)
(B.34)

Thus the specific hysteresis power losses for an arbitrary magnetizing current becomes:

Phy =
1

T
cm · fα−1

sin,eq ·Bβ (B.35)

where T is the time period of the original signal.

Eddy current losses

To account for the eddy current losses the empirical Steinmetz equation is used:

Ped =
σc · τ
12ρc

(
dB

dt

)2
[W/kg] (B.36)

where σc is the conductivity of the core material, τ is the thickness of the lamination

and ρc is the mass density of the iron.

B.3.5 Temperature considerations

At steady state temperature considerations, the relation between the power losses in the

inductor and the inductor-to-ambient temperature ∆T can be expressed by:

∆T = RΘiaPc (B.37)

where RΘia is the inductor to ambient heat transfer resistance. Unfortunately, the

heat transfer resistance is a quite complex function, depending on temperature, cooling

method, surface area and surface characteristics. Hence the main difficulty of this

approach is to determine a reasonable expression for the heat transfer resistance. In

this inductor design, a relatively simple approach is used where it is assumed that the

inductor is cooled only by convective and radiative heat transfer, i.e. the air circulation

around the inductor is only due to natural air circulation caused by the heating of the air

in proximity of the inductor. Further, it is assumed that the inductor is a homogeneous

body with a smooth, closed, and black3 surface.

3In the design of the inductor, emissivity constant is assumed to be 0.9 which holds for a black body
[5]
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Convective heat transfer

The convective heat transfer is modeled by [3]:

Pconv = 13.5 · As∆T (B.38)

where ∆T is the difference between the inductor temperature and the ambient tempera-

ture and As is the surface area of the designed inductor For design purposes the thermal

resistance RΘconv due to convective heat transfer is found by combining eq. (B.37) and

eq. (B.38):

RΘconv =
1

13.5 · As

(B.39)

Radiative heat transfer

The power Prad emitted by radiation is modeled by the Stefan-Boltzmann law [5]:

Prad = 5.7 · E · As

((
Tc

100

)4
−
(
Ta

100

)4)
(B.40)

where E is the emissivity of the surface, Ts and Ta is the conductor temperature and

the ambient temperature measured in Kelvin. Combining eq. (B.37) and eq. (B.40),

the thermal resistance RΘrad due to radiative heat transfer becomes:

RΘrad =
1

5.7 · E · As

((
Tc

100

)4 − ( Ta

100

)4) (B.41)

Thermal resistance

By the approach described above, the total thermal resistance RΘia including both the

radiative and the convective heat transfer is determined by:

RΘia =
RΘconv ·RΘrad

RΘconv +RΘrad

(B.42)

B.4 Iterative design algorithm

Fig. B.3 shows the algorithm used to design the inductances. For each calculation step

in the algorithm, the actual equation is cited.

B.5 Core- and wire characteristics

Table I lists the core- and wire characteristics used in the design procedure.
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Specify design parameters,
c.f. section A.1

Determine core size from
geometric constraints, c.f. eq. (A.8)

Calculate air gab length, c.f. eq.
(A.14), (A.17), (A.20) and (A.23)

Calculate maximum number
of turns, c.f. eq. (A.7)

Calculate number
of turns, c.f. eq. (A.25)

Calculate necessary reluctance,
c.f. eq. (A.11)

Calculate inductance, c.f. eq. (A.6)

Is the
designed inductance
within the desired

tolerance ?

Calculate thermal resistance,
c.f. eq. (A.40), (A.42) and (A.43)

Current shape

Calculate core losses, c.f. eq.
(A.36)and (A.37)

Calculate winding resistance,
c.f. eq. (A.29)

Calculate copper losses, c.f.
eq. (A.28)

Calculate temperature, c.f.
eq. (A.38)

Output design

Is steady
state temperature conditions

achieved?

Yes

Yes

No

No

Figure B.3: Algorithm for inductor design.
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TABLE I: Design constants

Description Symbol Value Unit

Permeability of air µ0 4π · 10−7 [H/m]

Permeability of core material µc 0.04 [H/m]

Permeability of copper µcu µ0(1 − 0.98 · 10−5) [H/m]

Conductivity of copper at 20◦C σcu,20 5.797 · 107 [1/(Ωm)]

Conductivity of core material at 20◦C σc 2 · 106 [1/(Ωm)]

Mass density of core material ρc 7650 [kg/m3]

Thickness of lamination τ 3 · 10−4 [m]

cm 3.0261 · 10−4

α 1.7492

β 1.8910

B.6 Design results

By use of the above described iterative design procedure, it is possible to design an

inductor complying the specifications. Fig. B.4 shows calculated losses for 7 different

inductances (0.3mH to 0.6mH stepped by 50µH) as a function of the mass of the in-

ductor. The calculations are repeated for different current densities (1.5 A/mm2 to 8

A/mm2). The bold lines corresponds to core designs where the temperature is kept be-

low the maximum allowable temperature while thin lines corresponds to designs which

does not comply with the temperature specifications.
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Abstract—This paper presents a new and fast method for
evaluating the efficiency of different converter topologies in
variable speed wind turbine applications. The method in-
volves an accurate model of the considered generator while
the converter models are based on ideal switches. The
converter losses are modeled by analytical expressions of
the switches, and the description of the losses incorporate
both temperature, blocking voltage and switched current.
The method is used to evaluate two converter topologies, a
two-level back-to-back voltage source inverter (VSI), and a
three-level back-to-back VSI for use in a 2MWwind turbine
system based on a doubly-fed induction generator (DFIG).
From this evaluation it appears that with regards to the ef-
ficiency, the two-level VSI is the most suitable solution for
the rotor side inverter while at the grid side, both inverter
topologies show approximately the same efficiency. The
evaluation method is validated by experimental results.

I. Introduction

Since the mid eighties the world-wide installed wind tur-
bine power has increased dramatically and several interna-
tional forecasts expect the growth to continue. Support-
ing these forecasts are a number of national energy pro-
grammes which proclaim a high utilization of wind power
[1]. So far, the constant speed wind turbine, using the
induction generator, has been widely used [2]. However
as the ratings of the wind turbines are getting higher and
the wind turbines are getting more widespread, a cou-
ple of problems with the constant speed wind turbine oc-
curs, which make variable speed constant frequency sys-
tems more attractive.

A. Constant speed wind turbines

A.1 Energy capture: A problem concerning the design
of a constant speed wind turbine is the choice of a nominal
wind speed at which the wind turbine produces its rated
power. In general the power transmitted to the hub shaft
of the wind turbine is expressed as [3]:

Ptur =
1
2
CpρAvv

3
wind (1)

where Av is the area swept out by the turbine blades, ρ is
the air density, vwind is the velocity of the wind and Cp
is the power performance coefficient. The power perfor-
mance coefficient varies considerably for various designs,
but in general it is a function of the blade tip speed ratio
λ. The problem concerning the energy capture from con-
stant speed wind turbines is visualized in Fig. 1, where
the power transmitted to the hub shaft versus rotor speed
is plotted for different wind speeds, v1...v4. From Fig.
1 it appears, that at wind speeds above and below the
rated wind speed, the energy capture does not reach the

Ptur

v4

v3

v1

Popt

v2

Prated

v >v >v >v4 3 2 1

!rated

Fig. 1. The power transmitted to the hub shaft at different wind
speeds.

maximum available value.

A.2 Mechanical stress: Another problem concerning the
fixed speed wind turbine is the design of the mechanical
system. Due to the almost fixed speed of the wind tur-
bine every fluctuations in the wind power is converted
to torque pulsations which cause mechanical stresses. To
avoid breakdowns, the drive train and gear-box of a fixed
speed turbine must be able to withstand the absolute peak
loading conditions and consequently additional safety fac-
tors need to be incorporated into the design [4,5].

A.3 Power quality The power generated from a fixed
speed wind turbine is sensitive to fluctuations in the wind.
Due to the steep speed-torque characteristics of an induc-
tion generator, any change in the wind speed is transmit-
ted through the drive train on to the grid [4]. The rapidly
changing wind power may create an objectionable voltage
flicker. Another power quality problem of the fixed speed
wind turbine is the reactive power consumption. To im-
prove the power quality of wind turbines, large reactive
components, active as well as passive, are often used to
compensate for the reactive power consumption [6].

B. Variable speed wind turbines

Initiated by the disadvantages in the use of constant
speed wind turbines described above, the trend in mo-
dern wind energy conversion is doubtlessly towards vari-
able speed constant frequency (VSCF) generating sys-
tems. However, as the induction generator seems to be
the ”defacto standard” in constant speed wind turbines,
no variable speed wind turbine solutions occupy this po-
sition at the moment. For example, the German company
ENERCON count on a solution based on a direct driven
synchronous generator while the Danish company VES-
TAS uses a doubly-fed induction generator (DFIG). Be-
sides the choice of generator concept, another challenge



in the design of a variable speed wind turbine, is the se-
lection of the most suitable converter topology. One goal
for this selection should be, that the gained utilization of
the wind energy is not lost in converter losses. This paper
evaluates the efficiency of two power converters for use in
the doubly-fed induction generator system. The consid-
ered power converters are: A two level back-to-back VSI
and a three-level back-to-back VSI.

II. The doubly-fed induction generator system

Fig. 2 shows the considered doubly-fed induction gen-
erator system along with the definitions of power flow di-
rection. In the system, the converter topology (including
the grid filter) is the general design parameter while the
characteristics of the generator, the transformer and the
rotor side filter are predetermined values. The specifica-
tions for the wind turbine system are listed in Table I.
A common trait of a converter for use in the doubly-fed
induction generator system is, that it has to handle the
generated active and reactive rotor power under the con-
ditions specified in Table I.

A. Ratings for the converter

The power transmitted to the utility grid Psys is the
sum of the stator power Ps and the rotor power Pr, pro-
vided that the converter is loss less, i.e. Pg = Pr:

Psys = Ps + Pr (2)

Similar, the reactive power transmitted to the utility grid
is the sum of the reactive power generated by the stator
Qs and the reactive power generated by the grid inverter
Qg:

Qsys = Qs +Qg = 0 (3)

As indicated in (3) the generated reactive power is con-
trolled to zero and in steady-state operation, the two com-
ponents Qs and Qg both equals zero. The only control
parameter available to satisfy (3) is the rotor voltage. To
determine the rotor voltage, the equation set for the elec-
trical part of the generator is used. By a power invariant
transformation of the phase quantities of the DFIG into
the stationary two-axis frame the following equation set is
obtained.[

vs
vr

]
=
[−Rs − pLs −pLm
(ωr − p)Lm −Rr + (ωr − p)Lr

] [
is
ir

]
(4)

where p is the time derivative operator, Rs is the stator
resistance, Rr is the rotor resistance, Lm is the magnetiz-
ing inductance, Lr is the rotor inductance, Ls is the sta-
tor inductance and ωr is the rotational speed in electrical

DFIG

Supply
( 10 kV)

Converter
Vg

Vs

Vr

Qs

QrQgQsys

Ps

PrPg
Psys

Fig. 2. The considered doubly-fed system.

TABLE I

Ratings for the system.

Nom. Speed ωr,nom 1500 ± 12% [rpm]
Dyn. slip1 sdyn 30%
Nom. power Psys 2.0 [MW]
Stator phase voltage Vs 398 [V]
Grid phase voltage Vg 277 [V]
Rotor side filter Lr 60 [µH]
Gen. wind. ratio n 2.63

1 Only for super synchronous speed.

measure. Hence, the active and reactive power equals:

Ps = �e(vs · i∗s) (5)
Qs = �m(vs · i∗s) (6)
Pr = �e(vr · i∗r) (7)
Qr = �m(vr · i∗r) (8)

where i∗x denotes the complex conjugate of the quantity
ix. The �e(·) and �m(·) represents the real and imag-
inary part of the argument. Solving (2), (3) and (4) in
steady-state conditions for a total power, Psys, of 2 MW
it is found that the converter have to be designed to the
following conditions:

V̂r = 324 V (9)

Îr = 774 [A] (10)

Îg = 328 [A] (555 [A] for 1 minute) (11)

where V̂r is the demanded rotor phase voltage (RMS) at
30% super-synchronous speed, Îr is the maximum rotor
phase current (RMS) occurring at 12% sub-synchronous
speed and Îg is the maximum RMS grid current occurring
at 12% sub-synchronous speed.

B. Converter harmonic performance

In the design of the grid inverter for the doubly-fed in-
duction generator the total harmonic current distortion
THDi, defined by:

THDi =

√√√√∑
h�=1

(
I2h
I21

)
(12)

will be limited to 5% at full load steady state. By this, the
allowable harmonic RMS current becomes 16.4 A. Since
the harmonic flux distortion ψ̃RMS [7] rather than the
harmonic current is used as a design parameter for the
grid side inverter, the design guide lines for the grid side
inverter becomes:

ψ̃RMS =
Ih
Lg

(13)

where Lg is the inductance of the grid side filter. At the
rotor side of the converter, a harmonic flux distortion of
maximum 14 [mWb] will be allowed.

III. Power converter topologies

Fig. 3 shows the two considered power converters, the
two-level back-to-back VSI and the three-level back-to-
back VSI. In order to evaluate the efficiency of the two



Grid filter Rotor filter

Grid filter Rotor filter

Two-level back-to-back VSI

Three-level back-to-back VSI

Fig. 3. The considered converter topologies.

converter topologies when used in the considered wind tur-
bine system, some preliminary design considerations are
to be made concerning the components which are believed
to influence the losses of the converter system. The con-
sidered components are:
• Switching devices.
• Filters.
• Modulation strategies.
In the evaluation, the losses due to the series resistance of
the DC-link capacitor(s) is neglected.

A. Back-to-back VSI

A.1 Design: From the design criteria specified in (9) the
DC-link voltage of the two-level back-to-back VSI is fixed
to 800 V (in this choice it is presumed that the converter
are able to utilize the full DC-link voltage). Further, at
this DC-link voltage, the grid filter inductance Lg is lim-
ited by the magnitude of the maximum grid current, c.f
(11), given by:

Lg ≤
√
V̂ 2
gi − V 2

g

(ωg · Ig)2 (14)

where V̂gi is the maximum RMS grid inverter voltage. At
a 10% increased grid voltage, a total power of 2MW and
a speed 30% above synchronous speed the grid inductor
is limited to a value below 0.7 mH. In the present case
study, a 0.4 mH grid inductance is to be used. Regarding
the switches of the two-level back-to-back VSI, the selec-
tion is limited to switches based on the SKiiP�-technology
provided by SEMIKRON. For each leg in the two-level rotor
side inverter two paralleled single phase bridges of type
SkiiP942GB120 is used. At the grid side, a single module,
type SkiiP942GB120, per phase ensures the current capa-
bility specified by (11).

A.2 Modulation strategies and switching frequencies:
Among the modulation schemes presented in the litera-
ture during the past, the following four are considered for
use in the two-level grid side inverter and the two-level
rotor side inverter.
• Space vector PWM (SVPWM) [8].

TABLE II

Designed switching frequencies for the two-level

back-to-back VSI

Grid side inv. Rotor side inv.
(0.84 < Mi < 1) (0 < Mi < 0.4)

SVPWM 4300 [Hz] 1300 [Hz]
DPWM0 4900 [Hz] 2450 [Hz]
DPWM1 5000 [Hz] 2500 [Hz]
DPWM2 4900 [Hz] 2450 [Hz]

• Discontinuous shifted left PWM (DPWM0) [10].
• Discontinuous centered PWM (DPWM1) [9].
• Discontinuous shifted right PWM (DPWM2) [10].
Evaluating these four modulation methods with regards
to the RMS harmonic flux distortion ˜ψRMS and designing
the switching frequency to meet the specified harmonic
demands, the switching frequencies listed in Table II is
obtained. Then, evaluating the switching losses of the
different modulation methods (at the designed switching
frequencies) it is possible to choose the most efficient mod-
ulation method. As example, regarding the two-level ro-
tor inverter: With reference to Fig. 4, considering the
switching losses as a function of the inverter load angle φr
and comparing with the actual load angles for the rotor
circuit of the generator it appears, that in general, the
SVPWM is the most suitable modulation strategy with
regards to the switching losses of the rotor inverter. The
right part of Fig. 4 shows the normalized switching losses
Psw of the different modulation strategies as a function
of the load angle φr (normalized to the switching losses
of the continuous modulator (SVPWM)). The left part of
Fig. 4 shows the load angles of the rotor inverter plotted
against the absolute slip value. The different load angle
curves correspond to different levels of total power (the
load angle approaches -90◦ as the total power decreases).
Applying the same procedure for the grid inverter, it ap-
pears that the discontinuous modulation scheme DPWM1
is the most applicable among the considered modulation
schemes.

B. Three-level back-to-back VSI

From Fig. 3 it appears that the preferred switch con-
figuration for the three-level converter suffers from the
advantage of normal multi-level structures in which the
voltage ratings for all the switches can be derated. In the
considered topology, the switches connected to the upper
and lower DC-bus have to be rated to the full DC-link
voltage while the switches connected to the DC-link cen-
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TABLE III

Designed switching frequencies for the three-level

back-to-back VSI

Grid side inv. Rotor side inv.
(0.84 < Mi < 1) (0 < Mi < 0.4)

SVPWM1 2000 [Hz] 650 [Hz]
SVPWM2 2000 [Hz] 750 [Hz]

ter point can be rated to half the DC-link voltage. An
advantages of the present topology is that only one switch
is in the current path whenever the output of the con-
verter is clamped to either the upper or the lower DC-bus
(contrary to the conventional diode clamped three-level
converter [11] where two switches form the conducting
path). Another salient feature of the three-level topol-
ogy in Fig. 3 is that the single phase SkiiPPACK modules
from SEMIKRON are applicable (these modules include a
complete gate drive circuit).

B.1 Design: For the three-level converter, the same con-
ditions as for the two-level converter apply with regard to
the magnitude of the DC-link voltage and the size of the
grid inductance. Hence the total DC-link voltage is fixed
to 800 V and the grid filter inductance is chosen to 0.4 mH.
For the rotor side inverter, 12 half bridge-modules (two in
parallel), type SKiiP942GB120 along with 18 additional
diodes, type SKKD90F06 ensures the current capability in
(10) while six modules, type SKiiP642GB120 along with
12 diodes, type SKKD90F06 form the three-level grid in-
verter.

B.2 Modulation strategies and switching frequencies:
Unlike the two-level back-to-back VSI, where the redun-
dancy of the zero vectors can be dedicated to switching
loss reduction (the discontinuous modulators), the redun-
dancy of the switch-states in the three-level converter has
to be attributed to DC-link neutral potential stabiliza-
tion. For the present application, only modulation strate-
gies which are able to stabilize the DC-link voltage in
each switching cycle are considered. Actually, those to
be treated are:

• Space vector PWM1 (SVPWM1)1.
• Space vector PWM2 (SVPWM2)1 [12].

Designing both modulation methods to meet the pre-
requested harmonic performance criteria, the switching
frequencies can be calculated to the values in Table III.
Similar to the procedure for the two-level converter, the
switching losses of the two modulation schemes are calcu-
lated for the actual load conditions, and the most efficient
modulator is chosen. For both the grid side inverter and
the rotor side inverter, the method denoted SVPWM2 is
the most efficient, although the SVPWM1 method allows
lower switching frequency in the rotor inverter, c.f. Table
III

1Due to some confusion in the names of modulation schemes for the
three-level converter, appendix II is dedicated to a brief presentation
of the two methods in order to clarify the differences.

