
Machine Learning: Science and
Technology

ACCEPTED MANUSCRIPT • OPEN ACCESS

A comprehensive machine learning-based investigation for the index-
value prediction of 2G HTS coated conductor tapes
To cite this article before publication: Shahin Alipour Bonab et al 2024 Mach. Learn.: Sci. Technol. in press https://doi.org/10.1088/2632-
2153/ad45b1

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2024 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

https://doi.org/10.1088/2632-2153/ad45b1
https://doi.org/10.1088/2632-2153/ad45b1
https://creativecommons.org/licences/by/4.0
https://doi.org/10.1088/2632-2153/ad45b1

1

A comprehensive machine learning-based investigation for the index-

value prediction of 2G HTS coated conductor tapes

Shahin Alipour Bonab1, Giacomo Russo2, Antonio Morandi2, and Mohammad Yazdani-

Asrami1*

1 Propulsion, Electrification & Superconductivity group, James Watt School of Engineering, University

of Glasgow, Glasgow, G12 8QQ, United Kingdom

2 Department of Electrical, Electronic, and Information Engineering, University of Bologna, Viale del

Risorgimento 2, 40136 Bologna, Italy

*Corresponding author’s email: mohammad.yazdani-asrami@glasgow.ac.uk

Abstract: Index-value, or so-called n-value prediction is of paramount importance for understanding the

superconductors’ behaviour specially when modelling of superconductors is needed. This parameter is dependent on

several physical quantities including temperature, the magnetic field’s density and orientation, and affects the behaviour

of HTS devices made out of coated conductors in terms of losses and quench propagation. In this paper, a comprehensive

analysis of many machine learning methods for estimating the n-value has been carried out. The results demonstrated that

Cascade Forward Neural Network (CFNN) excels in this scope. Despite needing considerably higher training time when

compared to the other attempted models, it performs at the highest accuracy, with 0.48 Root Mean Squared Error (RMSE)

and 99.72% Pearson coefficient for goodness of fit (R-squared). On the other hand, the Rigid Regression method had the

worst predictions with 4.92 RMSE and 37.29% R-squared. Also, Random Forest, boosting methods, and simple Feed

Forward Neural Network can be considered as a middle accuracy model with faster training time than CFNN. The findings

of this study not only advance modelling of superconductors but also pave the way for applications and further research

on machine learning plug-and-play codes for superconducting studies including modelling of superconducting devices.

Keywords: artificial intelligence, neural network, machine learning, n-value, superconductors.

1. Introduction

Superconductors are a type of materials that can carry high currents with no or much reduced (depending on the DC or

AC operating conditions) ohmic losses compared to conventional conductors. They also exhibit distinctive magnetic

properties like flux trapping and levitation capability. Due to these exceptional properties, superconducting technology is

an enabler for a variety of applications in the fields of energy generation and transmission, transportation, biomedicine,

among others. Today, it is acknowledged that the macroscopic behavior of superconductors (such as the magnetic

properties and the losses) can be reproduced by numerical models that employ a nonlinear constitutive law relating the

local electric field E to the current density J [1], [2], [3] that is the well-known power law, written in equation (1).

𝐸 = 𝐸0 |
𝐽

𝐽𝐶
|
𝑛

 (1)

where E0 is a conventional parameter used as a criterion for the definition of the conventional critical current density Jc

(a value of 1 µVcm−1 is assumed), and the n (n-value, also known as index-value and power exponent) is fundamental for

reproducing the nonlinearity of the superconductors’ behavior. The n-value is not merely a convenient mathematical

approximation, the power law can be regarded as the macroscopic expression of the flux creep phenomena occurring in

type II superconductors [4]. In particular, at a given temperature and applied magnetic field, the n-value is proportional

to the activation energy for depinning of the flux vortices; high n-values correspond to high depinning energy and

therefore to weak creep. As a consequence, the n-value closely relates to the vortex creep and the micro-structure of the

Page 1 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

2

film [5]. In fact, the n-value is a dimensionless number that offers insights into the non-linear electric field response of

superconductors under an applied current. This parameter provides insights into the superconductor material quality and

characteristics, its micro-structure, and critical current surfaces. For instance, the n-value depends on grain boundaries,

defects, inhomogeneities, vortex creep/dynamics under Lorentz forces, and the distribution of pinning centers. Higher n-

values indicate sharp transitions from the superconducting to the normal state, which is desirable for applications requiring

high current densities [5]. Usually, both the critical current Jc and the n-value are deduced from the fitting of the

experimentally measured E-J curve. The impact of the n-value on the E-J curve shape is shown in Figure 1. Although for

most superconductors the n-value ranges from 20 to 40 (especially high temperature superconductors), curves for n-values

of 2, 5, and 10 are also included in Figure 1 to exacerbate its impact on the steepness of the E-J transition.

Figure 1. Scaled E-J relations for different n-values

The n-value importance for practical aspects of superconductors’ behavior was recently investigated, showing its role in

stability by affecting the quench velocity propagation and temperature [6], [7], [8], [9]. Moreover, lower n-values indicate

a slow transition to the normal state, carrying significant implications for practical applications. For instance, high-

temperature superconducting (HTS) materials typically have n-values around 20, whereas their low-temperature

superconducting (LTS) counterparts boast values closer to 100. While HTS offers enhanced magnet protection, operating

it near the critical current threshold—around 90%—can lead to resistive voltages, resulting in energy losses and

potentially harmful heating effects [10], [11].

In terms of industrial applications of superconducting materials and the importance of n-value, the use of superconducting

magnets is promising in the industries where strong, energy efficient, and reliable magnetic fields are required. As an

example, the designers of fusion devices are implementing both LTS and HTS based magnets in their research and

development projects to improve the design of these devices and provide strong magnetic fields around 20 T. In line with

definition of n-value which was mentioned earlier, a higher n-value indicates a sharper transition from the

superconducting state to the normal state. This means that as the current or magnetic field strength approaches the critical

value, the superconducting material undergoes a rapid transition to the normal state. This can change the magnet

protection implications in terms of internal fault or quench occurrences. Depending on the application of these materials

as of magnets how rapid the magnet is needed to transit to normal state, the n-value should critically take into account by

the designers. To extract the n-value, the E-J curve is measured in characterization experiments at different magnetic field

conditions (magnitude and angle) and temperature, and then, value of n allowing the best fitting of the measured data by

means of equation (1) is found. As an example, Rimikis et al. briefly cover voltage-current characteristics of composite

superconductors, essential for high-field magnet development and n-values were investigated via four-point measurement

[12]. However, in order to limit the number of experiments needed for the precise characterization of the material an

interpolation method for n-value over a wide range of operating conditions in terms of magnetic field and angle is needed.

Oh et al. built upon the Kramer model and introduced empirical equations for the critical current and the n-value, using

the principle of proportionality. Furthermore, they explored the relationship between these two terms in details in [13],

[14]. An alternative approach - based on the use of machine learning (ML) techniques - to the fitting of the experimental

data has been proposed in very recent years which would drastically reduce computational cost and other technical

resources. The summary of the ML-based prediction process has been illustrated in Figure 2.

Page 2 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

3

Figure 2. Overview of the ML modeling for n-value estimation

In the literature, researchers have rarely used intelligent techniques for modeling or the prediction of parameters of

superconductors. Russo et al. developed artificial intelligence-based models for reconstructing the critical current and

index-value surfaces of HTS tapes. Their study demonstrated that Artificial neural network (ANN) has better accuracy

than Extra Gradient Boosting (XGBoost) and Kernel Ridge Regression (KRR) models for critical current and n-value

estimation [15]. Zhu et al. address the prediction of critical current and n-value in second-generation high-temperature

superconducting conductors using a backpropagation neural network. The network efficiently estimates Jc(B, θ, T) and

n(B, θ, T), benefiting from shared hidden layers [16]. The approach accommodates variations between manufacturers and

batches, enhancing adaptability. The method indicates a high accuracy accompanied by a fast prediction.

Although some efforts related to the use of ML techniques for the estimation of different parameters of superconductors

have been done in literature, there is a need for a comprehensive study on n-value prediction of the superconductors using

ML. In other words, there is a margin for improvement in the n-value prediction accuracy, which is the founding reason

for carrying out this study in the first place. In this paper, a comprehensive investigation of different ML methods for n-

value prediction has been carried out to assess which method results in higher accuracy and faster response.

The main reason behind predicting the n-value for a sample using ML model is that the experiments only cover a limited

amount of test conditions like temperature and magnetic field. As these tests are done under severely low temperatures,

it is so expensive to do the tests for a desired condition. Therefore, the ML methods are implemented to make models

based on the experimental data, which predict the n-value on the conditions that no experiments have been done (unseen

conditions by model). In this approach, only conducting a preliminary set of tests on any superconducting sample is

enough for generating the data that is necessary for developing the machine learning model. Once the ML models are

trained with those limited data, they can predict n-value very fast without having access to the whole dataset or look-up

tables. In other words, the ML model does not need a training process after being created, and it can be integrated into

any modelling or experimental systems. This is what we call it, plug-and-play function. Subsequently, designers and

researchers can depend on the predictive capabilities of ML model for assessing the desired physical conditions, which

can save money and time for many companies that are using that type of superconductor.

Also, there are some pros of using AI modelling instead of traditional mathematical fitting. As the pattern of n-value is

extensively non-linear, the mathematical fitting methods that mostly are based on linear (or polynomial regressions) are

not able to capture this level of non-linearity. This is while the ML models by using complex and innovative approaches

can learn these complex patterns and predict the unseen datapoints through extrapolation with significantly high accuracy.

