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Abstract—In this paper, we investigate secure wireless commu-
nication in an intelligent reflecting surface (IRS)-assisted system
where the IRS is used to secure the communication of one
legitimate receiver in presence of an eavesdropper. We assume
that the IRS is standalone, i.e. the passive beamforming of the IRS
is carried out completely on its own. Thus, we design an IRS with
several passive elements and only two RF chains that can obtain
a partial channel state information (CSI) among each node and
the IRS. The partial CSI is then mapped into full CSI by using
the correlation information between the channels of different IRS
elements. We develop a deep reinforcement learning (DRL)-based
framework using the deep deterministic policy gradient (DDPG)
algorithm to obtain the IRS beamforming vector resulting in
maximizing the secrecy rate. Numerical results demonstrate the
ability of this technique to secure the wireless communication
system.

Index Terms—Intelligent Reflecting Surface, Reconfigurable
Intelligent Surface, Deep Reinforcement Learning, DDPG, Phys-
ical layer security.

I. INTRODUCTION

The intelligent reflecting surface (IRS) is a novel promising
technology to improve the spectral efficiency, energy efficiency
and security in 5G and beyond communications [1], [2].
An IRS is a meta-surface that employs a large number of
passive elements to reconfigure the propagation environment
and bring full coverage for the blind spots. IRS is specially
used in physical layer security due to its ability to strengthen
or weaken the reflected signals. As a result, it can easily
suppress the signals at the eavesdroppers or strengthen the
signals at the legitimate receivers, thus increasing the secrecy
rate [3]. However, the benefits of the IRS heavily rely upon
acquisition of accurate channel state information (CSI), which
still remains a challenge. Many beamforming methods in the
literature have assumed availability of the perfect or imperfect
cascaded channels between the transmitter and the receivers
through the IRS [4]–[6], which motivated several researchers
to focus on estimation of the cascaded channels [7], [8].
However, due to the large dimension of the cascaded channels,
the channel estimation would impose a large overhead on the
system [9]. Against this background, in the recent literature,
the authors have focused on estimation of the IRS-related
channels, by assuming that the IRS is equipped with a few
active elements (RF chains) and it can partially estimate the
IRS-receiver and IRS-transmitter channels [9]–[13]. By doing

so, the IRS can calculate its passive reflection matrix since
it has access to partial IRS-related channels. This initially
reduces the overhead since there is no need for the transmitter
to adjust the IRS’s phases. This design which we refer to as
an standalone IRS, was first introduced in [12].

In [2], the physical layer security was investigated in an
IRS-aided system. The authors designed a DRL-based secure
beamforming approach where the active beamforming at the
base station (BS) and the passive beamforming the IRS
were jointly optimized at the BS to maximize the secrecy
rate. In [9], an IRS-aided mm-wave massive multiple input
multiple output (MIMO) system was considered, where the
IRS was employed with a few active elements to estimate IRS-
user channels. To address this issue, the authors proposed a
complex valued denoising convolution neural network (CNN)
assisted compressive sensing channel estimation technique.
The authors in [10] presented two approaches for the beam-
forming at the IRS. In the first approach, they attempted to
leverage the compressive sensing technique to construct all
the IRS-user channels from the partial channels gathered at
the active elements. In the second approach, they used deep
learning tools so that the IRS could learn how to interact
with the incident signal, given the partial channels at the
active elements. In the second approach, the channels between
the passive elements of the IRS and the users remained
unknown. The authors also presented their findings on the
second approach [11], [12], where supervised learning and
deep reinforcement learning (DRL) were used to map the
partial channels to the optimal IRS beamforming. In [13], an
IRS-aided transmission of a single-antenna transmitter to a
single-antenna receiver was studied. The IRS was employed
with a few active elements which were chosen by an off-
line deep learning (DL)-based antenna selection network. The
full channels where then extrapolated from the partial CSI
obtained by the active elements using a CNN. Finally, using
a fully-connected neural network (NN), the partial channels
were mapped to the optimal set of IRS phase shifts.

