Journal Pre-proofs

Regular Article

PII:

DOI:

Revised Date: Accepted Date:

Modulating solvated structure of Zn^{2+} and inducing surface crystallography by a simple organic molecule with abundant polar functional groups to synergistically stabilize zinc metal anodes for long-life aqueous zinc-ion batteries

Xiaoqin Zhang, Yujun Zhai, Bin Xie, Min Li, Haoran Lang, Yi Yang, Ji Chen, Yuxiang Chen, Qiaoji Zheng, Yu Huo, Ruyi Zhao, Kwok-Ho Lam, Dunmin Lin

30 April 2024

4 May 2024

Please cite this article as: X. Zhang, Y. Zhai, B. Xie, M. Li, H. Lang, Y. Yang, J. Chen, Y. Chen, Q. Zheng, Y. Huo, R. Zhao, K-H. Lam, D. Lin, Modulating solvated structure of Zn²⁺ and inducing surface crystallography by a simple organic molecule with abundant polar functional groups to synergistically stabilize zinc metal anodes for long-life aqueous zinc-ion batteries, Journal of Colloid and Interface Science (2024), doi: https://doi.org/ 10.1016/j.jcis.2024.05.014

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 The Author(s). Published by Elsevier Inc.

1	Modulating Solvated Structure of Zn ²⁺ and Inducing Surface
2	Crystallography by a Simple Organic Molecule with Abundant Polar
3	Functional Groups to Synergistically Stabilize Zinc Metal Anodes for
4	Long-life Aqueous Zinc-ion Batteries
5	
6	Xiaoqin Zhang ¹ , Yujun Zhai ¹ , Bin Xie ¹ , Min Li ¹ , Haoran Lang ¹ , Yi Yang ¹ , Ji Chen ¹ ,
7	Yuxiang Chen ¹ , Qiaoji Zheng ¹ , Yu Huo ¹ , Ruyi Zhao ^{2.3} *, Kwok-Ho Lam ^{4, *} , Dunmin
8	Lin ¹ ,*
9	¹ College of Chemistry and Materials Science, Sichuan Normal University, Chengdu
10	610066, China
11	² School of Energy Science and Engineering, Harbin Institute of Technology, Harbin
12	150001, P. R. China
13	³ Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, P. R. China
14	⁴ Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering,
15	University of Glasgow, Glasgow, Scotland, U.K.
16	Table of contents entry
17	Modulating Solvated Structure of Zn ²⁺ and Inducing Surface Crystallography by
18	A Simple Organic Molecule with Abundant Polar Functional Groups to
19	Synergistically Stabilize Zinc Metal Anodes for Long-life Aqueous Zinc-ion
20	Batteries
21	Xiaoqin Zhang, Yujun Zhai, Bin Xie, Min Li, Haoran Lang, Yi Yang, Ji Chen, Yuxiang

¹Corresponding authors: E-mail addresses: 20S102159@stu.hit.edu.cn (Ruyi Zhao); kwokho.lam@glasgow.ac.uk (Kwok-Ho Lam); Fax: +86 28 84760802 Tel: +86 2884760802; ddmd222@sicnu.edu.cn (Dunmin Lin)

22 Chen, Qiaoji Zheng, Yu Huo, Ruyi Zhao, Kwok-ho Lam, Dunmin Lin

24 2,2,2-trifluronate (TF) infiltrates into the solvated sheath of hydrated Zn^{2+} and adheres 25 to the surface of Zn anode, guiding the homogeneous deposition of Zn^{2+} along the 26 Zn(002) crystal surface, significantly inhibiting the formation of Zn dendrites and 27 mitigrating side reactions.

29

30 Abstract

Aqueous zinc-ion batteries (AZIBs) have attracted significant attention owing to their inherent security, low cost, abundant zinc (Zn) resources and high energy density. Nevertheless, the growth of zinc dendrites and side reactions on the surface of Zn anodes during repeatedly plating/stripping shorten the cycle life of AZIBs. Herein, a simple organic molecule with abundant polar functional groups, 2,2,2-trifluoroether formate (TF), has been proposed as a high-efficient additive in the ZnSO₄ electrolyte

37	to suppress the growth of Zn dendrites and side reaction during cycling. It is found that
38	TF molecules can infiltrate the solvated sheath layer of the hydrated Zn^{2+} to reduce the
39	number of highly chemically active H ₂ O molecules owing to their strong binding
40	energy with Zn ²⁺ . Simultaneously, TF molecules can preferentially adsorb onto the Zn
41	surface, guiding the uniform deposition of Zn^{2+} along the crystalline surface of $Zn(002)$.
42	This dual action significantly inhibits the formation of Zn dendrites and side reactions,
43	thus greatly extending the cycling life of the batteries. Accordingly, the Zn//Cu
44	asymmetric cell with 2 % TF exhibits stable cycling for more than 3,800 cycles,
45	achieving an excellent average Columbic efficiency (CE) of 99.81 % at 2 mA cm ^{-2/1}
46	mAh cm ⁻² . Meanwhile, the Zn $\ $ Zn symmetric cell with 2 % TF demonstrates a
47	superlong cycle life exceeding 3,800 hours and 2,400 hours at 2 mA cm ⁻² /1 mAh cm ⁻²
48	and 5 mA cm ⁻² /2.5 mAh cm ⁻² , respectively. Simultaneously, the Zn//VO ₂ full cell with
49	2 % TF possesses high initial capacity (276.8 mAh g^{-1}) and capacity retention (72.5 %)
50	at 5 A g ⁻¹ after 500 cycles. This investigation provides new insights into stabilizing Zn
51	metal anodes for AZIBs through the co-regulation of Zn^{2+} solvated structure and
52	surface crystallography.

53 Keywords: Aqueous zinc-ion batteries; Electrolyte additive; Side reaction; Zinc
54 dendrites

1. Introduction

58 As environmental pollution and the depletion of fossil fuel reserves compel us to

59	pursue greener and alternative energy solutions, the need to cultivate safe and reliable
60	renewable energy sources is imperative[1-4]. Electric energy is convenient and
61	environmentally friendly[5-7]. Nevertheless, due to the limited availability of Li
62	resources and the concerns regarding the security of commonly used organic
63	electrolytes in lithium-ion batteries, there is a compelling need to develop new aqueous-
64	based rechargeable batteries[8, 9]. As one of potential candidates, aqueous zinc-ion
65	batteries (AZIBs) using zinc (Zn) metal as anodes are promising due to their low
66	oxidation-reduction potential, large mass energy density (820 mAh g ⁻¹) and
67	environmental friendliness[10-12]. Nevertheless, Zn anodes currently encounter with
68	rampant dendrite growth and severe side reactions involving hydrogen evolution and
69	corroding reactions. These issues shorten the lifespan and hinder the practicality of the
70	batteries[13-16]. Therefore, the development of dendrite-free Zn metal anodes for long-
71	life AZIBs is essential.

72 Recently, many strategies have been proposed to suppress the dendrite growth and side reactions during Zn plating/stripping, including the construction of protective 73 74 layers, microstructural design of Zn anodes, and electrolyte additives[17, 18]. Among them, the incorporation of additives into Zn salt aqueous electrolytes has been 75 76 considered as a highly convenient and efficient strategy to promote the reversibility of 77 Zn metallic anodes in AZIBs. This is achieved by regulating the primary solvation shell and/or deposition behavior of Zn ions, which is valued for its simplicity, universality, 78 79 and cost-effectiveness[19-26]. For example, Wu et al. added 10% N, N-80 dimethylacetamide (DMA) in ZnSO₄ electrolyte and found that DMA has higher

81	binding energy and stronger solvation with Zn^{2+} than H_2O , thus regulating Zn^{2+}
82	solvation shell and extending the life of the Zn Zn-symmetric battery to be more than
83	700 h at a current density of 0.5 mA cm ⁻² [27]. Luo et al. introduced a small amount of
84	pyridine (Py) into zinc sulfate aqueous electrolyte, adjusting the solvation shell of the
85	of Zn ²⁺ , inhibiting water decomposition and therefore enabling long cycling of over
86	3,000 h at a particular current density level of 0.5 mA cm ⁻² [28]. Li et al. reshaped the
87	structure of the Zn ²⁺ -solvated shell and stabilized the hydrogen bond network within
88	the bulk electrolyte using propylene glycol (PG) additives, offering optimal cycle
89	stability for full PG-protected batteries[29]. In addition, formamide, diethylene glycol
90	monoethyl ether and methyl acetate can be used to extend the cycle life of AZIBs[30-
91	32]. To our knowledge, 2,2,2-trifluoroether formate (TF) possesses abundant polar
92	functional classes such as C-O and C=O bonds, which may offer a much stronger
93	binding force with Zn^{2+} compared to H ₂ O. Thus, it is expected to be a high-efficiency
94	electrolyte additive for AZIBs.