IV. Loss modeling

A. Semiconductor loss description:

In the efforts of determining the converter efficiencies,
an appropriate transistor loss model are to be used. Sev-
eral approaches are described in the literature [13-16],
ranging from simple conducting loss models to complex
and simulation time consuming semiconductor models. In
this paper it is chosen to use a method based on an an-
alytical formulation of the losses. It is assumed that the
semiconductor losses can be modeled by [17]:

pT = uTh,T (Tj , uT ) · iT +RT (Tj , uT ) · i2T +
ksw(Tj , usw) · isw · f̃sw (15)

pD = uTh,D(Tj , uD) · iD +RD(Tj , uD) · i2D +
krr(Tj , usw) · isw · f̃sw (16)

where uTh,x is the threshold voltage for the transistor and
diode as a function of the device junction temperature Tj
and blocking voltage ux, Rx is the device resistance, kxx
is a switching loss function, ix is the device current, isw is
the switched current and f̃sw is the number of switchings
per second for the considered device.

A.1 Parameter extraction: One method for deriving the
parameters in (15) and (16) is to use the test system de-
scribed in [14]. However, in this paper it is chosen to limit
the considered switches to the SkiiPPACK modules from
SEMIKRON, and hence the designing tool SKiiPselect pro-
vided by the manufacturer can be used to derive the pa-
rameters. As example, Fig. 5 shows the derived losses
(per switch) in an H-bridge equipped with the module
SkiiP642GB120. The junction temperature is kept at
100◦C and the DC-link voltage is 400 V. The losses in Fig.
5 is shown as a function of modulation function m and the
output current Io from the H-bridge. From the loss mod-
eling approaches described by (15) and (16) and by use of
a least square regression model [18], the model parame-
ters can be extracted from the losses in Fig. 5. Repeating
the procedure for other combinations of the DC-link volt-
age and device junction temperature, a temperature- and
blocking voltage dependent switch model is obtained.

A.2 Device parameters: Applying the least square re-
gression model, c.f. appendix I, on the derived loss ar-
rays, the model parameters are derived. Table IV lists
the derived transistor parameters and Table V the corre-
sponding diode parameters. For the additional diodes in
the three-level structure, the data sheet loss parameters
are used.
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TABLE IV

Semiconductor loss models (transistors).

942GB1201 942GB1202 642GB1203

Uth,T [V] 2.0e−3Tj+1.24 1.44 1.44
RT [mΩ] 3.2e−3Tj+1.72 2.0 3.08
ksw [µs] 0.65Tj+350 1.9e−4u2

T + 0.37uT 179

TABLE V

Semiconductor loss models (diodes).

942GB1201 942GB1202 642GB1203

Uth,D [V] −3.2e−3Tj+1.40 1.08 1.08
RD [mΩ] 7.9e−4Tj+1.25 1.32 1.97
krr [µs] 8.8e−2Tj+4.29 0.66uT −2.3e−6u2

T 26.5

1 Temperature dependent model, Blocking voltage equals 800 V.
2 Voltage dependent model, junction temperature equals 100◦.
3 Blocking voltage at 400 V, and junction temperature at 100◦.

B. Filter loss description

The losses in the filters (grid side and rotor side in-
ductance) are modeled by an equivalent series resistance.
The resistance value for the two considered inductors are
calculated by

RL =
PRL∑
(I2h)

(17)

where PRL is the inductor losses specified by the manu-
facturer at a given harmonic current spectra Ih.

V. Simulation model

The method used to simulate the losses of the different
converter systems is illustrated on Fig. 6. The method
is based on a dynamic model of the doubly-fed induc-
tion generator, an ideal model of the converter (includ-
ing grid filter and modulator(s)) and the switch model(s).
The simulation platform used in the presented approach
is PSIM provided by PowerSimTech.

VI. Results

A. Verification of the loss prediction method

To validate the loss prediction method, measurements
were performed on a 2 MW test-setup based on a two-
level back-to-back VSI. The measurements were obtained
by use of a NORMA D61000 power analyzer measuring the
power at both the grid side and the rotor side of the
converter simultaneously, (The measurements include the
losses of the rotor filter and the grid filter). Fig. 7 shows
the measured losses of the 2 MW test-setup (indicated
with marks � and ✄). In order to be able to simulate the
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Fig. 6. Illustration of the simulation method.
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converter at the same operating conditions, the switch-
ing device temperature along with the grid voltage was
recorded for each of the measurements. Supporting the
developed simulation model with the characteristics of the
test setup (modulation strategies, switching frequencies,
switching device characteristics, grid voltages, device tem-
peratures and filter characteristics), the losses of the test
setup were simulated. The solid lines in Fig. 7 represents
the simulated losses of the converter.

B. Simulated losses in the two-level back-to-back VSI

Fig. 8 shows the simulated losses of the grid side two-
level VSI. The upper left part (UL) shows the switching
losses of the grid inverter and the upper right part (UR)
shows the conducting losses of the grid inverter. The lower
left part (LL) shows the losses in the grid side filter and the
lower right part (LR) shows the total grid inverter losses
(including filter losses). Fig. 9 shows the simulated losses
associated with the operation of the rotor side inverter of
the two-level back-to-back VSI. The (UL) shows the total
switching losses in the rotor side inverter, (UR) shows the
conducting losses of the rotor side inverter and (LL) shows
the losses in the rotor side filter. The total losses of the
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rotor side two-level VSI is shown in the (LR) of Fig. 9.

C. Simulated losses in the three-level converter

Fig. 10 shows the simulated losses of the grid side three-
level VSI. The (UL) shows the total switching losses of the
grid inverter and the (UR) shows conducting losses. The
(LL) shows the losses in the grid side filter and (LR) shows
the total grid inverter losses of the three-level structure
(including filter losses). Fig. 11 shows the simulated losses
associated with the operation of the rotor side inverter
of the three-level back-to-back VSI. The (UL) shows the
switching total losses of switches in the rotor side inverter,
(UR) shows the conducting losses of the rotor side inverter
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Fig. 11. Simulated losses of the rotor inverter of the three-level
back-to-back VSI.

and (LL) shows the losses in the rotor side filter. The total
losses of the rotor side three-level VSI is shown in the (LR)
of Fig. 11.

VII. Discussion

Comparing the simulated results for the converter losses
of the two-level back-to-back VSI and the three level back-
to-back VSI it appears that the back-to-back VSI, totally
considered, has the lowest losses. A more detailed study
of the losses gives, that the switching losses of the three-
level converter is lower than the two-level back-to-back
VSI but the conducting losses are very dominant. Com-
paring the grid inverters and the rotor inverters of the
two considered topologies independently, it appears that
the two-level rotor inverter is significantly more efficient
that the three-level rotor inverter. However, comparing
the grid side inverters, it appears that the total losses are
more or less equal and that the dominant loss contribu-
tion for both inverters arises from the grid filter. Since
the switching losses of the three-level structure are quite
small, it is believed that the total grid inverter losses could
be reduced by increasing the switching frequency and then
reduce the grid filter inductor.Hence from the analysis per-
formed in this paper it is proposed to use a combination of
the two- and three-level structure, i.e. a three-level struc-
ture at the grid side and a two-level structure at the rotor
side.

VIII. Conclusion

This paper has presented a method for evaluating the
power losses of converter topologies for use in variable
speed wind turbines. The method is based on a switch
model of the converter using ideal switches, an analyti-
cal (or a look up-table) description of the device losses,
a generator model and modulator(s) for the converter.
The loss prediction method is validated by measurements
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on a 2MW test setup, and it is concluded that the loss-
prediction method shows quite good accuracy. In the
present work, the loss prediction method is used to eval-
uate the efficiency of two converter topologies for use in a
system based on the doubly-fed induction generator. The
considered converter topologies are a two-level back-to-
back VSI, and a three-level back-to-back VSI. It is found
that the back-to-back VSI, totally considered, is the most
efficient among the two topologies.
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Appendix

I. Least Square regression model for switch

model parameters

As an example, the least square regression model for
deriving the diode parameters is shown below. Input
to the regression model is, besides the diode loss model,
the diode losses PD, the diode RMS conducting current
ID, the diode average conducting current ID, the average
switched current isw and the number of switchings per
fundamental f̃sw .

for k = 1 : N∣∣∣∣∣∣∣∣∣∣∣∣∣

φ =
[
ID(k) I2D(k) f̃swisw

]T
G = G+ φPD
R = R+ φ φT

if det(R) �= 0
| θ = R−1G
end

end
UD = θ(1) RD = θ(2) krr = θ(3)

II. Modulation strategies for the three-level

converter.

The half of the sector dependent switching sequence for
the SVPWM1 is shown in (18) - (21)

0a v0−−−→v00−−→v000−→v+00−→v++0 (18)
0b v0−−−→v+−−−→v+0−−→v+00 (19)
0c v0−−−→v00−−→v+0−−→v+00−→v++0 (20)
0d v00−−→v+0−−→v++−−→v++0 (21)

For the method SVPWM2, the corresponding sequences
are:

0a

{
v+00−→v000−→v00−−→v0−− for ∆s < π

6
v00−−→v000−→v+00−→v++0 for ∆s ≥ π

6

(22)

0b v0−−−→v+−−−→v+0−−→v+00 (23)

0c

{
v+00−→v+0−−→v00−−→v0−− for ∆s < π

6
v00−−→v+0−−→v+00−→v++0 for ∆s ≥ π

6

(24)

0d v00−−→v+0−−→v++−−→v++0 (25)
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Abstract— This paper presents a new modulation strat-
egy for three-phase to three-phase matrix converters. The
new modulation strategy is applicable whenever the output
voltage reference is below half the input voltage. By apply-
ing this new modulation method, the switching losses are
reduced by 15-35% compared to the conventional modula-
tion scheme. The waveform quality of the new modulation
strategy is evaluated with regard to both output flux har-
monic distortion and input charge harmonic distortion.

I. Introduction

In recent years, matrix converters for use in induction
motor drives have received considerable attention as a
competitor to the normally used pulse width modulated
voltage source inverter (PWM-VSI). The matrix converter
topology is shown in Fig. 1, where each of the nine
switches are bi-directional configurations. Compared to
the PWM-VSI with diode rectification stage at the input,
the matrix converter provides sinusoidal input and output
waveforms, bi-directional power flow, controllable input
power factor and more compact design [1]. On the other
hand, the matrix converter can only be linearly modu-
lated to an output voltage equal to 0.866 times the input
voltage [2]. Further, the filter design issues are complex
and decoupling between input and output distortions are
to some extent limited due to the absent of the DC-link
capacitor [3-5]. Regarding the converter efficiency, [6] and
[7] have performed some general considerations, conclud-
ing that at low switching frequencies, the VSI are the most
efficient, while at higher switching frequencies, the matrix
converter becomes superior. A realistic efficiency compar-
ison (if at all possible) should however include a number
of design considerations, among these a selection of mod-
ulation strategy for both converters. Unfortunately, with
regard to modulation strategies, the field of VSI modula-
tion seems quite better explored [8] than the correspond-
ing field for matrix converters. Regarding the VSI, differ-
ent discontinues modulators can be applied by which the
switching losses are reduced by up to 50% compared to
the normally used continuous modulation schemes [9].

Loss reduction in matrix converters have mainly been
focused on reducing the number of switchings [10] and on
hardware considerations [11]. This paper presents a new
loss reduced modulation strategy with no demands for ad-
ditional hardware. Further, to evaluate this new modula-
tion strategy, an evaluation method is established which
corresponds to the already known evaluation method for
VSI modulation schemes [8].
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Fig. 1. The matrix converter topology.

II. Vector analysis of the switching

combinations

Since the matrix converter is supplied by voltage sources
the input phases must never be shorted and due to the in-
ductive nature of the load, the output phases must not be
left open. Complying with these two basic control rules,
only 27 switch combinations are valid. These combina-
tions are shown in Fig. 2. For the space-vector modula-
tion of the matrix converter it is convenient to define the
following four space vectors [12]:

V gp =
2
3
(va + vbej

2π
3 + vcej

4π
3 ) (1)

V rp =
2
3
(vA + vBej

2π
3 + vCej

4π
3 ) (2)

Igp =
2
3
(ia + ibej

2π
3 + icej

4π
3 ) (3)

Irp =
2
3
(iA + iBej

2π
3 + iCej

4π
3 ) (4)

where V gp is the space-vector representation for the input
phase voltage, V rp is the space-vector representation for
the output phase voltage, Igp is the space-vector repre-
sentation for the input phase current and Irp is the space-
vector representation for the output phase current. Ap-
plying (2) on the active switch combinations shown in Fig.
2 it turns out that all these combinations become station-
ary vectors in the space vector plane, however with time
varying amplitudes. The output voltage vectors for the
active switch combinations are shown in the left part of
Fig. 3. Similar, by utilizing (3) it appears that the ac-
tive switch combinations correspond to stationary input
current vectors in the complex space vector plane. Due
to these properties of the active switch combinations, the
well known space vector modulation principles can be ap-
plied to the matrix converter, although the modulation
both has to consider the input current and the output
voltage in the same step.
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Fig. 2. The 27 allowed switch combinations.
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III. Conventional space vector modulation

A. Vector time intervals

In the conventional space vector modulation, the sectors
are defined as shown in Fig. 4. The input angle ∆g used
in the conventional space vector modulation is defined as:

∆g = mod (ωgt ,
π

3
) (5)

where ωgt = 0 is defined as the positive zero crossing of
the phase a input voltage (va = v̂g · sin(ωgt)). Similar, the
output voltage angle ∆r is defined as:

∆r = mod (ωrt+
π

6
,
π

3
) (6)

where ωr is the angular speed of the output voltage vector.
For an arbitrary sector location of the output voltage ref-
erence V �rp and the input voltage vector V gp, the following
equations can be derived using that V �rp = V r1 + V r2:

Vr1 = |V �rp| · sin
(π
3
−∆r

)
· 2√

3

= δ1 · cos
(
∆g − π

3

)
|V gp| ·

2√
3
−

δ2 · cos (∆g − π) |V gp| ·
2√
3

(7)

Vr2 = |V �rp| · sin (∆r) ·
2√
3

= δ3 · cos
(
∆g − π

3

)
· |V gp| ·

2√
3
−

δ4 · cos (∆g − π) · |V gp| ·
2√
3
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Fig. 4. Angle and sector definitions for the conventional space vector
modulation.

where δ1..4 are the on-time durations for the four ap-
plied vectors. In each input sector, only the two line-
line voltages with the highest amplitudes are used. This
is illustrated in the lower part of Fig. 4. By similar
considerations the input current vectors are calculated
(I�gp = Ig1 + Ig2):

Ig1 = |I�gp| · sin
(π
3
−∆g

)
· 2√

3

= δ2 · ix · 2√
3
− δ4 · iy · 2√

3
(8)

Ig2 = |I�gp| · sin (∆g) ·
2√
3

= δ1 · ix · 2√
3
− δ3 · iy · 2√

3
where ix and iy are the instantaneous value of an out-
put phase current. Assuming that the output currents
are sinusoidal and symmetrical distributed, the relation
between ix and iy are:{

ix = îrp · sin(ωrt)
iy = îrp · sin

(
ωrt± 2π

3

)
⇓

iy = ix ·
sin
(
ωrt± 2π

3

)
sin(ωrt)

(9)



TABLE I

Switching table for the conventional space vector modulation

→Rec Sector 0 Sector I Sector II Sector III Sector IV Sector V
↓Inv δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4

0 abb cbb aab ccb acc abb aac aab bcc acc bbc aac baa bcc bba bbc caa baa cca bba cbb caa ccb cca
I aab ccb bab bcb aac aab cac bab bbc aac cbc cac bba bbc aba cbc cca bba aca aba ccb cca bcb aca
II bab bcb baa bcc cac bab caa baa cbc cac cbb caa aba cbc abb cbb aca aba acc abb bcb aca bcc acc
III baa bcc bba bbc caa baa cca bba cbb caa ccb cca abb cbb aab ccb acc abb aac aab bcc acc bbc aac
IV bba bbc aba cbc cca bba aca aba ccb cca bcb aca aab ccb bab bcb aac aab cac bab bbc aac cbc cac
V aba cbc abb cbb aca aba acc abb bcb aca bcc acc bab bcb baa bcc cac bab caa baa cbc cac cbb caa

Combining (8) and (9):

0 = − δ1
sin(∆g)

− δ4 · sin
(
ωrt± 2π

3

)
sin
(
π
3 −∆g

) · sin(ωrt) +
(10)

δ2

sin
(
π
3 −∆g

) + δ3 · sin (ωrt± 2π
3

)
sin(ωrt) · sin(∆g)

In order to achieve a solution for the modulation functions
δ1..4 which are independent of the output current position,
(10) can be separated into the following two equations:

0 = δ2 · sin(∆g)− δ1 · sin
(π
3
−∆g

)
(11)

0 = δ3 · sin
(π
3
−∆g

)
− δ4 · sin(∆g)

Solving (7) and (11) for the modulation functions δ0..4
gives:

δ1 =
2 · |V �rp|√
3 · |V gp|

· sin(∆g) · sin
(π
3
−∆r

)
δ2 =

2 · |V �rp|√
3 · |V gp|

· sin
(π
3
−∆g

)
· sin
(π
3
−∆r

)
δ3 =

2 · |V �rp|√
3 · |V gp|

· sin(∆g) · sin (∆r) (12)

δ4 =
2 · |V �rp|√
3 · |V gp|

· sin
(π
3
−∆g

)
· sin (∆r)

δ0 = 1− (δ1 + δ2 + δ3 + δ4)
It should however be noted that the modulation functions
at any time instant are limited by the following constraint:

δ0..4 >= 0 (13)

Taking this constraint into account, it is found that the
maximum reference voltage |V �rp| are limited to

√
3/2 of

the input phase voltage. Using only the two line-line
voltages with maximum amplitudes, the sector-dependent
switch combination for each duty-cycle function δ1..4 are
summarized in Table I. The sector notation in Table I
refers to the sector location in Fig. 4.

B. Switching sequences

In order to assure the minimum number of branch-
switch-over (BSO) per switching period, which is 8 for
double sided modulation [10], the following switching se-
quences are used: For even sector sums, the half of the

switching sequence is:

δ0
iC−→
vab

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4... when ∆g <
π

6
(14)

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4
iC−→
vbc

δ0... when ∆g >
π

6

and for odd sector sums, the half of the switching sequence
is:

δ0
iA−→
vca

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2 when ∆g <
π

6
(15)

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2
iA−→
vab

δ0... when ∆g >
π

6

Besides the number of BSOs per switching period, also
the amplitude of the switched voltage and current influ-
ences the switching losses. As example (14) shows the
switched voltages for sector combination 0rec, 0inv, and
similar (15) shows the switched voltages for sector combi-
nation Irec, 0inv.

