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Abstract: Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination
of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes,
such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3)
fatty acid–statin interactions in the prevention and treatment of ASCVD and to provide evidence
to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids
(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control
cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy,
primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address
triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which
overlap, including improving endothelial function, modulation of inflammation, and stabilizing
atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual
cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and
DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a
relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins
seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized
interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although
n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have
additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In
this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and
the possible statin–n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.
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1. Introduction

Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, being
responsible for almost 18 million deaths each year [1]. CVDs are a group of disorders of the
heart and blood vessels, and include coronary heart disease (CHD), peripheral vascular
disease, cerebrovascular disease as well as other conditions. Mortality from CVDs is mainly
due to myocardial infarction (heart attack) and stroke, which may occur prematurely in
those aged under 70 years [1]. Management of risk factors remains a challenge in primary
and secondary prevention of CVDs, with dyslipidemias being an important critical issue.
Dyslipidemias reflect an imbalance of blood lipids and lipoproteins, characterized mainly
by elevated plasma concentrations of low-density lipoprotein cholesterol (LDL-C) and
triglyceride (TG) along with lowered concentrations of high-density lipoprotein cholesterol
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(HDL-C) [2]. The role of elevated LDL-C as a risk factor for atherosclerotic cardiovascular
disease (ASCVD) is well recognized [3]. Furthermore, elevation in TGs and (TG)-rich
lipoproteins (TGRLs) has also been recognized as an independent risk factor for CVDs,
most likely due to the infiltration of TGRLs into the intimal space, initiating atherosclerotic
plaque formation and promoting plaque progression [4]. It is estimated that globally nearly
4 million deaths per year are attributed to elevated LDL-C [5]. Furthermore, it is estimated
that ASCVD causes about two thirds of all deaths from CVDs [5]. Familial or primary
dyslipidemias are genetically determined, while secondary dyslipidemias are associated
with other conditions, such as unhealthy behaviors, underlying diseases (e.g., obesity,
diabetes mellitus), and applied drugs [6].

The most relevant and recent European and American guidelines suggest lipid-
lowering treatment in those with increased risk of ASCVD [7]. For instance, the European
Society of Cardiology guidelines recommend the use of statins, as well as some non-statin
therapies, to reach LDL-C targets [8,9]. The 2019 American Heart Association/American
College of Cardiology/MultiSociety guidelines have LDL-C thresholds and suggest combi-
nation therapies that are more stringent for selected patients [10,11]. Statins function by
inhibiting the hydroxymethylglutaryl-CoA (HMG-CoA) reductase enzyme, so decreasing
endogenous (mainly hepatic) cholesterol biosynthesis. As a result, hepatic expression of
the LDL-receptor is upregulated, favoring hepatic clearance of LDL. The result of this is
lowering the circulating concentrations of total cholesterol, LDL-C and, to a lesser extent,
TGs. Statins have pleiotropic effects beyond lipid lowering [12]. These effects include
improving endothelial function, inhibiting vascular inflammation and promoting plaque
stability (see later sections).

There is overwhelming evidence that the omega-3 (n-3) polyunsaturated fatty acids
(PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have a well-
described TG-lowering effect [13]. The effect of these n-3 PUFAs on circulating TG concen-
trations is dose-dependent [14]. The decrease in circulating TG concentrations by n-3 PUFAs
is likely due to a combination of factors, including an increase in the hepatic oxidation of
fatty acids favoring their partitioning away from TG synthesis as well as other effects that
reduce de novo fatty acid and TG synthesis and hepatic assembly of TGRLs [15,16]. N-3
PUFAs may also aid clearance of circulating TGs, for example, by increasing lipoprotein
lipase activity [17]. Essentially, EPA and DHA influence the production of TGs, their release
from the liver and their removal from the bloodstream, contributing to lower circulating
levels [17,18]. Various international guidelines outline recommendations for using n-3 fatty
acids to lower TG levels in individuals with elevated TGs; for example, the American Heart
Association recommends up to 4 g/day EPA + DHA or EPA only to treat hypertriglyc-
eridemia [13]. Just as for statins, n-3 PUFAs have a series of other cardioprotective benefits
through different mechanisms [19], some of these overlapping the pleiotropic effects of
statins [20].

Despite a large amount of clinical evidence that confirms the individual effects of
statins and of n-3 PUFAs on blood lipid concentrations and on CVD outcomes, there
is still a lack of consensus on how combined treatments might benefit these conditions.
As inflammation is involved in various stages of ASCVD, anti-inflammatory actions of
statins and of n-3 PUFAs are likely to be important. EPA and DHA are well described to
exert anti-inflammatory actions, acting through several interacting mechanisms [21,22].
Furthermore, it is now known that both EPA and DHA are precursors for the biosynthesis
of a family of lipid mediators (i.e., oxylipins), which together have been called specialized
pro-resolving mediators (SPMs) [23]. There is also research suggesting that statins may
indirectly affect anti-inflammatory/pro-resolving pathways; for example, statins might
promote the production of specific SPMs (see later sections), suggesting an intriguing
interaction between two lipid-lowering therapies to mitigate inflammation.