Herein, a simple organic molecule of TF with abundant polar functional groups is 95 proposed as an additive to the electrolyte for inhibiting Zn dendrites and adverse 96 reactions while plating/stripping for AZIBs. It has been found that TF molecules can 97 enter the solvation sheath of Zn^{2+} to replace part of highly chemically active H₂O 98 molecules due to their strong binding energy with Zn²⁺ ions. Simultaneously, these 99 molecules can regulate crystallization behavior of Zn²⁺ because TF can preferentially 100 adsorb on the surface of Zn and guide the uniform deposition of Zn^{2+} . This leads to a 101 significant suppression of Zn dendrite formation and side reactions during 102

0 (**F**FF

103	electrochemical reactions. Accordingly, with using the 2 % TF electrolytes, the
104	asymmetric Zn Cu cell is capable of cycling stably for over 3,800 cycles at 2 mA cm ⁻
105	$^{2}/1$ mAh cm- 2 , giving an outstanding median Columbic efficiency (CE) of 99.81 %,
106	while the Zn Zn cell possesses the excellent cycle life of 3,800 hours at 2 mA cm ⁻² /1
107	mAh cm ⁻² .
108	
109	2. Experimental
110	(1) Preparation of electrolytes
111	Zinc sulfate (ZnSO ₄ ·7H ₂ O, Cologne, 99 %) was dissolved in deionized water (DI
112	water) to obtain a 2 M ZnSO ₄ baseline electrolyte (ZS). TF (HCO ₂ CH ₂ CF ₃ , Macklin,
113	98 %) with different concentrations (1 %, 2 %, 3 %) was added to 2 M ZnSO ₄
114	electrolyte to obtain TF-containing electrolytes. The optimal concentration of TF was
115	2 %.
116	
117	(2) Preparation of electrodes
118	The purchased Zn foil (Qinghe Haoxuan metal material Co., LTD, thicknesses:100
119	μ m, 99.99 %) was polished to remove the oxidation layer, and then cut into discs (φ =

120 10 mm) to be used as Zn electrodes.

121 VO_2 nanosheets were prepared by a hydrothermal method. 2 mmol of ammonium

- 122 metavanadate (Aladdin, 99.5 %) was dissolved in 15 mL of DI water under magnetic
- stirring, and then 3 mmol of oxalic acid (Aladdin, 99 %) solution was added and stirred
- 124 for 30 min. The obtained mixture was transferred to a 100 mL autoclave lined with

125	PTFE and kept at 180 °C for 24 hours. Subsequently, the synthesized powders were
126	washed several times with ethanol (Cologne, 99.7 %) and DI water and dried in a
127	vacuum oven for 1 day to obtain VO_2 powder. The positive electrode was prepared by
128	mixing VO ₂ powders, acetylene black and polyvinylidene fluoride (PVDF) (Aladdin,
129	99 %) in a mass ratio of 7:2:1 with 1-Methyl-2-pyrrolidinone (NMP, Macklin, 99 %)
130	as solvent. The slurry was then casted on a Ti foil. After dried in vacuum at 70 °C
131	overnight, the electrode with VO ₂ was obtained (cathode loading: 1 mg/cm^2).
132	(3) Material characterizations and electrochemical properties
133	X-ray diffraction (XRD) analysis of samples was characterized by the XRD
134	equipment (Smart Lab, Rigaku, Japan) with a Cu-K α (λ = 1.540598 Å, Smart Lab)
135	source (scan rate: 2 min ⁻¹) and 2 θ ranging from 10° to 80°. The morphology of samples
136	was studied by field emission scanning electron microscopy (SEM, FEI, Sirion 200).
137	The elemental analysis of samples was carried out using field emission scanning
138	electron microscopy (SEM, FEI-Quanta 250, USA) with energy dispersive x-ray (EDX)
139	elemental mapping.

All tested CR2032-type coin cells were assembled in air, and the amount of electrolyte used in the coin cells was 200 μL. The VO₂//Zn full cell was assembled with the Zn foil (thickness: 100 μm) as the anode and VO₂ as the cathode. The cyclic voltammetry (CV) was tested in the electrolytic cell with a Ti plate as the working electrode, Pt plate as the reverse electrode, and Ag/AgCl as the reference electrode. With using Zn plate as the working electrode, Pt plate as the reverse electrode and Ag/AgCl as the reference electrode, the linear scanning voltametric (LSV) curves and

147	Tafel diagrams were measured with the electrolytic cell. The chronoamperometry (CA)
148	was obtained by Amperometric <i>i-t</i> Curve testing with Zn plate as the working electrode,
149	Pt plate as the reverse electrode, and Zn plate as the reference electrode at a voltage of
150	-150 mV. The electrochemical impedance spectroscopy (EIS) of cells were conducted
151	in a frequency range of 100 kHz to 1 Hz. The above tests were performed on an
152	electrochemical workstation (CHI760E, CHI660E, Shanghai, China). With using Zn
153	plate as anode, 20 μ m-thick Cu foil as cathode and glass fiber as diaphragm, a Zn-Cu
154	half battery was assembled, and its CE test was carried out on the Land CT5001A
155	battery test device.
156	A home-made optical Zn Zn battery was designed for in situ observation of Zn
157	deposition in different electrolytes. The transparent $Zn Zn$ cell consists of a Zn plate
158	and a glass dish. The Zn plate was fixed to the bottom of the glass dish before adding
159	the electrolyte, ensuring full immersion of the Zn plate in the solution. The transparent
160	Zn Zn cell was tested for Zn stripping/plating using a cell tester (LAND, China) at a
161	current density of 20 mA cm ⁻² , in which a video camera (NSZ-808) was used to observe

162 and record the growth of Zn dendrites.

163

164 (4) MD Simulations

The simulations for the structures of $ZnSO_4$ electrolyte systems with and without TF were performed using the forcite module in Materials Studio. The information of Lennard Jones (LJ) potential parameters was taken from the condensed-phased optimized molecular potential for the atomistic simulation studies force field. The

169	Restrained ElectroStatic Potential (RESP) is the most reliable method to calculate the
170	charge. Multiwfn software was used to calculate the RESP charge of the system[33].
171	One system is composed of 18 Zn^{2+} ions, 18 $SO_4{}^{2+}$ ions, and 2,000 H_2O molecules,
172	while the other contains extra 9 TF molecules. Moreover, a potential cutoff radius of
173	1.85 nm was applied for the calculation of non-bonded interactions, with electrostatic
174	interactions represented at the atomic level. Each system was then equilibrated under
175	the constant-pressure-constant-temperature (NPT) ensemble at a constant temperature
176	of 298 K to attain an equilibrium state with zero pressure for 4,000 ps. For analysis, the
177	properties of solvated structures were received in the last 1 ns. The radial distribution
178	functions (RDFs) were calculated using the analysis tool in Materials Studio.

180 (5) Density functional theory (DFT) calculation

The study of the component interactions and the solvation structures in two electrolyte systems was calculated by the Gaussian16 software package. The structural optimization and energy calculation were performed at M06-2X density functional and def2-TZVP basis set. The Solute Electron Density (SMD) implicit solvation model was used to describe the solvation effect. The electrostatic potential (ESP) was obtained from Multiwfn and VMD software package. We performed ESP analysis on the vdW surface with an electron density of 0.001 au (0.63 kcal/mol)[34, 35].