While the role of IRS in securing the wireless communica-
tion systems has been studied in the literature, to the best of
our knowledge, the physical layer security in communication
systems aided by an standalone IRS has never been addressed.
Thus, in this paper, we first design an standalone IRS that
only contains two active elements. Hence, the IRS can acquire
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Figure 1: System model.

partial channels and use an online mapping technique to map
them to full channels by leveraging the correlation property of
channels in the IRS. Then, we use this information to design
a DRL-based approach determining the IRS reflection matrix
that maximizes the secrecy rate. We use the deep deterministic
policy gradient (DDPG) technique to select the phase shifts
from a continuous bound. DDPG works well in continuous and
high-dimensional action-spaces. Our numerical results show
the accuracy of mapping the partial channels to estimate the
full channel gains. Also, it demonstrates the efficiency of the
algorithm to achieve physical layer security.

II. SYSTEM MODEL

We consider the IRS-aided transmission of a single-antenna
transmitter to a single-antenna receiver in presence of a
single-antenna eavesdropper. The locations of the IRS and the
transmitter are fixed while the receiver and the eavesdropper
are mobile. The IRS is equipped with M =My×Mz reflecting
elements, two RF chains and 2M switches that can connect
any two elements to the two RF chains. The switches are
programmed such that only two elements would be connected
to the RF chain and the rest would be passive. The first
M switches decide whether an element is active or passive,
while the second M switches determine which active element
is connected to the RF chains. The design of the switching
structure is motivated by [9]. It is assumed that there is no
direct link between the transmitter and the receiver and it
is blocked by the elements of an urban environment. Thus,
the focus of this study is on the IRS-related channels. Fig. 1
depicts the system model.

A. Channel Acquisition

We adopt the orthogonal frequency division multiplexing
(OFDM) scheme with K sub-carriers in order to combat
the frequency-selective fading. For the sake of simplicity, we
investigate the transmission over a single sub-carrier resulting
a flat fading scenario, thus the size of the channels are M ×1.
Due to path loss, we only consider the first pilot signal
reflected by the IRS and ignore the signals that are reflected
two or more times. Assuming that the set of active elements
is denoted by a = [m,m

′
] with m and m

′
being the index

of the two active elements, the received signal at the active
elements of the IRS is

Y[a] = h̄
[a]
t xt + h̄[a]

r xr + h̄[a]
e xe +W[a], (1)

where xt is the 1 × γt pilot signal transmitted by the
transmitter, xr is the 1 × γr pilot signal transmitted by the
receiver and xe is the 1 × γe pilot signal transmitted by the
eavesdropper. Also, h̄[a]

t , h̄[a]
r and h̄

[a]
e are the IRS-transmitter,

the IRS-receiver and the IRS-eavesdropper partial channels,
respectively, i.e. h̄t ∈ CM×1, h̄r ∈ CM×1 and h̄e ∈ CM×1

while h̄
[a]
t ∈ C2×1, h̄[a]

r ∈ C2×1 and h̄
[a]
e ∈ C2×1. We assume

W[a] ∼ CN (0, σ2I) is the additive white Gaussian noise at
the active elements of IRS. The partial IRS-related channels
are estimated via the least square (LS) technique as [14]

h
[a]
t =

1

γt
√
pt
Y[a]xHt , (2)

h[a]
r =

1

γr
√
pr

Y[a]xHr , (3)

h[a]
e =

1

γe
√
pe

Y[a]xHe , (4)

where pt, pr and pe are the pilot power of the respective
nodes. Since the IRS elements are located very close to one
another, there is high correlation among the channels between
the neighboring IRS elements and each of the nodes. We
intend to find the correlation between each couple of IRS
elements. By leveraging this information, we can enhance the
performance of our design. To do so, we define Ct ∈ CM×M ,
Cr ∈ CM×M and Ce ∈ CM×M as the correlation matrices,
with the entries C

[m,m
′
]

t =
h

[m]
t

h
[m

′

t ]
, C

[m,m
′
]

r =
h[m]

r

h
[m

′
r ]

and

C
[m,m

′
]

e =
h[m]

e

h
[m

′
e ]

. We design the switching elements such

Algorithm 1 The algorithm for choosing the index of the
active elements

1: Input : M , counter = 1
2: for m = 1, . . . ,M − 1 do
3: for m

′
= m+ 1, . . . ,M do

4: a = [m,m
′
]

5: A[counter] = a
6: counter+ = 1
7: end for
8: end for
9: Output : A ∈ C

M2−M
2 ×2, which includes the indexes

of the two active elements in every M2−M
2 time steps.

