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Abstract: Index-value, or so-called n-value prediction is of paramount importance for understanding the 

superconductors’ behaviour specially when modelling of superconductors is needed. This parameter is dependent on 

several physical quantities including temperature, the magnetic field’s density and orientation, and affects the behaviour 

of HTS devices made out of coated conductors in terms of losses and quench propagation. In this paper, a comprehensive 

analysis of many machine learning methods for estimating the n-value has been carried out. The results demonstrated that 

Cascade Forward Neural Network (CFNN) excels in this scope. Despite needing considerably higher training time when 

compared to the other attempted models, it performs at the highest accuracy, with 0.48 Root Mean Squared Error (RMSE) 

and 99.72% Pearson coefficient for goodness of fit (R-squared). On the other hand, the Rigid Regression method had the 

worst predictions with 4.92 RMSE and 37.29% R-squared. Also, Random Forest, boosting methods, and simple Feed 

Forward Neural Network can be considered as a middle accuracy model with faster training time than CFNN. The findings 

of this study not only advance modelling of superconductors but also pave the way for applications and further research 

on machine learning plug-and-play codes for superconducting studies including modelling of superconducting devices. 

Keywords: artificial intelligence, neural network, machine learning, n-value, superconductors.  

 

1. Introduction 

Superconductors are a type of materials that can carry high currents with no or much reduced (depending on the DC or 

AC operating conditions) ohmic losses compared to conventional conductors. They also exhibit distinctive magnetic 

properties like flux trapping and levitation capability. Due to these exceptional properties, superconducting technology is 

an enabler for a variety of applications in the fields of energy generation and transmission, transportation, biomedicine, 

among others. Today, it is acknowledged that the macroscopic behavior of superconductors (such as the magnetic 

properties and the losses) can be reproduced by numerical models that employ a nonlinear constitutive law relating the 

local electric field E to the current density J [1], [2], [3] that is the well-known power law, written in equation (1). 

 

𝐸 =  𝐸0 |
𝐽

𝐽𝐶
|
𝑛

 (1) 

 

where E0 is a conventional parameter used as a criterion for the definition of the conventional critical current density Jc 

(a value of 1 µVcm−1 is assumed), and the n (n-value, also known as index-value and power exponent) is fundamental for 

reproducing the nonlinearity of the superconductors’ behavior. The n-value is not merely a convenient mathematical 

approximation, the power law can be regarded as the macroscopic expression of the flux creep phenomena occurring in 

type II superconductors [4]. In particular, at a given temperature and applied magnetic field, the n-value is proportional 

to the activation energy for depinning of the flux vortices; high n-values correspond to high depinning energy and 

therefore to weak creep. As a consequence, the n-value closely relates to the vortex creep and the micro-structure of the 
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film [5]. In fact, the n-value is a dimensionless number that offers insights into the non-linear electric field response of 

superconductors under an applied current. This parameter provides insights into the superconductor material quality and 

characteristics, its micro-structure, and critical current surfaces. For instance, the n-value depends on grain boundaries, 

defects, inhomogeneities, vortex creep/dynamics under Lorentz forces, and the distribution of pinning centers. Higher n-

values indicate sharp transitions from the superconducting to the normal state, which is desirable for applications requiring 

high current densities [5]. Usually, both the critical current Jc and the n-value are deduced from the fitting of the 

experimentally measured E-J curve. The impact of the n-value on the E-J curve shape is shown in Figure 1. Although for 

most superconductors the n-value ranges from 20 to 40 (especially high temperature superconductors), curves for n-values 

of 2, 5, and 10 are also included in Figure 1 to exacerbate its impact on the steepness of the E-J transition. 

 

 
Figure 1. Scaled E-J relations for different n-values 

 

The n-value importance for practical aspects of superconductors’ behavior was recently investigated, showing its role in 

stability by affecting the quench velocity propagation and temperature [6], [7], [8], [9]. Moreover, lower n-values indicate 

a slow transition to the normal state, carrying significant implications for practical applications. For instance, high-

temperature superconducting (HTS) materials typically have n-values around 20, whereas their low-temperature 

superconducting (LTS) counterparts boast values closer to 100. While HTS offers enhanced magnet protection, operating 

it near the critical current threshold—around 90%—can lead to resistive voltages, resulting in energy losses and 

potentially harmful heating effects [10], [11].  

In terms of industrial applications of superconducting materials and the importance of n-value, the use of superconducting 

magnets is promising in the industries where strong, energy efficient, and reliable magnetic fields are required. As an 

example, the designers of fusion devices are implementing both LTS and HTS based magnets in their research and 

development projects to improve the design of these devices and provide strong magnetic fields around 20 T. In line with 

definition of n-value which was mentioned earlier, a higher n-value indicates a sharper transition from the 

superconducting state to the normal state. This means that as the current or magnetic field strength approaches the critical 

value, the superconducting material undergoes a rapid transition to the normal state. This can change the magnet 

protection implications in terms of internal fault or quench occurrences. Depending on the application of these materials 

as of magnets how rapid the magnet is needed to transit to normal state, the n-value should critically take into account by 

the designers. To extract the n-value, the E-J curve is measured in characterization experiments at different magnetic field 

conditions (magnitude and angle) and temperature, and then, value of n allowing the best fitting of the measured data by 

means of equation (1) is found. As an example, Rimikis et al. briefly cover voltage-current characteristics of composite 

superconductors, essential for high-field magnet development and n-values were investigated via four-point measurement 

[12]. However, in order to limit the number of experiments needed for the precise characterization of the material an 

interpolation method for n-value over a wide range of operating conditions in terms of magnetic field and angle is needed. 

Oh et al. built upon the Kramer model and introduced empirical equations for the critical current and the n-value, using 

the principle of proportionality. Furthermore, they explored the relationship between these two terms in details in [13], 

[14]. An alternative approach - based on the use of machine learning (ML) techniques - to the fitting of the experimental 

data has been proposed in very recent years which would drastically reduce computational cost and other technical 

resources. The summary of the ML-based prediction process has been illustrated in Figure 2. 
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Figure 2. Overview of the ML modeling for n-value estimation 

In the literature, researchers have rarely used intelligent techniques for modeling or the prediction of parameters of 

superconductors. Russo et al. developed artificial intelligence-based models for reconstructing the critical current and 

index-value surfaces of HTS tapes. Their study demonstrated that Artificial neural network (ANN) has better accuracy 

than Extra Gradient Boosting (XGBoost) and Kernel Ridge Regression (KRR) models for critical current and n-value 

estimation [15]. Zhu et al. address the prediction of critical current and n-value in second-generation high-temperature 

superconducting conductors using a backpropagation neural network. The network efficiently estimates Jc(B, θ, T) and 

n(B, θ, T), benefiting from shared hidden layers [16]. The approach accommodates variations between manufacturers and 

batches, enhancing adaptability. The method indicates a high accuracy accompanied by a fast prediction. 

Although some efforts related to the use of ML techniques for the estimation of different parameters of superconductors 

have been done in literature, there is a need for a comprehensive study on n-value prediction of the superconductors using 

ML. In other words, there is a margin for improvement in the n-value prediction accuracy, which is the founding reason 

for carrying out this study in the first place. In this paper, a comprehensive investigation of different ML methods for n-

value prediction has been carried out to assess which method results in higher accuracy and faster response. 