188 The calculations of interaction between Zn metal and electrolyte components were

189 performed by the ORCA package using a cluster model. A 6×5 supercell with a three-

190 layer Zn slab (002) was used to represent the absorbed surface for molecules, while the

Journal Pre-proofs

191	boundary atoms were fixed to maintain the bondage of the real physical environment.
192	The structural optimization was performed at PBE0-D3(BJ)/def2-SV(P) level.
193	Considering the impact of Basis Set Superposition Error (BSSE) on the results, we
194	adopted a more accurate def2-QZVP basis set when calculating single-point energy.
195	The adsorption energy between Zn metal substrate and different electrolyte components
196	was defined as the following equation:
197	$Ead = Etotal - EZn - EH_2O/TF$
198	where Etotal, EZn, and $\rm EH_2O/TF$ are energies of the whole system, the Zn metal
199	substrate, and the H ₂ O molecule or TF, respectively.
200	
201	(6) Calculation of the cumulative plating capacity

- 202 Cumulative plating capacity = Current density × Total Zn plating time
- 203
- 204 **3. Results and Discussion**

Fig. 1 Scheme representations of Zn²⁺ deposition in ZS electrolyte without and with 2 %
TF.

All the experimental details are presented in the Supplementary Information. As 208 209 shown in Fig.1a, in the ZnSO₄ (ZS) electrolyte, there are six water molecules around Zn^{2+} , forming a hydrated Zn ion, denoted as $[Zn (H_2O)_6]^{2+}$. When the hydrated Zn ions 210 approach the Zn metal anode surface, they release six high chemical activity H₂O, 211 212 which readily reduce to H₂. The process increases the local pH value and forms the coproduct of $Zn_4SO_4(OH)_6 \cdot xH_2O$ (ZSH). The unevenness of the Zn anode surface is 213 aggravated by the numerous by-products, resulting in uneven distribution of electric 214 215 field, and eventually generating extensive Zn dendrites that puncture the separation and

216	cause the battery failure quickly. In contrast, in the 2 % TF electrolytes, some of the
217	H_2O in the Zn ²⁺ solvated structure is replaced by TF, forming a new solvated structure.
218	The reduction in the amount of chemically active H ₂ O helps preventing hydrogen
219	evolution and corrosion. Simultaneously, the uniform Zn^{2+} deposition is induced along
220	the crystalline surface of Zn(002) because the TF molecules can preferentially adsorb
221	on the surface of Zn and guide the uniform Zn^{2+} deposition, which significantly inhibits
222	Zn dendrite growth and side reactions and extend battery cycle life. It is obvious that
223	the Zn metal anode with TF exhibits strong resistance against side reactions and the
224	ability to homogenize the electric fields during deposition, effectively prolonging the
225	cycle life of the battery.

Fig. 2 SEM images of surface of Zn anode cycled for 10, 20 and 50 hours in (a - c) ZS and (d - f) 2 % TF electrolytes. SEM images of cross section of Zn anode cycled for 50 hours in (g) ZS and (h) 2 % TF electrolytes. *In situ* optical photos of galvanizing in (i) ZS and (j) 2 % TF electrolytes for 90 minutes.

To check the corrosion resistance of the TF additive, Zn foils are soaked in ZS electrolytes without/with 2 % TF for 5 days, as shown in Fig. S1 (Supplementary Information). In Fig. S1a, many sharp nanosheets are vertically/obliquely grown on the Zn foil surface soaked in the ZS electrolyte, and the surface is loose and porous,

235	indicating serious corrosion. On the other hand, the Zn sheet impregnated with the 2 $\%$
236	TF electrolyte exhibits a relatively smooth and dense surface without apparent
237	protuberances, suggesting that TF effectively inhibits the corrosive reactions, thereby
238	significantly reducing the formation of by-products. After immersed the Zn foil in the
239	electrolyte without TF, as shown in Fig. S2, obvious characteristic peaks of by-product
240	ZSH (PDF#39-0688) appear on the Zn foil surface, but no obvious characteristic peaks
241	of by-product are detected on the surface of Zn foil soaked in the 2 % TF electrolyte.
242	To verify the effect of the TF on the inhibition of Zn dendrite growth, the Zn Zn-
243	symmetric batteries assembled with different electrolyte solutions are cycled for 10, 20
244	and 50 hours at 1 mA cm ⁻² /1 mAh cm ⁻² , respectively, as shown in Figs. 2a-f. The surface
245	morphologies of the Zn anodes are observed by SEM. For the Zn foil cycled in the ZS
246	electrolyte for 10 hours, obvious dendrites perpendicular to the Zn foil surface are
247	observed. As the cycle time extends, dendrites proliferate with the increasing size.
248	Consequently, the surface becomes very rough with more by-products and voids, as
249	shown in Figs. $2a - c$, g. On the contrary, as shown in Figs. $2d - f$, h and S3, the surface
250	of Zn foil is still very smooth and flat without an obvious dendritic structure after cycled
251	in the 2 % TF electrolyte for $10 - 50$ hours, which is similar to the surface and cross-
252	section micromorphology of the original Zn foil. Similarly, the distributions of
253	elements in Figs. S4 and S5 show that large amounts of O and S elements are detected
254	on the Zn foil surface after cycled in the ZS electrolyte for 50 hours, whereas no
255	appreciable O and S elements are found in the Zn foil cycled in the 2 % TF electrolyte
256	for 50 hours. In addition, obvious characteristic peaks of by-product ZSH are detected

257	on the Zn foil surface cycled in the 2 % TF electrolyte for 5 hours; in contrast, no by-
258	product is detected on the surface of the Zn foil cycled in the ZS electrolyte (Fig. S6).
259	In addition, to study the orientation anisotropy, the crystal structures of deposited Zn
260	obtained from different electrolytes are further characterized by XRD. For the Zn metal,
261	the (002) crystal plane exhibits a smoother and much uniform interfacial charge density
262	than the (100) plane[36], thus the smooth deposition of Zn ions is facilitated by a high
263	XRD $I_{(002)}/I_{(100)}$ peak intensity ratio. The $I_{(002)}/I_{(100)}$ value of the original Zn foil is 2.44,
264	as shown in Fig. S7, but the values are changed to 0.94 and 4.08 after cycled in the ZS
265	and 2 % TF electrolytes, respectively, for 50 hours. This suggests that the Zn ion
266	deposition mainly occurs along the (002) crystal planes, but the TF molecules modify
267	the preferential direction of Zn plating, resulting in homogeneous deposition in the
268	horizontal plane (Figs. S8, S9). Density functional theory (DFT) calculations are used
269	to compare the adsorption capacities of H_2O , TF, and $Zn(002)$. The adsorption energies
270	of water and TF molecules on the surface of $Zn(002)$ are found to be -13.5 kcal mol ⁻¹
271	and -87.2 kcal mol-1, respectively, indicating that the TF molecules are more
272	preferentially adsorbed on the surfaces of $Zn(002)$ than H ₂ O. This results in the
273	homogeneous precipitation of Zn^{2+} and inhibits the growth of dendrites.
274	The electrochemical deposition behaviour of Zn^{2+} is observed in situ by optical

microscopy in different ZnSO₄ electrolytes at 10 mA cm⁻², as shown in Figs. 2i, j and
Videos S1, S2, to intuitively assess the inhibitory effect of the additive on Zn dendrites.
In the ZS electrolyte, the Zn foil surface gradually becomes rough, displaying large and
small bumps. As the plating time increases, the Zn foil surface becomes even more

279	uneven, and the deposited Zn appears loose and porous, as shown in Fig. 2i and Video
280	S1. However, as shown in Fig. 2j and Video S2, in the 2 % TF electrolyte, as time goes
281	on, the Zn foil surface remains compact and flat without noticeable bulges. In addition,
282	the uniform deposition of Zn^{2+} is also evident from the side view, as shown in Fig. S10.
283	The conclusion that can be drawn is that the addition of additive TF effectively inhibits
284	the growth of dendrites and promotes the deposition of Zn^{2+} into a compact Zn layer,
285	rather than a loose and porous one. Furthermore, after the addition of TF to the $ZnSO_4$
286	solutions, the contact angle between the electrolytes and the Zn foils decreases,
287	indicating improved wettability of the electrolytes, as shown in Fig. S11. This improved
288	wetting capability facilitates the reversible plating/stripping at the electrode/electrolyte
289	interface.