that the two active elements (a = [m,m
′
]) are selected

based on Algorithm 1. In this algorithm, a matrix named
A ∈ C

M2−M
2 ×2 is generated whose rows contain the index of

the two activated IRS elements. In each time step of the DRL
algorithm (which will be discussed later on), one row of matrix
A is selected sequentially to determine the active elements.
By using this algorithm, in each time step, the correlation of
two IRS elements to one another can be determined, and the
correlation matrix is fully updated every M2−M

2 steps. After



the correlation matrices have been updated once, i.e. in the
time steps n > M2−M

2 , the correlation matrices would be
updated by using an expectation over all past time steps. When
the IRS partially collects the channels in each time step, it can
estimate the full channels using the correlations matrices, i.e.
the channels at the ith element of the IRS, i ̸= m,m

′
, are

h
[i]
t =

1

2
(h

[m
′
]

t C
[i,m

′
]

t + h
[m]
t C

[i,m]
t ), (5)

h[i]
r =

1

2
(h[m

′
]

r C[i,m
′
]

r + h[m]
r C[i,m]

r ), (6)

h[i]
e =

1

2
(h[m

′
]

e C[i,m
′
]

e + h[m]
e C[i,m]

e ). (7)

B. Problem Formulation

After the channel acquisition process, in the downlink the
transmitter sends its data to the receiver. Since the transmission
is aided by an IRS, the received signal at the receiver is

yr = hTr Ψhtx+ nr, (8)

where hr ∈ CM×1 and ht ∈ CM×1 are the IRS-
receiver and the IRS-transmitter estimated channels, Ψ =
diag[ejψ

[1]

, ..., ejψ
[M]

] is the diagonal reflection matrix of
the IRS, x is the precoded signal where E[|x|2] = P and
nr ∼ CN (0, σ2

r) is the additive Gaussian noise at the receiver.
Additionally, the received signal at the eavesdropper is

ye = hTeΨhtx+ ne, (9)

where he ∈ CM×1 is the estimated IRS-eavesdropper channel
and ne ∼ CN (0, σ2

e) is the additive Gaussian noise at the
eavesdropper. Based on (8), the data rate of the receiver is

Rr = log2

(
1 +

P

σ2
r

|hTr Ψht|2
)
, (10)

while the wiretapped data rate of the eavesdropper is given by

Re = log2

(
1 +

P

σ2
e

|hTeΨht|2
)
. (11)

The achievable secrecy rate from the transmitter to the receiver
can now be expressed by [2], [15]

Rsec = max (0, Rr −Re) . (12)

The goal is to maximize the secrecy rate by optimizing the IRS
reflection matrix. Thus, the optimization problem is written by

max
Ψ

max (0, Rr −Re)

s. t. |ψ[i]| ≤ π, i = 1, ...,M.
(13)

This optimization problem is non-convex and very hard to
tackle. Additionally, the system parameters including the chan-
nel gains are changing dynamically. The model-free RL is a
dynamic tool which can solve decision-making problems in
dynamic environments. Thus, we employ this technique, by
modeling our problem as a Markov decision process (MDP).

III. THE DRL-BASED SOLUTION

In this section, a DRL-based method is introduced to solve
(13). To do so,we first present the basics of DRL using the

DDPG technique and then we formulate our problem.

A. Basics of DRL

In a reinforcement learning (RL) system, an agent interacts
with the environment through a series of discrete time steps,
a set of states and a set of actions. This interaction can be
described as a MDP. In the nth time step, the agent takes
an action an based on the observed state sn and a policy π,
and receives a reward rn. Then, by taking this action, the
agent transitions from the state sn to the next state sn+1.
RL comes with two algorithms to find the optimal policy:
the value-based and the policy based algorithms. Deep Q
network (DQN) [16] is a value-based algorithm that uses a
NN to estimate the state-action Q-function. To do so, for a
policy π, an action a and a state s the Q-function is presented
by Qπ(s, a,θ) = Eπ{Rn|sn = s, an = a, π}, where θ
defines the parameters of the deep NN (DNN), Eπ{.} is
expectation over π, Rn =

∑∞
n=0 λ

nrn represents the expected
cumulative reward and λ ∈ (0, 1] stands for the discount factor.
Through training the DNN, the DQN algorithm attempts to
maximize the Q-value for a set of state-action pair. For this,
it randomly samples the training batch from a replay buffer.
Although DQN can solve problems with high-dimensional
observation spaces, it can only work in low-dimensional and
discrete action spaces. On the other hand, policy gradient
(PG) [17] is a policy-based algorithm which can handle
continuous action spaces and seeks to maximize the discounted
cumulative episodic reward. In the time step n in the episode,
the agent selects an action based on the policy πθ; hence,
training the policy can be done through gradient descend as
θn+1 = θn + βEπθn

{
∇θn

log πθ(s, a)Qπθn
(s, a)

}
, in which

β represents the learning rate.