The main reason behind predicting the n-value for a sample using ML model is that the experiments only cover a limited 

amount of test conditions like temperature and magnetic field. As these tests are done under severely low temperatures, 

it is so expensive to do the tests for a desired condition. Therefore, the ML methods are implemented to make models 

based on the experimental data, which predict the n-value on the conditions that no experiments have been done (unseen 

conditions by model). In this approach, only conducting a preliminary set of tests on any superconducting sample is 

enough for generating the data that is necessary for developing the machine learning model. Once the ML models are 

trained with those limited data, they can predict n-value very fast without having access to the whole dataset or look-up 

tables. In other words, the ML model does not need a training process after being created, and it can be integrated into 

any modelling or experimental systems. This is what we call it, plug-and-play function. Subsequently, designers and 

researchers can depend on the predictive capabilities of ML model for assessing the desired physical conditions, which 

can save money and time for many companies that are using that type of superconductor. 

Also, there are some pros of using AI modelling instead of traditional mathematical fitting. As the pattern of n-value is 

extensively non-linear, the mathematical fitting methods that mostly are based on linear (or polynomial regressions) are 

not able to capture this level of non-linearity. This is while the ML models by using complex and innovative approaches 

can learn these complex patterns and predict the unseen datapoints through extrapolation with significantly high accuracy. 

Another advantage of the ML models is that they can deal with vast amounts of data and input variables. In fact, more 

datapoints often lead to more robust models which estimate with more accuracy. This is while in mathematical fittings, 

the increased complexity that comes with larger datasets may result in lower accuracy as they may be limited by 

assumptions about the data distribution. Another major benefit of the ML model is their ability to get retrained. This 

means that the model can be trained with more data of even other superconductors to predict n-value of vast numbers of 

superconductors (not only one sample.) 

In the following, first in section 2, the data collection and the process for making it suitable for ML models is described. 

In section 3, all the models that have been used in this study are briefly introduced and explained. In section 4, a detailed 

explanation hyperparameter sensitivity analysis for the superior model and the summary of the best identified values for 

other models are presented. Next, the results of tuned models are compared in section 5. Then, in section 6, the detailed 

results of the superior model are presented for different temperatures, field density, and field angle. Finally, a conclusion 

based on the results of the third section is presented in section 7. 
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2. Data collection and preprocessing 

For training and testing the aforementioned ML models, the open-access database of “High-Temperature Superconductor 

critical current data” provided by the Robinson Research Institute (Victoria University of Wellington, New Zealand) [17], 

[18], [19] was used that can be found using this link (https://htsdb.wimbush.eu/dataset/3759315). This dataset includes 

multiple data points for the n-value of various commercial HTS tapes, recorded under different combinations of 

temperature, magnetic field amplitude, and orientation (i.e. the angle between the c-axis and the field vector). The HTS 

tape dataset that was used in this study is the one of SuperOx GdBCO 2G HTS for temperatures between 15 K and 85 K 

and the magnetic field between 0.01 T and 7 T. The n-value also varies between 1.01 and 42.69. The reason for using the 

data related to one HTS sample exclusively is that it is reasonable to assume that the n-value properties, as well as all 

other properties of any HTS tape, are sample specific. However, it is specified that the ML models developed in this study 

can be updated with the experimental dataset corresponding to another HTS tape if its n-valued prediction depending on 

the operating conditions needs to be addressed. The effective application of such an approach that produces ML models 

specific for unique HTS tapes was recently demonstrated with regard to FEM models validation [20]. The raw dataset 

needs some techniques for preprocessing. First of all, the data points that have missing information caused by sensor 

malfunction during experiments have to be removed. Then, the conditions (either temperature or magnetic field 

conditions) that have a lot of missing data points should be removed as they suffer from the lack of sufficient training 

data points. So, a dataset including the temperature, magnetic field magnitude, and magnetic field orientation as the 

effective input parameters and the n-value as the target value with 14022 observations has been made for being used to 

develop the ML models. For carrying out this step, the data needs to be split into distinct datasets for training, validating, 

and testing processes. The splitting process ensures that the used ML model generalizes well to unseen data and provides 

reliable performance metrics. This process can be done by randomly choosing the data points from the input dataset. For 

this study, according to the common practice among data scientists, 20% of the input dataset was randomly considered 

for the testing and validation process and 80% for training of the model. These rates have been chosen as the increase in 

the training rate increases the chance of overfitting the model. Also, lower training rates will result in lower accuracy of 

the model as it has not been well-trained with sufficient data points to learn the way that the n-value is changing. 

To assess the accuracy and reliability of the proposed ML models, their performance should be evaluated by numeric 

metrics. These metrics/indexes provide a quantitative measure of a model's performance which enables scientists to judge 

how well their model is functioning. Also, the effectiveness of models can be compared so that better solutions can be 

chosen through them. In this paper, some indexes have been considered for the performance of models based on their 

robustness to clarify the model’s overall quality which are well-known among ML researchers [21], [22], [23], [24]: 

𝑀𝐴𝐸 =  ∑
|𝑝𝑘 − 𝑦𝑘|

𝑛𝑠

𝑛𝑠

𝑘=1

 

 

(2) 

𝑀𝐴𝑅𝐸 =  ∑
|
(𝑝𝑘 − 𝑦𝑘)

𝑦𝑘
|

𝑛𝑠

𝑛𝑠

𝑘=1

 

 

(3) 

  

𝑅𝑀𝑆𝐸 =  √∑
(𝑝𝑘 − 𝑦𝑘)2

𝑛𝑠

𝑛𝑠

𝑘=1

 

 

(4) 

𝑅2 =  
∑ (𝑝𝑘 − 𝑝̅)(𝑦𝑘 − 𝑦̅)𝑛𝑠

𝑘=1

√∑ (𝑝𝑘 − 𝑝̅)2𝑛𝑠
𝑘=1

∑ (𝑦𝑘 − 𝑦̅)2𝑛𝑠
𝑘=1

 
 

(5) 

 

In these equations, 𝑦 is the predicted value, 𝑦̅ is the mean value of 𝑦, 𝑛𝑠 is the number of samples of the training dataset, 

𝑝𝑘 are the actual values, and 𝑝𝑘̅̅ ̅ is the mean value of 𝑝𝑘. Equation (2) represents the Mean Absolute Error (MAE) which 

quantifies the average error of the model to predict each data point. Therefore, it has the same unit as the predicted 

parameter. 

Equation (3) reports the Mean Absolute Relative Error (MARE) between the predicted value and the actual (real 

experimental) value of each data point in percent. This is a very useful tool to evaluate the accuracy of a model as it does 

not have a unit. 

Equation (4) represents the Root Mean Squared Error which has been widely adopted by data scientists in recent decades. 

This index has been developed based on the logic to get the average value of squared errors instead of the error value 

itself. This approach ensures that data points with substantial errors exert a greater influence on the overall accuracy of 

metrics and consequently, on the model.  
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Equation (5) shows the R-squared, also known as the Coefficient of determination and the goodness of fit, which is a 

statistical metric employed in regression analysis for evaluating the degree of fit between the predicted quantities by the 

regression model and the actual observed data. It operates on a scale from 0 to 1, where higher values – closer to 1 - 

signify a stronger fit. A higher R-squared value suggests a better fit of the model to the data, indicating that a larger 

proportion of the variability in the dependent variable is accounted for by the independent variables. 

 

 

3. Modelling of different machine learning techniques 

In this section, all the models and the indices that are used in this study are explained in detail. It should be noted that the 

Cascade-Forward and Feed-forward Neural Networks have been developed in the MATLAB software package as the 

working frame for programming of the developed neural networks by our groups; however, for the remaining machine 

learning models, although the programming of all of the models have been carried out and administrated by our groups, 

the functions in the existing and open access libraries of the Python 3 (like SciKitLearn, XGBoost, etc.) have been used. 