Fig. 3 (a) CV profiles of Zn foil in ZS and 2 % TF electrolytes at 1 mV s⁻¹. (b) LSV 291 responses of Zn metals in ZS and 2 % TF electrolytes at 5 mV s⁻¹. (c) Tafel plots of Zn 292 foil in ZS and 2 % TF electrolytes at 5 mV s⁻¹ based on a three-electrode system. (d) 293 Chronoamperometry curves of the Zn²⁺ deposition process in ZS and 2 % TF 294 electrolytes. (e) EIS spectra of Zn||Zn symmetric cells in ZS and 2 % TF electrolytes. 295 (f-h) Coulombic efficiency of asymmetric Zn||Cu cells in ZS and 2 % TF electrolytes. 296 (i) Comparison of reported values of mean CE and cycle number of Zn||Cu half cells 297 298 with this work[19, 37-52].

299	Cyclic voltammetry (CV) is used to study the effects of TF on the nucleation of Zn
300	ions (Fig. 3a). Clearly, the inclusion of TF enhances the nucleation over-potential of
301	Zn^{2+} , inhibiting the aggregation of Zn^{2+} into dendrites. The linear scanning voltametric
302	(LSV) curves of the Zn metals in the ZS and 2 $\%$ TF electrolytes are shown in Fig. 3b.
303	The potential of the Zn foil in the ZS electrolyte for the hydrogen-extraction reaction
304	(HER) is -1.55 V (relative to Ag/AgCl), which is significantly greater than that (-1.71
305	mV) in the 2 % TF electrolyte, at a current density of 75 mA cm ⁻² , indicating that the
306	HER is effectively suppressed after the addition of TF. The Tafel test is used to verify
307	the effect of TF on inhibiting Zn metals from corrosion. In Fig. 3c, after the addition of
308	2 % TF, the corrosion potential shows a significant increase, suggesting that the
309	presence of TF can effectively suppress the corrosion reaction. This observation aligns
310	with the XRD results shown in Fig. S2. Chronoamperometry (CA) curves (Fig. 3d) are
311	used to further investigate the mechanism underlying the distinct deposition behaviors
312	of Zn^{2+} in various electrolytes. At a constant overpotential, the current in the ZS
313	electrolyte steadily increases over 200 seconds, indicating a rapid two-dimensional (2D)
314	diffusion process with a swiftly escalating current, facilitating the dendrite growth.
315	Conversely, in the 2 % TF electrolyte, the current experiences a slow rise following an
316	initial increase. This suggests a limited 2D distribution process, aiding in the inhibition
317	of Zn dendritic growth and promoting the deposition of dense and flat Zn. The
318	electrochemical impedance spectroscopy (EIS) spectra of $Zn Zn$ -symmetric cells in the
319	ZS electrolyte and 2 % TF electrolyte are shown in Fig. 3e. After the introduction of
320	TF, the impedance of the symmetric cell significantly increases, which indicates that

321	the addition of TF reduces the conductivity of the electrolyte (Fig. S12). Additionally,
322	the temperature-dependence EIS is used to evaluate the desolvation capability of the
323	electrical double layer (EDL) at the interface. Figs. S13a and b show the EIS spectra of
324	the Zn Zn symmetric cell in ZS and 2 % TF electrolytes from 30 to 70 °C, while the
325	corresponding activation energies (E_a) derived from the Arrhenius equation are
326	presented in Figs. S13c and d. Furthermore, the addition of TF leads to an increase in
327	the Zn ²⁺ transfer number $t_{Zn^{2+}}$ from 0.63 to 0.91 (Fig. S14). The smaller E_a value of Zn
328	electrode and the larger $t_{Zn^{2+}}$ in 2 % TF electrolyte (28.37 kJ mol ⁻¹ , 0.91) compared to
329	those in the pristine ZS electrolyte (36.32 kJ mol ⁻¹ , 0.63) verify the facilitated Zn^{2+}
330	interfacial desolvation and transfer during plating/stripping processes. Zn Cu
331	asymmetric batteries is assembled to evaluate the Coulombic efficiency (CE) of Zn
332	electrodes, as shown in Figs. $3f - h$. With an initial CE of 77.79 % and failure after 111
333	hours, the battery with ZS electrolyte cycles erratically. Nevertheless, the cell with 2 $\%$
334	TF electrolyte starts with a high CE of 93.81 %, maintaining an outstanding average
335	CE of 99.81% over 3,800 cycles, as shown in Figs. 3f – h. As shown in Fig. 3i and
336	Table S1[19, 37-52], when compared to other recently reported advanced electrolyte
337	additive systems, asymmetric Zn//Cu batteries incorporating 2 % TF demonstrate
338	comparable or even superior CE and cycle life.

Fig. 4 (a) Long-term cyclic behaviors of Zn||Zn-symmetric cells in ZS electrolytes with different TF concentrations at 5 mA cm⁻²/2.5 mAh cm⁻². (b) Long-term cycling behavior of Zn||Zn-symmetric batteries in ZS and 2 % TF electrolytes at 2 mA cm⁻²/1 mAh cm⁻². (c) Comparison of cumulative plating capacity and cycle number of Zn||Zn half cells with 2 % TF electrolyte with other recently reported Zn||Zn half-cell data[38, 40, 42, 44-47, 49, 53-60].

To evaluate the effect of TF on the electrochemical cycle stability and rate performance, Zn||Zn-symmetric batteries are assembled with different concentrations of TF as shown in Figs. 4a, b and S15. The Zn||Zn-symmetric cells are cycled in the ZS

349	electrolytes with 0 %, 1 %, 2 % and 3 % TF at 5 mA cm ⁻² /2.5 mAh cm ⁻² to determine
350	the optimal TF concentration. In Fig. 4a, the cycle life of the cell with 2 % TF electrolyte
351	is over 2,400 hours, which is much longer than those of the cells with 0 $\%$ (230 hours),
352	1 % (396 hours) and 3 % (526 hours), thus, the optimal concentration of TF is 2 % for
353	the Zn anode stabilization. Fig. S15 shows the rate performance of the Zn Zn-
354	symmetric battery at current densities from 1 to 10 mA cm ⁻² . When cycled in the ZS
355	electrolyte, the cycle life of cell does not exceed 60 hours. In contrast, the Zn Zn
356	balanced battery demonstrates stable cyclic voltage even after 140 hours when cycled
357	in the 2 % TF electrolyte, indicating significantly improved rate performance. At 2 mA
358	cm ⁻² /1 mAh cm ⁻² , the symmetrical batteries with the 2 % TF electrolyte have a cycle
359	life of 3,800 hours that is much longer than the cell cycled in the ZS electrolyte (212
360	hours), as shown in Fig. 4b. The initial nucleation overpotentials at different current
361	currents are shown in Fig. S16. Regardless of the current density of 2 mA cm ⁻² or 5 mA
362	cm ⁻² , the nucleation overpotentials with additives are consistently lower than those
363	observed in ZS electrolyte. This suggests that the addition of 2 % TF in the electrolyte
364	enhances the migration number, which is consistent with the above test results. Both
365	Fig. 4c and Table S2 show that the addition of TF effectively prolongs the $Zn Zn-$
366	symmetric battery cycle life, showing comparable or even superior cycle life and
367	cumulative capacity to recently reported work on electrolyte additives[38, 40, 42, 44-
368	47, 49, 53-60].

Fig. 5 (a) Binding energies of Zn^{2+} with different compounds (left: H₂O, right: TF). (b) NMR of ¹H of electrolytes with different TF concentrations. (c) RDFs of Zn^{2+} -O (H₂O) collected in ZS and TF electrolytes. (d) Zn^{2+} solvation energies before and after the addition of TF. (e) ESP diagrams of solventized structures of (left) pristine Zn^{2+} -6H₂O and (right) TF-Zn²⁺-4H₂O.