B. Basics of the DDPG algorithm

To apply DRL for continuous IRS beamforming, we need
an off-policy technique that can work in a continuous high-
dimensional action space. DDPG, which is a model-free
off-policy actor-critic algorithm, combines the advantages of
both DQN and PG, thus it can handle continuous and high-
dimensional action spaces [18].

In DDPG, the actor network is a deterministic policy net-
work (DPN) which chooses actions from a continuous action
space, i.e. a = µ(s;θµ), where θµ represents the parameters
of the actor network. The critic network, on the other hand, is
a Q network Q(s, a;θq) in which θq stands for the parameters
of the critic network. The critic evaluates the action taken by
the actor network by assigning it a Q-value, and the main
goal of DDPG is to maximize this Q-value. Similar to DQN,
here we use an experience replay to reduce the correlation of
different training samples. Furthermore, in order to calculate
the corresponding target values, a copy of the actor and the
critic network is created which are called the target networks
and are denoted by µ∗(s;θµ∗) and Q∗(s, a;θq∗), respectively.
We treat µ(s;θµ) and Q(s, a;θq) as the evaluation networks.



The structure of each target network and its corresponding
evaluation network is similar, but their parameters are differ-
ent, i.e. θµ∗ ̸= θµ and θq∗ ̸= θq . In order to update the target
networks, the soft update is written as

θj∗ = τθj + (1− τ)θj∗ , j ∈ {µ, q}, τ << 1. (14)

One of the advantages of off-policy algorithms such as
DDPG is that the problem of exploration can be treated inde-
pendently from the learning process [18]. Here, an exploration
policy µ

′
is constructed by adding noise sampled from a noise

process N to the actor network, i.e. µ
′
(sn) = µ(sn;θµ)+N ,

where N is properly selected to match the environment.

C. The DRL formulation

The IRS, which is the DRL agent, interacts with its environ-
ment and defines the reflection matrix. In order to formulate
the problem in the DRL format, the set of observations, actions
and reward is presented in the following sub-sections.

1) Action

The action at the nth time step is denoted by an =

[ψ
[1]
n , ..., ψ

[M ]
n ] which is a 1 ×M vector that determines the

IRS phase shifts. Thus, in each step, the agent needs to choose
M values of ψ[i] ∈ [−π, π], i = 1, ...,M .

2) Observation

The goal of the DRL agent is to learn the IRS reflection
matrix Ψ that maximizes the secrecy rate in (12). In each
time step of DRL, the IRS-receiver and the IRS-eavesdropper
channels change due to the mobility of the receiver and the
eavesdropper. Thus, the transition from time step n into the
next time step changes the observation space which contains: i)
the estimated IRS-receiver and the IRS-eavesdropper channels,
ii) the M phase shifts of the IRS an = [ψ

[1]
n , ..., ψ

[M ]
n ],

iii) the estimated cascaded transmitter-IRS-receiver and the
transmitter-IRS-eavesdropper channels. Note that the observa-
tion space includes (2M+2) complex values for the channels
which are split into real and imaginary values, and M real
values for the reflection phases. This makes the total size of
the observation space as (5M + 4).

3) Reward

In the nth time step, the agent preforms an action, determin-
ing the reflection matrix of the IRS, Ψ. Thus, the value of the
data rate at the receiver and at the eavesdropper are changed.
The reward at the time step n, where action an takes place, is
determined by the secrecy rate in (12). To be more specific,
we first define the continuous value of reward at the nth time
step as rconn = Rsecn +(Rsecn −Rsecn−1). Then, this expression is
quantized to ensure the learning convergence. Thus, the final
reward expression at the nth time step is given by

rn =


−2, rconn ≤ η1
0, η1 < rconn ≤ η2
+1, η2 < rconn ≤ η3
+2, rconn > η3,

(15)

Note that, to improve the convergence speed of the algorithm,
the difference between the rates of two consecutive time
steps has been added to the reward in rconn . This term aims
for drawing an effective trajectory step by step towards a
maximum secrecy rate by taking the relative rates into account.
To be specific, the agent receives lower reward unless it
proceeds in a correct trajectory. Furthermore, to avoid very
low secrecy rates, we give a relatively large negative value to
the reward in case of certain conditions.