3.1. Multilayer Perceptron Neural Network (MLPNN) 

Neural networks are a class of models that have been inspired by the structure and function of the human brain’s neural 

system. The MLPNN, also known as the feed-forward neural network, is one of the most used neural network methods 

by researchers due to its flexibility to both low- and high-complexity datasets resulting in very high accuracy [25]. A 

MLPNN contains at least three layers, which are referred as input, hidden, and output layers and within each layer, there 

are some computational units, which are known as neurons. Each neuron consists of one weight factor for weighting the 

incoming data from up-hand layers to lower the error and one bias factor to trim the result independent to the input data. 

In MLPNN, which follows a forward approach (without feedback of next layers), the network updates itself at consecutive 

cycles, which are known as epochs [26]. During each epoch, the data is provided from the input dataset and goes through 

the network layers while the model tries to optimize the weight and bias factors of its neurons using that data to reach a 

better learning of the pattern of the data [27]. Once the epoch finished, the network tests itself by evaluating the error 

between the predicted and actual value and according to the amount of this error, it changes the weight and bias factors 

through a feedback loop to reduce the error for next epoch. This backward feeding of the network is known as 

backpropagation process. This process proceeds till the network reaches to a saturate condition of error or stop at the pre-

set error [28]. The fundamental mathematical equation of this methodology is as follows: 

𝑦𝑝 = 𝑓0  (∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (∑ 𝜔𝑗𝑖

𝐻

𝑛

𝑖=1

𝑥𝑖)) 

(6) 

 

where 𝑓0 and 𝑓𝑗
𝐻 are representatives of the output layer and the hidden layer activation function, respectively. By adding 

a bias factor to both the input and hidden layers, equation (2) turns into: 

𝑦𝑝 = 𝑓0  (𝜔𝑏 + ∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (𝜔𝑖

0 + ∑ 𝜔𝑗𝑖
𝐻

𝑛

𝑖=1

𝑥𝑖)) 

(7) 

where 𝜔𝑗
𝐻 and 𝜔𝑏 demonstrate the respective weight from bias to the hidden and output layers [23]. 

The number of the hidden layers, setup of the neurons, training function and activation functions needs to be optimized 

to reach the highest accuracy. Since there are a great number of possible combinations, it is not possible to test all of them 

and by using a grid search approach for the hyperparameters in a reasonable and common range in the literature, it has 

been tried to increase the overall performance and quality of the model. 

 

3.2. Cascade Forward Neural Network (CFNN) 

The CFNN is basically like MLPNN with the main difference being that the number of weight factors of each neuron in 

the lower hand layers (the layers after input layer including all hidden layers and output layer) increases in a cascade 

form. Therefore, unlike MLPNN, all the previous layers’ outputs are involved in the parameters’ adjustment process [29], 

[30]. This is while in a MLPNN model, each layer receives information only from the neurons in the preceding layer. . 

For better understanding, a simple three-layer CFNN and MLPNN models are taken as examples which contains an input, 

a hidden layer, and an output layer. In both of these models, the neurons are interconnected and feed their next layer. So, 

the input layer only feeds the hidden layer. This is while, in CFNN, the neurons of input layer directly involve in the 

results of neurons of output layer by feeding the information to them. This more complex architecture results in more 

training time. That said, the training process of the network becomes deeper than MLPNN which will result in higher 

accuracy in some cases, especially for high non-linear datasets [31]. Helping for understanding of this procedure, Figure 

3 demonstrates how both CFNN and FFNN methods are working. 
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Figure 3. Schematic of FFNN and CFNN 

 

With all the details provided, it is obvious that the fundamental equations of CFNN are very likely to MLPNN and only 

needs some adjustments to add cascade weights. The related equation to this method can be written as follows: 

𝑦𝑝 = ∑ 𝑓𝑖𝜔𝑖
0

𝑛

𝑖=1

𝑥𝑖 + 𝑓0  (∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (∑ 𝜔𝑗ℎ

𝐻

𝑛

𝑖=1

𝑥𝑖)) 
(8) 

where, 𝑓𝑖 represents the activation function of the output layer, and 𝑓𝑗
𝐻 signifies the activation function of the hidden 

layer. When introducing bias to both the input layer and the hidden layers, equation (4) will undergo some modifications: 

 

𝑦𝑝 = ∑ 𝑓𝑖𝜔𝑖
0

𝑛

𝑖=1

𝑥𝑖 + 𝑓0  (𝜔𝑏 + ∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (𝜔𝑖

0 + ∑ 𝜔𝑗ℎ
𝐻

𝑛

𝑖=1

𝑥𝑖)) 

(9) 

where, 𝜔𝑗
𝐻 and 𝜔𝑏 represent the weights associated with the connection from bias to the hidden layer and from bias to 

the output layer, respectively [23]. 

For CFNN, the detailed range of hyperparameters and the process is provided in the hyperparameter optimization section. 

 

3.3. Decision Tree Regression (DTR) 

Decision Tree (DT) is a type of supervised learning model that can be used for both classification and regression tasks. 

This approach is based on a binary tree structure where nodes are split to form the decision tree [32]. The algorithm of 

the decision tree involves dividing the dataset into smaller segments or classes and presenting the outcome in a leaf node 

[33]. Essentially, the decision tree processes the dataset to create a tree-shaped structure (branches) that facilitates 

prediction. This is why it's sometimes referred to as tree structure regression [34]. DT comprises three distinct types of 

nodes: root nodes, interior nodes, and leaf nodes. The root node, being the first node, branches into more nodes known as 

interior nodes. These interior nodes represent the model's data characteristics and decision criteria, while the leaf nodes 

indicate the final prediction from the decision-making process [35]. Therefore, the hyperparameters that should be 

optimized for this method are mostly for controlling the number and the conditions that each node or leaf is created. For 

example, minimum sample of a leaf is a hyperparameter that defines how many samples are needed at least to reach a 

leaf node (where the model does not go deeper).  

 

3.4. Random Forest Regression (RFR) 

Random Forest is an ensemble learning technique that is capable of both classification and regression processes. The 

method of learning in a random forest is built around the idea of combining multiple decision trees that divide the input 
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data using specific parameters in a tree-like arrangement. Every tree is formed using a bootstrapped subset of the data, 

and at each node, the best subset and predictors are picked randomly for splitting [34]. The final prediction is made by 

tallying the votes from the decision trees, and the output is determined accordingly. One of the important privileges of 

this method is that the overfitting is unlikely [35], [36]. Same for decision tree, the hyperparameters of this method are 

for controlling of the subtrees such as maximum depth, etc. A unique and important hyperparameter for this method is the 

number of trees that the random forest creates to reach a decision. More trees generally mean more accuracy of prediction, 

but after a certain point, the performance will not get affected by changing of this parameter. 

