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Abstract 90 

Surface water and groundwater, integral to the hydrological cycle, engage in 91 

complex hydraulic interactions and frequent transformations. Isolating surface water 92 

and groundwater systems in individual studies often fails to capture and analyse their 93 

interrelationships, limiting the comprehensive understanding of regional water 94 

resources. Additionally, conventional physics-based coupled models encounter 95 

challenges arising from the complexities and non-linearity of interactions, impeding 96 

their accuracy in simulation results. 97 

To address this challenge, this thesis proposes a novel framework that integrates 98 

artificial intelligence and physics-based coupled models to simulate variations in 99 

surface water and groundwater, establishing a foundation for integrated water resource 100 

management. Specifically, the study develops a boundary-coupled framework to model 101 

interactions between surface water and groundwater. In this framework, a data-driven 102 

deep learning model is employed to simulate surface water flow. Additionally, physics-103 

based analytical models are used to describe groundwater movement in riparian zones, 104 

while simplifying river behaviour to a Dirichlet boundary condition to assimilate data 105 

from the surface water model. Subsequently, the simulated values from analytical 106 

solutions serve as the source data, while groundwater observation data is employed as 107 

the target data. A transfer learning model is then be utilized to learn the features of the 108 

source data and, in conjunction with the target dataset, facilitate the prediction and 109 

regression of groundwater. Finally, the framework is applied at the watershed scale to 110 

predict and model catchment-scale surface water flow and groundwater head. 111 

In this framework, the thesis assesses the influence of various input variables on 112 

surface water prediction, explores the effect of groundwater layer heterogeneity, and 113 

validates the effectiveness of the deep transfer learning approach, particularly in 114 

catchment-scale predictions. The main conclusions are as follows: 115 
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1. The selection of model inputs greatly influences accuracy. The PCA method 116 

effectively enhances the precision of the deep RNN model, especially in scenarios with 117 

numerous input variables. It achieves this by distilling essential information, 118 

categorizing original data into several comprehensive variables. 119 

2. The two-layer structure significantly influences groundwater flow responses to 120 

hydrological events. During recharge events with a less permeable upper layer, lateral 121 

discharge to the river is hindered, directing more groundwater downward into the more 122 

permeable lower layer. Conversely, when the upper layer is more permeable, greater 123 

lateral flow into the river occurs, with less downward flow into the less permeable lower 124 

layer. During a flood event with a less permeable upper layer, river water predominantly 125 

infiltrates the more permeable lower layer initially, then flows upward into the upper 126 

layer, creating a vertical flow. The direction of this flow reverses during the recession 127 

period. However, this phenomenon is not evident when the upper layer is more 128 

permeable than the lower layer. 129 

3. The transfer learning method can enhance the capacity of analytical solutions 130 

for heterogeneous aquifers. By integrating analytical knowledge with the neural 131 

network, the analytical solution-transfer learning method significantly improves 132 

hydraulic head prediction accuracy. Even for very sparse training data, the analytical 133 

solution-transfer learning method still performs more satisfactorily than the traditional 134 

deep learning method. 135 

4. The analytical solution-transfer learning method is also effective at the 136 

catchment scale. The analytical solution-transfer learning method can obtain more 137 

accuracy and robust results than traditional deep learning methods with the same 138 

training dataset.   139 
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Chapter 1 Introduction 511 

Hydrological cycle, Surface water and Groundwater 512 

The hydrological cycle, or water cycle (Narasimhan, 2009), describes the 513 

continuous circulation of water among Earth's lithosphere, hydrosphere, and 514 

atmosphere in various forms. It encompasses processes such as evaporation, 515 

precipitation, melting, groundwater flow, and the flow of rivers and lakes (Robinson et 516 

al., 2013). The primary driving force behind the water cycle is solar energy. Solar 517 

radiation causes surface water to evaporate and form water vapour. The water vapour 518 

is then transported to other regions. Upon cooling, the water vapour transforms into 519 

precipitation and returns to the Earth's surface. A portion of the precipitation directly 520 

flows into rivers, lakes, and oceans, forming surface runoff that ultimately returns to 521 

the oceans. Another portion of the precipitation infiltrates into the ground, becoming 522 

groundwater. Groundwater can find its way into rivers, lakes, or oceans through springs 523 

or subsurface flow. Simultaneously, groundwater can also infiltrate plant root zones 524 

through subsurface leakage and be absorbed by vegetation. The water cycle process 525 

maintains the distribution and renewal of water resources on Earth, which is crucial for 526 

sustaining ecosystem balance, agriculture, and human livelihoods. 527 

In the hydrological cycle, freshwater is primarily stored in glaciers, which are 528 

difficult to access, accounting for approximately 69% of the total freshwater volume. 529 