Another advantage of the ML models is that they can deal with vast amounts of data and input variables. In fact, more

datapoints often lead to more robust models which estimate with more accuracy. This is while in mathematical fittings,

the increased complexity that comes with larger datasets may result in lower accuracy as they may be limited by

assumptions about the data distribution. Another major benefit of the ML model is their ability to get retrained. This

means that the model can be trained with more data of even other superconductors to predict n-value of vast numbers of

superconductors (not only one sample.)

In the following, first in section 2, the data collection and the process for making it suitable for ML models is described.

In section 3, all the models that have been used in this study are briefly introduced and explained. In section 4, a detailed

explanation hyperparameter sensitivity analysis for the superior model and the summary of the best identified values for

other models are presented. Next, the results of tuned models are compared in section 5. Then, in section 6, the detailed

results of the superior model are presented for different temperatures, field density, and field angle. Finally, a conclusion

based on the results of the third section is presented in section 7.

Page 3 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

4

2. Data collection and preprocessing

For training and testing the aforementioned ML models, the open-access database of “High-Temperature Superconductor

critical current data” provided by the Robinson Research Institute (Victoria University of Wellington, New Zealand) [17],

[18], [19] was used that can be found using this link (https://htsdb.wimbush.eu/dataset/3759315). This dataset includes

multiple data points for the n-value of various commercial HTS tapes, recorded under different combinations of

temperature, magnetic field amplitude, and orientation (i.e. the angle between the c-axis and the field vector). The HTS

tape dataset that was used in this study is the one of SuperOx GdBCO 2G HTS for temperatures between 15 K and 85 K

and the magnetic field between 0.01 T and 7 T. The n-value also varies between 1.01 and 42.69. The reason for using the

data related to one HTS sample exclusively is that it is reasonable to assume that the n-value properties, as well as all

other properties of any HTS tape, are sample specific. However, it is specified that the ML models developed in this study

can be updated with the experimental dataset corresponding to another HTS tape if its n-valued prediction depending on

the operating conditions needs to be addressed. The effective application of such an approach that produces ML models

specific for unique HTS tapes was recently demonstrated with regard to FEM models validation [20]. The raw dataset

needs some techniques for preprocessing. First of all, the data points that have missing information caused by sensor

malfunction during experiments have to be removed. Then, the conditions (either temperature or magnetic field

conditions) that have a lot of missing data points should be removed as they suffer from the lack of sufficient training

data points. So, a dataset including the temperature, magnetic field magnitude, and magnetic field orientation as the

effective input parameters and the n-value as the target value with 14022 observations has been made for being used to

develop the ML models. For carrying out this step, the data needs to be split into distinct datasets for training, validating,

and testing processes. The splitting process ensures that the used ML model generalizes well to unseen data and provides

reliable performance metrics. This process can be done by randomly choosing the data points from the input dataset. For

this study, according to the common practice among data scientists, 20% of the input dataset was randomly considered

for the testing and validation process and 80% for training of the model. These rates have been chosen as the increase in

the training rate increases the chance of overfitting the model. Also, lower training rates will result in lower accuracy of

the model as it has not been well-trained with sufficient data points to learn the way that the n-value is changing.

To assess the accuracy and reliability of the proposed ML models, their performance should be evaluated by numeric

metrics. These metrics/indexes provide a quantitative measure of a model's performance which enables scientists to judge

how well their model is functioning. Also, the effectiveness of models can be compared so that better solutions can be

chosen through them. In this paper, some indexes have been considered for the performance of models based on their

robustness to clarify the model’s overall quality which are well-known among ML researchers [21], [22], [23], [24]:

𝑀𝐴𝐸 = ∑
|𝑝𝑘 − 𝑦𝑘|

𝑛𝑠

𝑛𝑠

𝑘=1

(2)

𝑀𝐴𝑅𝐸 = ∑
|
(𝑝𝑘 − 𝑦𝑘)

𝑦𝑘
|

𝑛𝑠

𝑛𝑠

𝑘=1

(3)

𝑅𝑀𝑆𝐸 = √∑
(𝑝𝑘 − 𝑦𝑘)2

𝑛𝑠

𝑛𝑠

𝑘=1

(4)

𝑅2 =
∑ (𝑝𝑘 − 𝑝̅)(𝑦𝑘 − 𝑦̅)𝑛𝑠

𝑘=1

√∑ (𝑝𝑘 − 𝑝̅)2𝑛𝑠
𝑘=1

∑ (𝑦𝑘 − 𝑦̅)2𝑛𝑠
𝑘=1

(5)

In these equations, 𝑦 is the predicted value, 𝑦̅ is the mean value of 𝑦, 𝑛𝑠 is the number of samples of the training dataset,

𝑝𝑘 are the actual values, and 𝑝𝑘̅̅ ̅ is the mean value of 𝑝𝑘. Equation (2) represents the Mean Absolute Error (MAE) which

quantifies the average error of the model to predict each data point. Therefore, it has the same unit as the predicted

parameter.

Equation (3) reports the Mean Absolute Relative Error (MARE) between the predicted value and the actual (real

experimental) value of each data point in percent. This is a very useful tool to evaluate the accuracy of a model as it does

not have a unit.

Equation (4) represents the Root Mean Squared Error which has been widely adopted by data scientists in recent decades.

This index has been developed based on the logic to get the average value of squared errors instead of the error value

itself. This approach ensures that data points with substantial errors exert a greater influence on the overall accuracy of

metrics and consequently, on the model.

Page 4 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

5

Equation (5) shows the R-squared, also known as the Coefficient of determination and the goodness of fit, which is a

statistical metric employed in regression analysis for evaluating the degree of fit between the predicted quantities by the

regression model and the actual observed data. It operates on a scale from 0 to 1, where higher values – closer to 1 -

signify a stronger fit. A higher R-squared value suggests a better fit of the model to the data, indicating that a larger

proportion of the variability in the dependent variable is accounted for by the independent variables.

3. Modelling of different machine learning techniques

In this section, all the models and the indices that are used in this study are explained in detail. It should be noted that the

Cascade-Forward and Feed-forward Neural Networks have been developed in the MATLAB software package as the

working frame for programming of the developed neural networks by our groups; however, for the remaining machine

learning models, although the programming of all of the models have been carried out and administrated by our groups,

the functions in the existing and open access libraries of the Python 3 (like SciKitLearn, XGBoost, etc.) have been used.

3.1. Multilayer Perceptron Neural Network (MLPNN)

Neural networks are a class of models that have been inspired by the structure and function of the human brain’s neural

system. The MLPNN, also known as the feed-forward neural network, is one of the most used neural network methods

by researchers due to its flexibility to both low- and high-complexity datasets resulting in very high accuracy [25]. A

MLPNN contains at least three layers, which are referred as input, hidden, and output layers and within each layer, there

are some computational units, which are known as neurons. Each neuron consists of one weight factor for weighting the

incoming data from up-hand layers to lower the error and one bias factor to trim the result independent to the input data.

In MLPNN, which follows a forward approach (without feedback of next layers), the network updates itself at consecutive

cycles, which are known as epochs [26]. During each epoch, the data is provided from the input dataset and goes through

the network layers while the model tries to optimize the weight and bias factors of its neurons using that data to reach a

better learning of the pattern of the data [27]. Once the epoch finished, the network tests itself by evaluating the error

between the predicted and actual value and according to the amount of this error, it changes the weight and bias factors

through a feedback loop to reduce the error for next epoch. This backward feeding of the network is known as

backpropagation process. This process proceeds till the network reaches to a saturate condition of error or stop at the pre-

set error [28]. The fundamental mathematical equation of this methodology is as follows:

𝑦𝑝 = 𝑓0 (∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (∑ 𝜔𝑗𝑖

𝐻

𝑛

𝑖=1

𝑥𝑖))

(6)

where 𝑓0 and 𝑓𝑗
𝐻 are representatives of the output layer and the hidden layer activation function, respectively. By adding

a bias factor to both the input and hidden layers, equation (2) turns into:

𝑦𝑝 = 𝑓0 (𝜔𝑏 + ∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (𝜔𝑖

0 + ∑ 𝜔𝑗𝑖
𝐻

𝑛

𝑖=1

𝑥𝑖))

(7)

where 𝜔𝑗
𝐻 and 𝜔𝑏 demonstrate the respective weight from bias to the hidden and output layers [23].

The number of the hidden layers, setup of the neurons, training function and activation functions needs to be optimized

to reach the highest accuracy. Since there are a great number of possible combinations, it is not possible to test all of them

and by using a grid search approach for the hyperparameters in a reasonable and common range in the literature, it has

been tried to increase the overall performance and quality of the model.

3.2. Cascade Forward Neural Network (CFNN)

The CFNN is basically like MLPNN with the main difference being that the number of weight factors of each neuron in

the lower hand layers (the layers after input layer including all hidden layers and output layer) increases in a cascade

form. Therefore, unlike MLPNN, all the previous layers’ outputs are involved in the parameters’ adjustment process [29],

[30]. This is while in a MLPNN model, each layer receives information only from the neurons in the preceding layer. .

For better understanding, a simple three-layer CFNN and MLPNN models are taken as examples which contains an input,

a hidden layer, and an output layer. In both of these models, the neurons are interconnected and feed their next layer. So,

the input layer only feeds the hidden layer. This is while, in CFNN, the neurons of input layer directly involve in the

results of neurons of output layer by feeding the information to them. This more complex architecture results in more

training time. That said, the training process of the network becomes deeper than MLPNN which will result in higher

accuracy in some cases, especially for high non-linear datasets [31]. Helping for understanding of this procedure, Figure

3 demonstrates how both CFNN and FFNN methods are working.