 

3.5. Gradient Boosting Regression (GBR) 

The GBR algorithm involves a sequence of regressions that are trained step by step, continually refining the prediction 

of target values to rectify errors. Through iterative optimization of the regression's output, GBR is employed to solve the 

minimization problems. This leads to a gradual reduction of errors from prior regressions [37]. The Gradient Boosting 

Tree (GBR) 𝐹𝑛 can be expressed as the summation of n number of regressions: 

 

𝐹𝑛(𝑥𝑡) = ∑ 𝑓𝑖(𝑥𝑡)
𝑛

𝑖=1
 

(10) 

with each 𝑓𝑖 being a decision tree. This optimization is tackled using the steepest descent technique [38]. In this research, 

the number of estimators varied between 103 and 106 to ensure the stability of results. As this algorithm usually uses 

decision trees, the hyperparameters are for controlling the size of the trees. Additionally, learning rate as a very important 

adjusts the speed of learning. Generally, lower amounts of the learning rate result in higher accuracies but it can also 

increase the chance of overfitting. It is worth noting that the other methods that are using the same approach of GBR have 

almost same hyperparameters. 

 

3.6. Light Gradient Boosting Regression (LightGBM) 

LightGBM is a widely used boosting method that has fixed the drawback of GBR when handling large datasets. The 

process incorporated gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB) techniques to aid 

in training without compromising model accuracy and performance, as outlined by [39]. The GOSS algorithm selectively 

excludes a significant portion of data instances with small gradients, focusing solely on those that contribute significantly 

to information gain. Specifically, it starts by assigning the top 𝑎 ×  100% instances with the largest gradients to a subset 

A. Then, for the remaining set 𝐴𝑐, which constitutes (1 − 𝑎) ×  100% instances with smaller gradients, a new subset B 

is formed through random sampling with a size of 𝑏 ×  |𝐴𝑐|. Finally, the variance gain 𝑉̃𝑗(𝑑) is employed to split data 

instances which can be expressed as follows [39], [40]: 

 

𝑉̃𝑗(𝑑) =
1

𝑛
 (

(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑙
+

1 − 𝑎
𝑏

∑ 𝑔𝑖𝑥𝑖∈𝐵𝑖
)

2

𝑛𝑙
𝑗(𝑑)

+
(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑟

+
1 − 𝑎

𝑏
∑ 𝑔𝑖𝑥𝑖∈𝐵𝑟

)
2

𝑛𝑟
𝑗(𝑑)

) 

(11) 

 

In equation (11), 𝑛𝑙
𝑗(𝑑) 𝑎𝑛𝑑 𝑛𝑟

𝑗(𝑑) represent the left and right nodes, 𝐴𝑙 and 𝐴𝑟 represent subsets of A, and 𝐵𝑖  and 𝐵𝑟  are 

the subsets of 𝐵. EFB, or exclusive feature bundling, serves to decrease the feature count by grouping features that don't 

overlap within a sparse feature space. This results in enhanced model performance and computational efficiency. 

Moreover, a leafwise tree growth approach is employed to lift the model performance and prevent overfitting [40]. To 

more help for preventing overfitting condition in the model, a hyperparameter which is called as minimum child samples, 

controls the least required number of datapoints for each of leaf nodes. Another key hyperparameter is the maximum 

number of leaf nodes in each tree. Generally, more leaf nodes mean that the model has deeper decision trees that makes 

it more robust. That said, it can potentially increase the risk of overfitting. Also, if it is set to low value, the model will 

not demonstrate good performance. 

 

3.7. Hist Gradient Boosting Regression (HGBR) 

HGBR is an ML method that is used for regression problems and has been developed based on GBR. HGBR is designed 

to expedite training on large datasets with lots of data points/observations. It employs histogram-based strategies to speed 

up the creation of decision trees [41], [42]. Instead of dealing with individual data points, HGBR operates with histograms 

that represent the values of features resulting in enhanced computational efficiency [38], [43]. Same as for GBR, the 

number of estimators changed between 103 and 106. Since the model learns the pattern in an iterative manner, the number 

of maximum iterations needs to be set to a reasonable value to let the model learn the pattern well. Rest of the 

hyperparameters are same of other boosting methods. 
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3.8. Extreme Gradient Boosting Regression (XGBoost) 

XGBoost is an ML algorithm that can be used for regression problems. In terms of its architecture, it evaluates the data 

by assessing the results of multiple subtrees to make a final evaluation. What makes the XGBoost a n important ML 

technique compared with other traditional methods is its scalability, speed, and robustness [44]. 

XGBoost incorporates a distinctive regularization term into its objective function, a crucial component for mitigating 

overfitting and enhancing the model's capacity to generalize. Additionally, it employs a parallelized and optimized 

gradient boosting framework, a key reason for its remarkable speed compared to conventional Gradient Boosting 

techniques. This acceleration is made possible through techniques such as tree pruning and optimization, allowing 

XGBoost to efficiently handle extensive datasets [45]. 

The mathematical ensemble model of this method is as follows [46]: 

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝑅

𝐾

𝑘=1

 
(12) 

where 𝑦̂𝑖 is the predicted n-value, 𝑘 is the number of subtrees, 𝑓 is the correlation mapping relationship between the 

structure and weights of a tree in the subtree set, 𝑥𝑖 is the input vector, and R represents the subtree set. 

The objective function of XGBoost is composed of two main components: the first part quantifies the error between the 

predicted values and the actual true (real) values of the model, while the second part is a regularization term that manages 

the complexity of the model which can be mathematically represented as follows [45]: 

𝑌 = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 
(13) 

In this equation, the term ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)
𝑛
𝑖=1  quantifies the summation of differences (i.e., errors) between the predicted values 

of the model( 𝑦̂𝑖) and the true (real) values (𝑦𝑖). The second term, ∑ Ω(𝑓𝑘)𝐾
𝑘=1  quantifies the complexity of the tree model. 

This complexity term, also known as the regularization term, is vital for preventing the model from overfitting and helps 

control the overall complexity of the model. This balance between error minimization and model complexity regulation 

is a key feature of XGBoost, contributing to its effectiveness in predictive modelling [15]. To facilitate a clearer 

comprehension of the XGBoost method's process, Figure 4 has been provided. As this method is a member of the gradient 

boosting method family, its hyperparameters are like other described methods of this family like GBR, LightGBM, etc. 

 

3.9. CatBoost Regressor 

One of the accurate ML methods, which is a member of boosting methods, is CatBoost Regression. Catboost was 

developed based on [47] and can be used as both a classification and regression method. It can handle various datasets, 

either small or large ones[48].  

When it comes to comparing CatBoost and other GBR methods, the major distinction is that CatBoost employs a random 

permutation approach. It computes and assigns an average classification value to samples with similar category values 

and substitutes them with the specified permutation. As it has been exemplified in [49] if a given permutation is 

[𝜎1, … , 𝜎𝑛]𝑛
𝑇 , CatBoost replaces that with equation (14) [50], [51]: 

 

𝑋̂𝑘
𝑖 =

∑ 𝐼[𝑋𝑗
𝑖 = 𝑋𝑘

𝑖 ]. 𝑌𝜎𝑗
+ 𝛽𝑃𝑛

𝑗=1

∑ 𝐼[𝑋𝑗
𝑖 = 𝑋𝑘

𝑖 ]𝛽𝑛
𝑗=1

 
(14) 

where 𝐼 is the indicator function, 𝑋𝑘
𝑖  is the ith subtype feature of the kth training sample, and P and 𝛽 are the foregoing 

value and weight of the foregoing parameter, respectively. Also, Figure 4 demonstrates how this technique works. 

Regarding the hyperparameters of this method, it generally uses the same parameters as other boosting methods. However, 

an important parameter that does not exist for other boosting methods is L2 leaf regularization factor. This parameter 

applies L2 regularization to leaf scores to penalize large coefficients and prevent more complex trees. Through this 

process, it prevents the overfitting condition of the model. More information regarding L1 and L2 regularization will be 

provided in section 3.10. 