This article aims to discuss possible n-3 fatty acid–statin interactions in the preven-
tion and treatment of ASCVD and to provide evidence to consider for clinical practice,
highlighting novel insights in this field.
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2. Biological Actions of Omega-3 (n-3) Fatty Acids and Their Oxylipin Metabolites

The human diet contains n-3 fatty acids from both plant and animal foods. Plants
synthesize α-linolenic acid, and this fatty acid is an important constituent of many nuts,
seeds, and plant oils. Plants do not produce EPA and DHA. These are mainly produced by
algae and are passed through the aquatic food chain to fish. White (or lean) fish contain
modest levels of EPA and DHA, typically up to 300 mg per adult serving [24], while oily
(or fatty) fish contain high levels, typically between 1 and 2.5 g per adult serving [24].
Good sources of EPA and DHA include salmon, mackerel, herring, trout, and sardines. No
foods other than seafood contain significant amounts of EPA and DHA unless they have
been fortified, which is not common. EPA and DHA are also found in many “omega-3”
supplements which include fish oils, krill oil, and algal oils [24]. The EPA and DHA
content of supplements can vary, but a typical fish oil supplement usually contains about
300 mg of EPA + DHA per g of oil. Concentrates are available as supplements where
EPA + DHA contribute as much as 60% of the oil. There are also highly concentrated
pharmaceutical grade preparations which are 90% or more EPA + DHA or just EPA. Dietary
intakes of EPA + DHA are low in those who do not regularly consume oily fish or use
supplements containing EPA + DHA; such low intakes are estimated in the high tens to
low hundreds of mg daily [25,26] and are generally below recommended intakes [27–31].
Regular consumption of oily fish or use of supplements, particularly concentrates, results
in markedly higher intake of EPA and DHA and in higher blood, cell, and tissue levels
of those two n-3 PUFAs [32,33]. The availability of EPA and DHA in supplements and
in pharmaceutical-grade preparations has permitted the conduct of placebo-controlled
randomized controlled trials (RCTs) of these n-3 PUFAs.

n-3 PUFAs, especially EPA and DHA, are known for their health benefits, particularly
in relation to cardiovascular health [34]; these benefits come about through the favorable
modulation of a broad range of well-described risk factors [19]. These include blood TG
concentrations, systolic and diastolic blood pressure, thrombosis, endothelial function, in-
flammation, and cardiac function, which are all improved by n-3 PUFAs (see [19,34,35] and
references therein). As already mentioned, EPA and DHA exert a number of actions that
result in lower plasma TG levels [18]. These include the combination of increased hepatic
fatty acid oxidation, reduced hepatic de novo lipogenesis and very-low-density lipoprotein
(VLDL) synthesis [15,16], and increased clearance of TGRLs including chylomicrons and
VLDLs, thus decreasing their half-life in the circulation [17,18]. Furthermore, EPA and
DHA contribute to lower TG levels through decreased delivery of non-esterified fatty
acids to the liver and increased hepatic synthesis of phospholipids rather than TGs [36].
Recent investigations suggest an additional novel mechanism by which EPA and DHA act
to lower plasma TGs. With increased intake of EPA and DHA, EPA- and DHA-derived
N-acyl taurines (NATs) accumulate in bile and plasma [37]. The DHA-containing NAT
(C22:6 NAT) inhibits intestinal hydrolysis of TGs and lipid absorption, resulting in lower
plasma TG levels and reduced risk of accumulation of TGs in the liver [37]. This might
explain why DHA has a slightly greater impact on plasma TG concentrations than EPA
does [38,39]. However, while both EPA and DHA show significant TG-lowering in humans,
head-to-head studies report that they have an independent effect on different lipoprotein
sub-particles; EPA lowers HDL3 while DHA increases HDL2, which is considered to be
more cardioprotective [40,41]. Furthermore, DHA, but not EPA, can raise LDL-C to a small
extent and increases LDL particle size [38,40,41]. Despite increasing LDL-C levels, DHA
does not affect apolipoprotein B (Apo-B) concentration, which suggests the modification of
LDLs to larger, less atherogenic particles [13,42]. On the other hand, EPA has distinct an-
tioxidant benefits compared to DHA, which are suggested to be due to EPA’s optimal chain
length and degree of unsaturation [43]. An in vitro study showed that EPA may orientate
optimally within lipoprotein particles and membranes, inhibiting oxidation of LDL and
altering membrane cholesterol domains, resulting in improved clearance of lipoproteins
and reduced atherogenic activity [43]. Furthermore, biophysical evidence supports op-
posing effects of EPA and DHA on phospholipid interactions and cholesterol distribution
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within membranes [44,45]. EPA may maintain intermolecular phospholipid packing con-
straints and preserve the even distribution of cholesterol in membranes, while DHA induces
membrane phospholipid disorder, which causes cholesterol to self-aggregate [45,46].

Low-grade inflammation has been long recognized to play a significant role in the
formation, progression, and rupture of atherosclerotic plaques [47–50]. EPA and DHA
modulate many relevant aspects of the inflammatory process, including the migration of leu-
cocytes and the production of inflammatory chemokines, cytokines, and eicosanoids [21,22].
These anti-inflammatory effects involve the modulation of membrane events, cell signaling,
transcription factor activation, and gene expression by EPA and DHA [22]. Further to this,
it has now emerged that oxylipins produced from n-3 PUFAs are an important component
of their bioactivity, including in the contexts of inflammation and CVDs.

Oxylipins are a class of bioactive lipid molecules generated by the oxidation of n-3
and n-6 PUFAs often in response to inflammatory stimuli [51–53]. They are produced
through enzymatic and non-enzymatic oxidation pathways; enzymatic conversion of n-3
and n-6 PUFAs shares the same series of enzymes, i.e., lipoxygenases (LOXs), cyclooxy-
genases (COXs), and cytochromes P450 (CYP-450) [51–53]. Because different oxylipins
have different biological actions, a balance among various oxylipins is required for nor-
mal physiological function, and dysregulation of their pathways of synthesis and/or
action has been suggested to be involved in the pathogenesis of many diseases, includ-
ing inflammatory disorders and CVDs [54]. Some oxylipins promote inflammation (e.g.,
many arachidonic acid (AA)-derived oxylipins such as several 2-series prostaglandins and
4-series leukotrienes [43]), but others have weaker pro-inflammatory, anti-inflammatory,
and pro-resolving properties (e.g., oxylipins generated from EPA, docosapentaenoic acid
(DPA), and DHA) [55].