Through a combination of theoretical calculations and experimental characterizations, the mechanism by which the TF additive inhibits the growth of Zn dendrites and side reactions is investigated. The interactions between Zn^{2+} and H_2O or TF are studied via

378	quantum chemical calculations. The binding energy between Zn ²⁺ and water molecules
379	(-344.5 kcal mol ⁻¹) is much lower than that between Zn^{2+} and TF molecules (-504.7
380	kcal mol ⁻¹), as shown in Fig. 5a, suggesting that the TF can replace water in the hydrated
381	Zn^{2+} solvated shell structure to form a new solvated structure. Nuclear magnetic
382	resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopy are used to
383	study the effects of TF on the solvated structure of the hydrated Zn ions in the ZS
384	electrolytes. As shown in Fig. 5b, the 2 H peak of pure D ₂ O is observed at 4.6808 ppm,
385	shifting to 4.7222 ppm after the addition of 2 M $ZnSO_4$. The shift indicates that a
386	reduction in the amount of free D_2O due to the formation of a strong bond between Zn^{2+}
387	ions and the oxygen atoms of D_2O . Upon the further addition of different concentrations
388	of TF (1 %, 2 % and 3 %) to the ZS electrolytes, the 2 H peak of D ₂ O shifts to 4.7216,
389	4.7207 and 4.7167 ppm, respectively, indicating that the TF molecules replace part of
390	D_2O within the solvation structure of hydrated Zn^{2+} , leading to the liberation of free
391	D ₂ O. Furthermore, FT-IR experiments show that the addition of TF regulates the
392	structure of the solvation shell of hydrated Zn^{2+} , as shown in Fig. S17. In Fig. S17a, as
393	the TF content increases, the stretching vibration of water molecules blueshifts,
394	indicating an increase of H ₂ O in the electrolytic solution. On the other hand, the O-H
395	stretched vibrational band of the electrolyte water shifts to a higher wavenumber with
396	the increasing TF content as shown in Fig. S17b. This shift is attributed to the
397	weakening of the hydrophilic bonds between water molecules. The amount of Zn^{2+} -O
398	(H ₂ O) bonds can be obtained by radial distribution functions (RDFs) calculations as
399	shown in Figs. 5c, which determine the amount of water molecules capable of forming

400	solvation structures with Zn^{2+} . As shown in Fig. 5c, there are six H ₂ O around Zn^{2+} in
401	the ZS electrolyte to produce the hydrated Zn ions with Zn^{2+} . In contrast, there is a
402	reduction in Zn^{2+} -O (H ₂ O) in the 2 % TF electrolyte, as shown in Fig. 5c. This occurs
403	because TF infiltrates the solvated sheath layer of hydrated Zn ions and substitutes some
404	water molecules in the zinc hydrate, changing the primary solvation of the zinc hydrate.
405	In the ZS electrolyte, the $[Zn(H_2O)_6]^{2+}$ ions undergo a desolvation process near the Zn
406	anode surface when subjected to an electric field, releasing a Zn ion and six highly
407	reactive H_2O molecules. These highly chemically active H_2O tend to break down into
408	H ⁺ and OH ⁻ , leading to the evolution of hydrogen and the production of the secondary
409	product ZSH. However, the entry of TF into the solvated structure of $[Zn(H_2O)_6]^{2+1}$
410	reduces the presence of highly reactive H ₂ O, thereby preventing the formation of
411	hydrogen and byproducts. It can be seen from Fig. 5d that the desolvation energies of
412	Zn^{2+} and H_2O before and after the addition of TF are -508.5 kcal mol ⁻¹ and -702.7 kcal
413	mol ⁻¹ , respectively. This implies that the addition of TF changes the structure of the
414	Zn^{2+} solution and reduces the amount of active H ₂ O. In addition, the introduction of a
415	TF molecule to replace two H ₂ O molecules in the original solvated structure
416	$[Zn(H_2O)_6]^{2+}$ leads to a significant reduction in the electrostatic potential value (Fig.
417	5e), indicating that electric repulsive forces around the Zn ion can be alleviated,
418	facilitating rapid Zn ²⁺ transport.

Fig. 6 (a) Schematic of $Zn//VO_2$ full cells. (b) CV curves of $Zn//VO_2$ full cell in ZS and 2 % TF electrolytes at a scan rate of 0.1 mV s⁻¹. (c) EIS plots of $Zn//VO_2$ cells assembled in ZS and 2 % TF electrolytes. (d) Rate performance of $Zn//VO_2$ full cells at current densities from 0.5 to 10 A g⁻¹. (e, f) Galvanostatic discharge/charge curves of $Zn//VO_2$ full cell in ZS and 2 % TF electrolytes at various current densities. (g) Long-term cycling of $Zn//VO_2$ full cells in ZS and 2 % TF electrolytes at 5 A g⁻¹.

To demonstrate the practicality of the 2 % TF electrolyte, we use VO₂ as the cathode and Zn metal as the anode with either ZS or 2 % TF electrolytes to assemble a full battery. The schematic of the full battery is shown in Fig. 6a. The XRD pattern and SEM image of VO₂ are shown in Fig. S18, indicating the success of VO₂ synthesis. The peaks observed at $5 - 10^{\circ}$ correspond to V₅O₁₂·6H₂O and V₆O₁₃, indicating incomplete reduction of vanadium during the hydrothermal process (Fig. S19). The CV curves of

432	$Zn//VO_2$ full cells with ZS and 2 % TF electrolytes show similar redox peaks (Fig. 6b),
433	indicating that the redox reactions of Zn and VO_2 are not affected by the addition of
434	TF. The EIS plots of $Zn//VO_2$ cells in the various electrolyte solutions (Fig. 6c) show
435	that the battery impedance does not change much after adding 2 % TF. As shown in
436	Figs. 6d – f, the specific capacities of $Zn//VO_2$ cell in the 2 % TF electrolyte are 362,
437	315, 290, 251, 196, 250, 284, 287 and 288 mAh g ⁻¹ at current densities of 0.5, 1, 2, 5,
438	10, 5, 2, 1 and 0.5 A g^{-1} , respectively, which are much higher than that of cell in the ZS
439	electrolyte. Long-term cycle behaviors of $Zn//VO_2$ cells before and after the addition
440	of TF at 5 A g^{-1} is shown in Fig. 5g. The full cell with the addition of TF exhibits a
441	superior performance with a capacity retention of 72.5 % after 500 cycles, significantly
442	better than that in the ZS electrolyte (34.4 %). Surprisingly, even at a small current
443	density of 0.5 A g ⁻¹ , a full battery cycled in the 2 % TF electrolyte exhibits superior
444	capacity retention rate (Fig. S20). Fig. S21 presents the SEM images of Zn anodes of
445	$Zn//VO_2$ full batteries cycled for 100 cycles, with and without the addition of TF. A
446	dendritic cluster surface is observed on the anode in the ZS electrolyte, indicating strong
447	dendritic growth and side reactions during the electrochemical reaction. In contrast, the
448	Zn anodes of the full cell in the 2 % TF electrolyte exhibit a smooth, flat, and dense
449	surface after 100 cycles. The morphology of VO_2 cathode material after cycling in the
450	TF electrolyte exhibits significant improvement compared to that observed after cycling
451	in ZS electrolyte (Figs. S21c, d).