Another 30% of freshwater is stored in underground aquifers, and the remaining portion 530 

is found in surface water sources. Surface water and groundwater are the primary 531 

sources of freshwater for human society's production and daily life. It is evident that 532 

surface water and groundwater not only play significant roles in the hydrological cycle 533 

but also have vital interactions with human society. 534 

Groundwater can be defined as the water located beneath the Earth's surface (Alley, 535 

2009). The space that stores groundwater is referred to as an aquifer. Based on the 536 
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characteristics of the groundwater head, it can be categorized into confined aquifer and 537 

unconfined aquifer. The widespread occurrence of groundwater underground is the 538 

primary reason for its significant use as a water source worldwide. A considerable 539 

portion of agricultural production, including most of the world's food supply, relies on 540 

groundwater for irrigation. Moreover, groundwater plays a crucial role in sustaining 541 

water flow during dry periods, making it vital for the maintenance of numerous lakes 542 

and wetlands. Besides its human uses, many plants and aquatic organisms depend on 543 

groundwater discharging into streams, lakes, and wetlands. 544 

Surface water refers to any water source that is open to the atmosphere and can 545 

potentially flow from the land (Katsanou and Karapanagioti, 2019). It accumulates on 546 

the Earth's surface in the form of streams, rivers, lakes, reservoirs, or oceans. The total 547 

land area contributing to surface runoff from lakes or rivers is commonly described as 548 

the watershed area. The quantity of surface water primarily depends on the amount of 549 

rainfall, but it is also influenced by factors like the size of the watershed, land slope, 550 

soil type, vegetation, and land use. There are several advantages of using surface water 551 

as a source for domestic and industrial water supply. Firstly, surface water is readily 552 

accessible and can be easily extracted through direct pumping, and after use, it can be 553 

treated and discharged back into rivers. Secondly, rivers and lakes provide a substantial 554 

and regular supply of water. As a result, surface water is extensively utilized in large 555 

urban water supply systems. 556 

Across diverse landscapes, from small streams and lakes to major river valleys and 557 

coastal areas, the interaction between groundwater and surface water is widespread 558 

(Winter, 1999). Understanding the interaction between groundwater and surface water 559 

is crucial for developing effective water resource management and policies. Managing 560 

groundwater and surface water separately often only addresses a partial aspect of the 561 

hydrological system, as each component continuously interacts with the others (Winter 562 

et al., 1998). Take water supply as an example: excessive groundwater pumping can 563 

lead to a reduction in the base flow of rivers, affecting surface water levels. 564 



29 

 

Simultaneously, declining groundwater levels can affect the compressional structure of 565 

aquifers, resulting in land subsidence and altering river courses. These aspects pose 566 

significant challenges to water resource management. 567 

Additionally, the movement of water between groundwater and surface water 568 

systems leads to amalgamation. A substantial quantity of nutrients or other dissolved 569 

chemical substances existing in surface water can be transported into interconnected 570 

groundwater systems, and conversely, the reverse is also true. Therefore, it is imperative 571 

to comprehensively consider both surface water and groundwater. Fully recognizing the 572 

interplay between these two hydrological domains is essential to enhance the efficient 573 

utilization and management of water resources. 574 

 Physics-based model and data-based model 575 

A physics-based model serves as a representation that encapsulates the 576 

fundamental laws governing the natural world, inherently encompassing the notions of 577 

temporal progression, spatial dimensions, causality, and the potential for generalization 578 

(Willcox et al., 2021). Within the domain of hydrology, a physics-based model pertains 579 

to the formulation of boundary-value problems employing partial difference equations 580 

and potential theory (Bittelli et al., 2010; Freeze and Harlan, 1969; Partington et al., 581 

2012). For instance, equations such as the Navier-Stokes equation and the Saint-Venant 582 

equation find application in the investigation of surface water phenomena, while the 583 

Darcy equation and the Richards equation are employed in the study of groundwater 584 

dynamics. 585 

Analytical solutions and numerical solutions are two different approaches for the 586 

solution of physics-based model. Analytical models entail relatively lower 587 

computational demands and can depict explicit mathematical relationships among 588 

variables, rendering them more flexible and convenient. Numerical solutions, on the 589 

other hand, are capable of tackling more intricate problems, and they offer a more 590 

realistic representation of the complexities found in the real world. Although analytical 591 

and numerical solutions have been extensively applied over the past decades for 592 
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simulating and managing surface water, groundwater and their interaction, achieving 593 

precise predictions of surface water flow and groundwater levels through physics-based 594 

approaches remains a challenging endeavour. This difficulty arises from the intricate 595 

interplay of numerous uncertain, complex, non-stationary, and non-linear factors within 596 

the integrated surface water-groundwater system. 597 

Over the last two decades, data-driven approaches have become a viable option 598 

for predicting surface water flow and groundwater levels. Fundamentally, data-based 599 

methods are statistical approaches that concentrate on the input-output relationship 600 

without establishing explicit causality between factors in a specific system (Solomatine 601 

and Ostfeld, 2008). Significant attention has been given to methodologies involving 602 

