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Highlights 

 Bone marrow (BM) models are becoming increasingly biomimetic. 

 These models help investigate the impact of BM elements on haematopoiesis. 

 Future models could enhance therapies for BM-associated disorders and diseases. 
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Abstract 

The bone marrow (BM) niche is a complex microenvironment that provides the signals 

required for regulation of hematopoietic stem cells (HSCs) and the process of 

haematopoiesis they are responsible for. Bioengineered models of the BM niche 

incorporate various elements of the in vivo BM microenvironment, including cellular 

components, soluble factors, a 3D environment, mechanical stimulation of included cells, 

and perfusion. Recent advances in the bioengineering field have resulted in a spate of new 

models that shed light on BM function and are approaching precise imitation of the BM 

niche. These models promise to improve our understanding of the in vivo microenvironment 

in health and disease. They also aim to serve as platforms for HSC manipulation, or as 

preclinical models for screening novel therapies for BM-associated disorders and diseases. 

 

Highlights 

 Incorporating various elements of the BM niche has resulted in increasingly 

biomimetic BM models. 

 The influence of several properties of the in vivo BM niche have been clarified by 

these models. 

                  



 Future BM models have the potential to expand HSCs in vitro for curative transplants 

to treat BM-associated malignancies, and aid development of novel treatments for 

BM-associated disorders and diseases. 

 

1. Introduction 

Models of the bone marrow (BM) niche promise to revolutionize our understanding of both 

physiological and pathological haematology and immunology, while also facilitating 

therapeutic advancements targeting BM-associated disorders and diseases. One of the 

primary goals of these niches is to manipulate haematopoietic stem cells (HSCs), a rare 

population of cells (~0.01-0.04% of total BM mononuclear cells (Zon, 2008)) which reside 

within the niche and are responsible for the process of haematopoiesis, the continuous 

production of blood and immune cells throughout an organism’s life (Seita and Weissman, 

2010). HSCs exist in a hierarchy at the top of which sits naïve, long-term HSCs (LT-HSCs), a 

self-renewing,  multipotent subpopulation of HSCs that lasts for an individual’s entire 

lifespan (Wilson et al., 2008; Fares, Calvanese and Mikkola, 2022) and is responsible for the 

production of more proliferative progenitors (Cheshier et al., 1999; Yamamoto et al., 2013). 

LT-HSCs maintain long-term engraftment capacity (Morrison and Weissman, 1994; Dykstra 

et al., 2007; Till and McCulloch, 2011), and are critically important for HSC transplant (HSCT), 

a curative treatment for BM malignancies and disorders (Schmitz et al., 2002; Locatelli, 

2005; Hulbert and Shenoy, 2018; Willasch et al., 2020). Occasionally LT-HSCs will produce 

short term HSCs (ST-HSCs) via asymmetrical cell division (Busch et al., 2015). ST-HSCs are 

more metabolically and mitotically active than LT-HSCs, and possess reduced repopulation 

capacity (Wilson et al., 2008). ST-HSCs differentiate into multipotent progenitors (MPPs), 

which in turn produce lineage restricted progeny via an oligopotent cell step (Zon, 2008; 

Pietras et al., 2016). 

 

The BM niche itself is a highly complex organ. It maintains the HSC pool and haematopoietic 

homeostasis using a variety of stimuli. The niche is found within the lumen of long and axial 

bones (Morrison and Scadden, 2014), and is permeated by a network of tiny blood vessels 

(Nilsson et al., 1998; Kunisaki et al., 2013; Acar et al., 2015). Advances in in vivo imaging 

techniques have demonstrated that around this vasculature there exists two BM “sub-

niches”, named the sinusoidal and arteriolar niches after the blood vessels they are located 

                  



around. Sinusoids carry deoxygenated blood and are distributed throughout the softer 

central BM cavity (Nilsson et al., 1998) while arterioles carry oxygenated blood and are 

primarily found close to the stiff endosteum’s surface (Pinho and Frenette, 2019). Despite 

conflicting evidence regarding the exact position of HSCs within the BM (Kunisaki et al., 