454 **4.** Conclusion

To inhibit the formation of zinc (Zn) dendrites and by-products on Zn anodes during 455 electrochemical reactions, simple organic TF molecules have been developed as a 456 highly efficient electrolyte additive for aqueous zinc-ion batteries (AZIBs). Owing to 457 strong binding energies associated with Zn²⁺, 2,2,2-trifluoroether formate (TF) enables 458 infiltration into the solvated sheath of hydrated Zn^{2+} and reduce the amount of highly 459 reactive H₂O. Simultaneously, the TF molecules can be preferably adsorbed on the 460 surface of Zn metal, facilitating the uniform deposition of Zn^{2+} along the crystalline 461 surface of Zn (002). Accordingly, the asymmetric Zn//Cu battery with 2 % TF 462 electrolyte allows for stable cycling for over 3,800 cycles at 2 mA cm⁻² with the average 463 Columbic efficiency (CE) of 99.81 %. The Zn||Zn-symmetric batteries incorporated 2 % 464 TF demonstrate a long cycle life, exceeding 3,800 and 2,400 hours at 2 mA cm⁻² and 5 465 mA cm⁻², respectively. The addition of TF significantly prolongs the cycle life of the 466 Zn||Zn-symmetric batteries, showing comparable or even superior cycle life and 467 cumulative capacity to recently reported work on electrolyte additives^[54, 61]. Meanwhile, 468 the Zn//VO₂ cells with 2 % TF exhibit the high initial capacity of 276.8 mAh g^{-1} and 469 capacity retention rate of 72.5 % at 5 A g⁻¹ after 500 cycles. This work provides a 470 comprehensive electrolyte design strategy aimed at suppressing Zn dendrite growth and 471 minimizing side reactions, thereby enabling the realization of long-lasting Zn metal 472 anodes in AZIBs. 473

474

475 Acknowledgments

This work was supported by National College Students' innovation and entrepreneurship training program (202310636004) and Sichuan Science and Technology Program (2023NSFSC0439). The authors also appreciate the Shiyanjia Lab (www.shiyanjia.com) for the SEM tests. We appreciate eceshi (www.eceshi.com) for the FI-TR tests. The authors also appreciate the Beijing Nordson Technology Co.,

- 481 LTD (www.kexingtest.com) for the SEM tests.
- 482

483 Notes

- 484 The authors declare no competing financial interest.
- 485
- 486 **References**
- 487 [1] H. Yang, D. Chen, R. Zhao, G. Li, H. Xu, L. Li, X. Liu, G. Li, D. Chao, W. Han,
- 488 Reunderstanding aqueous Zn electrochemistry from interfacial specific adsorption of solvation
- 489 structures, Energy & Environmental Science 16(7) (2023) 2910-2923.
- 490 https://doi.org/10.1039/d3ee00658a.
- 491 [2] X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao, H. Liang, H. Wang, D. Chao, F. Wang, Y. Qiao, H.
- 492 Zhou, S.-G. Sun, Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries,
- 493 Joule 7(6) (2023) 1145-1175. <u>https://doi.org/10.1016/j.joule.2023.05.004</u>.
- 494 [3] Y. Chen, Q. Li, P. Wang, X. Liao, J. Chen, X. Zhang, Q. Zheng, D. Lin, K.h. Lam, High-
- 495 Energy-Density Cathode Achieved via the Activation of a Three-Electron Reaction in Sodium
- 496 Manganese Vanadium Phosphate for Sodium-Ion Batteries, Small 19(50) (2023) 2304002.
- 497 https://doi.org/10.1002/smll.202304002.
- 498 [4] X. Shi, Z. Xu, Y. Tang, Y. Zhao, B. Lu, J. Zhou, Nitrogen/phosphorus co-doped carbon
- 499 decorated with metallic zinc for high-performance potassium-ion batteries, Applied Physics
- 500 Letters 123(4) (2023). <u>https://doi.org/10.1063/5.0161658</u>.
- 501 [5] T. Wang, Y. Zhang, J. You, F. Hu, Recent Progress in Aqueous Zinc-Ion Batteries: From
- 502 FundamentalScience to Structure Design, The Chemical Record 23(5) (2023).

- 503 https://doi.org/10.1002/tcr.202200309.
- [6] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun, B. Jia, S. Zhang, T. Ma, Zinc Anode for Mild
- 505 Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives, Nano-Micro Letters
- 506 14(1-47) (2022). https://doi.org/10.1007/s40820-021-00782-5.
- 507 [7] Y. Chen, X. Liao, P. Wang, J. Chen, X. Zhang, X. Wu, S.C. Smith, D. Lin, X. Tan, Q.
- 508 Zheng, A high-energy-density NASICON-type Na3V1.25Ga0.75(PO4)3 cathode with
- 509 reversible V4+/V5+ redox couple for sodium ion batteries, Journal of Colloid and Interface
- 510 Science 653 (2024) 1-10. <u>https://doi.org/10.1016/j.jcis.2023.09.057</u>.
- 511 [8] C. Nie, G. Wang, D. Wang, M. Wang, X. Gao, Z. Bai, N. Wang, J. Yang, Z. Xing, S. Dou,
- 512 Recent Progress on Zn Anodes for Advanced Aqueous Zinc-Ion Batteries, Advanced Energy
- 513 Materials 13(28) (2023). https://doi.org/10.1002/aenm.202300606.
- 514 [9] L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu, S.-X. Dou, S.-Z. Qiao, Regulation methods
- 515 for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries,
- 516 Energy & Environmental Science 14(11) (2021) 5669-5689.
- 517 https://doi.org/10.1039/d1ee02021h.
- 518 [10] H. Cao, X. Zhang, B. Xie, X. Huang, F. Xie, Y. Huo, Q. Zheng, R. Zhao, Q. Hu, L. Kang,
- 519 S. Liu, D. Lin, Unraveling the Solvation Structure and Electrolyte Interface through Carbonyl
- 520 Chemistry for Durable and Dendrite-Free Zn anode, Advanced Functional Materials 33(46)
- 521 (2023) 2305638. https://doi.org/10.1002/adfm.202305683.
- 522 [11] X. Zhang, J. Chen, H. Cao, X. Huang, Y. Liu, Y. Chen, Y. Huo, D. Lin, Q. Zheng, K.h.
- 523 Lam, Efficient Suppression of Dendrites and Side Reactions by Strong Electrostatic Shielding
- 524 Effect via the Additive of Rb2SO4 for Anodes in Aqueous Zinc-Ion Batteries, Small 19(52)

- 525 (2023) 2303906. https://doi.org/10.1002/smll.202303906.
- 526 [12] J. Chen, L. Su, X. Zhang, Y. Chen, P. Wang, Q. Zheng, D. Lin, Ethylene Glycol
- 527 Intercalation Engineered Interplanar Spacing and Redox Activity of Ammonium Vanadate
- 528 Nanoflowers as a High-Performance Cathode for Aqueous Zinc–Ion Batteries, ACS
- 529 Sustainable Chemistry & Engineering 11(33) (2023) 12467-12476.
- 530 https://doi.org/10.1021/acssuschemeng.3c03386.
- 531 [13] H. Li, S. Guo, H. Zhou, Recent advances in manipulating strategy of aqueous electrolytes
- 532 for Zn anode stabilization, Energy Storage Materials 56 (2023) 227-257.
- 533 https://doi.org/10.1016/j.ensm.2023.01.027.
- 534 [14] J. Yang, R. Zhao, Y. Wang, Z. Hu, Y. Wang, A. Zhang, C. Wu, Y. Bai, Insights on
- 535 Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constructing Techniques,
- 536 Applicability, and Prospective, Advanced Functional Materials 33(14) (2023) 2213510.
- 537 https://doi.org/10.1002/adfm.202213510.
- 538 [15] X. Li, Z. Chen, P. Ruan, X. Hu, B. Lu, X. Yuan, S. Tian, J. Zhou, Inducing preferential
- 539 growth of the Zn (002) plane by using a multifunctional chelator for achieving highly reversible
- 540 Zn anodes, Nanoscale 16(6) (2024) 2923-2930. https://doi.org/10.1039/d3nr05699f.
- 541 [16] J. Li, Z. Liu, S. Han, P. Zhou, B. Lu, J. Zhou, Z. Zeng, Z. Chen, J. Zhou, Hetero Nucleus
- 542 Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries, Nano-Micro Letters
- 543 15(1) (2023). https://doi.org/10.1007/s40820-023-01206-2.
- 544 [17] W. Yang, Y. Yang, H. Yang, H. Zhou, Regulating Water Activity for Rechargeable Zinc-
- 545 Ion Batteries: Progress and Perspective, ACS Energy Letters 7(8) (2022) 2515-2530.
- 546 https://doi.org/10.1021/acsenergylett.2c01152.