Page 5 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

6

Figure 3. Schematic of FFNN and CFNN

With all the details provided, it is obvious that the fundamental equations of CFNN are very likely to MLPNN and only

needs some adjustments to add cascade weights. The related equation to this method can be written as follows:

𝑦𝑝 = ∑ 𝑓𝑖𝜔𝑖
0

𝑛

𝑖=1

𝑥𝑖 + 𝑓0 (∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (∑ 𝜔𝑗ℎ

𝐻

𝑛

𝑖=1

𝑥𝑖))
(8)

where, 𝑓𝑖 represents the activation function of the output layer, and 𝑓𝑗
𝐻 signifies the activation function of the hidden

layer. When introducing bias to both the input layer and the hidden layers, equation (4) will undergo some modifications:

𝑦𝑝 = ∑ 𝑓𝑖𝜔𝑖
0

𝑛

𝑖=1

𝑥𝑖 + 𝑓0 (𝜔𝑏 + ∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (𝜔𝑖

0 + ∑ 𝜔𝑗ℎ
𝐻

𝑛

𝑖=1

𝑥𝑖))

(9)

where, 𝜔𝑗
𝐻 and 𝜔𝑏 represent the weights associated with the connection from bias to the hidden layer and from bias to

the output layer, respectively [23].

For CFNN, the detailed range of hyperparameters and the process is provided in the hyperparameter optimization section.

3.3. Decision Tree Regression (DTR)

Decision Tree (DT) is a type of supervised learning model that can be used for both classification and regression tasks.

This approach is based on a binary tree structure where nodes are split to form the decision tree [32]. The algorithm of

the decision tree involves dividing the dataset into smaller segments or classes and presenting the outcome in a leaf node

[33]. Essentially, the decision tree processes the dataset to create a tree-shaped structure (branches) that facilitates

prediction. This is why it's sometimes referred to as tree structure regression [34]. DT comprises three distinct types of

nodes: root nodes, interior nodes, and leaf nodes. The root node, being the first node, branches into more nodes known as

interior nodes. These interior nodes represent the model's data characteristics and decision criteria, while the leaf nodes

indicate the final prediction from the decision-making process [35]. Therefore, the hyperparameters that should be

optimized for this method are mostly for controlling the number and the conditions that each node or leaf is created. For

example, minimum sample of a leaf is a hyperparameter that defines how many samples are needed at least to reach a

leaf node (where the model does not go deeper).

3.4. Random Forest Regression (RFR)

Random Forest is an ensemble learning technique that is capable of both classification and regression processes. The

method of learning in a random forest is built around the idea of combining multiple decision trees that divide the input

Page 6 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

7

data using specific parameters in a tree-like arrangement. Every tree is formed using a bootstrapped subset of the data,

and at each node, the best subset and predictors are picked randomly for splitting [34]. The final prediction is made by

tallying the votes from the decision trees, and the output is determined accordingly. One of the important privileges of

this method is that the overfitting is unlikely [35], [36]. Same for decision tree, the hyperparameters of this method are

for controlling of the subtrees such as maximum depth, etc. A unique and important hyperparameter for this method is the

number of trees that the random forest creates to reach a decision. More trees generally mean more accuracy of prediction,

but after a certain point, the performance will not get affected by changing of this parameter.

3.5. Gradient Boosting Regression (GBR)

The GBR algorithm involves a sequence of regressions that are trained step by step, continually refining the prediction

of target values to rectify errors. Through iterative optimization of the regression's output, GBR is employed to solve the

minimization problems. This leads to a gradual reduction of errors from prior regressions [37]. The Gradient Boosting

Tree (GBR) 𝐹𝑛 can be expressed as the summation of n number of regressions:

𝐹𝑛(𝑥𝑡) = ∑ 𝑓𝑖(𝑥𝑡)
𝑛

𝑖=1

(10)

with each 𝑓𝑖 being a decision tree. This optimization is tackled using the steepest descent technique [38]. In this research,

the number of estimators varied between 103 and 106 to ensure the stability of results. As this algorithm usually uses

decision trees, the hyperparameters are for controlling the size of the trees. Additionally, learning rate as a very important

adjusts the speed of learning. Generally, lower amounts of the learning rate result in higher accuracies but it can also

increase the chance of overfitting. It is worth noting that the other methods that are using the same approach of GBR have

almost same hyperparameters.

3.6. Light Gradient Boosting Regression (LightGBM)

LightGBM is a widely used boosting method that has fixed the drawback of GBR when handling large datasets. The

process incorporated gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB) techniques to aid

in training without compromising model accuracy and performance, as outlined by [39]. The GOSS algorithm selectively

excludes a significant portion of data instances with small gradients, focusing solely on those that contribute significantly

to information gain. Specifically, it starts by assigning the top 𝑎 × 100% instances with the largest gradients to a subset

A. Then, for the remaining set 𝐴𝑐, which constitutes (1 − 𝑎) × 100% instances with smaller gradients, a new subset B

is formed through random sampling with a size of 𝑏 × |𝐴𝑐|. Finally, the variance gain 𝑉̃𝑗(𝑑) is employed to split data

instances which can be expressed as follows [39], [40]:

𝑉̃𝑗(𝑑) =
1

𝑛
 (

(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑙
+

1 − 𝑎
𝑏

∑ 𝑔𝑖𝑥𝑖∈𝐵𝑖
)

2

𝑛𝑙
𝑗(𝑑)

+
(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑟

+
1 − 𝑎

𝑏
∑ 𝑔𝑖𝑥𝑖∈𝐵𝑟

)
2

𝑛𝑟
𝑗(𝑑)

)

(11)

In equation (11), 𝑛𝑙
𝑗(𝑑) 𝑎𝑛𝑑 𝑛𝑟

𝑗(𝑑) represent the left and right nodes, 𝐴𝑙 and 𝐴𝑟 represent subsets of A, and 𝐵𝑖 and 𝐵𝑟 are

the subsets of 𝐵. EFB, or exclusive feature bundling, serves to decrease the feature count by grouping features that don't

overlap within a sparse feature space. This results in enhanced model performance and computational efficiency.

Moreover, a leafwise tree growth approach is employed to lift the model performance and prevent overfitting [40]. To

more help for preventing overfitting condition in the model, a hyperparameter which is called as minimum child samples,

controls the least required number of datapoints for each of leaf nodes. Another key hyperparameter is the maximum

number of leaf nodes in each tree. Generally, more leaf nodes mean that the model has deeper decision trees that makes

it more robust. That said, it can potentially increase the risk of overfitting. Also, if it is set to low value, the model will

not demonstrate good performance.

3.7. Hist Gradient Boosting Regression (HGBR)

HGBR is an ML method that is used for regression problems and has been developed based on GBR. HGBR is designed

to expedite training on large datasets with lots of data points/observations. It employs histogram-based strategies to speed

up the creation of decision trees [41], [42]. Instead of dealing with individual data points, HGBR operates with histograms

that represent the values of features resulting in enhanced computational efficiency [38], [43]. Same as for GBR, the

number of estimators changed between 103 and 106. Since the model learns the pattern in an iterative manner, the number

of maximum iterations needs to be set to a reasonable value to let the model learn the pattern well. Rest of the

hyperparameters are same of other boosting methods.

Page 7 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

8

3.8. Extreme Gradient Boosting Regression (XGBoost)

XGBoost is an ML algorithm that can be used for regression problems. In terms of its architecture, it evaluates the data

by assessing the results of multiple subtrees to make a final evaluation. What makes the XGBoost a n important ML

technique compared with other traditional methods is its scalability, speed, and robustness [44].

XGBoost incorporates a distinctive regularization term into its objective function, a crucial component for mitigating

overfitting and enhancing the model's capacity to generalize. Additionally, it employs a parallelized and optimized

gradient boosting framework, a key reason for its remarkable speed compared to conventional Gradient Boosting

techniques. This acceleration is made possible through techniques such as tree pruning and optimization, allowing

XGBoost to efficiently handle extensive datasets [45].

The mathematical ensemble model of this method is as follows [46]:

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝑅

𝐾

𝑘=1

(12)

where 𝑦̂𝑖 is the predicted n-value, 𝑘 is the number of subtrees, 𝑓 is the correlation mapping relationship between the

structure and weights of a tree in the subtree set, 𝑥𝑖 is the input vector, and R represents the subtree set.

The objective function of XGBoost is composed of two main components: the first part quantifies the error between the

predicted values and the actual true (real) values of the model, while the second part is a regularization term that manages

the complexity of the model which can be mathematically represented as follows [45]:

𝑌 = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

(13)

In this equation, the term ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)
𝑛
𝑖=1 quantifies the summation of differences (i.e., errors) between the predicted values

of the model(𝑦̂𝑖) and the true (real) values (𝑦𝑖). The second term, ∑ Ω(𝑓𝑘)𝐾
𝑘=1 quantifies the complexity of the tree model.

This complexity term, also known as the regularization term, is vital for preventing the model from overfitting and helps

control the overall complexity of the model. This balance between error minimization and model complexity regulation

is a key feature of XGBoost, contributing to its effectiveness in predictive modelling [15]. To facilitate a clearer

comprehension of the XGBoost method's process, Figure 4 has been provided. As this method is a member of the gradient

boosting method family, its hyperparameters are like other described methods of this family like GBR, LightGBM, etc.

3.9. CatBoost Regressor

One of the accurate ML methods, which is a member of boosting methods, is CatBoost Regression. Catboost was

developed based on [47] and can be used as both a classification and regression method. It can handle various datasets,

either small or large ones[48].