IV. Modified space vector modulation

The main idea of the modified space vector modulation
is to make use of the minimum line-line-voltage (contrary
to the conventional space vector modulation which utilizes
the two maximum line-line voltages) whenever the output
voltage reference is less than half of the input voltage. The
advantages of this new modulation strategy are that the
harmonic content of the output voltages are reduced and
additionally the switching losses are decreased. A disad-
vantage of the proposed modulation strategy is that the
harmonic current spectra on the input side of the converter
deteriorates.

A. Vector time intervals

Fig. 5 shows the modified space vector modulation ap-
proach. The line-line voltages used within each of the
sectors are indicated by the increased line width in the
lower part of Fig. 5 . The procedure for deriving the
duty-cycle functions for the modified space vector modu-
lation approach is almost similar to the procedure in the
conventional space vector modulation. However for com-
pletion of the modulation description, the derivation of
the modified duty-cycle function are given below.
The input angle ∆g used in the modified space vector
modulation is defined as, c.f. Fig 5:

∆g = mod
((
ωgt+

π

6

)
,
π

3

)
(16)



TABLE II

Switching table for the modified space vector modulation

→Rec Sector 0 Sector I Sector II Sector III Sector IV Sector V
↓Inv δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4

0 acc cbb aac ccb bcc abb bbc aab baa acc bba aac caa bcc cca bbc cbb baa ccb bba abb caa aab cca
I aac ccb cac bcb bbc aab cbc bab bba aac aba cac cca bbc aca cbc ccb bba bcb aba aab cca bab aca
II cac bcb caa bcc cbc bab cbb baa aba cac abb caa aca cbc acc cbb bcb aba bcc abb bab aca baa acc
III caa bcc cca bbc cbb baa ccb bba abb caa aab cca acc cbb aac ccb bcc abb bbc aab baa acc bba aac
IV cca bbc aca cbc ccb bba bcb aba aab cca bab aca aac ccb cac bcb bbc aab cbc bab bba aac aba cac
V aca cbc acc cbb bcb aba bcc abb bab aca baa acc cac bcb caa bcc cbc bab cbb baa aba cac abb caa
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Fig. 5. Angle and sector definitions for the modified space vector
modulation.

where ωgt = 0 is defined as the positive zero crossing of
the phase a input voltage (va = v̂g · sin(ωgt)). The output
voltage angle ∆r is defined:

∆r = mod
((
ωrt+

π

6

)
,
π

3

)
(17)

For an arbitrary sector location of the output voltage ref-
erence and the input voltage, the following equations can
be derived:

Vr1 = |V �rp| · sin
(π
3
−∆r

)
· 2√

3

= −δ1 · cos
(
∆g +

π

2

)
|V gp| ·

2√
3
− (18)

δ2 · cos
(
5π
6

−∆g
)
|V gp| ·

2√
3

Vr2 = |V �rp| · sin (∆r) ·
2√
3

= −δ3 · cos
(
∆g +

π

2

)
|V gp| ·

2√
3
− (19)

δ4 · cos
(
5π
6

−∆g
)
|V gp| ·

2√
3

Similar, the current reference |I�gp| can be obtained by:

Ig1 = |I�gp| · cos (∆g) ·
2√
3

= δ2 · ix · 2√
3
− δ4 · iy · 2√

3
(20)

Ig2 = |I�gp| · cos
(π
3
−∆g

)
· 2√

3

= δ1 · ix · 2√
3
− δ3 · iy · 2√

3
(21)

By use of the relation in (9), the modulation functions δ0..4
for the modified modulation approach can be derived:

δ1 =
2 · |V �rp|√
3 · |V gp|

cos
(π
3
−∆g

)
· sin
(π
3
−∆r

)
δ2 =

2 · |V �rp|√
3 · |V gp|

cos (∆g) · sin
(π
3
−∆r

)
δ3 =

2 · |V �rp|√
3 · |V gp|

cos
(π
3
−∆g

)
· sin (∆r) (22)

δ4 =
2 · |V �rp|√
3 · |V gp|

cos (∆g) · sin (∆r)

δ0 = 1− (δ1 + δ2 + δ3 + δ4)
It should be noted that the modulation functions at any
time instant are limited by the constraint in (13): Taking
this constraint into account, it is found that the maxi-
mum reference voltage |V �rp| are limited to half the input
voltage. Table II shows the sector dependent switch com-
binations for the modified modulation. The sectors refer
to the sector location in Fig. 5.

B. Switching sequences

By inspection of Table II it appears that the switching
sequences have to be changed in the modified modulation
strategy in order to obtain the minimum BSOs. For even
sector sums, the half of the switching sequence should be:

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2 (23)

and for odd sector sums, the half of the switching sequence
should be:

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4 (24)

V. Switching losses

Assuming the switch devices of the matrix converter
to have linear current and voltage turn-on and turn-off
characteristics with respect to time and counting only for
the fundamental component of the output current, the
switching losses of the matrix converter can be analytically
modeled as [13]:

psw ∝ vsw · isw · (Ton + Toff ) · fsw (25)

Using the different switching sequences (14), (15), (23)
and (24), the normalized per carrier switching losses may



1 2 3 4 5 6

1

2

3

4

5

6
∆ g [

ra
d]

∆
r
 [rad]

Fig. 6. Contour plot of the switching losses of the conventional
modulation method for φr = 0.

−3 −2 −1 0 1 2 3
2

2.5

3

3.5

4

4.5

5

φ
r
 [rad]

P
sw

 [pu]

Conventional (8 BSO)
Modified (8 BSO)

Fig. 7. The switching losses of the four different modulation func-
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be calculated for arbitrary sector locations of the output
voltage reference vector, the input current reference vector
and the output current vector (it is provided that input
current is in phase with the input phase voltage). Figure 6
shows the normalized switching losses for the conventional
modulation method when the output current and output
phase voltage are in phase. From figure 6 it appears that
the switching losses averaged over a common period time
for the input frequency and the output frequency, depends
on the actual course over the surface. However, consider-
ing a general case, where the input frequency and the out-
put frequency have no common time period, the average
switching losses are calculated by integrating over the en-
tire surface. Hence, to evaluate the different modulation
methods with regards to the switching losses the following
switching loss function is defined:

p̄sw ∝ 1
4π2

∫ 2π

0

∫ 2π

0

(psw)d∆gd∆r (26)

By use of (26) the switching loss functions of the two mod-
ulation schemes can be calculated for different load cases,
i.e different angles φr between output phase voltage and
output current. Figure 7 shows the switching loss func-
tions for the modulations schemes as a function of the
angle φr.

VI. Harmonic performance

A. Output voltage

To evaluate the output voltage quality, the harmonic
flux is considered [8]. In the Nth carrier cycle the har-
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Fig. 8. The per-carrier cycle RMS value of the harmonic flux as
a function of the input and output angle for the conventional
modulation strategy.
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Fig. 9. The per-carrier cycle RMS value of the harmonic flux as a
function of the input and output angle for the modified modu-
lation strategy.

monic flux ψ̃ is calculated by:

ψ̃ =
∫ (N+1)Ts

NTs

(V rp − V �rp)dt (27)

where V rp is a stationary output vector. The per-carrier
cycle RMS value of the harmonic flux ψ̃RMS can be cal-
culated by:

〈ψ̃RMS〉Ts
=

√
1
Ts

∫ Ts

0

(
ψ̃ · ψ̃∗

)
dt (28)

where ψ̃∗ is the complex conjugate of ψ̃ Fig. 8 and Fig.
9 shows the per-carrier cycle RMS value of the harmonic
flux as a function of the input angle and the output angle.
The figures are plotted for modulation indexes of 1 and
0.577 respectively and the harmonic flux is normalized by
Ts
2

√
3ûgp
2 . Evaluating for a general case, where input

frequency and the output frequency has no common pe-
riod time, the RMS value of the harmonic flux is obtained
by integrating over the entire surface. The RMS value of
the harmonic flux is calculated by:

ψ̃RMS =

√
9
π2

∫ π
3

0

∫ π
3

0

(
〈ψ̃RMS〉Ts

)2

d∆g d∆r (29)

Fig. 10 shows the RMS-value of the harmonic flux as a
function of the modulation index where the modulation
index is given by (cf. (12) and (22)):

M =
2 · |V �rp|√
3 · |V rp|

(30)
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From Fig. 10 it appears that the modified modulation
strategy shows better output harmonic performance in the
entire linear modulation range. It should be noted that
for cos(φi) �= 1 at the input, both curves in Fig. 10 would
be changed.

B. Input current

In principle, the evaluation of the input current follows
the same procedure as for the output voltage, however
the evaluation parameter is changed from harmonic flux
to harmonic charge Q̃. Further, the evaluation of the input
current becomes a little more complex than the evaluation
of the output voltage due to the fact that the amplitudes
of the stationary input current vectors are affected by the
load angle φr. Fig. 11 shows the harmonic charge Q̃RMS
vs. the modulation index. The lowest curve for both
the modified modulation algorithm and the conventional
modulation algorithm corresponds to cos(φo) = 1 while
the the middle curve and the upper curve corresponds to
cos(φo) = 0.71 and cos(φo) = 0 respectively. In the
calculation of the results in Fig. 11 the harmonic charge
Q̃ is normalized by Ts

2

√
3îr
2 .

VII. Results

Fig. 12 show a simulation of the matrix converter which
illustrates the improved output performance by using the
modified space vector modulation at output voltages lower
than half the input voltage.

VIII. Conclusion

This paper has presented a new modulation strategy
for matrix converters. The modulation strategy can be
used whenever the output reference is lower than half the
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Fig. 12. The upper plot shows the output side voltage using conven-
tional modulation (M = 0.577), while the lower plot shows the
output side voltage using the modified modulation (M = 0.577).

input voltage. It is shown by analytical expressions that
the proposed modulation strategy reduces the switching
losses of the matrix converter by 15-35%, depending on
the output load angle. An evaluation tool similar to that
proposed for VSIs [8], is developed. This tool is used to
compare the new modulation strategy with the conven-
tional, both with regard to output waveforms and input
waveforms. It turns out that the new modulation strat-
egy shows better output waveforms than the conventional
modulation strategy in the whole linear modulation range
while at the input, the conventional modulation strategy
seems superior. The developed evaluation tool are also
applicable to compare the matrix converter with the VSI.
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Evaluation of Modulation Schemes for Three-phase
to Three-phase Matrix Converters

Lars Helle, Kim B. Larsen, Allan H. Jørgensen, Stig Munk-Nielsen and Frede Blaabjerg

Abstract— This paper presents a method for evaluat-
ing different modulation schemes employed with three-
phase to three-phase matrix converters. The evaluation
method addresses three important modulator character-
istics - the output waveform quality, the input waveform
quality and the switching losses associated with the modu-
lation schemes. The method is used to evaluate four differ-
ent modulation strategies, all based on the direct space vec-
tor modulation approach. Further, regarding the switch-
ing losses, the paper proposes a new space vector approach
by which the switching losses can be reduced by 15-35%,
depending on the output load angle. This new modula-
tion approach is applicable whenever the output voltage
reference is below half the input voltage and the output
voltage quality is then superior to that of the conventional
space vector modulation scheme. The functionality of the
new modulation scheme is validated by both simulations
and experimental results and compared to waveforms ob-
tained by using exiting space vector modulation schemes.
The output voltage of the proposed scheme turns out to be
comparable to the best of the conventional schemes while
the input current is more distorted.

I. Introduction

In recent years, matrix converters for use in induc-
tion motor drives have received considerable attention
as a competitor to the normally used pulse width mod-
ulated voltage source inverter (PWM-VSI). The matrix
converter topology is shown in Fig. 1, where each of the
nine switches represents a bi-directional configuration.
Compared to the PWM-VSI with diode rectification stage
at the input, the matrix converter provides sinusoidal in-
put and output waveforms, bi-directional power flow, con-
trollable input power factor and more compact design [1].
On the other hand, the matrix converter can only be lin-
early modulated to an output voltage equal to 0.866 times
the input voltage [2]. Further, the filter design issues are
complex and a de-coupling between input and output dis-
tortions is to some extent limited due to the absent of
the DC-link capacitor [3-5]. Regarding the converter effi-
ciency, [6] and [7] have performed some general consider-
ations, concluding that at low switching frequencies, the
VSI are the most efficient, while at higher switching fre-
quencies, the matrix converter becomes superior. A real-
istic comparison (if at all possible) should however include
a number of design considerations, among these a selec-
tion of modulation strategy for both converters. Unfor-
tunately, with regard to modulation strategies, the field
of VSI modulation seems quite better explored [8] than
the corresponding field of matrix converters. Regarding
the VSI, different modulators can be applied by which the
switching loss is reduced by up to 50% compared to the
normally used modulation schemes [9]. Loss reduction in
matrix converters has mainly been focused on reducing
the number of switchings [10] and on hardware consider-
ations [11]. Moreover, like the performance evaluation of
PWM-VSI modulation schemes presented in [8], no simi-
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sw
1

sw
2

sw
3

a

b

c

Fig. 1. The matrix converter topology.

lar approach exists for modulation schemes applicable to
the matrix converter. The purposes of this paper are:

1. Presentation of a new loss reduced space vector mod-
ulation approach that is applicable whenever the output
voltage reference is below half the input voltage [12].

2. Presentation of a performance evaluation method
for three-phase to three-phase matrix converter modula-
tion schemes, regarding switching losses, input waveform
quality and output waveform quality.

First the paper reviews the space vector analysis ap-
plied for three-phase to three-phase matrix converters.
Then the conventional space vector modulation theory for
matrix converters is reviewed using the direct approach.
From the theory of the conventional direct space vector
modulation, the new switching loss reduced space vector
approach is derived. Some important aspects regarding
the switching sequence and the placement of the zero-
vectors are also discussed for both the conventional scheme
and the new reduced switching loss space vector approach.
The remaining part of the paper is dedicated to the devel-
opment of a tool usable for performance analysis of mod-
ulation schemes for matrix converters. The performance
analysis is divided into three parts concerning the switch-
ing losses, the input performance and the output perfor-
mance of the different modulation schemes. Finally, in
order to show the functionality of the proposed switching
loss reduced space vector modulation method and in order
to compare the different modulation methods in the time
domain, the paper contains simulated and experimental
results of different modulation schemes.

II. Vector analysis of the switching

combinations

From Fig. 1 it appears that the control of the matrix
converter involves 29 different switch states. However,
since the matrix converter is supplied by voltage sources,
the input phases must never be shorted and due to the in-
ductive nature of the load, the output phases must not be
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Fig. 2. The 27 allowed switch combinations in a matrix converter.

left open. Complying with these two basic control rules,
only 27 switch combinations are valid. These combina-
tions are shown in Fig. 2. For the space-vector modula-
tion of the matrix converter it is convenient to define the
following four space vectors [13]:

V gp =
2
3
(va + vbej

2π
3 + vcej

4π
3 ) (1)

V rp =
2
3
(vA + vBej

2π
3 + vCej

4π
3 ) (2)

Igp =
2
3
(ia + ibej

2π
3 + icej

4π
3 ) (3)

Irp =
2
3
(iA + iBej

2π
3 + iCej

4π
3 ) (4)

where V gp is the space-vector representation for the input
phase voltage, V rp is the space-vector representation for
the output phase voltage, Igp is the space-vector repre-
sentation for the input phase current and Irp is the space-
vector representation for the output phase current. Apply-
ing (2) on the active switch combinations shown in Fig. 2
it turns out that all these combinations become station-
ary vectors in the complex space vector plane, but with
time varying amplitudes. The output voltage vectors for
the active switch combinations are shown in the left part
of Fig. 3. Similarly by using (3) it appears that the ac-
tive switch combinations correspond to stationary input
current vectors in the complex space vector plane. Due
to these properties of the active switch combinations, the
well known space vector modulation principle can be ap-
plied to the matrix converter, although the modulation
both has to consider the input current and the output
voltage in the same step.

III. Conventional space vector modulation

A. Vector time intervals

In the conventional direct space vector modulation ap-
proach, the sectors are defined as shown in Fig. 4. The
input angle ∆g used in the conventional space vector mod-
ulation is defined as:

∆g = mod (ωgt ,
π

3
) (5)

where ωgt = 0 is defined as the positive zero crossing of
the phase a input voltage (va = v̂g · sin(ωgt)). Similar, the
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Fig. 3. Space vector hexagons for the active switch combinations,
c.f. Fig. 2. a) Output voltage. b) Input current.

output voltage angle ∆r is defined:

∆r = mod (ωrt+
π

6
,
π

3
) (6)

where ωr is the angular speed of the output voltage ref-
erence vector and ωrt = 0 is defined as the positive zero
crossing of the phase A output voltage (v�A = v̂

�
r ·sin(ωrt)).

For an arbitrary sector location of the output voltage ref-
erence V �rp and the input voltage vector V gp, the following
equations can be derived using that V �rp = V r1 + V r2:

V r1 = |V �rp| · sin
(π
3
−∆r

)
· 2√

3

= δ1 · cos
(
∆g − π

3

)
|V gp| ·

2√
3
−

δ2 · cos (∆g − π) |V gp| ·
2√
3

(7)

V r2 = |V �rp| · sin (∆r) ·
2√
3

= δ3 · cos
(
∆g − π

3

)
· |V gp| ·

2√
3
−

δ4 · cos (∆g − π) · |V gp| ·
2√
3

where δ1..4 are the on-time durations for the four applied
vectors. In each input sector, only the two line-line volt-
ages with the highest amplitudes are used. This is illus-
trated in the lower part of Fig. 4. By similar considera-
tions the input current vectors are calculated, using that



TABLE I

Switching table for the conventional space vector modulation.

→Rec Sector 0 Sector I Sector II Sector III Sector IV Sector V
↓Inv δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4

0 abb cbb aab ccb acc abb aac aab bcc acc bbc aac baa bcc bba bbc caa baa cca bba cbb caa ccb cca
I aab ccb bab bcb aac aab cac bab bbc aac cbc cac bba bbc aba cbc cca bba aca aba ccb cca bcb aca
II bab bcb baa bcc cac bab caa baa cbc cac cbb caa aba cbc abb cbb aca aba acc abb bcb aca bcc acc
III baa bcc bba bbc caa baa cca bba cbb caa ccb cca abb cbb aab ccb acc abb aac aab bcc acc bbc aac
IV bba bbc aba cbc cca bba aca aba ccb cca bcb aca aab ccb bab bcb aac aab cac bab bbc aac cbc cac
V aba cbc abb cbb aca aba acc abb bcb aca bcc acc bab bcb baa bcc cac bab caa baa cbc cac cbb caa
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Fig. 4. Angle and sector definitions for the conventional space
vector modulation. a) Output voltage. b) Input current. c)
Input sector definition in time domain.