Some oxylipins are termed SPMs since they act to resolve inflammation that is already
established (e.g., by reducing production of pro-inflammatory cytokines) and promoting
the clearance of inflammatory cells, debris, and pathogens [52,56,57]. SPMs are ligands
for cell surface G-protein-coupled receptors (GPCRs), initiating pro-resolving responses in
many inflammatory cell targets acting via various signaling pathways, such as mitogen-
activated protein kinases, nuclear factor kappa B, phosphoinositide 3-kinase, and perox-
isome proliferator-activated receptor γ [52,58,59]. Additionally, SPMs regulate specific
microRNA signatures associated with the resolution of acute inflammation and apoptotic
markers, such as B-cell lymphoma-2 and caspases 3 and 9 [60,61]. Examples of SPMs
include maresins, resolvins, and protectins. SPMs synthesized from DHA include D-series
resolvins (RvD), protectins, and maresins, while E-series resolvins (RvE) are synthesized
from EPA [52,55,56]. These are produced through pathways that involve COX and LOX
enzymes (Figure 1) [52,56–58].

The n-6 PUFA AA is a precursor for the synthesis of lipoxins (e.g., LXA4, LXB4,
15-epi-LXA4, 15-epi-LXB4) which are also SPMs; lipoxins are produced through 15-LOX
and 5-LOX pathways and via transcellular biosynthesis pathways, including roles for
5-LOX and 12-LOX [62,63]. Lipoxins modulate the activity of immune cells, influencing
their functions in a way that promotes resolution rather than sustained inflammation. This
includes regulating the production of pro-inflammatory mediators [63].
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3. Oxylipins in Cardiovascular Diseases

Chronic unresolved inflammation and continuous release of pro-inflammatory me-
diators is involved in the development and progression of atherosclerosis [47–50]. Recent
studies on CVDs reported oxylipin production to be dysregulated [64–66]. In this regard,
a cross-sectional study has reported novel insights into the oxylipin profile, finding an
increased salivary maresin concentration and decreased protectin concentrations in patients
with CVD compared to healthy controls [67]. The salivary levels of protectins and maresins
were independent of other confounding factors contributing to CVDs [67]. Plasma levels of
SPMs and pro-inflammatory oxylipins (i.e., leukotriene (LT) B4 and prostaglandins) were
measured in patients with coronary artery disease (CAD) to explore the association with
coronary plaque progression [68]. Higher plasma levels of the n-3 PUFAs EPA + DHA were
associated with significantly higher plasma levels of resolvin E1 (RvE1) and its precursor
18-HEPE. Patients with low plasma EPA + DHA levels had low (18-HEPE + RvE1)/LTB4
ratios and significant plaque progression compared to those with high plasma EPA + DHA
levels and high (18-HEPE + RvE1)/LTB4 ratios, who showed significant plaque regres-
sion [68]. It has also been reported that atherosclerotic plaque SPM levels are altered in CVD,
with markedly lower concentrations of RvD1 in vulnerable, compared with non-vulnerable,
regions of human carotid atherosclerotic plaques [69]. Furthermore, plasma levels of
15-epi-LXA4 were significantly lower in patients with symptomatic peripheral atheroscle-
rosis than in healthy individuals [70]. Circulating concentrations of an n-3 DPA-derived
resolvin (RvDn-3 DPA) were lower in patients with CVD than in healthy controls [71]. A
decrease in RvDn-3 DPA concentrations was associated with increased blood vessel inflam-
mation and progression of vascular disease [71]. Plasma SPMs were profiled in patients
with ST-elevation myocardial infarction (STEMI) in the first week following myocardial
infarction. Patients with STEMI had remarkably increased SPM levels compared to stable
CAD patients and healthy controls, suggesting that protective pro-resolving mechanisms
are activated after myocardial infarction [64]. The observed increase in SPMs mainly in-
volved an increase in protectins formed from DPA and DHA. Furthermore, a shift in 5-LOX
activity away from LTB4 to the pro-resolving n-3 DPA-derived RvTs was observed [64].

The above observations suggest that one mechanism of the protective and therapeutic
actions of n-3 PUFAs in CVDs involves the generation and activity of SPMs. Further to
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this, SPMs themselves may be novel therapeutic agents in ASCVD, a notion supported by
studies involving exogenous administration of synthetic SPM analogs [72]. Concerning this,
in a rabbit model of atherosclerosis, topical application of RvE1 attenuated atherosclerotic
plaque formation and lowered C-reactive protein (CRP) levels [73]. In a study in Apoe−/−

mice, the administration of RvD2 and MaR1 prevented the development of vascular lesions
leading to atheroma formation [74]. Additionally, the SPMs induced a significant alteration
in the phenotype of macrophages from an inflammatory to a reparative state [74]. Similarly,
systemic administration of RvD2 and MaR1 attenuated intimal hyperplasia in mice [75].
In a carotid artery balloon injury model in rats, administration of RvD1 or PD1 decreased
muscle cell proliferation and leukocyte infiltration [76]. RvE1 decreased atherosclerotic
lesion size and diminished severe lesion development in mice [77].

4. The Pharmacology of Statins

Statins are commonly prescribed medications that lower blood total cholesterol and
LDL-C levels. They act through inhibition of the enzyme hydroxymethyl-glutaryl coenzyme
A (HMG-CoA) reductase, which catalyzes the rate-limiting reaction in the pathway of hep-
atic cholesterol biosynthesis [78]. By decreasing cholesterol synthesis, statins help to lower
LDL-C, which is pro-atherogenic, and may also modestly increase HDL-C, which is anti-
atherogenic. Beyond lowering plasma total cholesterol and LDL-C levels, statins are now
known to exert pleiotropic effects [12], as reviewed elsewhere recently [79]. These include
improving endothelial function and vascular tone, reducing inflammation and oxidative
stress, modulating platelet reactivity, and increasing atherosclerotic plaque stability [79].