When it comes to comparing CatBoost and other GBR methods, the major distinction is that CatBoost employs a random

permutation approach. It computes and assigns an average classification value to samples with similar category values

and substitutes them with the specified permutation. As it has been exemplified in [49] if a given permutation is

[𝜎1, … , 𝜎𝑛]𝑛
𝑇 , CatBoost replaces that with equation (14) [50], [51]:

𝑋̂𝑘
𝑖 =

∑ 𝐼[𝑋𝑗
𝑖 = 𝑋𝑘

𝑖]. 𝑌𝜎𝑗
+ 𝛽𝑃𝑛

𝑗=1

∑ 𝐼[𝑋𝑗
𝑖 = 𝑋𝑘

𝑖]𝛽𝑛
𝑗=1

(14)

where 𝐼 is the indicator function, 𝑋𝑘
𝑖 is the ith subtype feature of the kth training sample, and P and 𝛽 are the foregoing

value and weight of the foregoing parameter, respectively. Also, Figure 4 demonstrates how this technique works.

Regarding the hyperparameters of this method, it generally uses the same parameters as other boosting methods. However,

an important parameter that does not exist for other boosting methods is L2 leaf regularization factor. This parameter

applies L2 regularization to leaf scores to penalize large coefficients and prevent more complex trees. Through this

process, it prevents the overfitting condition of the model. More information regarding L1 and L2 regularization will be

provided in section 3.10.

3.10. Linear, Huber, Lasso, and Elastic Net Regressions

Linear regression is a statistical ML technique that is employed for analyzing and predicting numerical variables through

correlations. It is focused on determining how effectively one variable can be used to predict another variable in a linear

manner [52]. For this purpose, several predictors are utilized to forecast a single dependent variable trying to find a simple

linear equation that has the lowest error in predicting the target value. Equation (11) represents the formula for the linear

regression model.

𝑦 = 𝑏0 + Σ𝑖=1
𝑝

𝑏𝑖𝑥𝑖 + 𝜖 (15)

Page 8 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

9

Figure 4. A schematic of XGBoost and CatBoost regression methods

where 𝑏0 is the intercept, 𝑝 is the number of independent variables, 𝑏𝑖 are the coefficients of the independent variables,

𝑥𝑖 is the independent variable, and 𝜖 is the random regression error [53].
There are other variations of linear regression including Huber Regression (HR), Lasso Regression, and Elastic Net

Regression, each incorporating unique regularization methods.

Huber Regression helps with the problem of outliers in regular linear regression by using a mix of squared and absolute

error in its calculations [54].

Lasso Regression (LR), on the other hand, encourages simpler models by adding up the absolute values of coefficients in

the cost function. This also means it can automatically decide which features are more important [52]. The lasso problem

can be defined as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛽, 𝛽0 {
1

2Nj
∑ (𝑦𝑖 − Σ𝑘=1

𝑝
𝑥𝑖𝑘𝛽𝑘)

2
+ 𝜆Σ𝑘=1

𝑝 |𝛽𝑘|
𝑁𝑗

𝑖=1
} (16)

where 𝜆Σ𝑘=1
𝑝 |𝛽𝑘| is considered an L1 regularization term. Should we consider the squared value of 𝛽𝑘 in the formula

instead of |𝛽𝑘|, the term is known as the L2 regularization term [55].

Elastic Net Regression (ENR), though, balances things out by using both L1 (Lasso) and L2 (Ridge) regularizations. L1

makes coefficients sparse, while L2 prevents them from getting too large. This makes Elastic Net better at handling

situations where features are related, unlike just using Lasso. So, these methods make linear regression better in different

ways: Huber deals with strange values, Lasso picks features, and Elastic Net gets the best of both L1 and L2, especially

when features are connected [56].

Ridge regression introduces L2 regularization as a penalty term in the objective function of multiple linear regression.

This transforms the problem of finding the optimal coefficients into a constrained optimization problem. By incorporating

this L2 regularization, ridge regression encourages simpler coefficient values, which, in turn, enhances the algorithm's

ability to generalize to new data. The objective function for ridge regression is represented as follows [57], [58], [59]:

𝐽(𝜃) =
1

2
∑(𝜃𝑋𝑗 − 𝑦𝑗)

2
+ 𝜆||𝜃||

2
𝑚

𝑗=1

(17)

where 𝜆 is the ridge parameter, 𝑦𝑗 is the actual value, and 𝜃𝑇𝑋𝑗 is the predicted value.

There are few hyperparameters for this family of algorithms. Most of these parameters are for directly controlling the way

model trains itself to reach the final regression. Also, some parameters such as alpha, L1, and L2 ration are for controlling

of the regularization factor of the model.

3.11. Kernel Ridge Regression (KRR)

Kernel Ridge Regression (KRR) is a technique used for handling complex data that cannot be effectively addressed

through a simple linear relationship. The primary difference between Ridge Regression and KRR lies in the type of data

Page 9 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

10

they are designed for. Ridge regression is primarily used for linear regression tasks, where the goal is to model

relationships between input features and a target variable using linear combinations. It uses the kernel trick to transform

the dataset into a higher-dimensional space, where it conducts a form of ridge regression [60]. What sets ridge regression

apart from ordinary linear regression is its use of L2 regularization, which involves adding a regularization term consisting

of the squares of the model parameters. The objective function that KRR tries to minimize is as follows [15]:

𝑂𝑏𝑗𝐾𝑅𝑅 =
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑛𝑠
𝑖=1

𝑛𝑠

+ ∑ 𝛽𝑖
2

𝑚

𝑖=1

(18)

In this equation, 𝑦𝑖 is the predicted value, 𝑥𝑖 is actual value, 𝑛𝑠 is the number of data/observations, m is the number of

parameters, and 𝛽 is the model parameter.

One of the most important parameters that should be optimized for this model is kernel. There are some common kernels

in the literature including Radial Basis Function (RBF), polynomial, sigmoid, and linear. Alpha is also another important

parameter that controls the regularization factor of the KRR.

3.12. Non-linear Regression (NLR)

Most of the datasets are very complex in a way that cannot result in good accuracy for simple regression problems.

Therefore, various non-linear methods, like polynomial regression, have been developed.

Polynomial regression involves fitting a polynomial function of a selected degree to the dataset. The degree of the

polynomial dictates the model's complexity and its ability to capture the underlying patterns in the data and should be

tested to find the optimum number of degrees to result highest accuracy [58].

3.13. Support Vector Regression (SVR)

SVR is a supervised algorithm used for regression tasks. It works by focusing on a subset of the training data and ignoring

data that are close to the model's predictions within a specific threshold ε [61], [62]. To solve regression problems, SVR

relies on choosing the right kernel and relevant parameters [63]. A notable strength of SVR is its ability to handle high-

dimensional spaces without relying heavily on the input space's dimensionality [64]. SVR employs a linear function,

referred to as the SVR equation, to nonlinearly map the input data into a higher-dimensional space. In equation (19), 𝜙

is the function that transfers data into higher dimensional space and 𝜔 and 𝑏 are weight and bias factors, respectively.

𝑔(𝑥) = 𝜔𝜙(𝑥) + 𝑏 (19)

The main goal is to identify a hyperplane that has the widest possible margin on both sides (Figure 5) while keeping the

error or deviations of data points from the hyperplane as small as possible [35], [65]. In this study, the same set of

functions that was mentioned for KRR are used for choosing the best function for our model. Another key hyperparameter

is the epsilon that sets the amount of error that the model can ignore during the process of finding of hyperplane and the

support vectors. C is also the other crucial parameter that highly affect the performance of the model as it changes the

regularization term’s strength in the model.

Figure 5. A schematic of SVR technique

3.14. K-Nearest Neighbor Regression

KNN is an ML technique that operates by determining the value of a new data point based on its proximity to the K

nearest training data points [66]. The KNN regression model operates by determining the distance between a new

Page 10 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

11

observation and all the observations present in the training data [67]. The most common distance metric used is the

Euclidean distance, which is demonstrated in equation (20) [68]:

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑝

𝑘=1

(20)

In this equation, p is the number of input features, 𝑥𝑖𝑘 is the value of 𝑘𝑡ℎ input feature for the 𝑖𝑡ℎ observation. However,

in some cases, Minkowski’s approach for evaluation of distance results more accuracy for the final model. The related

equation for this is as follows:

𝑑(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 𝑥𝑗) = (Σ𝑖=1
𝑝

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑛
)

1
𝑛

(21)

After the calculation process of all distances, the algorithm chooses the K neighbors that have the lowest distances. Then,

the mean value of those points will be considered as the prediction value [69]. Therefore, the most important

hyperparameters of KNN are related to the number of neighbors that the model considers to make an estimation for a new

datapoint along the method for distance calculation.

3.15. Adaptive Boosting (AdaBoost)

AdaBoost is one of the most common ensemble ML methods that is used by researchers in the field of ML. It is renowned

for its capability to enhance the performance of weak learners and its resilience against overfitting. Fundamentally, it

trains a sequence of base learners on a given dataset while iteratively adjusting the sample weights. During each iteration,

it trains the weak sample on the updated data, and this process repeats until a set number of iterations is completed or a

desired level of accuracy is attained, which is shown in Figure 6. Then, it combines these base learners to form a powerful

model. Also, to elevate the accuracy of the final model, it weighs the samples with higher error [68], [70]. In terms of

fundamental equations, considering that the technique is using T sub-classifiers, the final prediction will be as follows

[71]:

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥))

𝑇

𝑡=1

(22)

where in equation (22), 𝐻(𝑥) is the final prediction, ℎ𝑡(𝑥) is the predicted value of sub-classifier t, and 𝛼𝑡 is the weight

factor that has been considered for that sub-classifier.

Figure 6. A schematic of prediction process of AdaBoost

This model is also benefited from using loss function to update the weights of individual weak learners that creates.

Therefore, an important hyperparameter for this method is this function which is commonly considered to be linear or

exponential among the researchers.