(I�gp = Ig1 + Ig2):

Ig1 = |I�gp| · sin
(π
3
−∆g

)
· 2√

3

= δ2 · ix · 2√
3
− δ4 · iy · 2√

3
(8)

Ig2 = |I�gp| · sin (∆g) ·
2√
3

= δ1 · ix · 2√
3
− δ3 · iy · 2√

3

where ix and iy are the instantaneous values of two out-
put phase currents. Assuming that the output currents
are sinusoidal and symmetrical distributed, the relation
between ix and iy are:

{
ix = îrp · sin(ωrt)
iy = îrp · sin

(
ωrt± 2π

3

)
⇓

iy = ix ·
sin
(
ωrt± 2π

3

)
sin(ωrt)

(9)

Combining (8) and (9) and rearranging, the following out-
put current dependent expression is obtained:

0 = − δ1
sin(∆g)

− δ4 · sin
(
ωrt± 2π

3

)
sin
(
π
3 −∆g

) · sin(ωrt) +
(10)

δ2

sin
(
π
3 −∆g

) + δ3 · sin (ωrt± 2π
3

)
sin(ωrt) · sin(∆g)

In order to achieve solutions for the modulation functions
δ1..4 which are independent of the output current position,
(10) can be separated into the following two equations:

0 = δ2 · sin(∆g)− δ1 · sin
(π
3
−∆g

)
(11)

0 = δ3 · sin
(π
3
−∆g

)
− δ4 · sin(∆g)

Solving (7) and (11) for the modulation functions δ0..4
gives:

δ1 =
2 · |V �rp|√
3 · |V gp|

· sin(∆g) · sin
(π
3
−∆r

)
δ2 =

2 · |V �rp|√
3 · |V gp|

· sin
(π
3
−∆g

)
· sin
(π
3
−∆r

)
δ3 =

2 · |V �rp|√
3 · |V gp|

· sin(∆g) · sin (∆r) (12)

δ4 =
2 · |V �rp|√
3 · |V gp|

· sin
(π
3
−∆g

)
· sin (∆r)

δ0 = 1− (δ1 + δ2 + δ3 + δ4)
It should however be noted that the modulation functions
at any time instant are limited by the following constraint:

δ0..4 >= 0 (13)

Using only the two line-line voltages with maximum am-
plitudes, the sector-dependent switch combination for
each duty-cycle function δ1..4 are summarized in Table I.
The sector notation in Table I refers to the sector location
in Fig. 4.

B. Modulation index

When comparing different modulation strategies for one
type of converter, it is often convenient to normalize the
output voltage to some reference voltage. This normal-
ized voltage quantity is termed the modulation index M .
The choice of reference voltage can be arbitrary and in
the literature different choices exist which lead to some
confusion. In this context, the choice of reference volt-
age is chosen in such a way that the modulation index



TABLE II

Switching table for the modified space vector modulation.

→Rec Sector 0 Sector I Sector II Sector III Sector IV Sector V
↓Inv δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4 δ1 δ2 δ3 δ4

0 acc cbb aac ccb bcc abb bbc aab baa acc bba aac caa bcc cca bbc cbb baa ccb bba abb caa aab cca
I aac ccb cac bcb bbc aab cbc bab bba aac aba cac cca bbc aca cbc ccb bba bcb aba aab cca bab aca
II cac bcb caa bcc cbc bab cbb baa aba cac abb caa aca cbc acc cbb bcb aba bcc abb bab aca baa acc
III caa bcc cca bbc cbb baa ccb bba abb caa aab cca acc cbb aac ccb bcc abb bbc aab baa acc bba aac
IV cca bbc aca cbc ccb bba bcb aba aab cca bab aca aac ccb cac bcb bbc aab cbc bab bba aac aba cac
V aca cbc acc cbb bcb aba bcc abb bab aca baa acc cac bcb caa bcc cbc bab cbb baa aba cac abb caa
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Fig. 5. Angle and sector definitions for the modified space vector
modulation. a) Output voltage. b) Input current. c) Input
sector definition in time domain.

becomes unity at the boundary between the linear mod-
ulation range and over modulation for the conventional
modulation method. Hence, from (12) and (13) the mod-
ulation index becomes:

M =
2 · |V �rp|√
3 · |V gp|

(14)

From (14) it appears that the maximum output reference
voltage |V̂ �rp| is limited to

√
3/2 of the input phase voltage.

IV. Modified space vector modulation

The main idea of the modified space vector modulation
[12] is to make use of the minimum line-line voltage (con-
trary to the conventional space vector modulation which
utilizes the two maximum line-line voltages) whenever the
output voltage reference is less than half of the input volt-
age. The advantages of this new modulation strategy are
that the harmonic content of the output voltages are re-
duced and additionally the switching losses are decreased.
A disadvantage of the proposed modulation strategy is
that the harmonic current spectrum on the input side of
the converter is changed.

A. Vector time intervals

Fig. 5 shows the output hexagons and the input
hexagons for the modified space vector modulation ap-
proach. The line-line voltages used within each of the

sectors are indicated by the increased line width in the
lower part of Fig. 5. The procedure for deriving the duty-
cycle functions for the modified space vector modulation
approach is almost similar to the procedure in the conven-
tional space vector modulation. However, for completion
of the modulation description, the derivation of the mod-
ified duty-cycle function is given below.

The input angle ∆g used in the modified space vector
modulation is defined as, c.f. Fig. 5:

∆g = mod
((
ωgt+

π

6

)
,
π

3

)
(15)

where ωgt = 0 is defined as the positive zero crossing of
the phase a input voltage (va = v̂g · sin(ωgt)). The output
voltage angle ∆r is defined as:

∆r = mod
((
ωrt+

π

6

)
,
π

3

)
(16)

For an arbitrary sector location of the output voltage ref-
erence and the input voltage, the following equations can
be derived:

Vr1 = |V �rp| · sin
(π
3
−∆r

)
· 2√

3

= −δ1 · cos
(
∆g +

π

2

)
|V gp| ·

2√
3
−

δ2 · cos
(
5π
6

−∆g
)
|V gp| ·

2√
3

(17)

Vr2 = |V �rp| · sin (∆r) ·
2√
3

= −δ3 · cos
(
∆g +

π

2

)
|V gp| ·

2√
3
−

δ4 · cos
(
5π
6

−∆g
)
|V gp| ·

2√
3

Similar, the current reference |I�gp| can be obtained by:

Ig1 = |I�gp| · cos (∆g) ·
2√
3

= δ2 · ix · 2√
3
− δ4 · iy · 2√

3
(18)

Ig2 = |I�gp| · cos
(π
3
−∆g

)
· 2√

3

= δ1 · ix · 2√
3
− δ3 · iy · 2√

3



Using the relation in (9), the modulation functions δ0..4
for the modified modulation approach can be derived:

δ1 =
2 · |V �rp|√
3 · |V gp|

cos
(π
3
−∆g

)
· sin
(π
3
−∆r

)
δ2 =

2 · |V �rp|√
3 · |V gp|

cos (∆g) · sin
(π
3
−∆r

)
δ3 =

2 · |V �rp|√
3 · |V gp|

cos
(π
3
−∆g

)
· sin (∆r) (19)

δ4 =
2 · |V �rp|√
3 · |V gp|

cos (∆g) · sin (∆r)

δ0 = 1− (δ1 + δ2 + δ3 + δ4)
It should be noted that the modulation functions at any
time instant are limited by the constraint in (13). Table
II shows the sector dependent switch combinations for the
modified modulation approach. The sector notation in
Table II refers to the sector location in Fig. 5.

B. Modulation index

For comparison it is convenient to retain the modulation
index expression defined in (14). Taking the constraint in
(13) into account, it is found that the boundary between
linear modulation and over modulation occurs at a mod-
ulation index of 0.577. Hence, the maximum output ref-
erence voltage |V �rp| is limited to half the input voltage in
the modified space vector approach.

V. Double-sided vector sequences

Like the modulation of the VSI, the vector sequences
and the placement of the zero vectors have a high influ-
ence on the performance and the efficiency of the ma-
trix converter. In the first papers concerning space vector
modulation, single-sided modulation was used [14], but
at the expense of only a slight increase in the number of
branch switch over (BSO) per switching period, double-
sided modulation has become the preferred method. In
double-sided modulation, the switching period is divided
into two equal periods and in both these periods the four
selected active vectors are applied. In the last of the two
periods, the sequence order is reversed. The zero-vectors
can be applied anywhere in the switching sequence. Due
to the better harmonic performance at the input side and
at the output side, only double-sided modulation is con-
sidered in this paper. Specific, the following four double-
sided modulation strategies will be treated:
• Conventional double-sided modulation (8 BSO) [15].
• Double-sided modulation for the modified space-vector
algorithm (8 BSO) [12].
• Conventional double-sided modulation with distributed
zero vectors (10 BSO) [16].
• Double-sided modulation with distributed zero vectors
for the modified space vector algorithm (10 BSO).

A. Conventional modulation (8 BSO)

In the conventional modulation presented in [15] the
switching sequence for the conventional modulation was
optimized with regards to the BSO per switching funda-
mental, giving a minimum number of 8 BSO. Following

this switching procedure, there is still one degree of free-
dom left and that is the position of the zero-vector within
the switching sequence. The zero vector could either be
applied in the beginning of the sequence or in the center
of the sequence. Regarding the converter efficiency (and
the emission of common-mode voltage [17]), the ampli-
tude of the switched voltage, when changing to/from the
zero-vector state can be used to determine the zero-vector
placement, c.f. the lower part of Fig. 4. Hence, for even
sector sums, the half of the switching sequence is:

δ0
iC−→
vab

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4... if ∆g <
π

6
(20)

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4
iC−→
vbc

δ0... if ∆g >
π

6
(21)

and for odd sector sums, the half of the switching sequence
is:

δ0
iA−→
vca

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2... if ∆g <
π

6
(22)

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2
iA−→
vab

δ0... if ∆g >
π

6
(23)

For each BSO in (20) to (23) the switched current and the
switched line-line voltage are shown, valid for sector 0rec-
0inv and Irec − 0inv respectively. By use of Table I, the
switched voltages and switched currents for an arbitrary
sector location can be determined. This will be used when
evaluating the switching losses of the conventional double-
sided modulation method.

B. Modified space-vector modulation (8BSO)

By inspection of Table II it appears that the switching
sequences of the modified modulation strategy are to be
changed in order to obtain the minimum of 8 BSO per
switching fundamental. Hence, for even sector sums, the
half of the switching sequence should be:

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2... (24)

which assures 8 BSO per switching fundamental. For odd
sector sums, the half of the switching sequence should be:

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4... (25)

Compared to the conventional method it appears that
only the two minimum line-line voltages are switched,
which presumably decreases the switching losses. The
switched currents and voltages listed in (24) and (25) are
valid for sector 0rec-0inv and Irec − 0inv respectively. By
the use of Table II the switched voltages and currents can
be determined for an arbitrary sector location of the out-
put reference vector and the input current vector.

C. Conventional modulation with distributed zero vectors
(10 BSO)

The third method takes advantage of that the switching
sequence order can be used to increase the switching fre-
quency seen from the input side by distributing the zero
vectors throughout the switching period. This is espe-
cially advantageous when considering the input filter de-
sign. However, this is achieved at the expense of a higher
number of BSO per switching fundamental. In [16] differ-
ent distributions of the zero vector are discussed and it is



concluded that the most significant improvements are ob-
tained by distributing the zero-vector at the beginning and
in the center of the switching sequence. This doubles the
dominant switching frequency seen from the input side at
the expense of only two additional switchings per switch-
ing fundamental. With the constraint of only one BSO
per switch-state shift, there is no degree of freedom left
in the order of the switching sequence. According to [16],
the half of the switching sequence for even sector sums is:

δ0
iC−→
vab

δ3
iB−→
vab

δ1
iA−→
vca

δ2
iB−→
vbc

δ4
iC−→
vbc

δ0... (26)

And for odd sector sums:

δ0
iA−→
vca

δ1
iB−→
vca

δ3
iC−→
vbc

δ4
iB−→
vab

δ2
iA−→
vab

δ0... (27)

The switched currents and voltages listed in (26) and (27)
are valid for sector 0rec-0inv and Irec − 0inv respectively.

D. Modified space vector modulation with distributed zero
vectors (10 BSO)

Adopting the method from [16] for use in the modi-
fied modulation approach is not as simple as for the con-
ventional modulation due to a higher degree of freedom
when ordering the switching sequence. According to the
sequences in (24) and (25) the additional zero-vector could
be applied in either the beginning of the sequence or in
the center of the sequence. In order to explain the differ-
ences in the zero-vector placement, the half of the switch-
ing sequence for sector 0rec-0inv is listed in (28) where the
optional zero-vector placement is marked with the δ′0 and
δ′′0 respectively.

δ′0
iC−→
vca

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2
iA−→
vbc

δ′′0 ... (28)

From (28) it appears that the positioning of the zero-
vector can be done either with regard to the switched
current or with regard to the switched voltage.

D.1 Switched voltage

Regarding the switched voltage, it appears from the
lower part of Fig. 5 that the half of the switching sequence
for even sectors should be:

δ0
iC−→
vca

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2... if ∆g <
π

6
(29)

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2
iA−→
vbc

δ0... if ∆g >
π

6
(30)

in order to assure that the lowest voltage is switched when
applying the zero-vector. For odd sectors, the sequence
should be:

δ0
iA−→
vbc

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4... if ∆g <
π

6
(31)

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4
iC−→
vab

δ0... if ∆g >
π

6
(32)

The modulation method described by the sequences in
(29) to (32) is in the further denoted modified modulation
(10 BSO) with distributed zero-vectors (SV), where the
abbreviation SV indicates that the modulation regards the
switched voltage.
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Fig. 6. Output current and output voltage space vector diagram.

D.2 Switched Current

Regarding the switched current, the modified modu-
lation with distributed zero-vectors can adopt some of
the features from the discontinuous modulation strategies
of the VSI. In other words, the placement of the zero-
vector can be determined such that the minimum cur-
rent is switched. By this, the optional placement of the
zero-vector becomes dependent of the angle φr between
output current and output voltage. This is illustrated in
Fig. 6. where the output current and output phase volt-
age space vector diagram are shown. For illustration pur-
poses, the output voltage reference vector V �rp is located
in sector 0 and the angle between the output voltage refer-
ence and the output current is φr. In order to assure that
the minimum output current is switched when switching
to/from the zero-vector state, the switching sequence in
(28) should be altered between the δ′0 and the δ

′′
0 sequence

in accordance with the output current position in Fig. 6.

Generalizing to an arbitrary sector location of the out-
put current vector the half of the vector sequence for even
sector sums becomes:

δ0
iC−→
vca

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2 if

{−π
3 < (∆r + φr) < π

6
2π
3 < (∆r + φr) < 7π

6
(33)

δ3
iB−→
vca

δ1
iA−→
vca

δ0
iC−→
vbc

δ4
iB−→
vbc

δ2
iA−→
vbc

δ0 if

{
π
6 < (∆r + φr) < 2π

3
7π
6 < (∆r + φr) < 5π

3
(34)

and for odd sector sums the switching sequence becomes:

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4
iC−→
vab

δ0 if

{−π
3< (∆r + φr) < π

6
2π
3 < (∆r + φr) < 7π

6
(35)

δ0
iA−→
vbc

δ1
iB−→
vbc

δ3
iC−→
vab

δ0
iA−→
vbc

δ2
iB−→
vab

δ4 if

{
π
6 < (∆r + φr) < 2π

3
7π
6 < (∆r + φr) < 5π

3
(36)

Following the switching sequences in (33) to (36), the
modulator needs information about the instantaneous an-
gle between output voltage and output current. However,
it is easily realized, that the angle φr can be pre-set to a
fixed value representing the steady-state nominal value of
the load angle.

The modulation method described by the sequences in
(33) to (36) is in the further denoted modified modulation
(10 BSO) with distributed zero-vectors (SC), where the
abbreviation SC indicates that the modulation regards the
switched current.

VI. Switching losses

Assuming the switching devices of the matrix converter
to have a linear current and voltage turn-on and turn-
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Fig. 7. Contour plot of the per carrier switching losses of the con-
ventional modulation method for φr = 0. The losses are plotted
against the angles ∆g and ∆r.

off characteristic with respect to time and counting only
for the fundamental component of the output current, the
switching losses psw of the matrix converter can be ana-
lytically modeled as [18]:

psw ∝ vsw · isw · (Ton + Toff ) · fsw (37)

where vsw is the switched voltage, isw is the switched cur-
rent, fsw is the switching frequency and Ton and Toff is
the turn-on and turn-off times for the switching devices.
For further simplification, (37) is normalized to the pro-
duct of the peak output current îr, the peak value of the
switched voltage vgL (which is the peak line-line voltage at
the supply grid), the switching frequency and the device
characteristics. The normalized switching loss function
psw,n yields:

psw,n ∝ psw

v̂gL · îr · (Ton + Toff ) · fsw
(38)

Using the different switching sequences, the normalized
per-carrier switching losses may be calculated for arbitrary
sector locations of the output voltage reference vector, the
input current reference vector and the output current vec-
tor (it is provided that the input current vector and the
input voltage vector are synchronized, i.e. the input cur-
rent is in phase with the input voltage). Fig. 7 shows the
normalized switching losses for the conventional modula-
tion method, c.f. (20) to (23) when the output current
and output voltage are in phase. From Fig. 7 it appears
that the switching losses averaged over a common time
period for the input frequency and the output frequency,
depends on the actual course over the surface. However,
considering a general case, where the input frequency and
the output frequency have no common time period, the
average switching losses are calculated by integrating over
the entire surface. Hence, to evaluate the different mod-
ulation methods with regards to the switching losses the
following normalized switching loss function is defined:

p̄sw,n ∝ 1
4π2

∫ 2π

0

∫ 2π

0

(psw,n)d∆gd∆r (39)

By the use of (39) the switching loss functions of the differ-
ent modulators can be calculated for different load cases,

−2 0 2
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p
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 [pu], c.f eq. (39)
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Fig. 8. The switching losses of the four different modulation func-
tions for the matrix converter.

i.e. different angle φr between output voltage and out-
put current. Fig. 8 shows the normalized switching loss
functions for the different modulators as a function of the
angle φr.

VII. Harmonic performance

When modulating the matrix converter in order to syn-
thesize a desired output voltage and input current, har-
monics are introduced at integer multiples of the switching
frequency and at the side bands of all these frequencies.
The harmonic content depends on the chosen modulation
scheme and since this undesired frequency content causes
torque ripple and additional copper losses in e.g. a mo-
tor load and increases the demands to the input filter, it
is convenient to have a method to compare the harmonic
behavior of different modulation schemes.

A. Output voltage

To evaluate the output voltage quality, the harmonic
flux is considered [8]. In the Nth carrier cycle the har-
monic flux ψ̃ is calculated by:

ψ̃ =
∫ (N+1)Tsw

NTsw

(V rp − V �rp)dt (40)

where V rp is a stationary output voltage vector and Tsw is
the carrier period. To generalize the performance charac-
terization, the per carrier harmonic flux error ψ̃ in (40), is
normalized to the product of the nominal output voltage
amplitude |V̂ rp| and half the carrier period. That is:

ψ̃n =
2

Tsw|V̂ rp|
· ψ̃ (41)

The normalized per-carrier cycle RMS value of the har-
monic flux ψ̃RMS,n can now be calculated by:

〈ψ̃RMS,n〉Tsw
=

√∫ 1

0

(
ψ̃n · ψ̃∗

n

)
dt (42)

where ψ̃∗
n is the complex conjugate of ψ̃n. Fig. 9 illus-

trates the harmonic flux trajectory for the conventional
(8 BSO) modulation. Fig. 10 shows the per-carrier cycle
RMS value of the harmonic flux as a function of the input
angle ∆g and the output angle ∆r. The harmonic flux
is plotted for a modulation index of 1. Evaluating for a
general case, where the input frequency and the output
frequency have no common time period, the RMS value
of the harmonic flux is obtained by integrating over the
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entire surface. The RMS value of the harmonic flux is
calculated by:

ψ̃RMS,n =

√
1
4π2

∫ 2π

0

∫ 2π

0

(
〈ψ̃RMS,n〉Tsw

)2

d∆g d∆r (43)

Fig. 11 shows the RMS-value of the harmonic flux as a
function of the modulation index. It should be noted that
for cos(φg) �= 1 at the input, all curves in Fig. 11 would
be changed.