2013; Acar et al., 2015), these sub-niches are strongly believed to influence the HSCs that 

reside within them, with the arteriolar niche enriched for LT-HSCs, even though a larger 

total HSC population is found in the sinusoidal niche (Pinho and Frenette, 2019). Various 

non-haematopoietic cell types also reside within the BM niche and have been demonstrated 

to influence HSCs’ function and maintenance (see Table 1). Another important component 

of the BM niche is the extracellular matrix (ECM)  (Lee-Thedieck, Schertl and Klein, 2022) 

which interacts with cells via non-uniform distribution of ECM proteins such as collagen, 

fibronectin and laminin (Coutu et al., 2017), as well as variable mechanical properties  

within a characteristically low stiffness range (Jansen et al., 2015; Chaudhuri et al., 2020; 

Chen et al., 2020). In addition, oxygen saturation plays a key role in the niche’s interaction 

with HSCs (Spencer et al., 2014; Ross et al., 2019), as does blood flow (North et al., 2009; 

Winkler et al., 2010; Bixel et al., 2017). Non-cellular elements of the BM niche, their role 

within the niche, and how they have been utilised in model BM niches are summarised in 

Table 2. 

 

Other extramedullary sites of haematopoiesis exist over the course of development 

(Mikkola and Orkin, 2006; Crane, Jeffery and Morrison, 2017) and have been observed in 

response to acute haematopoietic stress (Inra et al., 2015; Crane, Jeffery and Morrison, 

2017). Although these niches are spatially distinct from the BM niche, many similarities are 

observed; they are highly vascularised and populated by stromal and endothelial cells with 

similar protein expression profiles to those observed in the BM niche (Gekas et al., 2005; 

Inra et al., 2015; Khan et al., 2016). While this review will focus on BM niche models, 

research on these alternative haematopoietic sites could further elucidate the precise 

mechanisms of haematopoiesis and provide new avenues for its manipulation (Michaels et 

al., 2023). 

 

BM niche models emulate the in vitro BM niche. The current gold standard for BM models 

are animal models (Haas et al., 2018; P. Zhang et al., 2022). However, a lack of comparability 

                  



with human biology, complexity obscuring specific mechanisms of the niche, and a lack of 

reproducibility and availability (Ingber, 2020; Lee-Thedieck et al., 2022) hamper the success 

of animal models. Bioengineered in vitro BM models that replicate aspects of the BM niche 

are now emerging as a viable alternative. Early in vitro BM niche models aimed to expand 

HSCs for HSCT (reviewed: Chatterjee et al., 2021; Fares, Calvanese and Mikkola, 2022). 

However, this ambition was met with mixed results, primarily due to expanded HSCs’ 

heterogeneity, with the cells produced mostly being ST-HSCs, MPPs, and lineage-restricted 

progenitors, leading to reduced long-term engraftment capacity (Wagner et al., 2016). A few 

recent systems successfully demonstrated the plausibility of HSC expansion without the 

associated loss of engraftment capacity, yet these systems lack integration of the physical 

and functional properties of the bone marrow niche, instead relying on small molecules or 

hydrogels (Meaker and Wilkinson, 2024). Over the past decade, in vitro niche models have 

shifted their objective away from HSC expansion and towards accurately replicating aspects 

of the BM niche to shed light on the haematopoietic process, harnessing it for clinical 

applications, and understanding how it goes wrong in haematological diseases and disorders 

(Méndez-Ferrer et al., 2020). Foundational research in simple in vitro and animal models, 

combined with recent advances in the tissue engineering and haematology fields, has 

galvanised in vitro BM niche models’ development. This has resulted in a wealth of new 

models, the current state of which will be discussed (see Figure 1a), as well as potential 

applications and the future of the field (see Figure 1b). 

 
Table 1. Bone marrow niche cellular components and their role within the BM niche. 

BM niche cell type Role of cell type References 

HSCs HSCs are responsible for 

haematopoiesis. They 

produce haematopoietic 

cells that regulate that 

form the blood and 

immune systems. 