Artificial Intelligence (AI), Machine Learning (ML), Artificial neural networks (ANNs) 603 

and Deep Learning (DL). AI is characterized by its aim to confer rational thinking or 604 

behaviour upon a system (McDermott, 1987; Nilsson, 1998; Poole and Mackworth, 605 

2010). ML, as delineated by Samuel (1959), refers to a discipline enabling computers 606 

to learn autonomously without explicit programming. DL, an offshoot of machine 607 

learning, encompasses several advanced forms of ANNs (Bishop and Bishop, 2024). A 608 

prominent feature of deep networks is the presence of multiple layers in the neural 609 

network architecture, which providing a higher capacity for representing complex 610 

functions compared to non-deep neural networks (Raghu et al., 2017). The 611 

interrelationships among AI, ML, ANNs and DL are depicted in Figure 1.1. 612 
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 613 

Figure 1.1 The relationship between AI, ML, ANNs and DL 614 

Data-driven models have gained widespread adoption in hydrology research, yet 615 

their application in the realm of coupled surface water-groundwater simulation remains 616 

relatively limited. Furthermore, inherent limitations within data-driven models continue 617 

to constrain their utility and reliability, thus impeding their broader effectiveness in this 618 

context. For example, the accuracy of data-based methods depends on the density of 619 

observed data but collection of hydrological data like groundwater data is both time-620 

consuming and expensive. Although some researches find that the accuracy of the data-621 

based method would be more satisfactory and credible if the physical information is 622 

considered. The related researches are still on very early stage and there remains a 623 

pressing need for further research in this direction. 624 

Objectives and thesis structure 625 

This study aims to propose an innovative integrated model that harmonizes the 626 

utilization of both physics-based and data-based methodologies for the simulation of 627 

surface water-groundwater interactions, which leverages the strengths of physics-based 628 

methods and data-driven approaches in a complementary manner. The overall aim is 629 

achieved by a boundary-coupled framework for the surface water groundwater 630 

interaction process. In the framework, DL models are applied for the surface water 631 
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prediction independently. Additionally, within the groundwater model, the Dirichlet 632 

boundary condition is employed to describe changes in the river stage and it provides 633 

an interface to couple the surface water simulation result with groundwater. Several 634 

objectives are established for the scientific inquiries in the framework, including: 1. 635 

Presenting a DL model for surface water runoff and a method to improve the 636 

performance of DL model by optimize meteorological input variables; 2. Providing a 637 

semi-analytical solution for groundwater flow in riparian zone with layered structure; 638 

3. Coupling the physical information from analytical solution and DL by transfer 639 

learning method and applying it to fix the heterogeneous problem in riparian zone; 4. 640 

Applying the transfer learning model in catchment scale. The relationship of objectives 641 

is shown in Figure 1.2. 642 

 643 

 644 

Figure 1.2 Relationship of objectives for integrating coupled simulation of surface water 645 

and ground water with Artificial intelligence. 646 

All the objectives are fulfilled, and the aim is achieved. The layout of the thesis is 647 

arranged as:  648 

Chapter 2 provides a literature review on the background of this research, 649 

including the hydrological cycle, the interaction between groundwater and surface 650 

water and the application of deep learning in hydrology research, etc. The key State-of-651 
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the-art sketches of techniques for deep learning are introduced to build the foundation 652 

for further research work. 653 

Chapter 3 presents a study to evaluate the impact of the selection of multiple input 654 

variables on the runoff prediction and provides a method of identifying the best 655 

meteorological input variables for a runoff model. Rainfall data and multiple 656 

meteorological data have been considered as input to the model in this research. 657 

Principal Component Analysis (PCA) has been applied to the data as a contrast, to 658 

reduce dimensionality and redundancy within this input data. Two different deep 659 

recurrent neural networks (RNN) models, a long-short-term memory (LSTM) model 660 

and a gated recurrent unit (GRU) model, were comparatively applied to predict runoff 661 

with these inputs. In this study, the Muskegon River and the Pearl River were taken as 662 

examples. 663 

Chapter 4 investigates the impacts of layered heterogeneity on water exchange in 664 

the riparian zone using a mathematical model for groundwater flow in a two-layer 665 

aquifer that is recharged by precipitation and floods. A semi-analytical solution is 666 

derived for the hydraulic head, lateral discharge, and fluxes between the layers. The 667 

present analytical solution is applied in the riparian zone well of White Clay Creek and 668 

provides reasonable estimates of aquifer parameters. 669 

Chapter 5 proposes a novel deep learning model guided by a simple analytical 670 

model to predict groundwater flow in heterogeneous aquifers. It differs from previous 671 

deep learning research by incorporating the knowledge from a simple analytical model 672 

and utilizing transfer learning techniques to further improve the hydraulic head 673 

prediction in relatively complicated problems where the analytical model is invalid. 674 