B. Input current

When the input current to the matrix converter is mod-
ulated, the instantaneous error between the input cur-
rent reference vector I�gp and the chosen stationary input
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Fig. 11. The harmonic flux as a function of the modulation index,
c.f. eq. (14).

current vector Igp, results in a high frequency harmonic
current. This harmonic current generates high stress on
the input filter capacitors and has to be considered when
designing the input filter for the matrix converter. Like
for the voltage quality, the harmonic current content de-
pends on the modulation method and hence an evaluation
method is needed in order to compare the input waveform
quality of the different modulation schemes.

In principle, the evaluation of the input current follows
the same procedure as for the output voltage, however
the evaluation parameter is changed from harmonic flux
to harmonic charge Q̃. Further, the evaluation of the input
current becomes a little more complex than the evaluation
of the output voltage due to the fact that the amplitudes
of the stationary input current vectors are affected by the
output load angle φr. In the Nth carrier cycle the har-
monic charge Q̃ is calculated by:

Q̃ =
∫ (N+1)Tsw

NTsw

(Igp − I�gp)dt (44)

where Igp is a stationary input current vector. The ampli-
tude of the per carrier harmonic charge is a function of the
input current angle, the output voltage angle, the modu-
lation depth and the output load angle φr. To obtain a
comparison, independent of the switching frequency and
power level, the harmonic charge in (44) is normalized by:

Q̃n =
4Q̃√

3 · Tsw · îrp
(45)

where îrp is the amplitude of the output current. The
normalized per-carrier cycle RMS value of the harmonic
charge Q̃RMS,n can be calculated by:

〈Q̃RMS,n〉Tsw
=

√∫ 1

0

(
Q̃n · Q̃∗

n

)
dt (46)

where Q̃∗
n is the complex conjugate of Q̃n. Evaluating for

a general case, where the input frequency and the output
frequency has no common time period, the RMS value of
the harmonic charge is obtained by integrating over the
entire surface. The RMS value of the harmonic charge is
calculated by:

Q̃RMS,n =

√
1
4π2

∫ 2π

0

∫ 2π

0

(
〈Q̃RMS,n〉Tsw

)2

d∆g d∆r (47)

Fig. 12 shows the normalized harmonic charge Q̃RMS vs.
the modulation index for different load angles.

VIII. Simulation ad test results

A. Test setup

To validate the functionality of the proposed modified
space vector approach and to compare the different mod-
ulation schemes in the time domain, a flexible laboratory
test setup was built. Table III and Table IV show the
characteristics of the test setup and specifying different
test conditions.
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TABLE III

Simulation conditions (matrix converter)

Switching frequency fsw 3550 [Hz]
Power factor cos(φg) 1
Input inductance Lf 300 [µH]
Input capacitor Cf 61.0 [µF]
Input voltage (l-l) Vg 400 [V]
Modulation index M 0.58
Input frequency fg 50 [Hz]
Output frequency fr 25 [Hz]

TABLE IV

Simulation conditions (Induction motor)

Nominal power Pim 15 [kW]
Power factor cos(φr) 0.84
Pole pair N 2
Stator resistance Rs 0.36 [Ω]
Rotor resistance Rr 0.26 [Ω]
Leakage inductance Ls 2.2 [mH]
Leakage inductance Lr 2.2 [mH]
Mag. inductance Lm 46.6 [mH]

TABLE V

Total harmonic current distortion (THDi) [%]

fr M
Conv. (8 BSO) Mod. (8 BSO) Conv. (10 BSO) Mod. (SV)(10 BSO)

Input Output Input Output Input Output Input Output

15.0 0.35 7.30 5.57 13.01 3.69 2.86 2.87 12.20 3.85
20.0 0.46 8.87 5.87 15.84 3.72 3.42 3.11 14.33 3.87
25.0 0.58 9.14 5.57 16.68 3.43 4.03 3.07 15.93 3.49
30.0 0.69 8.30 5.10 - - 4.37 2.99 - -
35.0 0.81 7.15 3.95 - - 4.66 2.60 - -
40.0 0.92 6.10 3.06 - - 4.89 2.39 - -
42.5 0.98 5.87 2.73 - - 5.00 2.34 - -

B. Simulated results

Fig. 13 shows the simulated waveforms of the con-
ventional (8 BSO) modulation scheme and the modified
(8 BSO) modulation scheme. Fig. 14 shows the sim-
ulated waveforms for the conventional (10 BSO) mod-
ulation scheme and the modified (10 BSO) modulation
scheme (SV). For each of the simulated currents, the corre-
sponding total harmonic current distortion (THDi) is cal-
culated (upper right corner of the trace). Besides the con-
ditions simulated in Fig. 13 and Fig. 14, Table V shows

the total harmonic current distortion in the entire speed
range. From the results in Fig. 13, Fig. 14 and Table V
it appears that both with regards to the output voltage
quality and the input current quality, the conventional (10
BSO) modulation scheme shows the best results. Regard-
ing the 8 BSO modulation schemes, the proposed solution
shows better output performance than the conventional
method while regarding the input performance the con-
ventional scheme is superior.
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Fig. 13. Simulation results. a) The conventional modulation method (8 BSO). b) The modified modulation method (8 BSO). The upper
curves show the input currents and the input voltage, the curves in the middle show the output voltages and the lower plots show the
output currents. Simulation conditions are given in Table III and Table IV.

C. Experimental results

Figs. 15-17 show the experimentally obtained wave-
forms. Fig. 15 shows the measured waveforms for the con-
ventional 8 BSO modulation scheme, Fig. 16 shows it for
the conventional 10 BSO scheme and Fig. 17 represents
the modified 8 BSO scheme.

IX. Conclusion

This paper has presented a new loss reduced modulation
scheme for three-phase to three-phase matrix converters.
The new modulation scheme is applicable whenever the
output voltage reference is below half the input voltage.
The proposed scheme reduces the switching losses by 15-
35% dependent on the load angle at the output of the
converter. To evaluate the proposed modulation method
and matrix converter modulation schemes in general, an
evaluation method is proposed, regarding the three cru-
cial modulation properties - the switching losses, the out-
put voltage quality and the input current quality. Four
different modulation schemes are evaluated. To demon-
strate the functionality of the loss reduced modulation

method and to some extent validate the proposed evalu-
ation method, a matrix converter motor drive was simu-
lated, using the four considered modulation schemes. It
turned out (both from the analytical method and from the
simulations) that regarding the input and output wave-
form quality, the conventional (10 BSO) modulation strat-
egy was superior while regarding the switching losses, the
new modified (8 BSO) modulation was the most efficient.
Finally, the functionality of some of the discussed modula-
tion schemes were demonstrated by experimental results.
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[13] L. Huber and D. Borojević, ”Space vector modulated three-
phase to three-phase matrix converter with input power factor
correction”, IEEE Trans. on Ind. Appl., Vol. 31 No. 6, pp. 1234-
1246, 1995

[14] D. Casadei and G. Grandi and G. Serra and A. Tani ”Space
vector control of a matrix converter with unity input power fac-
tor and sinusoidal input/output waveforms”, Proc. of EPE 5th

Conf., Vol. 7, pp. 170-175, 1993
[15] P. Nielsen, F. Blaabjerg, J. K. Pedersen ”New Protection Issues

of a Matrix Converter - Design Considerations for Adjustable
Speed Drives”, IEEE Trans. on Ind. Appl., Vol. 35, No. 5, pp.
1150-1161, September/October, 1999

[16] C. Klumpner and I. Boldea and F. Blaabjerg and P. Nielsen
”A New Modulator for Matrix Converters allowing for the Re-
duction of Input Current Ripple”, Proc. of OPTIM’2000 Conf.,
Vol. 2, p. 487-492, 2000

[17] Han Ju Cha and Prasad Enjeti, ”An approach to reduce com-
mon mode voltage in matrix converter”, Proc. of IAS’2002
Conf., Vol. 1 , pp. 432-437 , 2002

[18] O. Al-Naseem and R. W. Ericson and P. Carlin, ”Prediction of
switching loss variation by averaged switch modeling”, Proc. of
APEC’2000 Conf., Vol. 1, pp. 242-248, 2000



Fig. 15. Measured waveforms for the conventional 8 BSO scheme. Left: Input current and input voltage. Right: Output current and
output voltage.

Fig. 16. Measured waveforms for the conventional 8 BSO scheme. Left: Input current and input voltage. Right: Output current and
output voltage.

Fig. 17. Measured waveforms for the modified 8 BSO scheme. Left: Input current and input voltage. Right: Output current and output
voltage.
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Abstract— This paper presents a new generalized dis-
continuous space-vector modulation approach applicable to
Neutral Point Clamped (NPC) inverters. By the proposed
modulation scheme the DC-link voltage can be actively
controlled to maintain a stable neutral point even if un-
balanced loading of the DC-link capacitors occur due to
e.g. nonlinear loads containing even harmonics. The maxi-
mum unbalance for which the modulation scheme are able
to compensate is theoretically investigated and found to be
a function of both load angle, modulation index and output
power level. The proposed modulation method is compared
to conventional modulation schemes with regard to both
switching losses and wave form quality. For the same num-
ber of switchings, the proposed modulation scheme offers
up to 25% lower switching losses than conventional mod-
ulation schemes while maintaining the same output wave
form quality. The functionality of the modulation scheme
is validated by simulation results.

I. Introduction

Since the introduction of the Neutral Point Clamped
(NPC) inverter [1], c.f. Fig. 1a, this inverter has mainly
been applied for high voltage- and low switching frequency
power conversion applications. However, progressing ad-
vance in computational power processors and in solid state
switching devices, such as the IGBT, makes the NPC in-
verter applicable also in high switching frequency applica-
tion [2, 3]. Considering low switching frequency applica-
tions (fsw < 1 kHz), a lot of research have been concerned
about calculating optimal switching patterns to eliminate
low order harmonics in the output voltage [4, 5, 6]. As
the switching frequency increases, research on harmonic
voltage elimination recedes while problems like reduction
of switching losses becomes more urgent [7]. A simple
method to reduce the switching losses of a three-level con-
verter is to employ the discontinuous modulation schemes
known from conventional two-level voltage source invert-
ers (VSI) [8]. However, a non-modified adoption of these
discontinuous two-level VSI modulation schemes is only
functional when the voltage-levels in the three-level con-
verter is built from separate DC-sources [9]. When series
capacitors are used to divide the DC-link voltage, three-
level inverters (and multi-level inverters in general) have
a DC-link voltage unbalance problem due to the following
reasons:
• Unequal capacitor values due to manufacture toler-
ances.

• Unequal loading of the capacitors due to unintended
switching delays.

• Unequal loading of the capacitors due to e.g. non-linear
loads containing even order harmonics [10].
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Fig. 1. Three-level NPC inverter topologies. a) Conventional NPC
inverter [1]. b) Modified NPC-inverter [16].

Several methods have been proposed to solve the voltage
unbalance problem, among these, the use of separate DC
voltage sources [11] and active voltage regulators [12]. Un-
fortunately, these solutions clearly add to the complexity
of the system and is not suitable in many applications
[13]. In [14] and [15], two different voltage balancing tech-
niques were proposed, where the redundancy of the switch
state vectors were attributed to stabilize the DC-link volt-
age within each switching period. However, these methods
are incapable of adopting the features of the discontinuous
modulation schemes. This paper presents a new gener-
alized discontinuous DC-link balancing modulation strat-
egy for NPC-inverters. The proposed modulation scheme
is based on the space-vector approach and provides the
following features:

• Discontinuous modulation with the clamping period
centered at the peak of the phase current.

• DC-link voltage balancing, even with unequal loading
of the DC-link capacitors or different capacitor values.

• No need for additional hardware to perform the DC-link
balancing.
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Fig. 2. Switch combinations for the three-level inverter.

The paper first reviews the topologies of NPC-type in-
verters and then summarizes the space-vector analysis ap-
plied for three-level inverters. Then the proposed modu-
lation scheme is presented and compared to conventional
schemes, both with regards to switching losses and wave
form quality. The proposed modulation scheme is vali-
dated, by simulation results.

II. Neutral point clamped VSI

A. Configurations of the NPC inverter

Fig. 1a shows the conventional three-level NPC in-
verter proposed by [1]. In the conventional NPC inverter
topology, each of the switches s1A..s4C and the diodes
D1A..D2C only have to block half the DC-link voltage.
Hence, the conventional NPC is well suited for high vol-
tage applications. A topology derived from the conven-
tional NPC inverter is shown in Fig 1b and was pro-
posed by [16]. Compared to the conventional NPC in-
verter, the salient features of this topology are: Lower
conducting losses in the high modulation range, due to
the fact that only one semiconductor device provides the
path to the upper and lower DC-bus bar. Secondly, in-
telligent half bridge modules like the Skiip-pack modules
from SEMIKRON are directly applicable to this configu-
ration. Although the modified NPC inverter only switches
half the DC-link voltage (if modulated properly), the up-
per and lower switches still need to have the ability to
block the total DC-link voltage. Hence this topology is
not suited in high voltage applications. The modulation
scheme proposed in this paper is directly applicable for
both types of inverters in Fig. 1.

B. Variation of the neutral point potential

According to Fig. 1a an excessive high voltage may
be applied to the switching devices if the neutral point
N varies from the center potential of the DC-link. Fur-
ther, both NPC type inverters in Fig. 1 may be unable to
synthesize the reference voltage if too large neutral point
voltage variations occur. By inspection of Fig. 1 it ap-
pears that the NPC inverter has 27 legal switching states.
These switching states are summarized in Fig. 2 and it
appears that with regards to output voltage, several of
these switch states are redundant (in pairs). For instance,
the switch combinations v0−− and v+00 produce exactly
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Fig. 3. The space vector hexagon for the three-level VSI.

the same output voltage (provided that the neutral point
voltage is balanced) but with regards to the current flow-
ing to/from the neutral point these two switch states be-
haves in the opposite manner. Hence, the selection among
the redundant switch states has a vital influence on the
neutral point potential and can actively be used to con-
trol/reestablish the neutral point voltage.

III. Vector analysis of the switching

combinations

For the purpose of space vector modulation, the output
voltage references v�A, v

�
B and v

�
C and the output currents

iA, iB and iC are transformed into the complex space
vector plane by the following transformation:

V �s =
2
3

(
v�A + v

�
B · ej· 2π

3 + v�C · ej· 4π
3

)
(1)

Is =
2
3

(
iA + iB · ej· 2π

3 + iC · ej· 4π
3

)
(2)

Applying (1) on the switch combinations in Fig. 2, the
well known space vector hexagon in Fig. 3 is obtained.

A. Sector location

As indicated in Fig. 3 the space vector hexagon is
divided in six main sectors (0..V) and 24 sub sectors
(0a..Vd). The first step in the space vector approach
is to determine the sector location. Due to the symmetry
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of the six main sectors, it is convenient to define the angle
∆s of the rotating voltage reference vector as:

∆s = mod
(
ωst+

π

6
,
π

3

)
(3)

where ωst = 0 is defined as the positive zero crossing of
the phase A reference voltage (v�A = v̂A · sin(ωst)). By
this, the angle ∆s is in the interval: ∆s ∈ [0..π3 ]. This is
illustrated in Fig. 4. Due to the angle definition in (3) it
is only necessary to monitor the six main sectors 0-V and
then identify whether the sector location is a, b, c or d.
Defining the modulation index M as:

M =
√
3|V �s|
VDC

(4)

the sector location can be determined, simply by applying
the law of sines. By this, the following constrains are
obtained:

Sector =



a if
(
M ≤ 1

2 sin(2π/3−∆s)

)
b if

(
M > 1

2 sin(π/3−∆s)

)

c if


(
M > 1

2 sin(2π/3−∆s)

)
&(

M ≤ 1
2 sin(π/3−∆s)

)
&(

M ≤ 1
2 sin(∆s)

)


d if
(
M > 1

2 sin(∆s)

)
(5)

B. Vector time intervals

With reference to Fig. 4, the reference voltage vector V �s
can be obtained by applying the three adjacent stationary
vectors for an angle dependent time duration. In general
the following matrix equation has to be solved:�m(V �s)�e(V �s)

1

 =
�m(V 1) �m(V 2) �m(V 3)
�e(V 1) �e(V 2) �e(V 3)
1 1 1

δ1δ2
δ3

 (6)

where V 1, V 2 and V 3 are the three adjacent stationary
vectors, c.f. Fig 4. Based on the sector identification, the
on-time ratios δ1..3 can be calculated. Solving (6) for the
voltage reference vector located in sector Xa gives:

δ1a = 2 ·M · sin
(π
3
−∆s

)
δ2a = 2 ·M · sin(∆s) (7)
δ3a = 1− δ1 − δ2

Solving for the voltage reference vector located in sector
Xb gives:

δ1b = 2−
√
3 ·M · cos(∆s)−M · sin(∆s)

δ2b =
√
3 ·M · cos(∆s)−M · sin(∆s)− 1 (8)

δ3b = 2 ·M · sin(∆s)
Solving for the voltage reference vector located in sector
Xc gives:

δ1c = 1− 2 ·M · sin(∆s)
δ2c = 2 ·M · sin

(
∆s − π

3

)
+ 1 (9)

δ3c = 2 ·M · sin
(
∆s +

π

3

)
− 1

And finally, solving for the voltage reference vector located
in sector Xd gives:

δ1d = 2 ·M · sin(∆s)− 1
δ2d = 2−

√
3 ·M · cos(∆s)−M · sin(∆s) (10)

δ3d =
√
3 ·M · cos(∆s)−M · sin(∆s)

The duty-cycle expressions in (7) to (10) are at any instant
of time limited by the following constraint:

0 ≤ δij ≤ 1 i ∈ [1, 2, 3]
j ∈ [a, b, c, d] (11)

IV. Vector sequences

In the two-level inverter, the redundant switching states
v000 and v111, have been used to develop several discon-
tinuous modulation schemes, providing a switching loss
reduction of 50% compared to conventional modulation
schemes [17]. However, these discontinuous modulation
schemes can not be applied directly to the capacitor split
three level inverter because they do not provide any con-
trol of the DC-link neutral potential. Hence, in order to
be applied to the NPC inverter, the discontinuous modu-
lation schemes of the two-level inverter has to be modified.