(Morrison and Weissman, 1994; Cheshier et 

al., 1999; Dykstra et al., 2007; Wilson et al., 

2008; Zon, 2008; Seita and Weissman, 2010; 

Till and McCulloch, 2011; Yamamoto et al., 

2013; Morrison and Scadden, 2014; Fares, 

Calvanese and Mikkola, 2022) 

MSCs MSCs reside near HSCs in 

the BM niche. Nestin+ 

MSCs are particularly 

(Nichols et al., 2009; Méndez-Ferrer et al., 

2010; De Barros et al., 2010; Tiwari et al., 

2012; Lai et al., 2013; Lima et al., 2013; 

                  



important, as they 

produce many of the 

paracrine signals 

associated with HSC 

maintenance. 

Rödling et al., 2017; Bray et al., 2017; 

Futrega et al., 2017; Bourgine et al., 2018; 

Aleman et al., 2019; Bianco et al., 2019; Ma 

et al., 2020; David B Chou et al., 2020; 

Goranov et al., 2020; Nelson et al., 2021a; 

Donnelly et al., 2022; Glaser et al., 2022) 

Osteoblasts Osteoblasts have been 

hypothesised to regulate 

haematopoiesis through 

paracrine and juxtracrine 

signalling. However, 

recent studies 

demonstrated that HSCs 

do not spatially associate 

with osteoblasts, and that 

osteolineage cells don’t 

significantly contribute to 

the signalling milieu that 

influences HSC 

maintenance. 

(Calvi et al., 2003; Nichols et al., 2009; De 

Barros et al., 2010; Bromberg et al., 2012; 

Greenbaum et al., 2013; Lai et al., 2013; 

Bowers et al., 2015; Ma et al., 2020; Nelson 

et al., 2021a) 

Osteoclasts Osteoclasts influence 

MSCs, allowing them to 

attract HSCs for 

colonisation of the 

nascent BM niche during 

development. They also 

remodel the perinatal 

niche and aid with 

vascularisation. 

(Mansour et al., 2012; Zeytin et al., 2022) 

 

Macrophages Macrophages produce 

several soluble factors 

(Hur et al., 2016; Li et al., 2018) 

                  



and present surface 

antigens that influence 

haematopoiesis in a 

paracrine and juxtracrine 

manner, respectively. 

Endothelial cells HSCs colocalise with 

vasculature in the in vivo 

BM niche. There is a 

possibility that these cells 

influence HSCs. 

(Kiel et al., 2005; De Barros et al., 2010; 

Ding et al., 2012; Perlin, Sporrij and Zon, 

2017; Bray et al., 2017; Aleman et al., 2019; 

Braham et al., 2019; David B Chou et al., 

2020; Goranov et al., 2020; Ma et al., 2020; 

Nelson et al., 2021b; Heil et al., 2021) 

  

 

Megakaryocytes  Megakaryocytes are 

derived from HSC 

progenitors, produce 

platelets, regulate HSC 

fate and interact with 

many cells within the BM 

niche, contributing to its 

regulation. 

(Stone, Nascimento and Barrachina, 2022)  

Fibroblasts Fibroblasts provide 

mechanical/physical 

support to HSCs during 

proliferation and 

differentiation by 

secreting and modulating 

the ECM. 

(LeBleu and Neilson, 2020; Lee-Thedieck, 

Schertl and Klein, 2022) 

 

Adipocytes Adipocytes have potential 

suppressive effects on 

(Naveiras et al., 2009) 

 

                  



haematopoiesis within 

the bone-marrow niche. 

Nervous cells Sympathetic nerves have 

been implicated in HSC 

mobilisation, 

maintenance and 

recovery following 

genotoxic insult. 

(Rameshwar and Gascon, 1995; Broome 

and Miyan, 2000; Katayama et al., 2006; 

Lucas et al., 2013; Maryanovich et al., 2018; 

Xu et al., 2018) 

 
 
 
 
Table 2. BM niche components and their impact when included in niche models 

Model BM niche 

element 

Impact of the element References 

BM niche cells Inclusion of BM resident 

cells simulates the complex 

cellular composition of the 

BM niche, with included 

cells interacting with HSCs 

via juxtracrine and/or 

paracrine signalling. 