3.10. Linear, Huber, Lasso, and Elastic Net Regressions 

Linear regression is a statistical ML technique that is employed for analyzing and predicting numerical variables through 

correlations. It is focused on determining how effectively one variable can be used to predict another variable in a linear 

manner [52]. For this purpose, several predictors are utilized to forecast a single dependent variable trying to find a simple 

linear equation that has the lowest error in predicting the target value. Equation (11) represents the formula for the linear 

regression model. 

𝑦 = 𝑏0 + Σ𝑖=1
𝑝

𝑏𝑖𝑥𝑖 + 𝜖 (15) 
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Figure 4. A schematic of XGBoost and CatBoost regression methods 

 

where 𝑏0 is the intercept, 𝑝 is the number of independent variables, 𝑏𝑖 are the coefficients of the independent variables, 

𝑥𝑖 is the independent variable, and 𝜖 is the random regression error [53]. 
There are other variations of linear regression including Huber Regression (HR), Lasso Regression, and Elastic Net 

Regression, each incorporating unique regularization methods.  

Huber Regression helps with the problem of outliers in regular linear regression by using a mix of squared and absolute 

error in its calculations [54].  

Lasso Regression (LR), on the other hand, encourages simpler models by adding up the absolute values of coefficients in 

the cost function. This also means it can automatically decide which features are more important [52]. The lasso problem 

can be defined as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛽, 𝛽0 {
1

2Nj
∑ (𝑦𝑖 − Σ𝑘=1

𝑝
𝑥𝑖𝑘𝛽𝑘)

2
+ 𝜆Σ𝑘=1

𝑝 |𝛽𝑘|
𝑁𝑗

𝑖=1
}  (16) 

where 𝜆Σ𝑘=1
𝑝 |𝛽𝑘| is considered an L1 regularization term. Should we consider the squared value of 𝛽𝑘 in the formula 

instead of |𝛽𝑘|, the term is known as the L2 regularization term [55]. 

Elastic Net Regression (ENR), though, balances things out by using both L1 (Lasso) and L2 (Ridge) regularizations. L1 

makes coefficients sparse, while L2 prevents them from getting too large. This makes Elastic Net better at handling 

situations where features are related, unlike just using Lasso. So, these methods make linear regression better in different 

ways: Huber deals with strange values, Lasso picks features, and Elastic Net gets the best of both L1 and L2, especially 

when features are connected [56]. 

Ridge regression introduces L2 regularization as a penalty term in the objective function of multiple linear regression. 

This transforms the problem of finding the optimal coefficients into a constrained optimization problem. By incorporating 

this L2 regularization, ridge regression encourages simpler coefficient values, which, in turn, enhances the algorithm's 

ability to generalize to new data. The objective function for ridge regression is represented as follows [57], [58], [59]: 

 

𝐽(𝜃) =
1

2
∑(𝜃𝑋𝑗 − 𝑦𝑗)

2
+ 𝜆||𝜃||

2
𝑚

𝑗=1

 
(17) 

where 𝜆 is the ridge parameter, 𝑦𝑗 is the actual value, and 𝜃𝑇𝑋𝑗 is the predicted value. 

There are few hyperparameters for this family of algorithms. Most of these parameters are for directly controlling the way 

model trains itself to reach the final regression. Also, some parameters such as alpha, L1, and L2 ration are for controlling 

of the regularization factor of the model. 

 

3.11. Kernel Ridge Regression (KRR) 

Kernel Ridge Regression (KRR) is a technique used for handling complex data that cannot be effectively addressed 

through a simple linear relationship. The primary difference between Ridge Regression and KRR lies in the type of data 
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they are designed for. Ridge regression is primarily used for linear regression tasks, where the goal is to model 

relationships between input features and a target variable using linear combinations. It uses the kernel trick to transform 

the dataset into a higher-dimensional space, where it conducts a form of ridge regression [60]. What sets ridge regression 

apart from ordinary linear regression is its use of L2 regularization, which involves adding a regularization term consisting 

of the squares of the model parameters. The objective function that KRR tries to minimize is as follows [15]: 

 

𝑂𝑏𝑗𝐾𝑅𝑅 =
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛𝑠
𝑖=1

𝑛𝑠

+ ∑ 𝛽𝑖
2

𝑚

𝑖=1

 
(18) 

In this equation, 𝑦𝑖  is the predicted value, 𝑥𝑖 is actual value, 𝑛𝑠 is the number of data/observations, m is the number of 

parameters, and 𝛽 is the model parameter. 

One of the most important parameters that should be optimized for this model is kernel. There are some common kernels 

in the literature including Radial Basis Function (RBF), polynomial, sigmoid, and linear. Alpha is also another important 

parameter that controls the regularization factor of the KRR. 

 

3.12. Non-linear Regression (NLR) 

Most of the datasets are very complex in a way that cannot result in good accuracy for simple regression problems. 

Therefore, various non-linear methods, like polynomial regression, have been developed. 

Polynomial regression involves fitting a polynomial function of a selected degree to the dataset. The degree of the 

polynomial dictates the model's complexity and its ability to capture the underlying patterns in the data and should be 

tested to find the optimum number of degrees to result highest accuracy [58]. 

 

3.13. Support Vector Regression (SVR) 

SVR is a supervised algorithm used for regression tasks. It works by focusing on a subset of the training data and ignoring 

data that are close to the model's predictions within a specific threshold ε [61], [62]. To solve regression problems, SVR 

relies on choosing the right kernel and relevant parameters [63]. A notable strength of SVR is its ability to handle high-

dimensional spaces without relying heavily on the input space's dimensionality [64]. SVR employs a linear function, 

referred to as the SVR equation, to nonlinearly map the input data into a higher-dimensional space. In equation (19), 𝜙 

is the function that transfers data into higher dimensional space and 𝜔 and 𝑏 are weight and bias factors, respectively. 

 

𝑔(𝑥) = 𝜔𝜙(𝑥) + 𝑏 (19) 

The main goal is to identify a hyperplane that has the widest possible margin on both sides (Figure 5) while keeping the 

error or deviations of data points from the hyperplane as small as possible [35], [65]. In this study, the same set of 

functions that was mentioned for KRR are used for choosing the best function for our model. Another key hyperparameter 

is the epsilon that sets the amount of error that the model can ignore during the process of finding of hyperplane and the 

support vectors. C is also the other crucial parameter that highly affect the performance of the model as it changes the 

regularization term’s strength in the model. 

 

 
Figure 5. A schematic of SVR technique 

 

3.14. K-Nearest Neighbor Regression 

KNN is an ML technique that operates by determining the value of a new data point based on its proximity to the K 

nearest training data points [66]. The KNN regression model operates by determining the distance between a new 
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observation and all the observations present in the training data [67]. The most common distance metric used is the 

Euclidean distance, which is demonstrated in equation (20) [68]: 

 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑝

𝑘=1
 

(20) 

In this equation, p is the number of input features, 𝑥𝑖𝑘 is the value of 𝑘𝑡ℎ input feature for the 𝑖𝑡ℎ observation. However, 

in some cases, Minkowski’s approach for evaluation of distance results more accuracy for the final model. The related 

equation for this is as follows: 

 

𝑑(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 𝑥𝑗) = (Σ𝑖=1
𝑝

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑛
)

1
𝑛 

(21) 

 

After the calculation process of all distances, the algorithm chooses the K neighbors that have the lowest distances. Then, 

the mean value of those points will be considered as the prediction value [69]. Therefore, the most important 

hyperparameters of KNN are related to the number of neighbors that the model considers to make an estimation for a new 

datapoint along the method for distance calculation. 