A. Discontinuous modulation scheme

In the explanation of the generalized discontinuous
modulation scheme, Fig. 5 is used as an illustration. In
Fig. 5 the voltage reference vector V �s is located in sec-
tor 0c at an angle ∆s, c.f. (3). The current vector Is is
lagging the voltage reference vector by the angle φs where
φs is considered positive when lagging the voltage vector
and negative when leading the voltage vector. To realize
the voltage reference vector, it appears that five different
switching states form the three adjacent stationary vec-
tors, This redundancy can be used to avoid switchings of
one phase leg. Actually, in the present case, |V �s| can be
synthesized by either (12) or (13):

v+0− → v+00 → v++0 → v+00 → v+0− (12)
v+0− → v00− → v0−− → v00− → v0−− (13)

In (12), no switchings occur in phase leg A while phase
leg C is clamped during the sequence in (13). Regarding
switching losses, the switching sequence, clamping the leg
carrying the highest current should be chosen. For this



TABLE I

Switching table for the generalized discontinuous modulation method

→Sub sector a b c d

↓ if ∆s ≤ π
6
+ φ′

s + n · φc δ3 δ2 δ1 δ2 δ3 δ1 δ3 δ1 δ2 δ3 δ1 δ2
Sector 0 000 00− 0−− +−− +0− +00 +0− +00 ++0 +0− ++− ++0

Sector I 000 0+0 ++0 ++− 0+− 00− 0+− 00− −0− 0+− −+− −0−
Sector II 000 −00 −0− −+− −+0 0+0 −+0 0+0 0++ −+0 −++ 0++

Sector III 000 00+ 0++ −++ −0+ −00 −0+ −00 −−0 −0+ −−+ −−0

Sector IV 000 0−0 −−0 −−+ 0−+ 00+ 0−+ 00+ +0+ 0−+ +−+ +0+

Sector V 000 +00 +0+ +−+ +−0 0−0 +−0 0−0 0−− +−0 +−− 0−−
↓ if ∆s > π

6
+ φ′

s + n · φc δ3 δ1 δ2 δ3 δ2 δ1 δ3 δ2 δ1 δ1 δ3 δ2
Sector 0 000 +00 ++0 +0− +−− 0−− +0− 00− 0−− ++− +0− 00−
Sector I 000 00− −0− 0+− ++− ++0 0+− 0+0 ++0 −0− 0+− 0+0

Sector II 000 0+0 0++ −+0 −+− −0− −+0 −00 −0− −++ −+0 −00

Sector III 000 −00 −−0 −0+ −++ 0++ −0+ 00+ 0++ −−+ −0+ 00+

Sector IV 000 00+ +0+ 0−+ −−+ −−0 0−+ 0−0 −−0 +−+ 0−+ 0−0

Sector V 000 0−0 0−− +−0 +−+ +0+ +−0 +00 +0+ +−− +−0 +00
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Fig. 5. Definitions of clamping interval angle φ′
s and DC-link bal-

ancing angle φc. a) in the complex space vector domain. b) in
the time domain.

purpose, the angle φ′s is introduced, c.f. Fig 5 and defined
as:

φ′s =

 φs if − π
6 ≤ φs ≤ π

6−π
6 if φs < −π

6
π
6 if φs >

π
6

The angle φ′s determines the angular rotation of the phase
clamping interval. In Fig. 5 the shaded area illustrates the
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Fig. 6. Definitions of the currents and voltages used for DC-link
balancing.

TABLE II

Definition of the sign operator n

a b c d

Even Sec. -Sign(Po) Sign(Po) Sign(Po) Sign(Po)

Odd Sec. Sign(Po) -Sign(Po) -Sign(Po) -Sign(Po)

interval where phase leg A should be clamped. Generaliz-
ing the above description to an arbitrary voltage reference
location, Table I is obtained.

B. DC-link balancing considerations

So far, the modulation strategy offers no ability for com-
pensating a DC-link voltage unbalance, and since no re-
dundant switch states are used within a switching period,
DC-link balancing can not be obtained by adjusting the
on-times for such redundant switch states. Using Fig. 6,
DC-link voltage balance is obtained when the following
condition is satisfied:

〈IC1〉T0 +
1
2
〈Id〉T0 = 〈IC2〉T0 −

1
2
〈Id〉T0

⇓ (14)
〈Id〉T0 = (〈IC2〉T0 − 〈IC1〉T0)

where IC1 and IC2 are the DC-link currents originating
from the linear balanced load of the three level converter
and Id represents the unbalanced loading of the inverter.
The notation 〈X〉T0 indicates that the quantity is aver-
aged over a fundamental having the time period T0. From
(14) it appears that an unbalance may be compensated by
adjusting the ratio between 〈IC1〉T0 and 〈IC2〉T0 . For this
purpose, the angle n · φc is introduced, c.f. Fig 5, where
the sign operator n is defined in accordance with Table II
and φc is defined in the interval φc ∈ [−π

6 ..
π
6 ]. Further
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the angle φ′s defined in (14) is modified by:

φ′s =
(
1− φc

π
6

)
φ′s (15)

From Fig. 5, Table I and Table II it appears that by
increasing/decreasing the angle φc, the load on capacitor
C1 can be increased/decreased. Hence, the angle φc can
be used to compensate unbalanced loading of the DC-link.
To evaluate the ability of the proposed DC-link balancing
technique, the current through capacitor C1 and C2 have
to be calculated: (Eq. (16) is only formulated for sector
0a and in (16) it is provided that the modulation index is
below 0.5.)

〈IC1〉T0 =
1
2π

(∫ π
6

π
6 +φ′

s+nφc

(δ1 · iA + δ2 · iC)d∆vs + ....

(16)

〈IC2〉T0 =
1
2π

(∫ π
6 +φ′

s+nφc

0

(δ1 · iA + δ2 · iC)d∆vs + ....

Extending 16 to arbitrary values of the modulation index
M , and calculating for φc = ±π

6 the maximum unbal-
ance, for which the modulation scheme is able to com-
pensate may be calculated. Fig. 7 shows the ability of
the proposed modulation scheme to compensate DC-link
unbalances. In Fig. 7 the unbalanced current Id is normal-
ized to the output current Io originating from the linear
loading of the inverter and plotted against the modulation
index M and load angle φs. From Fig. 7 it appears that
the maximum load unbalance which can be actively com-
pensated is when the load angle is zero, e.g. a resistive
load and the modulation index is about 0.52.

V. Performance evaluation

The performance evaluation of the proposed modulation
scheme addresses the two important modulation scheme
characteristics - switching losses and wave form quality.

A. Switching loss considerations

Assuming the switching devices of the NPC inverter
to have linear current and voltage turn-on and turn-off
characteristics with respect to time and accounting only

−1.5 −1 −0.5 0 0.5 1 1.5
1.5

2

2.5

3

3.5

4

N
or

m
 s

w
itc

hi
ng

 lo
ss

es

Load angle φ
s
 [rad]

(SVM [14]) 

(GDSVM, k
f
 = 2/3) 

(GDSVM, k
f
 = 1) 

Fig. 8. Normalized switching losses versus load angle φs.

for the fundamental component of the output current, the
switching losses of the NPC inverter can be analytically
modeled as:

psw ∝ VDC
2

(Ton + toff )
2 · Ts

1
2π

∫ 2π

0

iswdθ (17)

where isw is the current through the switching device at
the switching instant and ton and toff are the turn-on and
turn-off times of the switching device. Normalizing (17)
to the peak output current, the half of the DC-link voltage
the turn-on and turn-off times and the half of the switch-
ing frequency, the normalized switching losses becomes:

psw =
1
2π

∫ 2π

0

iswdθ (18)

Fig. 8 compares the switching losses of the generalized dis-
continuous modulation scheme and the conventional mod-
ulation scheme [14] when operated at the same switching
frequency (kf = 1). Since the discontinuous modulation
scheme only involves 2

3 times the number of switchings
of the conventional modulation method, it might be more
fair to compare the modulation schemes for the same num-
ber of switchings (kf = 2

3 ).

B. Wave form quality

When modulating the three-level converter in order to
synthesize a desired output voltage, harmonics are intro-
duced at integer multiples of the switching frequency and
at the side bands of all these frequencies. The harmonic
content depends on the chosen modulation scheme and
since this undesired frequency content causes torque rip-
ple and additional copper losses in e.g. a motor load, it
is convenient to have a method to compare the harmonic
behavior of different modulation schemes. In general, har-
monic analysis can be done by either FFT or harmonic dis-
tortion factor (HDF). For a quantitative analysis, HDF is
most suitable and hence the proposed modulation scheme
is evaluated with regards to the HDF [18].

In the Nth carrier cycle the harmonic flux ψ̃ is calcu-
lated by:

ψ̃ =
∫ (N+1)Ts

NTs

(V s − V �s)dt (19)

where V s is a stationary output voltage vector. To gen-
eralize the performance characterization, the per carrier
harmonic flux error ψ̃ in (19), is normalized to the prod-
uct of the nominal output voltage amplitude |V̂ s| and half



TABLE III

Test setup conditions (NPC inverter)

Switching frequency fsw 2.0 [kHz]
DC-link capacitors C1 C2 10.0 [mF]
DC-link inductor Lf 50 [µF]
Load resistor Rl 20 [Ω]
Input voltage (l-l) Vg 400 [V]
Modulation index M 0.8
Input frequency fi 50 [Hz]
Output frequency fo 40 [Hz]

TABLE IV

Test setup conditions (Induction motor)

Nom. power Pim 22.0 [kW]
Nom. Cos(φ)
Pole pair N 2
Stator resistance Rs 0.100 [Ω]
Rotor resistance Rr 0.086 [Ω]
Leakage inductance Ls 1.817 [mH]
Leakage inductance Lr 1.211 [mH]
Mag. inductance Lm 27.936 [mH]
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Fig. 9. Harmonic flux distortion of the conventional modulation
scheme (SVM) and of the generalized discontinuous modulation
scheme (GDSVM).

the switching period. That is:

ψ̃n =
2

Ts|V̂ s|
· ψ̃ (20)

The normalized per-carrier cycle RMS value of the har-
monic flux ψ̃RMS,n can now be calculated by:

〈ψ̃RMS,n〉Ts
=

√∫ 1

0

(
ψ̃n · ψ̃∗

n

)
dt (21)

where ψ̃∗
n is the complex conjugate of ψ̃n. Due to the

six fold symmetry of the space-vector modulation, the per
fundamental RMS harmonic flux may be calculated by:

ψ̃RMS,n =

√
3
π

∫ π
3

0

(
〈ψ̃RMS,n〉Ts

)2

d∆s (22)

Defining the HDF as the square of the per fundamental
RMS harmonic flux, Fig. 9 is obtained. From Fig. 9
it appears that for the same number of switchings (kf =
2
3 ), the proposed modulation scheme produces almost the
same HDF as the conventional modulation.

VI. Results

A. Test setup

Fig. 10 illustrates the test setup used to validate the
proposed modulation scheme and Table III and Table IV
lists the characteristics of the test setup.

B. Simulation results

Fig. 11a shows the effect of an unbalanced loading of
the DC-link without compensating the unbalance. At time
(t = 1.1), the resistor Rl is connected across capacitor C1.
Due to the unbalanced load between capacitor C1 and C2,
the voltage at the center point N starts to drift towards
the voltage of the positive bus-bar. The upper plot in Fig.
11a shows the phase current, the upper middle plot shows

Rl

N

C1

Lf

C2

Modulator
PI

�cvDC
~

3 diode
rectifier
� 3-level

inverter

Induction
motor

Fig. 10. The test setup used to validate the proposed modulation
scheme.

the voltage vaN , the lower middle plot shows the current
through the resistor Rl and the lower plot shows the volt-
ages across capacitor C1 and capacitor C2.

Applying the proposed modulation technique for DC-
link balancing, the voltage in the center-point N can be
reestablished. Fig 11b shows the effects of an unbalanced
loading, similar to the case in Fig. 11a, where the pro-
posed balancing technique is applied. Fig. 12 shows
a zoom of figure 11b. Fig. 12a shows the phase cur-
rent and the phase-neutral voltage before the unbalance
is introduced and it appears that the voltage is clamped
symmetrical in the vicinity of the peak phase current. Fig.
12b shows the phase current and the phase-to-neutral volt-
age after the DC-link neutral has been restored. From Fig.
12b it appears that in order to compensate the unbalanced
load of the DC-link, the modulator adjusts the clamping
interval of the upper and lower switches.

VII. Conclusion

This paper has presented a new generalized discontin-
uous modulation scheme with the capability of balancing
the DC-link neutral point, even if an unbalanced loading of
the two DC-link capacitors for some reason occurs. Com-
pared to conventional modulation schemes, the proposed
strategy reduces the switching losses by up to 25% while
maintaining the same output voltage quality. The func-
tionality of the proposed modulation scheme is validated
by simulation results.
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Abstract—This paper presents a novel modulation strat-
egy for neutral point clamped inverters. The proposed
strategy eliminates common-mode voltages between in-
verter neutral and motor neutral and at the same time,
it offers full balance control of the DC-link capacitor volt-
ages without additional hardware requirements. Compared
to other modulation schemes with common-mode voltage
elimination, the additional feature of DC-link voltage con-
trol requires no further reduction in the voltage transfer
ratio. Although the strategy is demonstrated on a three-
level neutral point clamped(NPC) inverter, the scheme can
be applied to any odd-level NPC inverter. The functional-
ity of the proposed modulation strategy is validated both
by simulation results and by experimental results.

I. Introduction

The widespread use of voltage source inverters (VSI)
in electrical motor applications has introduced a number
of advantages including energy savings, increased perfor-
mance and the possibility to use the reliable and robust in-
duction motor in servo drive applications. Unfortunately,
along with the prevalent use of VSIs and the enhancement
of semiconductor devices a couple of problems have ap-
peared, involving electro-magnetic interference problems
(EMI) and early motor failures. Besides, problems such
as EMI and motor failures due to high intercoil voltages
related to the fast turn-on and turn-off of the switching
devices [1], the inherent generation of common-mode volt-
ages between the inverter neutral point and the motor
neutral point is a certain cause of early bearing failures.
Due to electro-static couplings between motor windings
and motor shaft/frame, voltage potentials may built up
causing randomly appearing bearing current spikes. These
bearing currents lead to bearing material erosion known
as pitting and fluting and recent motor reliability stud-
ies have clarified that bearing failures account for about
40% of all motor failures [2]. Several methods have been
proposed to reduce these bearing current problems [3, 4],
but a common trait of these solutions are, that they in-
crease the complexity of the hardware. For two-level in-
verter schemes, [5] proposed a modulation scheme where
the common-mode voltage only alters six times per fun-
damental but this slight improvement is however obtained
at the expense of a reduced voltage gain and a more dis-
torted waveform. For three-level inverters [6, 7] proposed
a similar scheme but with a complete elimination of the
common-mode voltage. Unfortunately, this modulation
scheme is only applicable when the DC-link voltages are
build from separate DC-sources [8] or additional hardware
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Fig. 1. Three-level NPC inverter topologies. a) Conventional NPC
inverter. b) Modified NPC-inverter.

provides the DC-link balancing [9]. When series capaci-
tors are used to divide the DC-link voltage, three-level
inverters (multi-level inverters in general) have a voltage
unbalance problem due to the following reasons:

• Unequal capacitor values due to manufacture toler-
ances.

• Unequal loading of the capacitors due to unintended
switching delays.

• Unequal loading of the capacitors due to e.g. non-linear
loads containing even order harmonics [10].

Several methods are proposed to solve the voltage unbal-
ance problem, among these, [11] and [12], where the redun-
dancy of the switch state vectors are attributed to stabilize
the DC-link voltage within each switching period. Unfor-
tunately, these methods are incapable of eliminating the
common-mode voltage. This paper presents a new mod-
ulation strategy for NPC-inverters. The proposed modu-
lation scheme is based on the space-vector approach and
provides the following features:
• Common mode voltage elimination.
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Fig. 2. Switch combinations for the three-level inverter and associated common-mode voltage generation.
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• DC-link voltage balancing, even with unequal loading
of the DC-link capacitors or different capacitor values.

• No need for additional hardware to perform the DC-link
balancing.

First the paper reviews the sources and problems related
to common-mode voltages in VSI controlled motor drives
and then the applicable NPC-type inverter topologies are
presented. Based on the space vector analysis applied for
three-level inverters, the proposed modulation scheme is
derived and finally the modulation scheme is validated, by
simulations and experimental results.

II. Common-mode voltage

Defining the common-mode voltage as the voltage be-
tween the motor neutral point and the converter neutral
point, the common-mode voltage can be described as:

v0 =
1
3
(vAN + vBN + vCN ) (1)

In two-level inverters and multi-level converters controlled
by conventional modulation schemes, this common-mode
voltage never adds up to zero and hence high frequency
common-mode voltages are generated within the motor
windings. If there exists a common-mode path between
inverter-load and ground, due to capacitive couplings,
common-mode currents will be generated, resulting in e.g.
bearing failures and EMI-problems.

A. Bearing failures

Motor reliability studies have indicated that motor
bearing failures are the most common cause for motor
failures and account for more than 30%-40% of all motor
failures [4, 13]. Three electrical causes for bearing currents
are reported in the literature [13, 14]:

• Primary studies on the issue indicated that bearing cur-
rents were linked to electro-magnetic induction resulting
from unsymmetry in the air-gab magnetic field. Motor
damages due to this phenomena occur even at sine wave
operation.

• Recent studies [13, 15, 16, 17] have found that electro-
static induced shaft voltages due to common-mode volt-
age generation is the major source of bearing degrada-
tion.

• Improved performance in switching devices resulting in
higher voltage gradients increases the current through
all stray capacitances including the current through the
capacitance of the bearing lubricant film. About 25% of
all bearing failures are due to high voltage gradients [4].

Regarding the problems associated with common-mode
voltage generated bearing currents, two different mech-
anisms are present, -circulating currents and non-
circulating currents [18]. Circulating bearing currents are
induced by oscillating circular flux around the shaft and
are dominating at stand still or low low speed were the
bearing lubrication does not provide an effective insula-
tion. The non-circulating bearing currents are due to the
capacitive couplings from stator winding to rotor and from
rotor to ground - the latter coupling is formed by the bear-
ing lubricant film. At each switching instant a small ca-
pacitive current through the bearings is generated, adding
to the total bearing current. A more critical effect is the
so-called Electro-magnetic Discharge Machining (EDM)
which is a statistically occurring impulse-like current caus-
ing pitting and fluting of the bearing. The EDM occurs
when the voltage across the bearing capacitance reaches
the break-down voltage of the bearing lubricant film and
then the lubricant capacitance is discharged. The elec-
tric strength of lubricant film depends on several factors,
among these, the duration of the applied common mode
voltage pulse [19]. This is shown in Fig. 3 and might be
used to reduce the EDM.



B. Emission of common-mode noise

Another issue of common-mode voltage generation is
the emission of common-mode noise and improper inter-
ventions of ground protection equipment. Mainly due to
the parasitic capacitances between stator windings and
grounded frame, the high frequency common-mode volt-
age will induce a common-mode current with an ampli-
tude determined by the common-mode impedance of the
stator windings and the frequency of the common-mode
voltage [5]. By reducing or eliminating the generation of
common-mode voltage, the electro-magnetic interference
(EMI) can be reduced.