4. Sensitivity analysis of hyperparameters

One of the most important steps of every ML modelling is the sensitivity analysis of the effective controlling parameters,

so-called hyperparameters [72]. These parameters are unique for each method; however, some of them are common

between the models. The reason that the sensitivity analysis of the hyperparameters is an essential part of ML modelling

is that the value of these parameters has direct impact on the accuracy of the model while there is no definite rule to set

them in a particular value. Even further, the range that these parameters have influence on the model’s performance are

highly dependent on the input dataset.

Page 11 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

12

(a)

(b)

Figure 7. Learning curve of (a) XGBoost and (b) CFNN model

It is worth noting that the training process of an AI model includes considering initial values for the model’s parameters,

updating these parameters using the training dataset, and testing of the model with testing dataset. The second and third

stages should be repeated until the error of model against the training set size reaches to a saturated condition like what

has been illustrated in Figure 7.

To do the sensitivity analysis on the hyperparameters of each implemented algorithm, a one-at-a-time approach have been

used, which is a very common method for sensitivity analysis of different ML hyperparameters. This means that at each

step, merely one parameter is variable, and the remaining parameters do not change. First, an initial value for each of the

hyperparameters is considered. Next, an effective range for each hyperparameter, in which the performance of the model

significantly changes, has to be identified. Then, to further enhance the performance of the model, the value that resulted

in the highest accuracy of model is used for the next steps of analysis and remains unchanged. Referring to the details of

Table 1, the best identified hyperparameters within the testing range that resulted in the highest accuracy are reported.

Also, at the front of each of the hyperparameters, the range in which they have been tested is presented. It is worth noting

that to make this table, all these parameters should be changed and tested to check their effectiveness on the models’

performance, demanding a great deal of attention to reach the best setup. This is because there are no generalized values

for these parameters to implement for all cases of studies and they are problem (dataset) dependent. To make it easier to

understanding, the process of this analysis has been summarized in Figure 8.

Page 12 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

13

Figure 8. A schematic of the process of sensitivity analysis

Also, as an example, to reach the best setup for CFNN model, which is the most accurate model in this paper, an exhaustive

testing process on the 5 different number of hidden layers, the number of neurons in each layer varying between 5 to 30,

six different training functions, and sixteen pair of activation functions has been done. The training and testing of each

selection of these hyperparameters have been repeated 50 times, ensuring that the results are reproducible, and the model

is performed in a stable manner. This resulted in that a total number of 9800 different cases have been investigated merely

for CFNN hyperparameter sensitivity analysis process.

The details of the tuning of hyperparameters for all methods including their testing range and the best value for each of

parameters within the testing range are provided in

Table 1. The best values have been provided to help the researchers have an insight into the values of these parameters

and also enable them to reproduce all developed models.

Table 1.The best hyperparameters of all ML models and the searched range for sensitivity analysis

Method Hyper Parameter Method Hyper Parameter

CFNN n_layers=3 (from 1 to 5)
n_neurons=15 (from 5 to 30)

training_function=Levenburg-Marquardt (LM)

(other tested algorithms are (SCG), (RB), (VLRB))
activation_function = Purelin - Logsig (a pair

consisting tansig, purelin, logsig, and satlin)

SVR kernel='rbf' (‘rbf’, ‘linear’ , ‘poly’, ‘sigmoid’)
C=100 (logarithmic from 0.001 to 1000)

epsilon=0.01 (logarithmic from 0.001 to 1)

degree=3 (for ‘poly’ kernel)
shrinking=True (and False)

tol=0.001 (logarithmic from 0.001 to 1000)

cache_size=200
verbose=False (and True)

MLPNN n_layers=3 (from 1 to 5)

n_neurons=30 (from 5 to 30)
training_function=Levenburg-Marquardt (other

tested algorithms are (SCG), (RB), (VLRB))

activation_function = Tansig – Purelin (a pair
consisting tansig, purelin, logsig, and satlin)

KNNR n_neighbors=10 (3 to 15)

weights='uniform'
algorithm='auto'

leaf_size=30 (from 10 to 50)

metric='minkowski'
metric_params=None

CatBoost iterations=100000 (logarithmic from 1000 to

10000000)

learning_rate=0.001419 (autocorrection by code

itself)

depth=10 (from 2 to 15)
l2_leaf_reg=3.0 (1 to 5)

border_count=254

KRR alpha=0.1 (logarithmic from 0.001 to 1000)

kernel='poly' (‘rbf’, ‘linear’ , ‘poly’, ‘sigmoid’)

gamma=None

degree=3 (for ‘poly’ kernel)

coef0=1
kernel_params=None

XGBoost n_estimators=100000 (logarithmic from 1000 to

1000000)
learning_rate=0.1 (from 0.05 to 1)

max_depth=3 (from 2 to 15)

min_child_weight=1
subsample=1.0 (and 0)

colsample_bytree=1.0 (and 0)

gamma=0 (and 1)

AdaBoost base_estimator=None

n_estimators=1000000 (logarithmic from 1000 to
10000000)

learning_rate=1.0 (from 0.5 to 1)

loss='linear' (and exponential)
random_state=None

Page 13 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

14

reg_alpha=0 (and 1)

reg_lambda=1 (and 0)

scale_pos_weight=1 (and 0)

HGBR learning_rate=0.1 (from 0.05 to 1)

epsilon=1.35

max_iter=100 (from 100 to 10000)
max_depth=None (to make it unlimited)

min_samples_leaf=20 (from 10 to 50)

HR epsilon=1.35 (0.5 to 1.5)

max_iter=100 (from 100 to 10000)

alpha=0.0001 (logarithmic from 0.0001 to 1000)
warm_start=False (and True)

RFR n_estimators=1000000 (logarithmic from 1000 to

1000000)
criterion='mse'

max_depth=None (to make it unlimited)

min_samples_split=2
min_samples_leaf=1

max_features='auto'

bootstrap=True (and False)

LR alpha=0.01 (logarithmic from 0.0001 to 1000)

fit_intercept=True (and False)
normalize=False (and True)

precompute=False (and True)

positive=False (and True)
`selection='cyclic'

max_iter=1000 (logarithmic from 100 to 100000)

tol=1e-4
warm_start=False (and True)

random_state=None

LightGBM n_round=10000 (logarithmic from 1000 to 1000000)
learning_rate=0.1 (from 0.05 to 1)

max_depth= None (to make it unlimited)

num_leaves=31 (from 10 to 50)
min_child_samples=20 (from 10 to 50)

subsample=1.0 (and 0)

colsample_bytree=1.0 (and 0)
reg_alpha=0.0 (and 1)

reg_lambda=0.0 (and 1)

ENR alpha=0.001 (logarithmic from 0.0001 to 1000)
l1_ratio=0.5

fit_intercept=True (and False)

normalize=False (and True)
precompute=False (and True)

max_iter=1000

tol=0.0001
warm_start=False (and True)

positive=False (and True)

selection='cyclic'
random_state=None

GBR n_estimators=1000 (logarithmic from 1000 to

1000000)
learning_rate=0.1 (from 0.05 to 1)

max_depth=3 (from 2 to 15)

min_samples_split=2
min_samples_leaf=1

subsample=1.0 (and 0)

max_features=None (to make it unlimited)
alpha=0.9

max_leaf_nodes=None (to make it unlimited)

Linear fit_intercept=True (and False)

normalize=False (and True)
copy_X=True (and False)

n_jobs=None

DTR criterion='mse'

splitter='best'
max_depth=None (to make it unlimited)

min_samples_split=2 (from 1 to 15)

min_samples_leaf=1 (from 1 to 15)

min_weight_fraction_leaf=0.0

max_features=None (to make it unlimited)

random_state=None

RRB n_learners=100 (logarithmic from 0.001 to 1000)

learning_rate=0.1 (from 0.05 to 1)
loss='ls'

max_depth=4 (from 2 to 15)

alpha=0.001

max_leaf_nodes=None (to make it unlimited)

warm_start=False (and True)

tol=0.0001 (logarithmic from 0.0001 to 1000)

NLR Degree=7 (from 2 to 10)

As CFNN model resulted in the highest accuracy amongst all other ML methods and is actually the superior model of this

paper, its sensitivity analysis process is explained in the following paragraph. Before starting of the analysis, all of the

hypermeters need an initial (default) value, so the analysis can be done step by step.

Table 2. Performance of CFNN model with different number of hidden layers considering the best setup of neurons for each condition.

Number of hidden layers Setup of neurons RMSE R-Squared Response time [ms]

1 [25] 0.919023 0.9864 14.3

2 [30 30] 0.517361 0.9949 20.3

3 [15 15 15] 0.524021 0.9947 21.7

4 [30 30 30 30] 0.597127 0.9940 218.1

5 [30 30 30 30 30] 0.577445 0.9943 469.4

First of all, the number of hidden layers, which most of the researchers consider to be equal to one due to simplicity,

undergoes the sensitivity analysis process. At this stage, the Levenberg–Marquardt (LM) and tansig-purelin have been

considered as the training function and the pair of activation function of CFNN model, respectively. Then, the number of

hidden layers varied between 1 and 5. The findings of this step of study demonstrated that the triple hidden-layer model

is the best selection as it has the highest accuracy than the others while has lower testing time than the models with 4 and

Page 14 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

15

5 hidden layers. Also, in an entwine approach for neurons analysis, the number of the neurons in each of the hidden layers

varied between 1 to 40, and the results of best setup of the neurons considered as representative of the performance of

that number of layers. For the purpose of simplicity of the analysis, the number of neurons considered to be equal in all

hidden layers. For instance, [15 15 15] resulted in the best performance for triple layer model among all possible

conditions, and its results are nominated for triple layer model. According to Table 2, it is evident that the double layer

model has better accuracy than rest of tested number of hidden layers. Also, the results of neurons sensitivity analysis

indicated that considering 30 neurons for each of the hidden layers in the model is the best choice for this model.