Currently, seven forms of statins are marketed and commonly used to treat hyperc-
holesterolemia and CVD risk. They are classified as fully synthetic compounds (atorvastatin,
rosuvastatin, fluvastatin, and pitavastatin) and naturally occurring statins originally discov-
ered in fungi (lovastatin, pravastatin, and simvastatin). With respect to the ability to reduce
LDL-C concentrations, statins may be further classified as “strong” statins (rosuvastatin,
pitavastatin, atorvastatin) and “weak” statins (pravastatin, simvastatin) [79]. Additionally,
the definition “intensity of statin therapy” refers to the use of statin medications at doses
that substantially reduce cholesterol levels, specifically LDL-C (Table 1) [80]. High-intensity
statin therapy involves using statins at higher doses in order to cause at least a 50% decrease
in LDL-C levels. Moderate-intensity statin therapy involves using statins at doses that lead
to a moderate reduction (30–50%) in LDL-C levels. In low-intensity statin therapy, the daily
dose needed to cause < 30% lowering of LDL-C levels is used.

Table 1. Summary of different dosages (daily unless otherwise indicated) used for low-, moderate-,
and high-intensity statin therapy.

Low-Intensity Moderate-Intensity High-Intensity

Simvastatin (10 mg) Atorvastatin (10–20 mg) Atorvastatin (40–80 mg)
Pravastatin (10–20 mg) Rosuvastatin (5–10 mg) Rosuvastatin (20–40 mg)

Lovastatin (20 mg) Simvastatin (20–40 mg)
Fluvastatin (20–40 mg) Pravastatin (40–80 mg)

Pitavastatin (1 mg) Lovastatin (40 mg)
Fluvastatin XL (80 mg)

Fluvastatin (40 mg twice daily)
Pitavastatin (2–4 mg)

5. Interrelationship between Omega-3 (n-3) PUFAs and Statins in Cardiovascular
Diseases: Involvement of SPMs

Interactions between n-3 PUFAs and statins in the context of risk factors for CVDs
have been previously discussed [20]. Since the primary action of statins is to lower plasma
LDL-C levels and a key action of n-3 PUFAs is to lower plasma TG levels, they have
synergistic effects on dyslipidemia. Statins and DHA both raise HDL-C levels. Statins and
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n-3 PUFAs have other overlapping actions; for example, both enhance endothelial nitric
oxide synthesis.

Inflammation is another common target of statins and n-3 PUFAs. The anti-inflammatory
and pro-resolving actions of n-3 PUFAs, and the involvement of EPA- and DHA-derived
SPMs in these actions, were described earlier. Statins have been shown to reduce the
levels of key markers of inflammation, such as CRP and interleukin-6 (IL-6) [81], and they
influence the function of immune cells (e.g., macrophages and T lymphocytes) [82,83],
which play essential roles in inflammation. By modulating the activity of these cells,
statins can dampen the inflammatory response. Since inflammation plays a pivotal role in
endothelial dysfunction and in atherosclerotic plaque instability, the effect of statins is to
improve endothelial function and to stabilize atherosclerotic plaques, making them less
prone to rupture and reducing the risk of cardiovascular events [84]. In addition to direct
anti-inflammatory actions, statins can affect the expression and activity of key enzymes
involved in the pathway of synthesis of oxylipins, resulting in the enhanced production of
at least some SPMs (see [85] and references therein). One mechanism of action involves the
S-nitrosylation of COX-2, which promotes the production of 15R-hydroxyeicosatetraenoic
acid (15R-HETE) from AA, which further serves as a substrate for the 5-LOX-mediated
conversion to 15-epi-lipoxins (Figure 2). Similarly, statins can induce the generation of
resolvins and protectins from EPA and DHA, again as a result of S-nitrosylation of COX-2
(Figure 2).
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rotic cardiovascular diseases. Abbreviations used: COX-2*, S-nitrosylated COX-2; n-6 PUFAs,
n-6 polyunsaturated fatty acids; n-3 PUFAs, n-3 polyunsaturated fatty acids; AA, arachidonic
acid; EPA, eicosapentaenoic acid, DHA, docosahexaenoic acid; 5-LOX, 5-lipoxygenase; 15-LOX,
15-lipoxygenase; 12-LOX, 12-lipoxygenase; 5R-HETE, 5R-hydroxy-eicosatetraenoic acid; 18R-
HpEPE, 18R-hydroperoxy-eicosapentaenoic acid; 18R-HEPE, 18R-hydroxy-eicosapentaenoic
acid; 17S-HpDHA, 17S-hydroperoxy-docosahexaenoic acid; 14S-HpDHA, 14S-hydroperoxy-
docosahexaenoic acid.
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Statins also regulate the levels of enzymes involved in oxylipin synthesis, and this has
been studied in the context of CVDs. For example, in a rabbit model of atherosclerosis,
atorvastatin treatment decreased expression of mRNA for 5-LOX-activating protein and
the leukotriene receptor cysLT1R along with lowering serum LTD4 levels, all associated
with stabilization, and even regression, of carotid atherosclerotic plaques [86]. Atorvastatin
increased levels of LXA4 and 15-epi-LXA4 in the rat myocardium, which was linked with
overexpression of 5-LOX and COX-2 in myocardial cells. A study with rats showed that
atorvastatin at different doses markedly increased COX-2 and 15-epi-LXA4 levels in heart
tissue [87]. A study on atorvastatin-treated rats also showed overproduction of 15-epi-LXA4
and increased COX-2 and 5-LOX levels in the cytosolic fraction of myocardial cells [88].
In diabetic mice, rosuvastatin increased 15-epi-LXA4 levels and decreased atherosclerotic
plaque area, inflammation, and progression of atherosclerosis [89]. Thus, enhanced 15-epi-
LXA4 production is a common finding in these studies of statins in laboratory animals; this
could involve increased expression of the relevant synthetic enzymes (COX-2 and 5-LOX)
and increased activity of COX-2 due to S-nitrosylation. As such, up-regulation of the lipoxin
pathway could be a novel mechanism for statin-induced anti-inflammatory and immune
regulatory effects. There may also be interaction of statins with n-3 PUFAs, in part through
S-nitrosylation of COX-2 as described above, but there are other relevant observations. For
example, statins resulted in higher expression of the RvE1 receptor (Erv1/ChemR23) in
macrophages from the proximity of the necrotic core of atherosclerotic plaques [90]. The
combination of RvE1 and atorvastatin has been tested in mice [77].