Algorithm 2 The DRL-based solution

Input : discount factor λ, soft update coefficient τ , buffer
capacity B, batch size T , actor learning rate β, critic
learning rate α
Initialize : randomly initialize the parameters of the four
networks µ(s;θµ), Q(s, a;θq), µ∗(s;θµ∗), Q∗(s, a;θq∗),
empty the experience replay buffer.
for episode = 1 : Z do

Initialize a random process N for action exploration,
Receive the initial observations,
for n = 1 : J do

1. Select activated elements based on Algorithm 1.
2. Obtain full channels using (5)-(7).
3. Select the action an = µ(sn;θµ) +N .
4. Store an into the matrix Ψ.
5. Calculate the reward via (15) and store the transition
{sn, an, rn, sn+1}.
6. Sample a mini-batch with size T from the replay
buffer as {sj , aj , rj , sj+1}.
7. Determine the target Q-value via (16).
8. Update Q(s, a;θq) by minimizing (17).
9. Update µ(sn;θµ) using the sampled policy gradient
in (18).
10. Update the target networks using (14).

end for
end for

D. The overall algorithm

At first, four NNs are generated; the actor evaluation net-
work θµ, the critic evaluation network θq , the actor target
network θ∗

µ and the critic target network θ∗
q . The parameters

of these networks are uniformly distributed. An experience
replay with capacity B is built where the training batches
are selected from. The batch size is denoted by T . In each
episode, at first based on Algorithm 1, the two activated
IRS elements are chosen. Then, the pilot signals are received
and two elements of the correlation matrices Cr, Ct and Ce

are updated. Based on the correlation matrices at hand, the
full channels are estimated via (5)-(7). Afterwards, taking the
state sn, the actor evaluation network determines an action
an which is reformed into the IRS reflection matrix Ψ, based
on which the reward is received and the agent transitions to
the next state. The transition {sn, an, rn, sn+1} is then stored
in the replay buffer. The critic evaluation network samples a



mini-batch with size T from the replay buffer to calculate the
target Q-value qj as

qj =

{
rj , j = T,

rj + λQ∗(sj+1, µ
∗(sj+1;θµ∗);θq∗), j < T.

(16)
Then, the loss function for the critic evaluation network is

L(θq) =
1

T

T∑
j=1

(qj −Q(sj , aj ;θq))
2. (17)

Afterwards, the critic evaluation network is updated by mini-
mizing the loss function and by using PG the actor evaluation
network is updated with the ascend factor

∆θµ
=

1

T

T∑
j=1

(
∇aQ(sj , µ(sj ;θµ);θq)|s=sj ,a=µ(sj)

∇θµ
µ(sj ;θµ)|sj

)
(18)

In the end, the target networks are updated via soft update in
(14). The overall algorithm is described in Algorithm 2, in
which Z stands for the number of all episodes and J is the
maximum number of time steps in each episode.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed DRL-based
scheme is evaluated. Here, the channels h̄t, h̄r and h̄e are
generated based on the DeepMIMO dataset in [19]. The ’O1’
dataset is adopted with the parameters in Table I. The per-
dataset normalization method is used, where all samples are
normalized by the maximum absolute value over the entire
dataset. This method keeps the distance information encoded
in the multi-path signature. The location of the IRS and the
transmitter are fixed, while the receiver and the eavesdropper
are chosen randomly. Please refer to [12] for more details.

In the DRL algorithm, the maximum number of time steps
per episode is J = 200. The size and number of layers in each
NN depends on the size of action and observation spaces. The
actor network contains an input layer with (5M +4) neurons,
followed by five hidden layers, each with fa(i), i = 1, ..., 5
neurons, and an output layer with M neurons, which suits
the number of actions. The activation function for the hidden
layers is relu while it is tanh for the output layer. The critic
network includes two input layers, one the same size as the
observation space (5M+4) and the other the size of the action
space (M ), a concatenation layer for the two input layers,
a hidden layer with 10M neurons followed by F additional
hidden layers with fc(i), i = 1, ..., F neurons. All hidden
layers have the relu activation function. A single neuron output
layer determines the Q-value for the given action. We set
the activation function of the output layer as ”None”, which
describes the linear activation. Additional parameters of the
NN are given in Table II. All NNs use the Adam optimizer.
The learning rate for the actor network is β = 0.001 while
it is α = 0.002 for the critic network. The experience replay
buffer capacity is B = 50000 and the batch size is T = 64.