(Pinho and Frenette, 2019; Xiao, 

McGuinness, et al., 2022) 

Soluble 

factors/cytokines 

The use of soluble factors 

has been shown to improve 

HSC proliferation, however 

often the expanded cells 

are in the ST-HSC or 

progenitor compartment 

and lack long-term 

engraftment capacity 

(Boitano et al., 2010; Lai et al., 2013; Bray et 

al., 2017; Wilkinson et al., 2019; Sánchez-

Lanzas, Kalampalika and Ganuza, 2022) 

Extracellular 

matrix (ECM) 

ECM components such as 

fibronectin, collagens, 

(Salmerón-Sánchez and Dalby, 2016; 

Donnelly et al., 2022; Xiao, Donnelly, et al., 

                  



components vitronectin and laminin 

have been shown to affect 

MSCs’ and HSCs’ 

phenotypes by 

sequestering and 

presenting signalling 

molecules and growth 

factors, as well as 

interacting with the cells 

mechanically. 

2022)  

Hydrogel BM is a low-stiffness 

natural hydrogel. The use 

of hydrogels allows the 3D 

nature of the in vivo BM 

niche to be replicated. Gels 

can also provide physical, 

mechanical, and chemical 

stimuli to cells in a BM 

niche model. 

(Leisten et al., 2012; Bray et al., 2017; 

Rödling et al., 2017; Aleman et al., 2019; 

Braham et al., 2019; David B Chou et al., 

2020; Nelson et al., 2021a; Donnelly et al., 

2022) 

 

Non-hydrogel 

scaffold 

Non-hydrogel scaffolds that 

mimic the structure of 

cortical bone, such as 

ceramaics, colloidal crystals 

and hydroxyapatite, 

possess many of the same 

3D benefits as hydrogels 

and afford the opportunity 

to add other properties, 

such as control over 

cellular localisation e.g. 

using magnetised cells and 

(Nichols et al., 2009; Bourgine et al., 2018; 

Goranov et al., 2020) 

                  



 
  

a magnetised scaffold. 

Decellularized 

matrix 

Using decellularized animal 

BM matrix to culture 

human BM cells has met 

with success due to the 

conserved BM architecture 

and physical properties. 

(Tiwari et al., 2012; Lai et al., 2013; Bianco 

et al., 2019) 

Blood 

flow/perfusion 

Perfusion models replicate 

blood flow, which could 

impact HSCs that natively 

reside alongside blood 

vessels. HSCs may also 

enter the circulatory 

system, making this 

another important element 

of the BM niche. 

(Wright et al., 2001; Lapidot and Petit, 

2002; Rödling et al., 2017; Bourgine et al., 

2018; David B Chou et al., 2020; Goranov et 

al., 2020; Ma et al., 2020; Nelson et al., 

2021a; Patra, 2021; Glaser et al., 2022) 

                  



  

a 

b 

Figure 1. Illustrations of (a) current and (b) potential future bone marrow niche models.  

Created with BioRender.com 

 

                  



 
2. Current state of BM niche models 
2.1 MSCs and soluble factors 

Developing models of the BM niche for studying and manipulating normal and pathological 

haematopoiesis presents various challenges, not least of which being that HSCs rapidly 

differentiate when cultured under standard tissue culture conditions (Jaroscak et al., 2003). 

To counteract this, soluble factors are often used. Soluble factors found within the niche 

promote maintenance and expansion within the putative HSC compartment (Delaney et al., 

2010; Horwitz et al., 2014; Wagner et al., 2016; Lampreia, Carmelo and Anjos-Afonso, 2017; 

Xiao, McGuinness, et al., 2022). Stem cell factor (SCF) (Asada et al., 2017), fms-like tyrosine 

kinase 3 (Flt3) ligand (FL) (Sitnicka et al., 2002) and thrombopoietin (TPO) (Qian et al., 2007) 

have all been implicated in HSC maintenance and are used routinely for HSC culture in vitro 

(Rödling et al., 2017; Bai et al., 2019; Vannini et al., 2019; Donnelly et al., 2022). Of note, 

systems that solely utilised soluble factors showed limited success in growing HSCs with long 

term-engraftment capacity (Delaney et al., 2010; Horwitz et al., 2014; Wagner et al., 2016). 

The earliest of these systems sought to identify and deploy the source of these soluble 

factors. This resulted in the discovery of a secondary, adherent cell type present in the BM 

niche without which the HSCs were unable to survive (Dexter, Allen and Lajtha, 1977). We 

now know that these cells are mesenchymal stromal cells (MSCs), which interact with HSCs 

and maintain haematopoietic homeostasis through excreted soluble factors and juxtracrine 

signalling (Méndez-Ferrer et al., 2010; Pinho et al., 2013). As a result, many modern BM 

niche models include MSCs. 