 

3.15. Adaptive Boosting (AdaBoost) 

AdaBoost is one of the most common ensemble ML methods that is used by researchers in the field of ML. It is renowned 

for its capability to enhance the performance of weak learners and its resilience against overfitting. Fundamentally, it 

trains a sequence of base learners on a given dataset while iteratively adjusting the sample weights. During each iteration, 

it trains the weak sample on the updated data, and this process repeats until a set number of iterations is completed or a 

desired level of accuracy is attained, which is shown in Figure 6. Then, it combines these base learners to form a powerful 

model. Also, to elevate the accuracy of the final model, it weighs the samples with higher error [68], [70]. In terms of 

fundamental equations, considering that the technique is using T sub-classifiers, the final prediction will be as follows 

[71]: 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥))

𝑇

𝑡=1

 
(22) 

where in equation (22), 𝐻(𝑥) is the final prediction, ℎ𝑡(𝑥) is the predicted value of sub-classifier t, and 𝛼𝑡 is the weight 

factor that has been considered for that sub-classifier. 

 

 
Figure 6. A schematic of prediction process of AdaBoost 

 

This model is also benefited from using loss function to update the weights of individual weak learners that creates. 

Therefore, an important hyperparameter for this method is this function which is commonly considered to be linear or 

exponential among the researchers. 

 

4. Sensitivity analysis of hyperparameters 

One of the most important steps of every ML modelling is the sensitivity analysis of the effective controlling parameters, 

so-called hyperparameters [72]. These parameters are unique for each method; however, some of them are common 

between the models. The reason that the sensitivity analysis of the hyperparameters is an essential part of ML modelling 

is that the value of these parameters has direct impact on the accuracy of the model while there is no definite rule to set 

them in a particular value. Even further, the range that these parameters have influence on the model’s performance are 

highly dependent on the input dataset. 
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(a)  

 

 
(b) 

Figure 7. Learning curve of (a) XGBoost and (b) CFNN model 

 

It is worth noting that the training process of an AI model includes considering initial values for the model’s parameters, 

updating these parameters using the training dataset, and testing of the model with testing dataset. The second and third 

stages should be repeated until the error of model against the training set size reaches to a saturated condition like what 

has been illustrated in Figure 7. 

To do the sensitivity analysis on the hyperparameters of each implemented algorithm, a one-at-a-time approach have been 

used, which is a very common method for sensitivity analysis of different ML hyperparameters. This means that at each 

step, merely one parameter is variable, and the remaining parameters do not change. First, an initial value for each of the 

hyperparameters is considered. Next, an effective range for each hyperparameter, in which the performance of the model 

significantly changes, has to be identified. Then, to further enhance the performance of the model, the value that resulted 

in the highest accuracy of model is used for the next steps of analysis and remains unchanged. Referring to the details of  

Table 1, the best identified hyperparameters within the testing range that resulted in the highest accuracy are reported. 

Also, at the front of each of the hyperparameters, the range in which they have been tested is presented. It is worth noting 

that to make this table, all these parameters should be changed and tested to check their effectiveness on the models’ 

performance, demanding a great deal of attention to reach the best setup. This is because there are no generalized values 

for these parameters to implement for all cases of studies and they are problem (dataset) dependent. To make it easier to 

understanding, the process of this analysis has been summarized in Figure 8. 
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Figure 8. A schematic of the process of sensitivity analysis 

 

Also, as an example, to reach the best setup for CFNN model, which is the most accurate model in this paper, an exhaustive 

testing process on the 5 different number of hidden layers, the number of neurons in each layer varying between 5 to 30, 

six different training functions, and sixteen pair of activation functions has been done. The training and testing of each 

selection of these hyperparameters have been repeated 50 times, ensuring that the results are reproducible, and the model 

is performed in a stable manner. This resulted in that a total number of 9800 different cases have been investigated merely 

for CFNN hyperparameter sensitivity analysis process. 

The details of the tuning of hyperparameters for all methods including their testing range and the best value for each of 

parameters within the testing range are provided in  

Table 1. The best values have been provided to help the researchers have an insight into the values of these parameters 

and also enable them to reproduce all developed models. 

 

Table 1.The best hyperparameters of all ML models and the searched range for sensitivity analysis 

Method Hyper Parameter Method Hyper Parameter 

CFNN n_layers=3 (from 1 to 5) 
n_neurons=15 (from 5 to 30) 

training_function=Levenburg-Marquardt (LM) 

(other tested algorithms are (SCG), (RB), (VLRB)) 
activation_function = Purelin - Logsig (a pair 

consisting tansig, purelin, logsig, and satlin) 

SVR kernel='rbf'  (‘rbf’, ‘linear’ , ‘poly’, ‘sigmoid’) 
C=100 (logarithmic from 0.001 to 1000) 

epsilon=0.01 (logarithmic from 0.001 to 1) 

degree=3 (for ‘poly’ kernel) 
shrinking=True (and False) 

tol=0.001 (logarithmic from 0.001 to 1000) 

cache_size=200 
verbose=False (and True) 

MLPNN n_layers=3 (from 1 to 5) 

n_neurons=30 (from 5 to 30) 
training_function=Levenburg-Marquardt (other 

tested algorithms are (SCG), (RB), (VLRB)) 

activation_function = Tansig – Purelin (a pair 
consisting tansig, purelin, logsig, and satlin) 

KNNR n_neighbors=10 (3 to 15) 

weights='uniform' 
algorithm='auto' 

leaf_size=30 (from 10 to 50) 

metric='minkowski'  
metric_params=None 

CatBoost iterations=100000 (logarithmic from 1000 to 

10000000) 

learning_rate=0.001419 (autocorrection by code 

itself) 

depth=10 (from 2 to 15) 
l2_leaf_reg=3.0 (1 to 5) 

border_count=254 

KRR alpha=0.1 (logarithmic from 0.001 to 1000) 

kernel='poly' (‘rbf’, ‘linear’ , ‘poly’, ‘sigmoid’) 

gamma=None 

degree=3 (for ‘poly’ kernel) 

coef0=1 
kernel_params=None 

XGBoost n_estimators=100000 (logarithmic from 1000 to 

1000000) 
learning_rate=0.1 (from 0.05 to 1) 

max_depth=3 (from 2 to 15) 

min_child_weight=1 
subsample=1.0 (and 0) 

colsample_bytree=1.0 (and 0) 

gamma=0 (and 1) 

AdaBoost base_estimator=None 

n_estimators=1000000 (logarithmic from 1000 to 
10000000) 

learning_rate=1.0 (from 0.5 to 1) 

loss='linear' (and exponential) 
random_state=None 
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reg_alpha=0 (and 1) 

reg_lambda=1 (and 0) 

scale_pos_weight=1 (and 0) 

HGBR learning_rate=0.1 (from 0.05 to 1) 

epsilon=1.35 

max_iter=100 (from 100 to 10000) 
max_depth=None (to make it unlimited) 

min_samples_leaf=20 (from 10 to 50) 

HR epsilon=1.35 (0.5 to 1.5) 

max_iter=100 (from 100 to 10000) 

alpha=0.0001 (logarithmic from 0.0001 to 1000) 
warm_start=False (and True) 

RFR n_estimators=1000000 (logarithmic from 1000 to 

1000000) 
criterion='mse' 

max_depth=None (to make it unlimited) 

min_samples_split=2 
min_samples_leaf=1 

max_features='auto' 

bootstrap=True (and False) 