Next, the training function of the model needs to be analyzed. To reach this matter, four popular algorithms were selected,

which are LM, Fletcher-Powell Conjugate Gradient (FPCG), Resilient Backpropagation (RB), Variable Learning Rate

Backpropagation (VLRB), Scaled Conjugate Gradient (SCG), and Polak-Ribiére Conjugate Gradient (PRCG). In terms

of time, VLRB and FPCG have the shortest response times, indicating they are the fastest among those listed, though

VLRB's accuracy is significantly lower. Although LM with 20.3 ms response time is not the fastest algorithm, it might be

a good choice for applications (like this work) where prediction accuracy is paramount and slightly longer response times

are acceptable.

Table 3 highlights that Levenberg-Marquardt algorithm is the superior option as it has only 0.517 RMSE indicating the

highest accuracy in predictions among the compared functions. A lower RMSE value means the model's predictions are

closer to the actual values. In contrary, GDX with 3.717 has the lowest RMSE amongst all tested training functions,

suggesting that it performs significantly worse than the others in accurately predicting outcomes. In terms of R-squared,

LM with 0.9949 has the highest R-squared, which shows that the model has perfectly fitted to the data. By contrast, VLRB

has the lowest R-squared value with 0.8134, demonstrating that it is less effective at predicting variance in the data

compared to others. In terms of time, VLRB and FPCG have the shortest response times, indicating they are the fastest

among those listed, though VLRB's accuracy is significantly lower. Although LM with 20.3 ms response time is not the

fastest algorithm, it might be a good choice for applications (like this work) where prediction accuracy is paramount and

slightly longer response times are acceptable.

Table 3. Performance of CFNN model using different training functions

Training function RMSE R-squared Response time [ms]

LM 0.517 0.9949 20.3

SCG 1.317 0.9779 63.2

RB 1.505 0.9695 15.6

VLRB 3.717 0.8134 14.9

FPCG 1.168 0.9820 15.3

PRCG 1.126 0.9834 17.3

Finally, for activation function, it was considered that the activation function between all layers except between the last

hidden layer and output layer to be same. This is a common way for activation function sensitivity analysis as the total

possible combinations are extensively great. The finding of this step of study that has been summarized in Table 4

demonstrated that logsig-purelin is the best pair of activation functions (logsig places between input and hidden layer and

the hidden layers themselves while purelin is between hidden layer and output layer.)

Table 4. Performance of CFNN model with different pairs of activation function

Pair of activation function RMSE R-squared Response time [ms]

logsig - logsig 6.425 0.0859 29.6

logsig - purelin 0.496 0.9967 9.1

logsig - satlin 5.157 0.7982 23.6

logsig - tansig 0.501 0.9965 28.1

purelin - logsig 5.569 0.6471 13.4

purelin - purelin 4.972 0.6118 14

purelin - satlin 5.591 0.6435 16.6

purelin - tansig 4.958 0.6118 17.8

Page 15 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

16

satlin - logsig 5.187 0.7827 13

satlin - purelin 0.74 0.9937 16

satlin - satlin 5.161 0.7981 16.3

satlin - tansig 0.778 0.9924 13.9

tansig - logsig 5.173 0.7916 26.6

tansig - purelin 0.517 0.9949 20.3

tansig - satlin 5.161 0.7961 17.1

tansig - tansig 0.56 0.9959 25.2

5. Comparison between results of different methods

The models that are explained in section 3 of this paper are trained and tested using the respective datasets for each

process.

To enhance the accuracy of each proposed method, the best value of each hyperparameter of the effective parameters is

considered for the final modelling with each method. After obtaining the best hyperparameter for each method, n-value

prediction has been done for each ML technique separately, and then, prediction results using different performance

indexes R2, RMSE, MARE, and MAE of the models have been listed in Table 5. Furthermore, Figure 9 visualizes the

difference in the model’s accuracies in terms of all indexes which was explained in section 2.

As can be seen in Table 5, which has been sorted with respect to 𝑅2 value in descending order, the CFNN model has the

highest fitting capability to the real n-value of the superconductor with a 99.68% R-squared value. Moreover, it also has

the lowest RMSE which proves that the prediction of the model based on CFNN has low error.

Using the same logic, the second-best option for the n-value estimation for this type of superconductor is MLPNN, which

is a simpler version of ANN than CFNN. It is a very slight difference in terms of 𝑅2 value, but the RMSE is about 30%

higher than CFNN which means that it is not as very accurate as CFNN due to its higher error. This is because there are

quite a few points that have very large error in FFNN model. Therefore, while the R-squared has not changed very much,

the RMSE value soars. The Figure 10 shows the results of the 3 best ML models for n-value prediction. As a visual

example, in Figure 10, the FFNN model is not fitted to the actual points, caused errors near 110%, whilst for CFNN model

it never exceeds 12% for the same temperature.

The XGBoost, HGBR, RFR, and LightGBM in the next places can be considered the alternative options instead of ANN

models as all of them still have very high fitting accuracy.

In contrast, the RRB and all the linear regression including Huber, Lasso, Elastic net, and traditional linear regression

have the worst accuracies, making them a weak option for n-value estimation. These models have almost more than 10

times RMSE than the CFNN model.

Table 5. The performance comparison of different ML models in terms of RMSE, R-squared, MAE, and MARE

Method RMSE R-Squared MAE MARE [%] Test time [ms]

CFNN 0.495800 0.996751 0.315800 1.432800 9

MLPNN 0.645409 0.996045 0.360700 1.604500 11

CatBoost 0.545725 0.992218 0.319717 1.754850 52

XGBoost 0.563300 0.991709 0.392526 2.034177 28

HGBR 0.581071 0.991178 0.374948 2.154406 378

RFR 0.601371 0.990550 0.366798 1.906172 1600

LightGBM 0.604361 0.990456 0.365310 2.496930 2800

GBR 0.703901 0.987736 0.440453 2.768740 87

DTR 0.816340 0.982587 0.503291 2.581918 14

NLR 0.864451 0.980401 0.583627 3.520835 18

SVR 0.968318 0.976837 0.599249 4.069813 1400

KNNR 1.672581 0.926903 0.980620 6.376660 69

KRR 2.364010 0.852786 1.810173 11.823296 5300

AdaBoost 2.684893 0.811673 2.201210 11.891801 228

Page 16 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

17

HR 4.862069 0.379983 3.622299 18.917729 15

LR 4.863364 0.379653 3.655027 18.877112 17

ENR 4.863437 0.379634 3.655438 18.882267 14

Linear 4.863448 0.379631 3.655493 18.882941 11

RRB 4.923443 0.372946 3.696345 18.791929 184

(a) RMSE and R2

(b) MAE and MARE

Figure 9. The performance comparison of different ML models in terms of (a) RMSE and R-squared (b) MAE and MARE

Page 17 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

18

Cascade Forward Neural Network

Multi-Layer Perceptron Neural Network

CatBoost

Figure 10. Actual and predicted n-values (right figures) and ARE (left figures) of 3 best ML models for T=77.5 K

Page 18 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

19

After checking the accuracy of all models, in the following, the predictability of the models for specific temperatures

will be proposed and then compared. Since there are 16 different temperatures that have been investigated in this study,

so, for the purposes of making comparisons between models, a common temperature should be chosen for all methods.

Also, due to the importance of 77.5 K temperature in the context of superconductors, which is the boil-off temperature

of liquid Nitrogen, it is selected for reporting the performance of the model in Figure 10. As can be seen, ARE of most

of these models is increased in higher magnetic fields [11]. The results of the other 16 ML models for prediction on n-

value of superconductors are shown in the Appendix.

6. Detailed results of the best model: CFNN

In accordance with the discourse in section 5, a highly accurate model for predicting the n-value of this superconductor

has been established using the CFNN method. Consequently, this subsection is dedicated to providing a comprehensive

analysis of CFNN’s results. As illustrated in Figure 11, it becomes evident that the model excels in n-value prediction

under conditions of lower magnetic fields. Furthermore, the model exhibits heightened accuracy in scenarios

characterized by elevated temperatures.

Also, Figure 12 demonstrates how the CFNN model is well-fitted to the training, validation, and testing datasets. In this

type of diagram, which is very common among ML researchers, data points are typically scattered across a graph, and a

straight line is fitted to these points in such a way that it minimizes the overall distance between the line and the data

points. The slope of the line indicates the change in the dependent variable for a one-unit change in the independent

variable. The vertical axis intercept represents the value of the dependent variable when the independent variable is zero.

The closer this line is to the x=y line, the more accurately the model predicts. According to the line equations in Figure

12 , the lines are very close to the ideal condition.

Page 19 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

20

Figure 11. Actual and predicted n-value for CFNN model in temperatures 20, 30, 40, 50, 65, and 75 K

Page 20 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

21

Figure 12. Regression plot for proposed CFNN model for training, validation, and testing stages

7. Conclusion

The n-value, an important parameter in superconductors characterization subject to significant variation under different

magnetic fields (including magnitude and angle of exposure to the wire) and temperature conditions in superconductor

materials, has been the focus of an investigation into n-value prediction utilizing a range of ML methods. Within the

findings of our paper, it became evident that the CFNN model emerged as the most favored choice for this task,

highlighting its achievement of the lowest RMSE at 0.4958 when compared to the alternative models. Additionally, the

CFNN model demonstrated the highest R-squared value among all the models, an impressive 99.6751%, indicating its

robust training and excellent adaptation to the training dataset. This high R-squared value serves as evidence that the

model is adept at predicting the n-value with a commendable level of accuracy. Consequently, the CFNN model offers a

promising avenue for precise n-value forecasting within the context of superconducting materials under varying magnetic

fields and temperature conditions.