6. Omega-3 (n-3) Fatty Acids and Cardiovascular Diseases: Findings from
Cohort Studies

Clues to the impact of dietary EPA + DHA on CVDs came from early studies in the
native Inuit population of Greenland, who showed a much lower rate of mortality from
myocardial infarction (MI) and from CHD than anticipated [91,92] with these effects being
linked with the very high intake of EPA and DHA from their diet [93]. Observations of low
risk of CVDs with high EPA and DHA intake were replicated in other populations from
the Arctic [94] and Japan [95]. Multiple studies have reported inverse associations between
dietary intake of EPA and DHA, or their levels in the blood or tissues, and risk of various
CVD outcomes (see [96]). For example, data from the Nurse’s Health Study showed an
inverse dose-dependent association of risk for developing CHD, having a non-fatal MI, or
dying from CHD across quintiles of intake of EPA + DHA [97]. All three outcomes were
decreased by about 50% in those with the highest intake compared with the lowest intake
of EPA + DHA [97]. The prospective National Institutes of Health AARP Diet and Health
Study included ~420,000 participants and had a 16-year follow-up; there was a significant
inverse association between EPA + DHA intake and various mortality outcomes [98]. For
example, EPA + DHA intake was associated with 15% and 18% lower CVD mortality in
men and women, respectively, across extreme quintiles. Chowdhury et al. [99] reported
that the combined data on dietary intake of EPA + DHA from 16 studies involving over
422,000 individuals demonstrated a 13% reduction in the risk of coronary outcomes for
those in the top tertile of intake compared with those in the lower tertile. More recently,
Alexander et al. [100] combined data from 17 cohort studies and found that the risk of CHD,
fatal coronary events, coronary death, or sudden cardiac death was lower by 18%, 23%,
19%, and 47%, respectively, in those with higher dietary intake of EPA + DHA compared to
those with lower intake.

Going beyond measurements of dietary intake of EPA and DHA, a number of studies
have examined the associations between the concentrations of EPA + DHA in blood or
blood pools (e.g., plasma, serum, serum lipids, or red blood cells) and CVD morbidity and
mortality (see [96]). In the Physician’s Health Study, there was an inverse dose-dependent
association of risk for sudden death across quartiles of whole blood EPA + DHA, with an
80% lower risk in those with the highest whole blood EPA + DHA concentrations compared
to those with the lowest whole blood EPA + DHA concentrations [101]. Chowdhury
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et al. [99] combined data from 13 studies involving over 20,000 individuals in a meta-
analysis that showed risk reductions for coronary outcomes of 22%, 21%, and 25% for those
in the top tertile of circulating EPA, DHA and EPA + DHA, respectively, compared with
those in the lower tertile. del Gobbo et al. [102] pooled data from 19 studies involving over
45,000 individuals; they found that each standard deviation increase in the EPA or DHA
content of a blood or tissue pool was independently associated with a 10% lower risk of
fatal CHD. More recently, data from 10 cohort studies identified a 15% reduction in the risk
of fatal CHD with each one standard deviation increase in omega-3 index (EPA + DHA as a
percentage of total fatty acids in red blood cells) [103]. Another pooling study of data from
17 prospective cohort studies with over 42,000 participants reported a lower risk of death
from CVDs in those with the highest tertile of either EPA or DHA or EPA + DHA in a blood
pool [104].

Taken together, this literature base provides consistent evidence that higher dietary
intake of EPA and DHA, which results in higher blood and tissue levels of these two n-3
fatty acids, is associated with a lower risk of developing CHD and CVDs and of dying as a
result of these diseases. Definitive proof of a cause-and-effect relationship can only come
from RCTs.

7. Clinical Trials on Therapeutic Effects of Combined Statins and Omega-3 (n-3) Fatty
Acids in Cardiovascular Diseases

A small number of large, long-term clinical trials have evaluated the effect of n-3
PUFAs combined with statins on cardiovascular outcomes in patients with high cardiovas-
cular risk. The first of these studies was the important Japan EPA Lipid Intervention Study
(JELIS), published in 2007. JELIS enrolled over 18,000 patients who had total cholesterol
concentrations ≥ 6.5 mmol/L and LDL-C ≥ 4.4 mmol/L. These patients were randomized
to receive either a statin alone or a statin along with highly concentrated EPA (1.8 g/d
EPA as an ethyl ester) with a follow-up of 5 years [105]. Patients received 5 mg of sim-
vastatin or 10 mg of pravastatin once daily as the first line of treatment. For uncontrolled
hypercholesterolemia, the daily dose was increased to 10 mg of simvastatin or 20 mg of
pravastatin. The combination of EPA-ethyl ester and statin had the same effect as statin
alone on serum LDL-C levels in hypercholesterolemic patients: there was a 25% decrease
in LDL-C concentrations in both groups. In the primary prevention arm of the trial, the
primary outcome, which included a major coronary event (i.e., sudden cardiac death, fatal
and non-fatal MI) or another non-fatal event (i.e., unstable angina pectoris, angioplasty,
stenting, and coronary artery bypass grafting), was not significantly different between the
groups receiving statins alone or statins plus EPA-ethyl ester. In the secondary prevention
arm of the trial, which involved those patients with a history of CAD, non-fatal coronary
events were significantly reduced by 19% in patients receiving statins plus EPA versus
those receiving statins alone [105].