- 547 [18] X. Zhang, J.P. Hu, N. Fu, W.B. Zhou, B. Liu, Q. Deng, X.W. Wu, Comprehensive review
- 548 on zinc-ion battery anode: Challenges and strategies, InfoMat 4(7) (2022) e12306.
- 549 https://doi.org/10.1002/inf2.12306.
- 550 [19] M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan, Y. Chen, Polycation-Regulated Electrolyte
- and Interfacial Electric Fields for Stable Zinc Metal Batteries, Angewandte Chemie
- 552 International Edition 62(27) (2023) e202302701. https://doi.org/10.1002/anie.202302701.
- 553 [20] Y. Liang, M. Qiu, P. Sun, W. Mai, Comprehensive Review of Electrolyte Modification
- 554 Strategies for Stabilizing Zn Metal Anodes, Advanced Functional Materials 33(51) (2023)
- 555 2304878. https://doi.org/10.1002/adfm.202304878.
- 556 [21] B. Liu, X. Yuan, Y. Li, Colossal Capacity Loss during Calendar Aging of Zn Battery
- 557 Chemistries, ACS Energy Letters 8(9) (2023) 3820-3828.
- 558 https://doi.org/10.1021/acsenergylett.3c01282.
- 559 [22] Z. Zhang, Y. Zhang, M. Ye, Z. Wen, Y. Tang, X. Liu, C.C. Li, Lithium Bis(oxalate)borate
- 560 Additive for Self-repairing Zincophilic Solid Electrolyte Interphases towards Ultrahigh-rate and
- 561 Ultra-stable Zinc Anodes, Angewandte Chemie International Edition 62 (2023) e202311032.
- 562 <u>https://doi.org/10.1002/anie.202311032</u>.
- 563 [23] H. Li, R. Zhao, W. Zhou, L. Wang, W. Li, D. Zhao, D. Chao, Trade-off between
- 564 Zincophilicity and Zincophobicity: Toward Stable Zn-Based Aqueous Batteries, JACS Au 3(8)
- 565 (2023) 2107-2116. https://doi.org/10.1021/jacsau.3c00292.
- 566 [24] Y.F. Tian, S.J. Tan, Z.Y. Lu, D.X. Xu, H.X. Chen, C.H. Zhang, X.S. Zhang, G. Li, Y.M.
- 567 Zhao, W.P. Chen, Q. Xu, R. Wen, J. Zhang, Y.G. Guo, Insights into Anion-Solvent
- 568 Interactions to Boost Stable Operation of Ether-Based Electrolytes in Pure-

- 569 SiOx||LiNi0.8Mn0.1Co0.1O2 Full Cells, Angewandte Chemie International Edition 62(33)
- 570 (2023) e202305988. https://doi.org/10.1002/anie.202305988.
- 571 [25] H. Yu, D. Chen, T. Zhang, M. Fu, J. Cai, W. Wei, X. Ji, Y. Chen, L. Chen, Insight on the
- 572 Double-Edged Sword Role of Water Molecules in the Anode of Aqueous Zinc-Ion Batteries,
- 573 Small Structures 3(12) (2022). <u>https://doi.org/10.1002/sstr.202200143</u>.
- 574 [26] H. Yu, C. Lv, C. Yan, G. Yu, Interface Engineering for Aqueous Aluminum Metal
- 575 Batteries: Current Progresses and Future Prospects, Small Methods (2023).
- 576 https://doi.org/10.1002/smtd.202300758.
- 577 [27] F. Wu, Y. Chen, Y. Chen, R. Yin, Y. Feng, D. Zheng, X. Xu, W. Shi, W. Liu, X. Cao,
- 578 Achieving Highly Reversible Zinc Anodes via N, N-Dimethylacetamide Enabled Zn-Ion
- 579 Solvation Regulation, Small 18(27) (2022) 2202363. <u>https://doi.org/10.1002/smll.202202363</u>.
- 580 [28] J. Luo, L. Xu, Y. Zhou, T. Yan, Y. Shao, D. Yang, L. Zhang, Z. Xia, T. Wang, L. Zhang, T.
- 581 Cheng, Y. Shao, Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient
- 582 Anode Reversibility in Aqueous Zn-Ion Batteries, Angewandte Chemie International Edition

583 62(21) (2023) e202302302. https://doi.org/10.1002/anie.202302302.

- 584 [29] J. Li, S. Zhou, Y. Chen, X. Meng, A. Azizi, Q. He, H. Li, L. Chen, C. Han, A. Pan, Self-
- 585 Smoothing Deposition Behavior Enabled by Beneficial Potential Compensating for Highly
- 586 Reversible Zn-Metal Anodes, Advanced Functional Materials (2023) 2307201.
- 587 https://doi.org/10.1002/adfm.202307201.
- 588 [30] C. You, R. Wu, X. Yuan, L. Liu, J. Ye, L. Fu, P. Han, Y. Wu, An inexpensive electrolyte
- 589 with double-site hydrogen bonding and a regulated Zn2+ solvation structure for aqueous Zn-
- 590 ion batteries capable of high-rate and ultra-long low-temperature operation, Energy &

- 591 Environmental Science 16(11) (2023) 5096-5107. https://doi.org/10.1039/d3ee01741a.
- [31] R. Wang, Q. Ma, L. Zhang, Z. Liu, J. Wan, J. Mao, H. Li, S. Zhang, J. Hao, L. Zhang, C.
- 593 Zhang, An Aqueous Electrolyte Regulator for Highly Stable Zinc Anode Under –35 to 65 °C,
- 594 Advanced Energy Materials 13(40) (2023) 2302543.
- 595 https://doi.org/10.1002/aenm.202302543.
- [32] L. Liu, H. Lu, C. Han, X. Chen, S. Liu, J. Zhang, X. Chen, X. Wang, R. Wang, J. Xu, H.K.
- 597 Liu, S.X. Dou, W. Li, Salt Anion Amphiphilicity-Activated Electrolyte Cosolvent Selection
- 598 Strategy toward Durable Zn Metal Anode, ACS Nano 17(22) (2023) 23065-23078.
- 599 https://doi.org/10.1021/acsnano.3c08716.
- 600 [33] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, Journal of
- 601 Computational Chemistry 33(5) (2012) 580-592. https://doi.org/10.1002/jcc.22885.
- [34] A.D. W. Humphrey, K. Schulten, VMD: Visual Molecular Dynamics, J Mol Graph 14
- 603 (1996) 33.
- 604 [35] M.T.C. R. F. W. Bader, J. R. Cheeseman, C. Chang,, Properties of Atoms in Molecules:
- 605 Atomic Volumes, J. Am. Chem. Soc 109 (1987) 7968.
- 606 [36] M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang,
- 607 J. Zhou, S. Liang, Surface-Preferred Crystal Plane for a Stable and Reversible Zinc Anode,
- 608 Advanced Materials 33(21) (2021) 2100187. https://doi.org/10.1002/adma.202100187.
- [37] T.C. Li, C. Lin, M. Luo, P. Wang, D.-S. Li, S. Li, J. Zhou, H.Y. Yang, Interfacial Molecule
- 610 Engineering for Reversible Zn Electrochemistry, ACS Energy Letters 8(8) (2023) 3258-3268.
- 611 https://doi.org/10.1021/acsenergylett.3c00859.
- 612 [38] Y. Wang, L.e. Mo, X. Zhang, Y. Ren, T. Wei, Z. Li, Y. Huang, H. Zhang, G. Cao, L. Hu,

- 613 Facet-Termination Promoted Uniform Zn (100) Deposition for High-Stable Zinc-Ion Batteries,
- 614 Advanced Energy Materials 13(31) (2023) 2301517.
- 615 https://doi.org/10.1002/aenm.202301517.
- 616 [39] Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang, C. Wang, Dendrite-free Zn anode enabled by
- 617 anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells,
- 618 Energy & Environmental Science 16(2) (2023) 687-697. https://doi.org/10.1039/d2ee03528f.
- [40] J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang, T. Zhou, S. Zhang, L. Zhang, Q. Lu, C.
- 620 Zhang, Z. Guo, A Double-Functional Additive Containing Nucleophilic Groups for High-
- 621 Performance Zn-Ion Batteries, ACS Nano 17(2) (2023) 1610-1621.
- 622 https://doi.org/10.1021/acsnano.2c11357.
- 623 [41] G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie, S. Di, Y. Wang, L. Wang, N. Zhang,
- 624 Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries,
- 625 Energy Storage Materials 47 (2022) 203-210. https://doi.org/10.1016/j.ensm.2022.02.019.
- 626 [42] Z. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang, L. Zhang, H. Li, Q. Luo, J. Wu, T. Zhou, J.
- 627 Mao, L. Zhang, C. Zhang, Z. Guo, A Dual-Functional Organic Electrolyte Additive with
- 628 Regulating Suitable Overpotential for Building Highly Reversible Aqueous Zinc Ion Batteries,
- 629 Advanced Functional Materials 34(5) (2023) 2214538.
- 630 https://doi.org/10.1002/adfm.202214538.
- 631 [43] H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang, L. Zhou, W. Wei, J. Ma, X. Ji, Y. Chen, L. Chen,
- 632 In Situ Construction of Anode–Molecule Interface via Lone-Pair Electrons in Trace Organic
- 633 Molecules Additives to Achieve Stable Zinc Metal Anodes, Advanced Energy Materials 13(22)
- 634 (2023) 2300550. https://doi.org/10.1002/aenm.202300550.