LR alpha=0.01 (logarithmic from 0.0001 to 1000) 

fit_intercept=True (and False) 
normalize=False (and True) 

precompute=False (and True) 

positive=False (and True) 
`selection='cyclic' 

max_iter=1000 (logarithmic from 100 to 100000) 

tol=1e-4 
warm_start=False (and True) 

random_state=None 

LightGBM n_round=10000 (logarithmic from 1000 to 1000000) 
learning_rate=0.1 (from 0.05 to 1) 

max_depth= None (to make it unlimited) 

num_leaves=31 (from 10 to 50) 
min_child_samples=20 (from 10 to 50) 

subsample=1.0 (and 0) 

colsample_bytree=1.0 (and 0) 
reg_alpha=0.0 (and 1) 

reg_lambda=0.0 (and 1) 

ENR alpha=0.001 (logarithmic from 0.0001 to 1000) 
l1_ratio=0.5 

fit_intercept=True (and False) 

normalize=False (and True) 
precompute=False (and True) 

max_iter=1000 

tol=0.0001 
warm_start=False (and True) 

positive=False (and True) 

selection='cyclic' 
random_state=None 

GBR n_estimators=1000 (logarithmic from 1000 to 

1000000) 
learning_rate=0.1 (from 0.05 to 1) 

max_depth=3 (from 2 to 15) 

min_samples_split=2 
min_samples_leaf=1 

subsample=1.0 (and 0) 

max_features=None (to make it unlimited) 
alpha=0.9 

max_leaf_nodes=None (to make it unlimited) 

Linear fit_intercept=True (and False) 

normalize=False (and True) 
copy_X=True (and False) 

n_jobs=None 

DTR criterion='mse' 

splitter='best' 
max_depth=None (to make it unlimited) 

min_samples_split=2 (from 1 to 15) 

min_samples_leaf=1 (from 1 to 15) 

min_weight_fraction_leaf=0.0 

max_features=None (to make it unlimited) 

random_state=None 

RRB n_learners=100 (logarithmic from 0.001 to 1000) 

learning_rate=0.1 (from 0.05 to 1) 
loss='ls' 

max_depth=4 (from 2 to 15) 

alpha=0.001 

max_leaf_nodes=None (to make it unlimited) 

warm_start=False (and True) 

tol=0.0001 (logarithmic from 0.0001 to 1000) 

NLR Degree=7 (from 2 to 10)   

 

 

As CFNN model resulted in the highest accuracy amongst all other ML methods and is actually the superior model of this 

paper, its sensitivity analysis process is explained in the following paragraph. Before starting of the analysis, all of the 

hypermeters need an initial (default) value, so the analysis can be done step by step. 

Table 2. Performance of CFNN model with different number of hidden layers considering the best setup of neurons for each condition. 

Number of hidden layers Setup of neurons RMSE R-Squared Response time [ms] 

1 [25] 0.919023 0.9864 14.3 

2 [30 30] 0.517361 0.9949 20.3 

3 [15 15 15] 0.524021 0.9947 21.7 

4 [30 30 30 30] 0.597127 0.9940 218.1 

5 [30 30 30 30 30] 0.577445 0.9943 469.4 

 

First of all, the number of hidden layers, which most of the researchers consider to be equal to one due to simplicity, 

undergoes the sensitivity analysis process. At this stage, the Levenberg–Marquardt (LM) and tansig-purelin have been 

considered as the training function and the pair of activation function of CFNN model, respectively. Then, the number of 

hidden layers varied between 1 and 5. The findings of this step of study demonstrated that the triple hidden-layer model 

is the best selection as it has the highest accuracy than the others while has lower testing time than the models with 4 and 
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5 hidden layers. Also, in an entwine approach for neurons analysis, the number of the neurons in each of the hidden layers 

varied between 1 to 40, and the results of best setup of the neurons considered as representative of the performance of 

that number of layers. For the purpose of simplicity of the analysis, the number of neurons considered to be equal in all 

hidden layers. For instance, [15 15 15] resulted in the best performance for triple layer model among all possible 

conditions, and its results are nominated for triple layer model. According to Table 2, it is evident that the double layer 

model has better accuracy than rest of tested number of hidden layers. Also, the results of neurons sensitivity analysis 

indicated that considering 30 neurons for each of the hidden layers in the model is the best choice for this model. 

Next, the training function of the model needs to be analyzed. To reach this matter, four popular algorithms were selected, 

which are LM, Fletcher-Powell Conjugate Gradient (FPCG), Resilient Backpropagation (RB), Variable Learning Rate 

Backpropagation (VLRB), Scaled Conjugate Gradient (SCG), and Polak-Ribiére Conjugate Gradient (PRCG). In terms 

of time, VLRB and FPCG have the shortest response times, indicating they are the fastest among those listed, though 

VLRB's accuracy is significantly lower. Although LM with 20.3 ms response time is not the fastest algorithm, it might be 

a good choice for applications (like this work) where prediction accuracy is paramount and slightly longer response times 

are acceptable. 

Table 3 highlights that Levenberg-Marquardt algorithm is the superior option as it has only 0.517 RMSE indicating the 

highest accuracy in predictions among the compared functions. A lower RMSE value means the model's predictions are 

closer to the actual values. In contrary, GDX with 3.717 has the lowest RMSE amongst all tested training functions, 

suggesting that it performs significantly worse than the others in accurately predicting outcomes. In terms of R-squared, 

LM with 0.9949 has the highest R-squared, which shows that the model has perfectly fitted to the data. By contrast, VLRB 

has the lowest R-squared value with 0.8134, demonstrating that it is less effective at predicting variance in the data 

compared to others. In terms of time, VLRB and FPCG have the shortest response times, indicating they are the fastest 

among those listed, though VLRB's accuracy is significantly lower. Although LM with 20.3 ms response time is not the 

fastest algorithm, it might be a good choice for applications (like this work) where prediction accuracy is paramount and 

slightly longer response times are acceptable. 

Table 3. Performance of CFNN model using different training functions 

Training function RMSE R-squared Response time [ms] 

LM 0.517 0.9949 20.3 

SCG 1.317 0.9779 63.2 

RB 1.505 0.9695 15.6 

VLRB 3.717 0.8134 14.9 

FPCG 1.168 0.9820 15.3 

PRCG 1.126 0.9834 17.3 

 

Finally, for activation function, it was considered that the activation function between all layers except between the last 

hidden layer and output layer to be same. This is a common way for activation function sensitivity analysis as the total 

possible combinations are extensively great. The finding of this step of study that has been summarized in Table 4 

demonstrated that logsig-purelin is the best pair of activation functions (logsig places between input and hidden layer and 

the hidden layers themselves while purelin is between hidden layer and output layer.) 

 
Table 4. Performance of CFNN model with different pairs of activation function 

Pair of activation function RMSE R-squared Response time [ms] 

logsig - logsig 6.425 0.0859 29.6 

logsig - purelin 0.496 0.9967 9.1 

logsig - satlin 5.157 0.7982 23.6 

logsig - tansig 0.501 0.9965 28.1 

purelin - logsig 5.569 0.6471 13.4 

purelin - purelin 4.972 0.6118 14 

purelin - satlin 5.591 0.6435 16.6 

purelin - tansig 4.958 0.6118 17.8 
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satlin - logsig 5.187 0.7827 13 

satlin - purelin 0.74 0.9937 16 

satlin - satlin 5.161 0.7981 16.3 

satlin - tansig 0.778 0.9924 13.9 

tansig - logsig 5.173 0.7916 26.6 

tansig - purelin 0.517 0.9949 20.3 

tansig - satlin 5.161 0.7961 17.1 

tansig - tansig 0.56 0.9959 25.2 

 

 

5. Comparison between results of different methods 

The models that are explained in section 3 of this paper are trained and tested using the respective datasets for each 

process. 