 

MSCs included in BM models have several sources. MSCs sourced directly from donors’ BM 

are the gold standard, but they are difficult to acquire due to their relative rarity within the 

niche, as well as low availability of high quality BM samples from young, healthy patients 

(Pittenger et al., 1999; Hass et al., 2011; Li et al., 2016; Bhat et al., 2021). Extramedullary 

sources of MSCs from patients include adipose tissue (Tsuji, 2014), peripheral blood (Li et 

al., 2015), and birth-associated tissues (Shang, Guan and Zhou, 2021). MSCs can be acquired 

easily from these sources following liposuction, birth or from a blood sample, and MSCs are 

more abundant in these locations, making them a popular alternative to BM MSCs (Hass et 

al., 2011). Induced pluripotent stem cell (iPSC)-derived MSCs also present various 

                  



advantages, namely that they can be grown from patients’ somatic cell and have the 

potential to self-organise and reproduce various cellular aspects of the BM niche 

simultaneously (Khan et al., 2023; Frenz-Wiessner et al., 2024). However, this technology is 

relatively new and more research is required before iPSCs’ pluripotency can be fully 

understood and manipulated to reliably produce MSCs (Dupuis and Oltra, 2021; Thanaskody 

et al., 2022). Immortalised MSCs, which are easy to use due to their long-term maintenance 

of differentiation competency, have been used as a BM MSC alternative as well (James et 

al., 2015). 

 

2.2.1 2D co-culture 

Lima et al., (2013) attempted to expand HSCs from umbilical cord blood by co-culturing cord 

blood samples with BM-derived MSCs and various cytokines. They demonstrated 

remarkable expansion of putative HSCs using this method. However, when the expanded 

cells were transplanted in patients, long-term engraftment was significantly lower 

compared to transplantation with unmanipulated cord blood. These results suggested that a 

simple two-dimensional (2D) co-culture system was insufficient to support the maintenance 

of the LT-HSC population that is required for successful long term engraftment (Seita and 

Weissman, 2010).  

 

2.2.2 Spheroids 

Later research attempted to improve upon simple co-culture models by assembling MSCs 

into spherical masses, termed spheroids, prior to co-culture (Méndez-Ferrer et al., 2010; 

Lewis et al., 2017).  Spheroid MSCs adopted a more niche-like phenotype than those 

cultured in a monolayer (Isern et al., 2013; Lewis et al., 2016), however the number of 

putative HSCs after expansion was shown by one study to be comparable when MSC 

spheroids or monolayers were used for co-culture (Futrega et al., 2017). Other studies 

reported a substantial increase in putative HSC count under similar conditions (Isern et al., 

2013; Pinho et al., 2013). This was largely attributed to soluble factors produced by the 

MSCs, rather than juxtracrine signalling. The advent of spheroids in BM niche models 

demonstrated the advantages of integrating the stromal cell component of the BM niche in 

3D. 

 

                  



2.3 Physical properties of the cellular microenvironment 

Material properties, such as stiffness, porosity and topography, of HSCs’ microenvironment 

directly affect their maintenance and proliferation (Gvaramia et al., 2017). Various 

approaches have sought to capitalise on this, for example by using decellularized BM (Tiwari 

et al., 2012; Lai et al., 2013; Bianco et al., 2019) or 3D BM mimetic scaffolds (Nichols et al., 

2009; Raic et al., 2014; Bourgine et al., 2018) to influence HSCs. An early example of this was 

Nichols et al. (2009),  who used inverted colloidal crystals to mimic the porosity and stiffness 

of the in vivo BM niche, and demonstrated that this system was capable of expanding HSCs, 

with the inclusion of MSCs. Raic et al. (2014) expanded upon this approach using bio-

functionalised macroporous hydrogels seeded with MSCs, resulting in a system that was 

capable of transient maintenance of seeded HSCs’ differentiation capacity. Collectively, 

these models illustrated the need to incorporate BM mimetic materials into future BM niche 

models, as well as the combinatorial effect of materials coupled with soluble factors. 