Acknowledgments

The authors would like to thank Robinson Research Institutes for providing openly accessible experimental data for

critical current and index-value characteristics of HTS tapes on the public website. Indeed, this work was not

accomplishable without having access to such a comprehensive and large amount of data.

For the purpose of open access, the author(s) has applied a Creative Commons Attribution (CC BY) license to any Author

Accepted Manuscript version arising from this submission.

Page 21 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

22

Appendix.

XGBoost

Hist Gradient Boosting Regression

Random Forest Regression

Page 22 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

23

LightGBM

Gradient Boost Regression

Decision Tree Regression

Page 23 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

24

Non-linear regression

Support Vector Regression

K-Nearest Neighbours Regression

Page 24 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

25

Kernel Rigid Regression

AdaBoost

Huber Regression

Page 25 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

26

Lasso Regression

Elastic Net Regression

Linear Regression

Page 26 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

27

Ridge Regression Booster

Figure A1. Actual and predicted n-values (right figures) and ARE (left figures) of different ML models for T=77.5 K

Page 27 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

28

[1] E. H. Brandt, “Superconductor disks and cylinders in an axial magnetic field. I. Flux penetration and magnetization curves,” Phys Rev B, vol.

58, no. 10, pp. 6506–6522, Sep. 1998, doi: 10.1103/PhysRevB.58.6506.

[2] E. H. Brandt, “Superconductors of finite thickness in a perpendicular magnetic field: Strips and slabs,” Phys Rev B, vol. 54, no. 6, p. 4246,

Aug. 1996, doi: 10.1103/PhysRevB.54.4246.

[3] A. Morandi, “2D electromagnetic modelling of superconductors,” Supercond Sci Technol, vol. 25, no. 10, p. 104003, Oct. 2012, doi:

10.1088/0953-2048/25/10/104003.

[4] Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, “Magnetic relaxation in high-temperature superconductors,” Rev Mod Phys, vol. 68, no. 3,

pp. 911–949, Jul. 1996, doi: 10.1103/RevModPhys.68.911.

[5] T. Matsushita, A. Matsuda, and K. Yanagi, “Irreversibility line and flux pinning properties in high-temperature superconductors,” 1993.

[6] J. H. Kim, S. X. Dou, A. Matsumoto, S. Choi, T. Kiyoshi, and H. Kumakura, “Correlation between critical current density and n-value in

MgB2/Nb/Monel superconductor wires,” Physica C: Superconductivity and its Applications, vol. 470, no. 20, pp. 1207–1210, Nov. 2010, doi:

10.1016/J.PHYSC.2010.05.075.

[7] V. Romanovskii, K. Watanabe, and V. Ozhogina, “Thermal peculiarities of the electric mode formation of high temperature superconductors

with the temperature-decreasing n-value,” Cryogenics (Guildf), vol. 49, no. 7, pp. 360–365, Jul. 2009, doi:

10.1016/J.CRYOGENICS.2009.04.005.

[8] M. Marchevsky, “Quench Detection and Protection for High-Temperature Superconductor Accelerator Magnets,” Instruments, vol. 5, no. 3,

p. 27, Aug. 2021, doi: 10.3390/instruments5030027.

[9] N. Bykovskiy, H. Bajas, O. Dicuonzo, P. Bruzzone, and K. Sedlak, “Experimental study of stability, quench propagation and detection methods

on 15 kA sub-scale HTS fusion conductors in SULTAN,” Supercond Sci Technol, vol. 36, no. 3, p. 034002, Mar. 2023, doi: 10.1088/1361-

6668/acb17b.

[10] A. Godeke, “High temperature superconductors for commercial magnets,” Superconductor Science and Technology, vol. 36, no. 11. Institute

of Physics, Nov. 01, 2023. doi: 10.1088/1361-6668/acf901.

[11] P. Bruzzone et al., “High temperature superconductors for fusion magnets,” Nuclear Fusion, vol. 58, no. 10. Institute of Physics Publishing,

Aug. 22, 2018. doi: 10.1088/1741-4326/aad835.

[12] A. Rimikis, R. Kiinmich, and T. Schneider, “Investigation of n-values of Composite Superconductors,” 2000.

[13] S. Oh et al., “Relation between the critical current and the n value of ReBCO thin films: A scaling law for flux pinning of ReBCO thin films,”

J Appl Phys, vol. 102, no. 4, Aug. 2007, doi: 10.1063/1.2769285/938842.

[14] S. Oh and K. Kim, “A scaling law for the critical current of Nb3Sn stands based on strong-coupling theory of superconductivity,” J Appl Phys,

vol. 99, no. 3, Feb. 2006, doi: 10.1063/1.2170415.

[15] G. Russo, M. Yazdani-Asrami, R. Scheda, A. Morandi, and S. Diciotti, “Artificial intelligence-based models for reconstructing the critical

current and index-value surfaces of HTS tapes,” Supercond Sci Technol, vol. 35, no. 12, p. 124002, Dec. 2022, doi: 10.1088/1361-

6668/ac95d6.

[16] L. Zhu, Y. Wang, Z. Meng, and T. Wang, “Critical current and n-value prediction of second-generation high temperature superconducting

conductors considering the temperature-field dependence based on the back propagation neural network with encoder,” Supercond Sci

Technol, vol. 35, no. 10, Oct. 2022, doi: 10.1088/1361-6668/ac88fc.

[17] S. C. Wimbush and N. M. Strickland, “A Public Database of High-Temperature Superconductor Critical Current Data,” IEEE Transactions

on Applied Superconductivity, vol. 27, no. 4, Jun. 2017, doi: 10.1109/TASC.2016.2628700.

[18] “Wimbush Science & Technology.” Accessed: Oct. 27, 2023. [Online]. Available: https://wimbush.eu/

[19] N. M. Strickland, C. Hoffmann, and S. C. Wimbush, “A 1 kA-class cryogen-free critical current characterization system for superconducting

coated conductors,” Review of Scientific Instruments, vol. 85, no. 11, Nov. 2014, doi: 10.1063/1.4902139/356465.

[20] G. Russo and A. Morandi, “Evaluation of the Performance of Commercial High Temperature Superconducting Tapes for Dynamo Flux Pump

Applications,” Energies (Basel), vol. 16, no. 21, p. 7244, Oct. 2023, doi: 10.3390/en16217244.

[21] M. Yazdani-Asrami, A. Sadeghi, S. Seyyedbarzegar, and W. Song, “DC Electro-Magneto-Mechanical Characterization of 2G HTS Tapes for

Superconducting Cable in Magnet System Using Artificial Neural Networks,” IEEE Transactions on Applied Superconductivity, vol. 32, no.

7, Oct. 2022, doi: 10.1109/TASC.2022.3193782.

[22] M. Yazdani-Asrami, A. Sadeghi, and W. Song, “Ultra-fast Surrogate Model for Magnetic Field Computation of a Superconducting Magnet

Using Multi-layer Artificial Neural Networks,” J Supercond Nov Magn, vol. 36, no. 2, pp. 575–586, Feb. 2023, doi: 10.1007/S10948-022-

06479-Z/TABLES/7.

[23] O. Ituabhor, J. Isabona, J. T. Zhimwang, and I. Risi, “Cascade Forward Neural Networks-based Adaptive Model for Real-time Adaptive

Learning of Stochastic Signal Power Datasets,” International Journal of Computer Network and Information Security, vol. 14, no. 3, pp. 63–

74, Jun. 2022, doi: 10.5815/ijcnis.2022.03.05.

Page 28 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

29

[24] M. Yazdani-Asrami, A. Sadeghi, S. M. Seyyedbarzegar, and A. Saadat, “Advanced experimental-based data-driven model for the

electromechanical behavior of twisted YBCO tapes considering thermomagnetic constraints,” Supercond Sci Technol, vol. 35, no. 5, May

2022, doi: 10.1088/1361-6668/ac57be.

[25] M. Yazdani-Asrami et al., “Artificial intelligence methods for applied superconductivity: material, design, manufacturing, testing, operation,

and condition monitoring,” Superconductor Science and Technology, vol. 35, no. 12. Institute of Physics, Dec. 01, 2022. doi: 10.1088/1361-

6668/ac80d8.

[26] L. Ekonomou, G. P. Fotis, T. I. Maris, and P. Liatsis, “Estimation of the electromagnetic field radiating by electrostatic discharges using

artificial neural networks,” Simul Model Pract Theory, vol. 15, no. 9, pp. 1089–1102, Oct. 2007, doi: 10.1016/J.SIMPAT.2007.07.003.

[27] M. Yazdani-Asrami, L. Fang, X. Pei, and W. Song, “Smart fault detection of HTS coils using artificial intelligence techniques for large-scale

superconducting electric transport applications,” Supercond Sci Technol, vol. 36, no. 8, Aug. 2023, doi: 10.1088/1361-6668/ace3fb.

[28] M. Yazdani-Asrami, M. Taghipour-Gorjikolaie, W. Song, M. Zhang, S. Chakraborty, and W. Yuan, “Artificial intelligence for superconducting

transformers,” Transformers Magazine, vol. 8, no. S5, pp. 22–30, Aug. 2021, Accessed: Jan. 20, 2024. [Online]. Available: www.transformers-

magazine.com

[29] M. Alzayed, H. Chaoui, and Y. Farajpour, “Maximum Power Tracking for a Wind Energy Conversion System Using Cascade-Forward Neural

Networks,” IEEE Trans Sustain Energy, vol. 12, no. 4, pp. 2367–2377, Oct. 2021, doi: 10.1109/TSTE.2021.3094093.