III. Neutral point clamped VSI

A. Configurations of the NPC inverter

Fig. 1a shows the conventional three-level NPC in-
verter proposed by [20]. In the conventional NPC inverter
topology, each of the switches s1A..s4C and the diodes
D1A..D2C only have to block half the DC-link voltage and
hence, the conventional NPC is well suited for high voltage
applications. A topology derived from the conventional
NPC inverter is shown in Fig 1b and was proposed by [21].
Compared to the conventional NPC inverter, the salient
features of this topology are: Lower conducting losses in
the high modulation range, due to the fact that only one
semiconductor device provides the path to the upper and
lower DC-bus bar. Secondly, intelligent half bridge mod-
ules like the Skiip-pack modules from SEMIKRON are di-
rectly applicable to this configuration. Although the mod-
ified NPC inverter only switches half the DC-link voltage
(if modulated properly), the upper and lower switches still
need to have the ability to block the total DC-link voltage.
Hence this topology is not suited in high voltage applica-
tions. The modulation scheme proposed in this paper is
directly applicable for both types of inverters in Fig. 1.

B. Variation of the neutral point potential

According to Fig. 1a an excessive high voltage may
be applied to the switching devices if the neutral point
N varies from the center potential of the DC-link. Fur-
ther, both NPC type inverters in Fig. 1 may be unable to
synthesize the reference voltage if too large neutral point
voltage variations occur. By inspection of Fig. 1 it ap-
pears that the NPC inverter has 27 legal switching states.
These switching states are summarized in Fig. 2 and it
appears that with regards to output voltage, several of
these switch states are redundant (in pairs). For instance,
the switch combinations v0−− and v+00 produce exactly
the same output voltage (provided that the neutral point
voltage is balanced) but with regards to the current flow-
ing to/from the neutral point these two switch states be-
haves in the opposite manner. Hence, the selection among
the redundant switch states has a vital influence on the
neutral point potential and can actively be used to con-
trol/reestablish the neutral point voltage.

IV. Space vector modulation

For the purpose of space vector modulation, the output
voltage references v�A, v

�
B and v

�
C and the output currents

iA, iB and iC are transformed into the complex space
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vector plane by the following transformation:

V �s =
2
3

(
v�A + v

�
B · ej· 2π

3 + v�C · ej· 4π
3

)
(2)

Is =
2
3

(
iA + iB · ej· 2π

3 + iC · ej· 4π
3

)
(3)

Applying (2) on the switch combinations in Fig. 2, the
well known space vector hexagon in Fig. 4 is obtained.

A. Zero-sequence elimination

By inspection of Fig. 2 it appears that six of the active
switch combinations have the property of eliminating the
zero sequence voltage. In Fig. 2 these switch combinations
are categorized as medium vectors. To eliminate the zero-
sequence voltage, the modulation scheme proposed in this
paper will only make use of these six active vectors and
the zero vector v000. Hence, the well known space-vector
hexagon from Fig. 4 is reduced to the hexagon in Fig. 5a.
To obtain duty cycle expressions that are independent of
in which sector the voltage reference vector is located, the
angle ∆s is defined as:

∆s = mod (ωst,
π

3
) (4)
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Fig. 6. Illustration of the proposed DC-balancing technique. a)
Using voltage vector V ′

3. b) Using voltage vector V
′′
3 .

Applying conventional space vector modulation, the fol-
lowing duty cycle expressions can be derived:

δ′1 =
2|V �s|
VDC

· sin
(π
3
−∆s

)
δ′2 =

2|V �s|
VDC

· sin(∆s) (5)

δ′0 = 1− δ′1 − δ′2
At all time instant the duty-cycle functions in (5) are lim-
ited by:

0 ≤ δx ≤ 1 where x = [0, 1, 2] (6)

From (5) and (6) it appears that the penalty to be paid
for eliminating the zero-sequence is, that the maximum
output voltage is limited to

√
3

2 the output voltage of con-
ventional space vector modulation schemes. So far the
modulation scheme is equal to the modulation scheme de-
scribed by [6] and [7]. However, it is easily realized that
the modulation strategy do not offer any possibility for
controlling the DC-link voltage.

B. DC-link balancing considerations

If, for some reason, a DC-link voltage unbalance is intro-
duced due to e.g. unequal capacitor sizes in the DC-link
or non-linear loading containing even order harmonics, ac-
tion has to be taken in order to reestablish the DC-link
balance. In conventional modulation schemes for three-
level inverters, DC-link balancing is achieved by adjusting
the on-time ratio of redundant switch states. Since no re-
dundant switch states are used in the present modulation
scheme, this approach is not directly applicable. Instead,
a kind of redundancy can be introduced by using three
active vectors to form the reference vector V s. This is
illustrated in Fig. 6. By use of three vectors the freedom
to choose either vector V ′

3 or vector V
′′
3 is obtained. By

inspection of Fig. 5 it appears that the voltage vectors
V ′

3 and V
′′
3 for all sectors charges the DC-link capacitors

in opposite manners. By this, the use of either V ′
3 or V

′′
3

can be used to control the DC-link voltages.

C. Vector time intervals for proposed modulation scheme

According to Fig. 6 the reference vector V �s is synthe-
sized by:

V �s = δ1 · V 1 + δ2 · V 2 + δ3 · V 3 + δ0 · V 0 (7)

where V 3 can be either V
′
3 or V

′′
3 . Independent of the

choice of vector V ′
3 or V

′′
3 The on-time ratio δ3 is calcu-

lated by :

δ3 = k · (1− δ′1 − δ′2) (8)

where k is a constant proportional to the degree of un-
balance. The calculations of the duty-cycles δ1 and δ2
depends on the choice of vector V 3 If V

′
3 is be used to

compensate DC-link unbalance, the duty-cycles δ1 and δ2
becomes:
δ1 = δ′1 + δ3

δ2 = δ′2 − δ3
(9)

Complying with the restriction in (6) the limit for k be-
comes dependent of the modulation depth M and the an-
gular position of the voltage reference vector. Combining
(5) and (8) the limit for k when using voltage vector V ′

3

becomes:

klim =
M · sin (π3 −∆s

)
1−M · (sin (π3 −∆s

)
+ sin(∆s)

) (10)

If the unbalanced condition requires voltage vector V ′′
3 to

be used, the duty-cycles δ0..δ2 becomes

δ1 = δ′1 − δ3
(11)

δ2 = δ′2 + δ3
Again, complying with the restriction in (6) the limit for
k becomes:

klim =
M · sin (∆s)

1−M · (sin (π3 −∆s
)
+ sin(∆s)

) (12)

The on-time ratio for the zero vector is finally calculated
by:

δ0 = 1− δ1 − δ2 − δ3 (13)

By the restrictions on k formulated in (10) and (12)
the voltage gain ratio of the proposed modulation scheme
is not further reduced and the DC-link voltage can be
balanced, even if an un-balanced loading of the DC-link
capacitors occur.

V. Transient common mode voltage effects

According to Fig. 5a each change in switch state,
say from v+0− to v0+−, involves two branch switch over
(BSO). If a slight mismatch of the switchings occur due to
e.g. different delays in the gate drivers, a short common-
mode voltage pulse is introduced at the motor terminals.
Fortunately, regarding the break down voltage of bear-
ing lubricant oil, the fields strength increases as the pulse
width decreases, c.f. Fig. 3. Alternatively, the transient
common-mode voltage can be eliminated by a snubber-
circuit as described in [7] or by a common-mode voltage
filter as described in [3, 22], but this clearly adds to the
complexity of the system.

VI. Results

A. Test setup

Fig. 7 illustrates the test setup used to validate the
proposed modulation scheme. Table I and Table II lists
the characteristics of the test setup.



TABLE I

Test setup conditions (NPC inverter)

Switching frequency fsw 2.0 [kHz]
Filter inductance Lg 400 [µH]
DC-link capacitors C1 C2 10.0 [mF]
Input voltage (l-l) Vg 400 [V]
Modulation index M 0.8
Input frequency fi 50 [Hz]
Output frequency fo 40 [Hz]

TABLE II

Test setup conditions (Induction motor)

Nom. power Pim 22.0 [kW]
Pole pair N 2
Stator resistance Rs 0.100 [Ω]
Rotor resistance Rr 0.086 [Ω]
Leakage inductance Ls 1.817 [mH]
Leakage inductance Lr 1.211 [mH]
Mag. inductance Lm 27.936 [mH]

Rl

N

C1

k

Lf

C2

Modulator
PI

vDC
~

3 diode
rectifier
� 3-level

inverter

Induction
motor

Fig. 7. The test setup used to validate the proposed modulation
scheme.

B. Simulation results

Fig. 8a shows the effect of an unbalanced loading of the
DC-link without compensating the unbalance. At time
(t = 1.1), the resistor Rl is connected across capacitor C1.
Due to the unbalanced load between capacitor C1 and C2,
the voltage at the center point N starts to drift towards
the voltage of the positive bus-bar. The upper plot in Fig.
8a shows the phase current, the upper middle plot shows
the voltage vaN , the lower middle plot shows the current
through the resistor Rl and the lower plot shows the volt-
ages across capacitor C1 and capacitor C2.

Applying the proposed modulation technique for DC-
link balancing, the voltage in the center-point N can be
reestablished. Fig 8b shows the effects of an unbalanced
loading, similar to the case in Fig. 8a, where the proposed
balancing technique is applied.

C. Experimental results

VII. Conclusion

This paper has presented a new modulation scheme us-
able with three-level NPC-type inverters. The proposed
modulation scheme provides elimination of the common-
mode voltage between the inverter neutral point and the
motor neutral point thereby reducing problems such as
bearing currents and EMI. Further the proposed scheme
offers the capability of balancing the DC-link neutral
point, even if an unbalanced loading of the two DC-link
capacitors for some reason occurs. The functionality of
proposed modulation scheme is validated, both by simu-
lation results and by experimental results.
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Abstract—This paper presents a tool for fast pro-
totyping and comparison of different topologies for
use in wind turbines. The models are mainly based
on standard parameters but may include features
such as temperature-, saturation- and skin effects
in generators, temperature effects in semiconduc-
tors and the effects of applying different modulation
and control strategies in the converter control. Al-
though the tool includes several generator- and con-
verter topologies, only the modeling of the doubly-
fed induction generator and the two-level back-to-
back converter are explained in detail. The effec-
tiveness of the simulation tool is illustrated by some
prototyping examples of a wind turbine including
a doubly-fed induction generator and a two-level
back-to-back converter. The simulated prototyping
examples are to some extent validated by measure-
ments on an existing wind turbine.

Keywords: Wind turbine, doubly-fed induction genera-

tor, back-to-back converter, simulation.

I. Introduction

During the last decade the world wide installed
wind power has increased dramatically and several
forecasts expect this growth to continue [1]. Along
with this growth, the average size of installed wind
turbines seems to double every five years [2] and
with a typical development time of a new wind
turbine of about three years [3], the ever present
challenges for the wind turbine engineers are quite
high. Along with the developments of new com-
ponents and materials, the increasing demands to
the interaction between utility grid and wind tur-
bine, formulated in different national grid codes
[4-6], have a very high impact on the selection of
an optimum wind turbine topology.
Because of this fast development progress and

the up-coming grid requirements, the right time
for introducing new topologies may very well be
passed without (or with too late) notification. To
be able to ”hit” the market with the right topol-
ogy just in time, the wind turbine engineers need to
have detailed system knowledge, forecasts on up-
coming requirements, acquaintance with new com-
ponents and finally accurate (but also practicable)
models of the involved components.
This paper presents a tool for fast comparison

of wind turbine topologies. Although the tool in-
clude models of several generator topologies, and

converter topologies, the presentation of the tool
is limited to the doubly-fed induction generator
and the two-level back-to-back converter. The ef-
fectiveness of the simulation tool is illustrated by
some prototyping examples and to some extend
validated by measurements.

II. System modeling

Fig. 1 shows the user interface of the comparison
tool. In the left part of the user interface, the user
can change the main characteristics of the consid-
ered wind turbine including change of generator-
and converter topology, selection of control strat-
egy for reactive power generation, change of pa-
rameters impacting the availability of the turbine
and finally specifying models of the auxiliary power
consumption.

A. Generator topologies

The tool include models of the following gener-
ator topologies:
• Doubly fed induction generator (DFIG).
• Induction generator (IG).
• Synchronous generator (SG).
• Permanent magnet synchronous generator (PMSG).
• Variable rotor resistor induction generator (VR-
RIG).

B. Converter topologies

The following converter topologies are modeled:
• Back-to-back two-level converter.
• Back-to-back three-level converter.
• Matrix converter.
• 2-level (passive rec on gen. side).
• 2-level (passive rec on grid side).
• None.
However, it should be noted that not all combi-
nations of converter- and generator topologies are
valid.

Depending on the overall turbine configuration,
the center part of the user interface is used to
specify the models and parameters of the indi-
vidual components, i.e rotor, gear box, generator,
converter and transformer. These models are ex-
plained in more details in the following sections.



Fig. 1. User interface of the wind turbine comparison tool.

The right part of the user interface is dedicated to
presentation and analysis of the simulated results.
In fact, all variables can be view against each other.

III. Rotor model

The power Ptur transmitted to the hub shaft of
a wind turbine is expressed as [7]:

Ptur =
1
2
· Cp(λ, θpitch) · ρair ·Av · v3wind (1)

where ρair is the air density, Av is the area swept
by the turbine rotor and vwind is the wind speed
(which is assumed to be constant over the swept
area). Cp is the power performance coefficient
describing the efficiency of the rotor blades, de-
pending on the blade pitch angle θpitch and the
ratio λ between tip speed and wind speed. Fig.
2 shows a typical Cp profile of a mega-watt wind
turbine. The power performance profile is shown
for different pitch angles. In partial load and
while the tip speed is below the maximum al-
lowed tip speed, the turbine runs at maximum Cp
value. When the turbine reach max allowed tip
speed the tip-speed ratio changes and hence the
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p
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Fig. 2. Typical power performance profile of a mega-watt
wind turbine.

blades are pitched in order to keep the maximum
available power performance coefficient. When
the turbine reaches nominal load, the blades are
pitched out of the wind to keep the power (mea-
sured at the grid) at the nominal value. Out-
put from the rotor model is rotational speed ωg1
and and shaft torque Tg1. An example of gener-
ated power (i.e. Tg1/ωg1) versus rotational speed
(rad/s) is shown in the upper plot of Fig. 1.



IV. Gear model

Based on the rotational speed ωg1 and the shaft
torque Tg1, the power losses Ploss,g in the gear box
is either modeled by the expression in eq. (2) or
estimated through look-up tables based on mea-
surements.

Ploss,g = k1 · ωg1 + k2 · ω2
g1 + k3 · Tg1 + k4 · T 2

g1 (2)

In eq. (2), k1...k4 are proportional coefficients al-
though with the possibility to implement these co-
efficients as linear functions of the gear oil temper-
ature.
The torque Tg2 applied to the generator i.e. the

torque on the secondary side of the gear box is
calculated by:

Tg2 =
Tg1 · ωg1 − Ploss,g

Ngωg1
(3)

where Ng is the gear ratio. The speed on the sec-
ondary side of the gear box is given by: ωg2 =
Ng · ωg1.
A. Thermal modeling

The gear oil temperature Toil is calculated by:

Toil = αgear · Ploss,g + Tamb (4)

where αgear is the thermal heat transfer resistance
calculated from the power loss and temperature
rice at nominal operation.

V. Generator model (DFIG)

A. Electrical modeling

The steady state equation for the doubly fed in-
duction generator is given by:[
V s
V r

]
=
[−Rs − jωsLs −jωsLm

jsωsLm −Rr + jsωsLr
] [
Is
Ir

]
(5)

where s is the slip defined by: (ωr − ωs)/ωs, Lr
and Ls are the rotor- and stator inductance, i.e.
the sum of the main inductance and the leakage
inductance.
Based on the torque Tg2, the speed ωg2, the me-

chanical losses of the generator and the desired re-
active power production (through the stator), eq.
(5) is solved for rotor voltage V r, rotor current Ir
and stator current Is.
The electrical related generator losses are mod-

eled by:

Ploss,gen = Pcu,s + Pcu,r + Pfe (6)

where Pcu,s is the copper losses of the stator, Pcu,r
is the copper losses of the rotor and Pfe is the iron
losses of the generator. The copper losses of the
stator is given by:

Pcu,s = 3 ·Rs · |Is|2 (7)

and the copper losses of the rotor:

Pcu,r = 3 ·Rr · |Ir|2 (8)

The core losses, i.e the sum of iron losses and hys-
teresis losses of the generator, is a quite complex
phenomena to model. Often, the core losses are
modeled by use of the Steinmetz expressions from
which an equivalent variable core loss resistance
Rfe can be derived [8]:

Pfe = 3 · |V s + (Rs + jωsLσs) · Is|
2

Rfe(ψm, ωs, s)
(9)

Due to the almost constant magnetization ψm of
the DFIG, the constant stator frequency ωs and the
limited slip s (i.e limited rotor frequency) the core
loss resistance for the DFIG is assumed constant
and derived from the no-load test of the generator.

A.1 Modeling of skin effects

In large machines, skin effects in the rotor wind-
ings are quite pronounced and hence the rotor re-
sistance increases when the slip frequency increases
(regarding skin effects, the slip is evaluated as an
absolute value). The rotor resistance has been
modeled as a linear function of the slip frequency
given by:

Rr = Rr|s=0 + |s| · (Rr|s=1 −Rr|s=0) (10)

where Rr|s=0 is the rotor resistance at synchronous
speed and Rr|s=1 is the rotor resistance measured
at a blocked rotor test.

A.2 Modeling of saturation effects

In case saturation effects in the generator (i.e
saturation of the main inductance) are to be in-
cluded, the model in eq. (5) has to be rewritten
in order to incorporate the partial differentiation
of ∂(Lm · (is + ir))/∂t arising from the dynamic
model description of the DFIG. The steady state
description of the DFIG (including saturation ef-
fects) then becomes:[
V s
V r

]
=
[ −Rs − jωsLis −jωsLim

jωrLm − jωsLim −Rr − jωsLir + jωrLr

] [
Is
Ir

]
(11)

where Lim is the so-called dynamic inductance
given by [9]:

Lim = Lm + (is + ir)
dLm

d(is + ir)
(12)

and Lis and Lir are the stator- and rotor dynamic
inductances, i.e. the sum of the dynamic induc-
tance and the leakage inductance. Fig. 3 shows
the modeling of the main inductance Lm and the
dynamic inductance Lim. In case saturation effects
are neglected, i.e. Lim = Lm it appears that eq.
(11) reduces to the expression in eq. (5).
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Fig. 4. Converter illustration. a) Two-level back-to-back converter. b) Single branch in the two-level back-to-back
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A.3 Modeling of thermal effects

The steady state temperature Ts of the stator
and Tr of the rotor is calculated as:

Ts = αs · Ps,loss + Tamb (13)
Tr = αr · Pr,loss + Tamb (14)

where the thermal resistance αs and αr of the
stator and rotor respectively are calculated from
the temperature rice at nominal load. Based on
the calculated temperatures, the resistances of the
stator- and rotor winding in the present working
point is calculated as:

Rs = Rs0 + αcu · (Ts − T0) (15)
Rr = Rr0 + αcu · (Tr − T0) (16)

The resistances Rs0 and Rr0 are the stator- and
rotor resistance measured at temperature T0. The
coefficient αcu is the temperature coefficient of re-
sistivity of the considered material.