Interestingly, Raic et al. (2014) found a population of HSCs which did not remain within the 

scaffold and instead settled underneath it. They demonstrated that this cell population had 

much higher levels of naivety and differentiation capacity than HSCs that remained within 

the niche, implying the simulation of multiple BM niche compartments which differentially 

influenced the HSCs within, akin to the sub-niches observed in the native BM niche. 

 

2.4 The multifaceted nature of the BM niche 

Bourgine et al. (2018) also encapsulates some of the complexity of the BM niche using a 

porous hydroxyapatite scaffold functionalised with human MSCs. MSCs were grown within 

the scaffold, causing them to deposit elements of the native BM ECM. This system was 

assembled in a perfusion bioreactor which mimicked the blood flow present within the in 

vivo BM niche. HSCs were added to this system, filling the scaffold and overflowing above it 

to form separate artificial ECM and supernatant environments, similar to the static sub-

niches observed by Raic et al. (2014). However, unlike Raic et al. (2014), Bourgine et al. 

(2018) demonstrated that a higher proportion of the HSCs found within the scaffold 

displayed surface markers typically associated with LT-HSCs. It's possible that the artificial 

ECM compartment, which was designed to mimic the structure of bone, assumed the role of 

the arteriolar niche, with putative, more quiescent HSCs preferentially localising within it, 

while more actively dividing HSCs localised to the supernatant. Similar models favoured this 

                  



assessment (Leisten et al., 2012; Nelson et al., 2021a). These two-compartment models 

replicate the multifaceted nature of the BM niche and could help to elucidate some of its 

complexities. 

 

2.5 Combinatorial niche models 

In an attempt to encapsulate various other aspects of the BM niche, some researchers have 

focussed on engineering BM-on-a-chip models. Nelson et al. (2021) created a system using a 

complex co-culture of MSCs, osteoblasts, human umbilical vein endothelial cells and HSCs. 

These cells were cultured in separate wells connected via microfluidic channels, allowing 

nutrient exchange between them. Different combinations of cells and medias with or 

without the inclusion of a hydrogel were applied to each well during the assembly of the 

model, resulting in an interconnected system of wells each of which simulated some aspect 

of the in vivo BM niche, including angiogenesis. A similar model developed by Glaser et al. 

(2022) even incorporated perfusion. These highly complex systems and others like them 

(Aleman et al., 2019; David B Chou et al., 2020) encompassing more BM niche elements and 

are more biomimetic than the simpler models discussed,. This makes them excellent 

candidates for furthering our understanding of the BM niche in both a healthy and diseased 

state, and for screening treatments for BM-associated diseases and disorders. 

 

2.6 Organoid models 

Recently, efforts have been made to produce miniaturised, self-organising, multicellular, 3D 

models of the BM niche, termed organoids (Rossi, Manfrin and Lutolf, 2018). Two parallel 

papers outline similar multiphase pipelines to produce complex, vascularised organoids that 

mimic many aspects of the BM microenvironment (Khan et al., 2023; Frenz-Wiessner et al., 

2024). Each phase of organoid production utilised a different cocktail of media components. 

Initially, induced pluripotent stem cells (iPSCs) were encouraged to form embryoid body (EB) 

aggregates. Once established, the EB aggregates had a mesodermal phenotype induced, 

which was appropriate as BM niche cells are derived from the mesoderm over ontogeny 

(Mikkola and Orkin, 2006; Vodyanik et al., 2010). Next, the EBs were primed for vascular and 

haematopoietic differentiation, and subsequently embedded in a hydrogel. Within the 

hydrogel, angiogenesis was observed as the EBs began to sprout (Wimmer et al., 2019). 