The Reduction of Cardiovascular Events with Icosapent Ethyl Intervention Trial
(REDUCE-IT) [106] included 8179 patients with established CVD or with diabetes (58% of
all patients had type 2 diabetes mellitus) and other risk factors. Of all participants, 62%
received moderate-intensity statins, 31.5% high-intensity statins, and the rest low-intensity
statins. Plasma LDL-C concentrations were well-controlled with statin therapy (baseline
range was 1.06 to 2.59 mmol/L), but fasting TG levels were borderline and moderately
elevated (1.52 to 5.63 mmol/L). Patients received either 4 g/day of EPA-ethyl ester (referred
to as icosapent ethyl—the same concentrated pharmaceutical-grade preparation as used
in JELIS), providing 3.6 g/day of EPA or a placebo (mineral oil). Median follow-up time
was 4.9 years. The primary outcome (a composite of cardiovascular death, non-fatal stroke,
non-fatal myocardial infarction, coronary revascularization, or unstable angina) was signif-
icantly improved in the icosapent ethyl group compared to the mineral oil control group
(hazard ratio (HR): 0.75; 95% confidence interval (CI): 0.68, 0.83; p < 0.001). Icosapent ethyl
also improved the main pre-specified secondary outcome (a composite of cardiovascular
death, non-fatal myocardial infarction, or non-fatal stroke) (HR: 0.80; 95% CI: 0.66, 0.98;
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p = 0.03) as well as a whole range of other clinical outcomes [106]. Serum EPA increased
3.6-fold over the period of icosapent ethyl intervention, and the increase was associated
with improvements in clinical endpoints [107].

Results from the EVAPORATE (Effect of Vascepa on Improving Coronary Atheroscle-
rosis in People with High Triglycerides Taking Statin Therapy) trial suggest that EPA has
benefits related to plaque reduction and stabilization in those taking statins [108]. EVAPO-
RATE enrolled 80 patients with coronary atherosclerosis (one or more angiographic stenoses
with ≥20% narrowing) and elevated fasting TG levels (1.5–5.6 mmol/L). All patients were
receiving stable statin therapy. They had no history of myocardial infarction, stroke, or life-
threatening arrhythmia within the previous six months. EVAPORATE used the same dose
of icosapent ethyl as in REDUCE-IT. The EVAPORATE trial reported a significant regression
of atherosclerotic plaques over 18 months in patients receiving icosapent ethyl [108].

Findings of STRENGTH (Long Term Outcomes Study to Assess Statin Residual Risk
with Epanova in High Cardiovascular Risk Patients with Hypertriglyceridemia) [109]
differ from those of REDUCE-IT, although the study design, target populations, and
assessed primary outcomes were similar in both trials and both used “high-dose” n-3
PUFAs. In STRENGTH, patients with hypertriglyceridemia, high cardiovascular risk,
and those receiving standard statin therapy received either 2.2 g EPA + 0.8 g DHA daily
(as free fatty acids) or corn oil as a placebo. The different findings of REDUCE-IT and
STRENGTH have been the subject of much discussion, especially given the apparently
similar interventions and study designs. However, here are some differences that might
be important. Firstly, REDUCE-IT used highly purified EPA (as an ethyl ester), while
STRENGTH used both EPA and DHA (as free fatty acids). Secondly, REDUCE-IT used
a higher overall dose of EPA (3.6 vs. 2.2 g/day) and did not use DHA. Thirdly, the two
studies used different placebos (mineral oil vs. corn oil). Finally, REDUCE-IT had a higher
proportion of secondary prevention patients with a high risk of cardiovascular events than
STRENGTH.

There is an ongoing trial of relevance. This is the Evaluation in Secondary Prevention
Efficacy of Combination Therapy-Statin and Eicosapentaenoic Acid (RESPECT-EPA) trial.
RESPECT-EPA has enrolled 2460 patients with CAD who had received standard statin
therapy for >1 month and who had a low plasma ratio of EPA to AA ratio (≤0.4). Patients
were randomized to 1.8 g/day of highly purified EPA (as ethyl ester) or control. The
primary endpoint of RESPECT-EPA is the composite of cardiovascular death, non-fatal
myocardial infarction, non-fatal ischemic stroke, unstable angina pectoris, or clinically
indicated coronary revascularization [110]. The selection of patients based on plasma EPA
to AA ratio is a novelty for this type of trial, the rationale being that epidemiological studies
report an inverse association between plasma ratio of EPA to AA and cardiovascular events
and other atherosclerotic outcomes [111,112]. RESPECT-EPA has yet to report.