To enhance the accuracy of each proposed method, the best value of each hyperparameter of the effective parameters is 

considered for the final modelling with each method. After obtaining the best hyperparameter for each method, n-value 

prediction has been done for each ML technique separately, and then, prediction results using different performance 

indexes R2, RMSE, MARE, and MAE of the models have been listed in Table 5. Furthermore, Figure 9 visualizes the 

difference in the model’s accuracies in terms of all indexes which was explained in section 2. 

As can be seen in Table 5, which has been sorted with respect to 𝑅2 value in descending order, the CFNN model has the 

highest fitting capability to the real n-value of the superconductor with a 99.68% R-squared value. Moreover, it also has 

the lowest RMSE which proves that the prediction of the model based on CFNN has low error. 

Using the same logic, the second-best option for the n-value estimation for this type of superconductor is MLPNN, which 

is a simpler version of ANN than CFNN. It is a very slight difference in terms of 𝑅2 value, but the RMSE is about 30% 

higher than CFNN which means that it is not as very accurate as CFNN due to its higher error. This is because there are 

quite a few points that have very large error in FFNN model. Therefore, while the R-squared has not changed very much, 

the RMSE value soars. The Figure 10 shows the results of the 3 best ML models for n-value prediction. As a visual 

example, in Figure 10, the FFNN model is not fitted to the actual points, caused errors near 110%, whilst for CFNN model 

it never exceeds 12% for the same temperature.

The XGBoost, HGBR, RFR, and LightGBM in the next places can be considered the alternative options instead of ANN 

models as all of them still have very high fitting accuracy. 

In contrast, the RRB and all the linear regression including Huber, Lasso, Elastic net, and traditional linear regression 

have the worst accuracies, making them a weak option for n-value estimation. These models have almost more than 10 

times RMSE than the CFNN model. 

 

Table 5. The performance comparison of different ML models in terms of RMSE, R-squared, MAE, and MARE 

Method RMSE R-Squared MAE MARE [%] Test time [ms] 

CFNN 0.495800 0.996751 0.315800 1.432800 9 

MLPNN 0.645409 0.996045 0.360700 1.604500 11 

CatBoost 0.545725 0.992218 0.319717 1.754850 52 

XGBoost 0.563300 0.991709 0.392526 2.034177 28 

HGBR 0.581071 0.991178 0.374948 2.154406 378 

RFR 0.601371 0.990550 0.366798 1.906172 1600 

LightGBM 0.604361 0.990456 0.365310 2.496930 2800 

GBR 0.703901 0.987736 0.440453 2.768740 87 

DTR 0.816340 0.982587 0.503291 2.581918 14 

NLR 0.864451 0.980401 0.583627 3.520835 18 

SVR 0.968318 0.976837 0.599249 4.069813 1400 

KNNR 1.672581 0.926903 0.980620 6.376660 69 

KRR 2.364010 0.852786 1.810173 11.823296 5300 

AdaBoost 2.684893 0.811673 2.201210 11.891801 228 

Page 16 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



17 
 

HR 4.862069 0.379983 3.622299 18.917729 15 

LR 4.863364 0.379653 3.655027 18.877112 17 

ENR 4.863437 0.379634 3.655438 18.882267 14 

Linear 4.863448 0.379631 3.655493 18.882941 11 

RRB 4.923443 0.372946 3.696345 18.791929 184 

 

 
(a) RMSE and R2 

 

 
(b) MAE and MARE 

Figure 9. The performance comparison of different ML models in terms of (a) RMSE and R-squared (b) MAE and MARE
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Cascade Forward Neural Network 

  
Multi-Layer Perceptron Neural Network 

  
CatBoost 

Figure 10. Actual and predicted n-values (right figures) and ARE (left figures) of 3 best ML models for T=77.5 K 
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After checking the accuracy of all models, in the following, the predictability of the models for specific temperatures 

will be proposed and then compared. Since there are 16 different temperatures that have been investigated in this study, 

so, for the purposes of making comparisons between models, a common temperature should be chosen for all methods. 

Also, due to the importance of 77.5 K temperature in the context of superconductors, which is the boil-off temperature 

of liquid Nitrogen, it is selected for reporting the performance of the model in Figure 10. As can be seen, ARE of most 

of these models is increased in higher magnetic fields [11]. The results of the other 16 ML models for prediction on n-

value of superconductors are shown in the Appendix. 

 

6. Detailed results of the best model: CFNN 

In accordance with the discourse in section 5, a highly accurate model for predicting the n-value of this superconductor 

has been established using the CFNN method. Consequently, this subsection is dedicated to providing a comprehensive 

analysis of CFNN’s results. As illustrated in Figure 11, it becomes evident that the model excels in n-value prediction 

under conditions of lower magnetic fields. Furthermore, the model exhibits heightened accuracy in scenarios 

characterized by elevated temperatures. 

Also, Figure 12 demonstrates how the CFNN model is well-fitted to the training, validation, and testing datasets. In this 

type of diagram, which is very common among ML researchers, data points are typically scattered across a graph, and a 

straight line is fitted to these points in such a way that it minimizes the overall distance between the line and the data 

points. The slope of the line indicates the change in the dependent variable for a one-unit change in the independent 

variable. The vertical axis intercept represents the value of the dependent variable when the independent variable is zero. 

The closer this line is to the x=y line, the more accurately the model predicts. According to the line equations in Figure 

12 , the lines are very close to the ideal condition. 
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Figure 11. Actual and predicted n-value for CFNN model in temperatures 20, 30, 40, 50, 65, and 75 K 
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Figure 12. Regression plot for proposed CFNN model for training, validation, and testing stages 

 

7. Conclusion 

The n-value, an important parameter in superconductors characterization subject to significant variation under different 

magnetic fields (including magnitude and angle of exposure to the wire) and temperature conditions in superconductor 

materials, has been the focus of an investigation into n-value prediction utilizing a range of ML methods. Within the 

findings of our paper, it became evident that the CFNN model emerged as the most favored choice for this task, 

highlighting its achievement of the lowest RMSE at 0.4958 when compared to the alternative models. Additionally, the 

CFNN model demonstrated the highest R-squared value among all the models, an impressive 99.6751%, indicating its 

robust training and excellent adaptation to the training dataset. This high R-squared value serves as evidence that the 

model is adept at predicting the n-value with a commendable level of accuracy. Consequently, the CFNN model offers a 

promising avenue for precise n-value forecasting within the context of superconducting materials under varying magnetic 

fields and temperature conditions. 
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Appendix.  

  
XGBoost 

  
Hist Gradient Boosting Regression 

  
Random Forest Regression 
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LightGBM 

  
Gradient Boost Regression 

  
Decision Tree Regression 
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Non-linear regression 

  
Support Vector Regression 

  
K-Nearest Neighbours Regression 
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Kernel Rigid Regression 

  
AdaBoost 

  
Huber Regression 
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Lasso Regression 

  
Elastic Net Regression 

  
Linear Regression 

Page 26 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



27 
 

  
Ridge Regression Booster 

Figure A1. Actual and predicted n-values (right figures) and ARE (left figures) of different ML models for T=77.5 K 
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