Finally, sprouting EBs were removed from the gel and cultured in ultra-low adhesion plates, 

                  



resulting in the formation of vascularised organoids consisting of multiple cell types found 

within the native BM niche. Organoid models present a unique opportunity to further our 

understanding of haematological development over ontogeny using a pluripotent in vitro 

system. In addition, they have shown potential for the maintenance of otherwise difficult to 

culture primary cancer cells (Khan et al., 2023), and as pathological models for diseases such 

as myelofibrosis and neutropenia (Khan et al., 2023; Frenz-Wiessner et al., 2024). While 

these models are impressive, future challenges remain in incorporating a complete BM 

niche cellular cohort, and in self-organisation into the multiple sub niches observed in the in 

vivo BM niche. Also, due to the immaturity of the cells produced, organoid models more 

closely resemble foetal rather than adult BM. Yet organoids represent a significant advance 

in the field; the ease with which iPSCs can be produced compared to other BM stem cell 

sources makes this an attractive model for HSC expansion and disease modelling, and 

further optimisation of organoid production promises to yield even better in vitro BM 

models. 

Similar results were produced using organoid-like constructs termed ossicles, which were 

assembled in vitro then transplanted into murine models (Reinisch et al., 2016, 2017). 

Although these constructs recapitulated some aspects of the BM niche and were 

subsequently invaded by murine hematopoietic tissue, they still possess many of the issues 

inherent to animal models compared to fully humanised models (Ingber, 2020). 

  

                  



3. Future of BM niche models 
3.1 Limitations of current BM niche models 

While the current crop of BM niche models is promising, the challenge remains to produce a 

system which can consistently expand a population of HSCs without sacrificing the cells’ 

differentiation or engraftment potential. This is in part due to the highly heterogenous 

nature of HSCs (Rossi et al., 2011), which makes it difficult to identify LT-HSCs isolated from 

models (Kiel et al., 2005; Rossi et al., 2011; Futrega et al., 2017; Sonoda, 2021). Also, LT-

HSCs rarely multiply (Zhang et al., 2019), meaning it is likely that any expansion observed 

occurs out with the LT-HSC compartment, resulting in a population of cells with reduced 

engraftment and differentiation capacity. Furthering our understanding of haematopoietic 

niches, especially foetal niches from which HSCs are initially derived (Mikkola and Orkin, 

2006), could provide an avenue to better understand mechanisms of LT-HSCs expansion, 

which could in turn allow HSCT treatment to move away from the current one donor one 

recipient system  and towards a one donor multiple recipient system, greatly increasing its 

availability (Wilkinson, Igarashi and Nakauchi, 2020). Alternative, simpler approaches to HSC 

expansion have been employed with increasing success in recent years, including the 

addition of small molecules that prevent loss of the LT-HSC phenotype when expanding 

HSCs using cytokine cocktails (Peled et al., 2012; Wilkinson et al., 2019; Cohen et al., 2023), 

and the use of hydrogels for 3D HSC culture (Bai et al., 2019). These systems hold great 

clinical potential, especially nicotinamide expanded HSCs which recently gained clinical 

approval for the HSCs produced to be used for HSCT (Meaker and Wilkinson, 2024). The 

question remains if the HSCs they generate are adequate replacements for the fresh cells 

typically used for HSCT, especially when produced at scale. Strategies that blend these 

simple systems with more complex BM model elements warrant investigation. 

 

Another hurdle for BM model development is the reliance on extracellular stimuli such as 

perfusion or artificially separated cell populations. This is an adequate compromise while 

tissue engineering technology continues to develop. However, this approach does not 

reproduce the complex interplay that occurs within a cellularly diverse, mechanically 

heterogenous organ such as the BM niche, not to mention interactions the BM has with 

other organs within an individual. Fully cellular organoid models, and other emerging 

approaches discussed below, may offer a revolutionary solution, despite their development 

                  



still being in its infancy. These systems may pave the way for highly accurate models that 

can facilitate research on the BM niche and expand understanding of the organ and how it 

influences haematopoiesis. 

 

Finally, recent advances have led to highly complex BM models that recapitulate various 

aspects of the native BM niche. These models have furthered our understanding of the 

cellular and niche signals’ interplay in this complicated microenvironment. However, this 

complexity is itself a limitation, due to the inherent cost, time and level of expertise 

required to assemble these models. These challenges must be overcome for BM models to 

be accepted and more widely utilised in research and industry.  