B. Mechanical modeling

The mechanical losses of the DFIG can either
be modeled by eq. (17) or by use of look up tables
obtained from measurements.

Protloss,gen = Tc · ωg2 + kωω2
g2 + kωω · ω3

g2 (17)
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Fig. 5. Normalized switching losses for different modulation
methods.

where Tc is the coloumb friction of the generator,
kω is the viscous friction coefficient and kωω is the
ventilation friction coefficient. The thermal effects
on the mechanical parts of the generator are calcu-
lated similar to the temperature effects in the gear
box, cf. eq. (4).

VI. Converter model (B2B)

Fig. 4a shows the two-level back-to-back con-
verter.

A. Electrical modeling

Based on the rotor voltage V r, the rotor current
Ir, the grid voltage V g3 and the converter losses,
the converter grid current Ig3 can be calculated:

Ig3 =
�e(V r · Ir)− Ploss,con

V g3
− jQcon

V g3
(18)

where Qcon is the reactive power reference for the
grid inverter and Ploss,con is the converter losses,
including losses in the rotor filter and grid filter, c.f.
Fig. 4. Although the converter losses are made of
several loss components, only the modeling of the
semiconductor losses are described in detail.



A.1 Conducting losses

The conducting losses Pcond of an electronic
switch (Diode or IGBT) is modeled by [10]:

Pcond = Uon · Iavg +Ron · I2RMS (19)

where Iavg is the average current in the consid-
ered component and IRMS is the RMS current in
the considered component. Unfortunately there is
no simple analytical relationship between the out-
put current Io and the current in the diode Id and
IGBT It, c.f. Fig. 4b. In fact, the current dis-
tributon between diode and IGBT is a function of
both power factor (cos(φ)) and modulation index
M . In [11] the average current through the diode
and IGBT is approximated by:

It,avg ≈ (0.2251 + 0.1768 ·K) · Io (20)
Id,avg ≈ (0.2251− 0.1768 ·K) · Io (21)

and the RMS current by:

It,RMS ≈ (0.5 + 0.1824 ·K) · Io (22)

Id,RMS ≈
√
0.25− 0.1824 ·K − 0.0333K2 · Io (23)

where the factor K is defined by:

K �M · | cos(φ)| (24)

The expressions in eq. (20)-(23) are valid when
the power flow is out of the considered inverter. In
case the power flows into the considered inverter
the equations for the diode current quantities and
IGBT current quantities are to be interchanged.

A.2 Switching losses

The switching losses of a PWM VSI depend on
the chosen modulation strategy [12]. Assuming the
inverter switching devices to have linear current
turn-on and turn-off characteristics with respect
to time and accounting only for the fundamental
component of the load current, the switching losses
can be analytically modeled for any given modu-
lation strategy. The device switching losses per
fundamental can be calculated as follows:

Psw =
1
2π
VDC(ton + toff )

2 · Ts

∫ 2π

0

f(θ)dθ (25)

where ton and toff represents the turn-on and turn-
off times of the switching devices, VDC is the DC-
link voltage and f(θ) is the switching current func-
tion. The switching current function equals zero in
the intervals where modulation ceases (in case of
discontinuous modulation) and the absolute value
of the corresponding phase current value elsewhere.
Fig. 5 shows the normalized switching losses of
different modulation methods implemented for the
B2B converter.

Rthca
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Ploss, d Ploss, t Ploss, d Ploss, t

Rthjc, t Rthjc, d Rthjc, t

Fig. 6. Illustration of the simple thermal model used to
estimate switch temperatures.

B. Thermal modeling

The thermal modeling of the switches is (so far)
modeled as a steady state model, only represent-
ing the average switch temperature, i.e. the av-
erage temperature of a fundamental period. The
modeling approach is illustrated on Fig. 6.

VII. Transformer model

The steady state equation for the transformer is
given by:[
V g1

V s
V g3

]
=

[
−Rg1 − jXg1 jXh jXh

−jXh Rg2 +Xg2 jXh

−jXh jXh Rg3 +Xg3

][
Ig1

Is
Ig3

]

(26)

where Xh is the main mutual reactance, Xg1..3 is
the self reactance of the considered winding and
R1..3 is the resistance of the considered winding.
The parameters used for the transformer modeling
are all derived from standard measurements, i.e.
short circuit and no load tests.

VIII. Simulation algorithm

From the modeling approach described in the
previous sections a simulation algorithm has been
established. Fig. 7 illustrates the simulation al-
gorithm. From Fig. 7 it appears that as long as
the variables, i.e. voltages , currents temperatures
etc. have not reached a steady-state value (for all
wind speeds), defined by a specified simulation tol-
erance, the algorithm is repeated. As the simula-
tion tool is intended for use in design and proto-
typing of wind turbines, the simulation algorithm
returns a warning list if one ore more component(s)
are loaded beyond its rated value.

IX. Results (Examples)

One application for the developed simulation
tool could be the initial design of a converter in
a new wind turbine. A parameter of interest could
be the converter losses. Fig. 8 shows the simulated
converter losses along with measured losses (shown
by ♦ ✷). The measurements were performed on a
full size converter test bench [13].



Fig. 7. Illustration of the algorithm for the simulation tool.
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Fig. 8. Switch temperature in the back-to-back converter.

Based on the quite accurate estimated converter
losses (which of course can be viewed for the in-
dividual inverters and components), the tempera-
tures of the switching components can be calcu-
lated. Fig. 9 shows the temperature of the switch-
ing components of a back-to-back converter as a
function of the normalized turbine power (The tur-
bine follows the power-speed characteristics in the
upper plot og Fig. 1). The temperatures indicated
by (♦ ✷ ◦) are calculated by a program provided by
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Fig. 9. Switch temperature in the back-to-back converter.

the the semiconductor manufacturer and are used
as validation of the developed simulation tool.

X. Conclusion

This paper has presented a tool for fast pro-
totyping and comparison of wind turbine topolo-
gies. The models are primarily based on standard
parameters but may also include more advanced
modeling approaches such as saturation , skin and
temperature effects. Further, the consequences on
energy production and loss distribution in the tur-
bine by applying different modulation and control
strategies are easily investigated.

References

[1] BTM Consult, ”World market update 2002”, BTM
consult

[2] Energi og Miljø Data, ””, , Vol. No. , pp. ,
[3] S. M. Bolik, ”Grid Requirrements Challenges for Wind

Turbines”, Intl. Workshop on Large-Scale Integration
of wind power and transmission networks for offshore
wind farms, Oct. 2003

[4] SP Transmission & Distribution, Scottish Hydro Elec-
tric, ”Guidance Note for connection of wind farms”, ,
No. 2.1.4 , Dec. 2002 (Scotland)

[5] E.ON Netz, ”Netzanschlussregeln Hoch- und
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 Abstract  This paper presents a new and easy way to 
understand the derivation of the modulation functions for 
matrix converters. It is shown how the duty cycles can be 
calculated using techniques known from the back-to-back 
(B2B) voltage source inverter (VSI), thus making the subject 
accessible to people with prior knowledge in standard drives. 
A new modulation strategy is presented minimizing harmonic 
distortion compared to the standard double-sided space vector 
modulation for matrix converters. An improvement to an 
existing modulator is also presented where the proposed 
modification improves the harmonic performance. The 
strategies are compared both analytically and by the use of 
both simulations and measurements on a 12 kW matrix 
converter prototype. 
 It is found that the proposed modulator has superior 
performance compared to modulators with equal switching 
frequencies and an equal number of switchings. 
 Keywords  Matrix converter, indirect space vector 
modulation, PWM, harmonic distortion. 
 

I. INTRODUCTION 
 

 The matrix converter is known to only a limited group of 
electrical engineers. The high level of complexity in the 
matrix converter prevents a wider audience in working with 
the promising technology of matrix converters. However, 
the standard VSI is to many people a well-known 
technology and likewise is the space vector modulator for 
the VSI converter. By the use of indirect modulation which 
was first presented by [1] in 1989 the function of the matrix 
converter can be described as a rectifier and an inverter 
working together. This relation can be illustrated 
graphically by inspecting the matrix converter, which is 
shown in the following section. 
 The matrix converter is built of 9 bi-directional switches 
connected in a matrix as seen on Fig. 1. The switches can 
connect one input phase to one output phase thus 
impressing input phase voltages on the load. An input filter 
is mounted between the converter and the voltage grid to 
filter high frequency currents and decouple the grid 
impedance. 
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 Fig. 1. The complete matrix converter topology with supply and load. 

 Hardware issues and practical implementation has been 
described and since its introduction in 1980 different 
strategies to minimize the number of components have been 
proposed, among others a way to reduce the number of 
components for protecting the converter [2] and a method 
to limit the number of floating supplies [3].  
 Double-sided modulation provides a good performance 
and the controller is known from the classical VSI, thus 
double-sided modulation is analysed in the paper. The 
derivation starts by considering the matrix converter as two 
separate converters. 
 

II. MATRIX CONVERTER MODULATION USING  

B2B-VSI THEORY 
 

 The controller presented by [1] as well as the most 
common modulator for the VSI is the space vector 
modulator. On Fig. 2 it is seen how the matrix converter 
can be redrawn as a rectifier and an inverter; the 
modulation function can then be derived for both the 
rectifier and the inverter.  
 The input and output voltages and currents are expressed 
as space vectors using the transforms shown in (1) to (4). 
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 The task of the modulator is to synthesise the output 
voltages from the input voltages, and the input currents 
from the output currents. 
 

A. Space Vector Modulator for the Rectifier Side 
 

 From Fig. 2 it is seen that a virtual DC-link is established. 
In the indirect space vector modulator all quantities are 
referred to this virtual DC-link. The input currents and DC-
link voltage can be found from the switch states as seen in 
(5) and (6).  
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Fig. 2. The matrix converter illustrated using the indirect space vector 
method. 

 The possible switch combinations of the rectifier are seen 
in Table I and the space vector hexagon is seen on Fig. 3. 
For one such set of vectors the span is shown on Fig. 4 
where also the vector lengths are shown. The duty cycles 
for the adjacent vectors on Fig. 4 can be calculated using 
(7).  
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 The modulation index mrec is often chosen to be 1, as no 
amplitude control of the current is desired. The calculated 
duty cycles can then be multiplied with the switch matrix to 
calculate the mean value of the input currents and the DC-
link voltage as shown in (8) and (9). The switch states Sx 
are replaced by the vectors shown on Fig. 4 for an angle 
between –30° and +30°. 
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 From the DC-link voltage the output voltages can be 
calculated and the modulation function for the inverter can 
be derived. 
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Fig. 4. Vector span for the rectifier current. 

 

B. Space Vector Modulation for the Inverter Side 
 

 The output voltages can be found as the virtual DC-link 
voltage multiplied by the switch state of the inverter, and at 
the same time the DC-link current can be found by using 
the transposed matrix as seen in (10) and (11).  
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 Fig. 5 shows the vectors that the output inverter can form 
by applying the DC-link voltage to the output terminals. 
Table II shows the possible switch states and the resulting 
length and direction of the vectors. Looking at one sector, 
the span of the vector and the output voltage relationship 
shown on Fig. 6 can be found. 
 By geometric considerations the duty cycles can be 
calculated as shown in (12). By projecting the Vout vector 
onto the Vλ and Vγ vectors. 
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TABLE I. Switch states and generated vectors for the rectifier. 
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Fig. 3. Input current hexagon. 



 

TABLE II. Switch states and generated vectors for the inverter. 
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 From the duty cycles the mean value of the output 
voltages and the DC-link current can be written as shown in 
(13) and (14).  
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 Now when the modulation functions for both the rectifier 
and the inverter have been expressed, the combined 
modulation function can be formed. 
 

C. Relationship Between the MC and B2B-VSI 
 

 The matrix converter is not, however, built as a rectifier 
and an inverter and therefore the modulation functions 
should be transformed into one modulation function for 9 
bi-directional switches. If the converter is seen from an 
output phase; two phase-switches of the output leg and six 
rectifier switches are seen, such equivalent can be made for 
each phase. Fig. 7 shows how the VSI topology can be 
considered and transformed into one phase in the matrix 
converter. From Fig. 7 it can be seen that the switches in 
the matrix converter branch must be controlled with a 
function that is a multiple of the rectifier and inverter 
functions. 
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Fig. 6. Vector span for the inverter voltage. 

 Equations (15) and (16) show the multiplication between 
the rectifier and inverter switch functions. 
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 By multiplying the mean value functions it can be seen 
how the output voltages can be formed by the input 
voltages and a combination of the switch matrix. 
 

D. Indirect Space Vector Modulation for the MC 
 

 Now that the mean values have been expressed the 
combined indirect modulation function can be written. 
Equations (17) and (18) show an example of how the 
function for the inverter and rectifier is multiplied to give 
the switch states for the 9 bi-directional switches. 
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Fig. 7. One-phase VSI to one-phase matrix converter. 
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 For the remaining time of a switch period a zero vector is 
applied, circulating output currents and disconnecting input 
voltages. 
 The equation for the duty cycles can now be written as 
shown in (19).  
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III. PULSE WIDTH MODULATION METHODS BASED ON 

DOUBLE-SIDED SPACE VECTOR MODULATION 
 

 The modulation functions in (19) state that four active 
and one zero vector is needed for the space vector 
modulator in each switching period. The distribution of the 
vectors is however free and this degree of freedom can be 
used to improve the harmonic distortion or limit the number 
of switchings. Four different methods of realizing the 
modulation function will  now be presented. 
 

A. 8-switch method 
 

 In 1996 [5] proposed a double-sided modulation strategy, 
which uses the four active vectors placed around one zero 
vector. The strategy gives 8 Branch Switch Overs (BSO) 
per switching period, and was thus an improvement of the 
9-switch modulator presented in 1992 by [6]. Fig. 8 shows 
the strategy, where each colour represents an active vector 
and the white area is the zero vector. 
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Fig. 8. The 8-switch double-sided modulator. 

 

B. 10-switch method 
 

 The 10-switch method was presented in 2000 by [7]. The 
method seeks to minimize the distortion by introducing 
another zero-vector in the end of the sequence, resulting in 
2 extra BSO. The advantage is that the apparent switching 
frequency is doubled as it is seen on Fig. 20. The switch 
frequency is reduced by 4/5 to give equal number of 
switchings pr. second. 
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Fig. 9. The 10-switch double-sided modulator. 

 

C. Low-distortion method 
 

 The low distortion method is a new method of reducing 
the harmonic distortion by having two zero vectors per 
period, but implementing it in a way to have 8 BSO per 
period. The procedure of splitting the zero vector is 
illustrated on Fig. 10. 
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Fig. 10. Splitting the zero vector to minimize distortion. 

 The result of the splitting is shown on Fig 11. It can be 
seen that the dark red and the light blue vector are not split 
by the zero vector and they will thus produce harmonics 
around the switching frequency while the light red and dark 
blue will produce harmonics around the double of the 
switching frequency. 
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Fig. 11. Low distortion modulator. 

 

D. Low-loss method 
 

 In 2001 [8] presented a modulator to reduce switching 
losses by using vectors with lower amplitude. The previous 
strategies all used vectors spaced by 60°, while this strategy 
uses vectors spaced by 120°. 
 The effect is shown on Fig. 12, which is a lower 
amplitude of the vectors and thus the output voltages are 
limited to half of the input voltage. The vectors are placed 
with the split zero vector as seen on Fig. 13. 
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Fig. 12. Vector span by the low loss modulator. 
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E. Modified low loss method 
 

 The low loss modulator, however, produces low 
harmonics when the vector moves from one sector to the 
next. The low harmonics can be seen on Fig. 22. The vector 
suddenly jumps from the side of the period to the center 
resulting in low order harmonics. The occurrence is shown 
on Fig. 14, which shows two switch periods where the 
vector enters a new sector. 
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Fig. 14. Vector jump during sector change. 

 The low order harmonics are proposed to be avoided by 
choosing the vectors in reverse order. This cleans the 
spectrum as displayed on Fig. 22 to Fig. 23, and an 
improved modulator is obtained. 
 

IV. HARMONIC ANALYSIS 
 

 The strategies are evaluated concerning the distortion on 
the input and output. This analysis was presented by [9] and 
the idea is to calculate the harmonic flux produced by the 
changing of the switch vectors.  
 During a switch period the flux in the motor will follow 
the black lines seen on Fig. 15. A distortion index can then 
be made by calculating the RMS value of the flux error. 
The error can be found from (20) as: 
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 The same evaluation can be done for the harmonic charge 
on the input capacitor, giving an index showing the load on 
the capacitors. The curves shown on Fig. 16 and Fig. 17 are 
normalized by the factors shown in (21). 
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Fig. 15. Harmonic flux in a matrix converter. 
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Fig. 17. Harmonic charge for the low distortion modulator. 
 

 The contour plots shown on Fig. 16 and Fig 17 are 
plotted for an input and output space vector angle spanning 
from –30° to +30° and a modulation index of 1. The power 
factor on the input and output are both one. From the curves 
the average shown on Fig. 24 and 25 are found. 
 

V. RESULTS 
 

 The simulated results are compared to the measured 
results from the prototype. The simulation model proves its 
usefulness in determining the location and origin of the 
harmonic distortion. 
 

A. Simulated and Measured Results (FFT) 
 

 In Fig. 18 the output phase-to-phase voltage is seen 
(right) and the input current is seen on the left. The curve 
with the highest amplitude is the input phase current and 
the lower one is the input phase voltage plotted to show that 
the current and voltage are in phase. Similar measurements 
are used to calculate the FFT shown on Fig. 19 to Fig. 23. 
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Fig. 18. Measured output voltage and input current (low-distortion). 
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Fig. 19. Simulated and measured output voltages for the 8-switch. 
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Fig. 20. Simulated output voltages for the 10-switch. 
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Fig. 21. Simulated and measured voltages for the low distortion. 
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Fig. 22. Simulated and measured voltages for the low loss. 
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Fig. 23. Simulated and measured voltages for the modified low loss. 

 

B. Comparison of harmonic flux and charge 
 

 The distortion for the harmonic flux and charge are 
calculated as a mean over 360° span for both the input and 
output angle. The distortion is plotted for a modulation 
index ranging from 0 to 1, and the mean harmonic charge 
are plotted for power factor 1 and 0.5 on the output. The 
power factor of the input is unity for all calculations, 
simulations and measurements. 
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Fig. 24. Mean distortion of the output flux for the modulation functions.  
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Fig. 25. Mean distortion of the input capacitor charge at PF=1 and PF=0.5. 

 From Fig. 24 and Fig. 25 it can be seen that the distortion 
is depending on the modulation index, giving that the most 
advantageous strategy should be chosen for the desired 
operating area. 
 

VI. CONCLUSION 
 

 The matrix converter technology is by many considered 
to be a complicated technology. In this paper it is shown 
that prior knowledge of standard B2B drives can be used to 
understand the matrix converter. A new low distortion 
modulation strategy that performs well compared to 
existing modulators is presented, and the strategy is 
compared to three existing modulators. The comparison is 
done on the basis of analytical and simulation tools, which 
have been experimentally verified using a matrix converter 
prototype. In the paper it is also shown how rapid changes 
in the space vectors position can generate harmonic 
distortion, and a solution is presented to improve the 
performance of the low-loss modulator. 
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