The action noise is a complex Gaussian process with an initial
standard deviation of 0.6, which is decreased in each time step
with a factor of 0.9999 until it reaches 0.05. Other variables
of the network include the discount factor λ = 0.95, the soft
update coefficient τ = 0.005, and the reward thresholds in (15)
defined as [η1, η2, η3] = [0, 2, 4] for the perfect CSI scenario
and [0, 1.2, 3] for the imperfect CSI case. These thresholds are
set based on the long-term behaviour of the system.

Deep MIMO dataset parameters Value
frequency band 3.5 GHz

base station (IRS) 3
user rows (receiver and eavesdropper) 400 to 800

active user (transmitter) row 850 column 90
user antenna shape (1, 1, 1)

user antenna rotation [0, 30], [30, 60], [60, 90]
IRS antenna shape (1,My ,Mz)

antenna spacing 0.5λ
system bandwidth 100 MHz

number of OFDM subcarriers 16
OFDM limit 1

number of paths 3

Table I: The adopted deep MIMO dataset parameters

M Parameters of NNs Value
16 {fa(1), ..., fa(5)} {3M, 3M, 3M, 3M, 3M}
20 {fa(1), ..., fa(5)} {3.5M, 3M, 3M, 3M, 3M}
25 {fa(1), ..., fa(5)} {4M, 3M, 3M, 3M, 3M}

16 and 20 {fc(1), ..., fc(5)} {125, 65, 35, 20, 10}
25 {fc(1), ..., fc(6)} {200, 125, 65, 35, 20, 10}

Table II: Parameters of NNs

In Fig. 2.a the estimation errors of the estimated channels
are depicted in the first 500 time steps. In other words, this
figure depicts 1

M

∑M
j=1 |hi(j) − h̄i(j)|2, where i ∈ {e, r, t}

displays the channel nodes. Here, an IRS with the shape
My = Mz = 4 and total number of elements of M = 16

is used. As explained in Algorithm 1, it takes M2−M
2 = 120

steps for the algorithm to fully update the correlation matrices.
As depicted here, by the 120th time step, which is shown with
a dotted vertical line, the correlation matrices are fully updated
for the first time, and the estimation error is bounded by a
certain value. Note that due to the mobility of the receiver
and the eavesdropper, the IRS-transmitter channel estimation
error, after time step 120, is much less than the IRS-receiver
or the IRS-eavesdropper channels. Fig. 2.b shows the average
episodic reward over a window of 100 episodes in a total of
1200 episodes. The IRS in each scenario is equipped with
M ∈ {4 × 4, 4 × 5, 5 × 5} elements. Note that by increasing
M , the size of our action space, observation space and NN
becomes larger, thus, there is a trade-off between performance
and complexity. To this end, for our system model, we chose
the above-mentioned values of M , which provide enough
degrees of freedom for the system to operate well and have
a limited complexity. For any larger values of M , the system
performance converges, while the complexity increases. This
can be validated by Fig. 2.c where the average secrecy rate
over the last 200 episodes is depicted versus number of
IRS elements. This figure demonstrates the robustness of our
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Figure 2: Simulation Results.

design, by comparing the performance of the agent in case
perfect CSI is available with the case where CSI is obtained via
Algorithm 1. Furthermore, it is shown that a secure wireless
communication system can be achieved by only optimizing
the passive beamforming at the IRS, regardless of the active
beamforming at the transmitter. Note that the transmitter can
also have a secure physical layer beamforming individually
which enhances the system performance even more. The
achieved performance here is in case the transmitter uses
an insecure beamforming. Finally, Fig. 2.d demonstrates the
rising trend of the secrecy rate in each episode, which shows
that the agent is learning to perform the best action over time.
The agent behaves the same when M = 20 or M = 25.

V. CONCLUSION

In this paper, secure wireless communication with an stan-
dalone IRS is investigated. To do so, the IRS is equipped
with two active elements, which can acquire a partial channel
between the IRS and the transmitter, receiver, or eavesdropper
nodes. We then map the partial channels to full channels by
using the channels’ correlation matrix. Finally by designing a
DRL-based framework using the DDPG technique, we design
a reflection matrix that maximizes the secrecy rate.
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