 

3.2 Potential applications of BM niche models 

A prospective application of BM models is their usefulness for studying and developing 

treatments for BM-associated disorders and diseases. Novel treatments such as chimeric 

antigen receptor T-cell (CART) therapy show huge promise (Kim et al., 2018) but are often 

inaccurately assessed with animal trials due to differences in animal and human biology, 

preventing potential treatments from reaching the market, or allowing ineffective or unsafe 

ones to do so (Akhtar, 2015; Ingber, 2020). Pathological in vitro BM models that more 

accurately replicate diseased human biology, reduce animal suffering and can be produced 

at scale have the potential to revolutionise our approach to drug testing, either as a 

screening step prior to animal testing or as a complete substitution (Haddrick and Simpson, 

2019).  

 

BM models have already been used to further our understanding of the BM niche and 

haematopoiesis, as previously discussed. They have shown that HSC maintenance is reliant 

on MSCs and the physical properties of the HSCs’ microenvironment, that soluble factors 

produced by BM cells also play an integral role, and that the BM niche is formed of distinct, 

interconnected sub-niches. As BM niche models continue to evolve so will our 

understanding of the in vivo BM niche, haematopoiesis, and HSCs (see Figure 2). 

 

                  



 

Figure 2. Potential applications of a model BM niche.  

Created with BioRender.com 

 

 
3.3 Theoretical future BM niche models 

Future BM niche models could seek to replicate the in vivo niche more accurately by 

incorporating a complete BM cellular cohort or by precisely replicating the physical, 

mechanical, and chemical composition of the in vivo niche. If achieved this would result in 

BM niche models with high biomimicry, furthering our understanding of the in vivo niche’s 

physiology, biochemistry, and biophysics. Other future models could include simplified 

niches specialised to accomplish a specific goal, such as LT-HSC maintenance (Donnelly et 

al., 2022) and expansion, or as platforms to test novel therapies in which the HSCs are easily 

accessible for treatment and evaluation (David B. Chou et al., 2020). As our understanding 

of the BM niche continues to develop it may even become possible to eliminate the need 

for inherently complex co-cultures and replicate the effect of BM cellular components in 

HSC monoculture systems, simplifying artificial BM niches substantially.  

 

                  



Next generation models could also be developed. These may include whole body models 

which mimic several or all human organs (Novak et al., 2021), providing a platform for a 

more comprehensive assessment of a treatment’s efficacy and safety on an individual, and 

possibly leading to the development of a body-on-a-chip (Sung et al., 2019).  

 In silico models of the BM or whole individuals could also emerge. These might take the 

form of a digital twin, mimicking the function of biological systems based on experimental 

datasets and/or biological principles (Geris et al., 2018). Simple in silico models are already 

in use, and have demonstrated the ability to assist with optimisation of experimental 

parameters (Baker et al., 2023), confirm hypotheses (Chang et al., 2010; Stratmann et al., 

2014), and shed light on previously poorly understood biological systems (Edelman, Eddy 

and Price, 2010). Recent advances in artificial intelligence technology could facilitate further 

development of these revolutionary new models by assisting with data compilation from 

diverse sources (Homeyer et al., 2022) and through utilisation of techniques such as deep 

learning and machine learning to collate and utilise large datasets for predicting the impact 

of stimuli such as novel drugs on biological processes (Sarker, 2022). As such, in silico 

models have the potential to exponentially accelerate research by identifying optimum 

parameters for experimentation, and, with further developments potentially leading to fully 

realised digital twins, may offer an alternative to animal and in vitro models for clinical trials. 

One of the key benefits of whole body next generation models, both in silico and in vitro,  is 

their ability to assist with prediction of pharmacokinetics and off-target toxicity, which are 

not explorable using single organ models (Bender et al., 2007; Chang et al., 2010). 

These types of models currently remain a challenge as they require extensive knowledge of 

the simulated organs to develop, or large, reliable, relevant datasets and systems which can 

interpret and utilise them. However, due to the rapidly evolving nature of the field they may 

be closer than they appear. 

  

                  



4. Conclusion 

Within the last half a century BM models have gone from simple liquid suspensions of HSCs 

to highly complex in vitro organ models specialised to achieve specific goals. This has greatly 

improved our understanding of the in vivo BM niche, allowing for the exponential pace of 

BM model development seen recently. As this field continues to develop it promises to 

deliver several benefits, namely an improvement over animal models to facilitate more 

efficacious and cheaper development of treatments for BM-associated disorders, and a 

potential method for the expansion of LT-HSCs for HSCT. 
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