[30] M. R. Mohammadi, A. Hemmati-Sarapardeh, M. Schaffie, M. M. Husein, and M. Ranjbar, “Application of cascade forward neural network

and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery,” J Pet Sci Eng, vol. 205, Oct. 2021,

doi: 10.1016/j.petrol.2021.108836.

[31] S. Alipour Bonab, W. Song, and M. Yazdani-Asrami, “A New Intelligent Estimation Method Based on the Cascade-Forward Neural Network

for the Electric and Magnetic Fields in the Vicinity of the High Voltage Overhead Transmission Lines,” Applied Sciences, vol. 13, no. 20, p.

11180, Oct. 2023, doi: 10.3390/app132011180.

[32] A. Sadeghi, S. Alipour Bonab, W. Song, and M. Yazdani-Asrami, “Intelligent estimation of critical current degradation in HTS tapes under

repetitive overcurrent cycling for cryo-electric transportation applications,” Materials Today Physics, vol. 42, p. 101365, Mar. 2024, doi:

10.1016/J.MTPHYS.2024.101365.

[33] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning,” 2009, doi: 10.1007/978-0-387-84858-7.

[34] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And Regression Trees. Routledge, 1984. doi:

10.1201/9781315139470.

[35] A. L. Balogun and A. Tella, “Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using

correlation analysis with random forest, decision tree regression, linear regression, and support vector regression,” Chemosphere, vol. 299,

Jul. 2022, doi: 10.1016/j.chemosphere.2022.134250.

[36] L. Breiman, “Random Forests,” 2001.

[37] J. Friedman, T. Hastie, and R. Tibshirani, “ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING,” 2000.

[38] G. Zhang, S. Shin, and J. Jung, “Cascade forest regression algorithm for non-invasive blood pressure estimation using PPG signals,” Appl

Soft Comput, vol. 144, p. 110520, Sep. 2023, doi: 10.1016/j.asoc.2023.110520.

[39] X. Guo et al., “Critical role of climate factors for groundwater potential mapping in arid regions: Insights from random forest, XGBoost, and

LightGBM algorithms,” J Hydrol (Amst), vol. 621, p. 129599, Jun. 2023, doi: 10.1016/J.JHYDROL.2023.129599.

[40] G. Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision Tree.” [Online]. Available: https://github.com/Microsoft/LightGBM.

[41] Y. J. Ong, Y. Zhou, N. Baracaldo, and H. Ludwig, “Adaptive Histogram-Based Gradient Boosted Trees for Federated Learning,” Dec. 2020,

[Online]. Available: http://arxiv.org/abs/2012.06670

[42] H. Nhat-Duc and T. Van-Duc, “Comparison of histogram-based gradient boosting classification machine, random Forest, and deep

convolutional neural network for pavement raveling severity classification,” Autom Constr, vol. 148, Apr. 2023, doi:

10.1016/j.autcon.2023.104767.

[43] A. Guryanov, “Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, 2019, pp. 39–

50. doi: 10.1007/978-3-030-37334-4_4.

[44] L. Li et al., “Interpretable tree-based ensemble model for predicting beach water quality,” Water Res, vol. 211, p. 118078, Mar. 2022, doi:

10.1016/J.WATRES.2022.118078.

[45] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Mar. 2016, doi: 10.1145/2939672.2939785.

[46] W. Cao, Y. Liu, H. Mei, H. Shang, and Y. Yu, “Short-term district power load self-prediction based on improved XGBoost model,” Eng Appl

Artif Intell, vol. 126, p. 106826, Nov. 2023, doi: 10.1016/J.ENGAPPAI.2023.106826.

[47] A. V. Dorogush, V. Ershov, and A. G. Yandex, “CatBoost: gradient boosting with categorical features support,” Oct. 2018, Accessed: Sep. 17,

2023. [Online]. Available: https://arxiv.org/abs/1810.11363v1

Page 29 of 30 AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

30

[48] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “CatBoost: unbiased boosting with categorical features,” Jun. 2017,

[Online]. Available: http://arxiv.org/abs/1706.09516

[49] A. Rastgoo and H. Khajavi, “A novel study on forecasting the airfoil self-noise, using a hybrid model based on the combination of CatBoost

and Arithmetic Optimization Algorithm,” Expert Syst Appl, vol. 229, p. 120576, Nov. 2023, doi: 10.1016/J.ESWA.2023.120576.

[50] G. Huang et al., “Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions,” J Hydrol (Amst), vol. 574,

pp. 1029–1041, Jul. 2019, doi: 10.1016/j.jhydrol.2019.04.085.

[51] C. Lu, S. Zhang, D. Xue, F. Xiao, and C. Liu, “Improved estimation of coalbed methane content using the revised estimate of depth and

CatBoost algorithm: A case study from southern Sichuan Basin, China,” Comput Geosci, vol. 158, p. 104973, Jan. 2022, doi:

10.1016/j.cageo.2021.104973.

[52] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Applications. Wiley, 1988. doi: 10.1002/9780470316757.

[53] K. Ezimand and A. A. Kakroodi, “Prediction and spatio – Temporal analysis of ozone concentration in a metropolitan area,” Ecol Indic, vol.

103, pp. 589–598, Aug. 2019, doi: 10.1016/j.ecolind.2019.04.059.

[54] Y. Feng and Q. Wu, “A statistical learning assessment of Huber regression,” J Approx Theory, vol. 273, Jan. 2022, doi:

10.1016/j.jat.2021.105660.

[55] M. Czajkowski, K. Jurczuk, and M. Kretowski, “Steering the interpretability of decision trees using lasso regression - an evolutionary

perspective,” Inf Sci (N Y), vol. 638, Aug. 2023, doi: 10.1016/j.ins.2023.118944.

[56] B. Minaravesh and O. Aydin, “Environmental and demographic factors affecting childhood academic performance in Los Angeles county: A

generalized linear elastic net regression model,” Remote Sens Appl, vol. 30, Apr. 2023, doi: 10.1016/j.rsase.2023.100942.

[57] Y. Zheng et al., “New ridge regression, artificial neural networks and support vector machine for wind speed prediction,” Advances in

Engineering Software, vol. 179, p. 103426, May 2023, doi: 10.1016/J.ADVENGSOFT.2023.103426.

[58] X. Wang, X. Wang, B. Ma, Q. Li, C. Wang, and Y. Shi, “High-performance reversible data hiding based on ridge regression prediction

algorithm,” Signal Processing, vol. 204, p. 108818, Mar. 2023, doi: 10.1016/J.SIGPRO.2022.108818.

[59] X. Wang, X. Wang, B. Ma, Q. Li, C. Wang, and Y. Shi, “High-performance reversible data hiding based on ridge regression prediction

algorithm,” Signal Processing, vol. 204, p. 108818, Mar. 2023, doi: 10.1016/J.SIGPRO.2022.108818.

[60] M. Welling, “Kernel ridge Regression.”

[61] C. Cortes, V. Vapnik, and L. Saitta, “Support-Vector Networks Editor,” Kluwer Academic Publishers, 1995.

[62] H. Drucker·, C. J. C. Burges, L. Kaufman, A. Smola··, and V. Vapoik, “Support Vector Regression Machines.”

[63] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A Practical Guide to Support Vector Classification,” 2003. [Online]. Available:

http://www.csie.ntu.edu.tw/~cjlin

[64] Y. Li, X. Huang, J. Tang, S. Li, and P. Ding, “A steps-ahead tool wear prediction method based on support vector regression and particle

filtering,” Measurement, vol. 218, p. 113237, Aug. 2023, doi: 10.1016/J.MEASUREMENT.2023.113237.

[65] K. Chen, Q. Liao, K. Liu, Y. Yang, G. Gao, and G. Wu, “Capacity degradation prediction of lithium-ion battery based on artificial bee colony

and multi-kernel support vector regression,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108160.

[66] M. Keramat-Jahromi, S. S. Mohtasebi, H. Mousazadeh, M. Ghasemi-Varnamkhasti, and M. Rahimi-Movassagh, “Real-time moisture ratio

study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods,” Measurement, vol. 172,

p. 108899, Feb. 2021, doi: 10.1016/J.MEASUREMENT.2020.108899.

[67] J. Gou, T. Xiong, and Y. Kuang, “A novel weighted voting for K-nearest neighbor rule,” J Comput (Taipei), vol. 6, no. 5, pp. 833–840, May

2011, doi: 10.4304/jcp.6.5.833-840.

[68] A. Sumayli, “Development of advanced machine learning models for optimization of methyl ester biofuel production from papaya oil:

Gaussian process regression (GPR), multilayer perceptron (MLP), and K-nearest neighbor (KNN) regression models,” Arabian Journal of

Chemistry, vol. 16, no. 7, Jul. 2023, doi: 10.1016/j.arabjc.2023.104833.

[69] E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties,” Int Stat Rev, vol. 57, no. 3, p.

238, Dec. 1989, doi: 10.2307/1403797.

[70] L. Wen, Y. Li, W. Zhao, W. Cao, and H. Zhang, “Predicting the deformation behaviour of concrete face rockfill dams by combining support

vector machine and AdaBoost ensemble algorithm,” Comput Geotech, vol. 161, p. 105611, Sep. 2023, doi:

10.1016/J.COMPGEO.2023.105611.

[71] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” 1996. [Online]. Available: http://www.research.att.com/

[72] R. Taylor, V. Ojha, I. Martino, and G. Nicosia, “Sensitivity Analysis for Deep Learning: Ranking Hyper-parameter Influence,” in 2021 IEEE

33rd International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Nov. 2021, pp. 512–516. doi:

10.1109/ICTAI52525.2021.00083.

Page 30 of 30AUTHOR SUBMITTED MANUSCRIPT - MLST-101750.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d

M
an

us
cr

ip
t