Journal Pre-proofs

- 635 [44] M. Kim, S.J. Shin, J. Lee, Y. Park, Y. Kim, H. Kim, J.W. Choi, Cationic Additive with a
- 636 Rigid Solvation Shell for High-Performance Zinc Ion Batteries, Angewandte Chemie
- 637 International Edition 61(47) (2022) e202211589. <u>https://doi.org/10.1002/anie.202211589</u>.
- [45] T. Wei, Y. Ren, Y. Wang, L. Mo, Z. Li, H. Zhang, L. Hu, G. Cao, Addition of Dioxane in
- 639 Electrolyte Promotes (002)-Textured Zinc Growth and Suppressed Side Reactions in Zinc-Ion
- 640 Batteries, ACS Nano 17(4) (2023) 3765-3775. <u>https://doi.org/10.1021/acsnano.2c11516</u>.
- 641 [46] C. Li, G. Qu, X. Zhang, C. Wang, X. Xu, Electrode/Electrolyte Interfacial Chemistry
- 642 Modulated by Chelating Effect for High-Performance Zinc Anode, Energy & Environmental
- 643 Materials 0 (2023) e12608. https://doi.org/10.1002/eem2.12608.
- [47] F. Yang, J.A. Yuwono, J. Hao, J. Long, L. Yuan, Y. Wang, S. Liu, Y. Fan, S. Zhao, K.
- 645 Davey, Z. Guo, Understanding H(2) Evolution Electrochemistry to Minimize Solvated Water
- 646 Impact on Zinc-Anode Performance, Adv Mater 34(45) (2022) e2206754.
- 647 https://doi.org/10.1002/adma.202206754.
- [48] Y. Lyu, J.A. Yuwono, P. Wang, Y. Wang, F. Yang, S. Liu, S. Zhang, B. Wang, K. Davey,
- J. Mao, Z. Guo, Organic pH Buffer for Dendrite-Free and Shuttle-Free Zn-I2 Batteries,
- 650 Angewandte Chemie International Edition 62(21) (2023) e202303011.
- 651 https://doi.org/10.1002/anie.202303011.
- 652 [49] N. Wang, X. Chen, H. Wan, B. Zhang, K. Guan, J. Yao, J. Ji, J. Li, Y. Gan, L. Lv, L. Tao,
- 653 G. Ma, H. Wang, J. Zhang, H. Wang, Zincophobic Electrolyte Achieves Highly Reversible Zinc
- -Ion Batteries, Advanced Functional Materials 33(27) (2023) 2300795.
- 655 https://doi.org/10.1002/adfm.202300795.
- 656 [50] B. Niu, Z. Li, D. Luo, X. Ma, Q. Yang, Y.-E. Liu, X. Yu, X. He, Y. Qiao, X. Wang, Nano-

Journal Pre-proofs

- 657 scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for
- 658 long-lasting and wide-temperature Zn-based energy storage, Energy & Environmental
- 659 Science 16(4) (2023) 1662-1675. https://doi.org/10.1039/d2ee04023a.
- [51] T. Zhang, J. Yang, H. Wang, H. Yu, Q. Li, L. Chen, Y. Chen, T. Wang, A solubility-limited,
- 661 non-protonic polar small molecule co-solvent reveals additive selection in inorganic zinc salts,
- 662 Energy Storage Materials 65 (2024). https://doi.org/10.1016/j.ensm.2023.103085.
- 663 [52] H. Yu , D. Chen , X. Ni, P. Qing, C. Yan, W. Wei, J. Ma, X. Ji, Y. Chen, L. Chen,
- 664 Reversible Adsorption with Oriented Arrangement of Zwitterionic Additive Stabilizes
- 665 Electrodes for Ultralong-Life Zn-Ion Batteries, Energy Environ. Sci. 16 (2023) 2684-2695.
- 666 https://doi.org/10.1039/D3EE00982C.
- 667 [53] Z. Wang, J. Diao, J.N. Burrow, K.K. Reimund, N. Katyal, G. Henkelman, C.B. Mullins,
- 668 Urea-Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and
- 669 Confined Water Activity for High-Stability and High-Voltage Zinc-Ion Batteries, Advanced
- 670 Functional Materials 33(48) (2023) 2304791. https://doi.org/10.1002/adfm.202304791.
- [54] M. Kim, J. Lee, Y. Kim, Y. Park, H. Kim, J.W. Choi, Surface Overpotential as a Key Metric
- 672 for the Discharge-Charge Reversibility of Aqueous Zinc-Ion Batteries, J Am Chem Soc
- 673 145(29) (2023) 15776-15787. https://doi.org/10.1021/jacs.3c01614.
- [55] R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong, Y. Dai, Z. Du, Z. Zhang, J. Li, F. Guo,
- 675 X. Gao, H. Dong, J. Zhu, X. Wang, G. He, Trace Amounts of Triple-Functional Additives
- 676 Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective,
- 677 Nanomicro Lett 15(1) (2023) 81. https://doi.org/10.1007/s40820-023-01050-4.
- [56] S. jiao, J. Fu, Q. Yin, H. Yao, H. Hu, Reconstruction of helmholtz plane to stabilize zinc

- 679 metal anode/electrolyte interface, Energy Storage Materials 59 (2023) 102774.
- 680 https://doi.org/10.1016/j.ensm.2023.102774.
- [57] L. Zheng, H. Li, X. Wang, Z. Chen, C. Hu, K. Wang, G. Guo, S. Passerini, H. Zhang,
- 682 Competitive Solvation-Induced Interphases Enable Highly Reversible Zn Anodes, ACS
- 683 Energy Letters 8(5) (2023) 2086-2096. https://doi.org/10.1021/acsenergylett.3c00650.
- 684 [58] Y. Dai, C. Zhang, W. Zhang, L. Cui, C. Ye, X. Hong, J. Li, R. Chen, W. Zong, X. Gao, J.
- 685 Zhu, P. Jiang, Q. An, D.J.L. Brett, I.P. Parkin, G. He, L. Mai, Reversible Zn Metal Anodes
- 686 Enabled by Trace Amounts of Underpotential Deposition Initiators, Angew Chem Int Ed Engl
- 687 62(18) (2023) e202301192. https://doi.org/10.1002/anie.202301192.
- 688 [59] Y. Quan, M. Yang, M. Chen, W. Zhou, X. Han, J. Chen, B. Liu, S. Shi, P. Zhang,
- 689 Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free
- 690 behavior and good anti-freezing ability, Chemical Engineering Journal 458 (2023) 141392.
- 691 https://doi.org/10.1016/j.cej.2023.141392.
- [60] H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz, B.B. Xie, Y. Zhong, Y. Hu, Modulating
- 693 Cation Migration and Deposition with Xylitol Additive and Oriented Reconstruction of
- 694 Hydrogen Bonds for Stable Zinc Anodes, Angewandte Chemie International Edition 62(10)
- 695 (2023) e202218872. https://doi.org/10.1002/anie.202218872.
- [61] H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz, B.B. Xie, Y. Zhong, Y. Hu, Modulating
- 697 Cation Migration and Deposition with Xylitol Additive and Oriented Reconstruction of
- 698 Hydrogen Bonds for Stable Zinc Anodes, Angewandte Chemie International Edition 62(10)
- 699 (2023) e202218872 https://doi.org/10.1002/anie.202218872.
- 700