8. Meta-Analyses of Clinical Trials of Statins and n-3 PUFAs and Blood Lipids and
Cardiovascular Diseases

AbuMweiss et al. published a comprehensive meta-analysis of RCTs of n-3 PUFAs
(EPA + DHA) on cardiovascular risk factors, including blood lipids [19]. Using data from
110 RCTs, EPA + DHA were shown to markedly lower blood TG concentrations (effect
size: −0.368; 95% CI: −0.427, −0.309; p = 0.0001) and to raise blood HDL-C concentrations
(effect size: 0.039; 95% CI: 0.024, 0.054; p = 0.0001). LDL-C concentrations were also ele-
vated (effect size: 0.150; 95% CI: 0.058, 0.243; p = 0.001), likely due to the aforementioned
increase in the size of LDL particles, making them less atherogenic. This meta-analysis
also reported significant benefits of EPA + DHA on other risk factors for CVDs, including
systolic and diastolic blood pressure, heart rate, and the inflammatory biomarker CRP [19].
A meta-analysis of 16 RCTs of n-3 PUFAs (twelve of EPA + DHA, two of DHA, one of
EPA, and one on α-linolenic acid) reported a significant improvement in vascular function
assessed by flow-mediated dilatation [113]. Multiple meta-analyses of RCTs of EPA + DHA
report reductions in blood concentrations of CRP, IL-6, and tumor necrosis factor [114–118].
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These findings emphasize the broad-ranging beneficial actions of n-3 PUFAs, especially
EPA and DHA, on risk factors for CVDs. There are also a number of meta-analyses of
trials of n-3 PUFAs conducted in at-risk patients and reporting on clinical outcomes; meta-
analyses published up to 2018, which are mostly favorable, are collated and summarized
elsewhere [35]. In 2019, Hu et al. published a meta-analysis of 12 or 13 RCTs (depending
upon the outcome) of EPA + DHA (or EPA alone) on clinical outcomes [118]. They iden-
tified that n-3 PUFAs decreased the risk of CVDs (rate ratio (RR): 0.95; 95% CI: 0.82, 0.98;
p < 0.001), CVD death (RR: 0.92; 95% CI: 0.88, 0.97; p < 0.001), CHD (RR: 0.93; 95% CI: 0.89,
0.96; p < 0.001), CHD death (RR: 0.92; 95% CI: 0.86, 0.98; p = 0.014), myocardial infarction
(RR: 0.88; 95% CI: 0.83, 0.94; p < 0.001), and major vascular events (RR: 0.95; 95% CI: 0.93,
0.98; p < 0.001). The meta-analysis of Bernasconi et al. [119], published in 2021, included
a larger number of RCTs (14 to 39, depending upon the outcome). This meta-analysis
identified that n-3 PUFAs decreased the risk of CVD events (relative risk (RelR): 0.95; 95%
CI: 0.90, 1.00), CHD events (RelR: 0.90; 95% CI: 0.84, 0.97), CHD death (RelR: 0.91; 95%
CI: 0.85, 0.98), myocardial infarction (RelR: 0.87; 95% CI: 0.80, 0.96), and fatal myocardial
infarction (RelR: 0.65; 95% CI: 0.46, 0.91). Both Hu et al. [118] and Bernasconi et al. [119]
included REDUCE-IT but not STRENGTH.

A small number of meta-analyses have attempted to decipher whether the combination
of statins and n-3 PUFAs has a different effect on blood lipids compared to either therapy
alone. A 2018 meta-analysis of six RCTs evaluated the effects of statin monotherapy versus
combination therapy of statins and n-3 PUFAs on blood lipids [120]. The dosage of n-3
PUFAs used in the included trials was 2 or 4 g/day along with moderate-intensity statin
therapy, and the duration of included trials was 6 to 16 weeks. There was no significant
difference in LDL-C between the two groups, suggesting that n-3 PUFAs do not interfere
with the LDL-C-lowering effect of statins, and that statins mitigate the LDL-C-raising
effects of n-3 PUFAs. However, the combination therapy caused a greater decrease in the
ratio of total cholesterol to HDL-C than statin monotherapy (standard mean difference
(SMD): −0.215; 95% CI: −0.359, −0.071). Thus, this meta-analysis suggests that there is an
advantage in the combination of satins plus n-3 PUFAs compared to statins alone [120].

A more recent meta-analysis of 32 RCTs involving 15,903 participants evaluated the
effect of n-3 fatty acids or their combination with statins on the lipid profile in patients with
hypertriglyceridemia [121]. The mean baseline TG level ranged from 154.2 to 699 mg/dL.
Study duration varied from 4 to 48 weeks and dosage of EPA + DHA ranged from 1.24
to 4 g/day. The individual dosage of EPA and DHA was 0.6–4 g/day and 3–4 g/day,
respectively. N-3 fatty acids as monotherapy decreased TGs (mean difference (MD): −39.81;
95% CI: −54.94, −24.69; p < 0.001), total cholesterol (MD: −2.98; 95% CI: −5.72, −0.25;
p = 0.03), VLDL-C (MD: −25.12; 95% CI: −37.09, −13.14; p < 0.001), and non-HDL-C (MD:
−5.42; 95% CI: −8.06, −2.78; p < 0.001) and increased LDL-C (MD: 9.10; 95% CI: 4.27, 13.94;
p < 0.001) and HDL-C (MD: 1.60; 95% CI: 0.06, 3.15; p = 0.04). The cholesterol-lowering
effect only occurred for combinations of EPA and DHA and at doses ≥ 4 g/day; DHA alone
increased total cholesterol. There was no significant effect of n-3 PUFAs on apolipopro-
tein B (Apo-B) and apolipoprotein AI (Apo-AI) concentrations. The combination of n-3
fatty acids and statins significantly decreased TGs (MD: −29.63; 95% CI: −36.24, −23.02;
p < 0.001), total cholesterol (MD: −6.87; 95% CI: −9.30, −4.45; p < 0.001), VLDL-C (MD:
−20.13; 95% CI: −24.76, −15.50; p < 0.001), non-HDL-C (MD: −8.71; 95% CI: −11.45, −5.98;
p < 0.001), Apo-B (MD: −3.50; 95% CI: −5.37, −1.64; p < 0.001), and Apo-AI (MD: −2.01,
95% CI: −3.07, −0.95; p < 0.001). The combination of n-3 PUFAs and statins caused a greater
decrease in total cholesterol than n-3 PUFAs alone. However, the combined therapy did not
significantly change the levels of HDL-C and LDL-C compared to the control group, a lack
of effect that is difficult to explain and which contrasts with the findings of Choi et al. [120].

A meta-analysis and network meta-analysis published in 2020 reported the compar-
ative efficacy of a statin vs. a statin, a statin vs. an n-3 PUFA, or a statin or n-3 PUFA
vs. control for the prevention of total CVD, CHD, myocardial infarction, and stroke [122].
The analysis included 63 RCTs involving 264,516 patients; of these, 45 RCTs used statins,
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and 18 used n-3 PUFAs. Median follow-up was 3.7 years. Overall lipid-lowering therapy
(i.e., statins or n-3 PUFAs) lowered the risks of total CVD (RelR): 0.89; 95% CI: 0.85, 0.94),
CHD (RelR: 0.81; 95% CI: 0.75, 0.89), myocardial infarction (RelR: 0.78; 95% CI: 0.78, 0.85),
and stroke (RelR: 0.91; 95% CI: 0.85, 0.98). Statins lowered the risks of total CVD, CHD,
myocardial infarction, and stroke, with a RelR (95% CI) of 0.81 (0.76, 0.86), 0.70 (0.62, 0.77),
0.69 (0.61, 0.78), and 0.85 (0.79, 0.82), respectively. N-3 PUFAs decreased the risks of CHD
(RelR: 0.81; 95% CI: 0.75, 0.89) and myocardial infarction (RelR: 0.89; 95% CI: 0.80, 0.99) in
comparison with the control group. Statins had a significant LDL-C-lowering effect, which
was not seen with n-3 PUFAs. This study suggests that statins, especially atorvastatin and
pravastatin, may be more beneficial than n-3 PUFAs in reducing the risk of total CVD, CHD,
and myocardial infarction.

Fan et al. pooled data from eight RCTs involving 803 patients to compare the effect of
statins alone and statins combined with n-3 PUFAs on coronary artery plaques [123]. The
combined treatment significantly decreased the progression of coronary plaque volume
(SMD: −0.36; 95% CI: −0.64, −0.08; p = 0.01) and fiber content (SMD: −0.40; 95% CI:
−0.68, −0.13; p = 0.004) compared with statin therapy alone. The subgroup analysis
demonstrated that EPA therapy had a greater effect than the combination of EPA and DHA,
but the difference was not statistically significant. Furthermore, the combined treatment
decreased the plasma CRP level compared to statin monotherapy. There were no significant
differences in plasma HDL-C or LDL-C or in lipid content in plaques between the two
groups. These findings suggest that combined n-3 PUFA and statin treatment is superior to
statin therapy alone in stabilizing and promoting coronary plaque regression and reducing
the risk of further occurrence of cardiovascular events.

9. Summary and Conclusions

Management of ASCVD remains a challenge despite effective lipid-lowering treat-
ments, as specified in current guidelines, since a residual cardiovascular risk persists [124].
While statins and n-3 PUFAs offer synergistic effects on dyslipidemia, the pleiotropic effects
of the two overlap, including modulation of inflammatory markers and immune cell func-
tion, stabilization of atherosclerotic plaques, and improvement of endothelial function [19].
Furthermore, statins induce the endogenous synthesis of SPMs from AA and n-3 PUFAs,
contributing to their inflammation-resolving properties. As n-3 PUFAs are major substrates
for SPM synthesis, this may represent an important synergistic interaction between statins
and n-3 PUFAs.

As chronic low-grade inflammation is involved in all stages of atherosclerotic diseases,
inflammation is now considered an important therapeutic target [125]. Clinical evidence
demonstrates that low plasma and tissue levels of SPMs are linked with the progression
of ASCVD [85]. n-3 PUFAs, as SPM substrates promote their production [23], reduce in-
flammation [21,22], limit the progression of atherosclerotic plaques in animal models [126],
and increase plaque stability [127,128]. Statin treatment may promote the production of
SPMs, reducing inflammation and the progression of atherosclerosis. Studies on animal
models show the potential therapeutic benefits of synthetic SPM analogs, either alone or
in combination with statins, in attenuating atherosclerosis and promoting plaque regres-
sion [72]. These findings highlight the promising role of SPMs as novel therapeutic targets
for ASCVD treatment [129].

The interaction between n-3 PUFAs and statins in CVDs has been investigated ex-
tensively through many long-term clinical trials and some recent meta-analyses, with the
main focus being blood lipid and lipoprotein concentrations. In the leading RCTs, standard
statins (moderate or high-intensity) were combined with relatively high doses solely of
EPA or of EPA + DHA (up to 4 g/day), except for the JELIS trial, where subjects underwent
low-intensity statin therapy. All studies (JELIS, REDUCE-IT, and EVAPORATE) using
highly purified EPA (as icosapent ethyl) demonstrated cardiovascular benefits related to
plaque reduction and stabilization and reduced coronary events. Despite having a similar
study design and target populations, REDUCE-IT and STRENGTH had positive and null
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outcomes, respectively. As explained earlier, possible reasons for inconsistencies may relate
to the dose of n-3 PUFAs used and the exact composition and formulation used. The
ongoing RESPECT-EPA trial could elucidate whether highly purified EPA with current
standard statins is effective in reducing cardiovascular events, considering the plasma
ratio of EPA to AA as a biomarker of risk in CAD patients. Meta-analyses have provided
additional insights into the efficacy of n-3 PUFAs and statins in reducing cardiovascular risk.
These analyses have shown that combined n-3 PUFA and statin therapy is generally more
effective than statin monotherapy in improving lipid profiles, stabilizing and promoting
coronary plaque regression, and reducing the risk of further occurrence of cardiovascular
events. This suggests that for optimal patient care, the combination of statins and high-dose
n-3 PUFAs should be considered. Further research should further investigate SPMs as a
target for combined therapy with statins and n-3 PUFAs.
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