The model is tested against the traditional deep learning model Deep Back Propagation 675 

Neural Network (DBPNN) in scenarios with unknown homogeneous and 676 

heterogeneous hydraulic conductivity fields. 677 

Chapter 6 presents a method to estimate catchment groundwater flow and river 678 

stage by analytical model and LSTM model. Then the transfer learning framework was 679 
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applied in the headwaters of the Miho River catchment with limited observational data 680 

availability. A traditional DBPNN without the guidance of analytical model is applied 681 

as a baseline model to ensure a reliable conclusion. The computational load and 682 

uncertainty caused by locations of observation points are analysed. 683 

Chapter 7 gives the conclusion of the thesis and recommendations for future work. 684 

  685 
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Chapter 2 Literature Review for Groundwater and surface water 686 

interaction 687 

Interaction between Groundwater and surface water 688 

In this section, the interaction mechanisms between groundwater and different 689 

types of surface water, including rivers, lakes/reservoirs, and oceans is summarized 690 

based on the specific characteristics of each surface water type. 691 

 River-groundwater interaction 692 

The interaction between rivers and groundwater can be classified into three 693 

relationships: river water recharges groundwater, groundwater recharges river water, 694 

and a reciprocal relationship where the groundwater and surface water mutually 695 

recharge each other (Winter et al., 1998). Generally, when the groundwater head is 696 

higher than the river stage, groundwater replenishes the river through hydraulic 697 

gradients. Conversely, when the river stage is higher, surface water flow into the 698 

groundwater. However, in local flow systems, the interaction between groundwater and 699 

surface water often exhibits complex variations over time and space due to factors such 700 

as precipitation, climate, and topography (Winter, 1999). 701 

Hydrologists commonly define the "Riparian zone" as the space influenced by a 702 

river's presence (Naiman and Decamps, 1997). Because of its special location, this zone 703 

possesses distinctive spatial structure and ecological functions and plays a significant 704 

role in maintaining the water balance, the energy balance and water quality(de Mello et 705 

al., 2018) (Robert, 1997; Webster et al., 1976). For example, a riparian forest may 706 

reduce recharge from precipitation, or agricultural chemicals applied to riparian crops 707 

may contaminate groundwater and river water (de Oliveira et al., 2010; Gomez‐Velez 708 

et al., 2014; Krutz et al., 2005; Ou et al., 2016). The hyporheic zone within the riparian 709 

zone is defined by shallow subsurface pathways through river beds and river banks 710 

beginning and ending at the river (Boano et al., 2014) and this area is considered a hot 711 
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spot for hydrologic, geologic, geomorphic, geochemical, and biological processes (Fox 712 

et al., 2016). 713 

The groundwater flow in riparian zone (or hyporheic zone) serves as the 714 

foundation for other processes. Groundwater flow is the controlling factor for many 715 

processes in the riparian and hyporheic zones, and it is greatly influenced by natural 716 

events and human activities. Flooding is one of the most important natural events 717 

affecting groundwater flow in the riparian and hyporheic zone, as rapid water level 718 

fluctuations give rise to lateral propagation of river water into the riparian zone that 719 

changes the local flow field (Curry et al., 1994; Liu et al., 2020a). In addition, large-720 

scale human activities like damming can reduce the flood pulse of natural rivers and 721 

make the river level fluctuate more intermittently (Arias et al., 2013; Liu et al., 2020a; 722 

Nilsson and Berggren, 2000), which may substantially impact hydrologic exchange in 723 

the riparian zone (Fritz and Arntzen, 2007) and groundwater flow (Ferencz et al., 2019). 724 

Furthermore, due to climate change, the risk of coastal cities being threatened by floods 725 

is increasing under current protection standards (Hu et al., 2019; Huang et al., 2020; Xu 726 

et al., 2022a). Variable recharge from precipitation further impacts riparian zone 727 

hydrology (Schilling et al., 2004), and it should be considered along with flooding to 728 

obtain a better understanding of the complex patterns of groundwater flow in the 729 

riparian zone.  730 

 Lake/reservoir-groundwater interaction  731 

The interaction patterns between lakes/reservoirs and groundwater are similar to 732 

those between rivers and groundwater. They can be categorized into three relationships: 733 

groundwater discharging into lakes/reservoirs, lake/reservoir water infiltrating into 734 

groundwater, and simultaneous exchange of groundwater discharge and lake/reservoir 735 

infiltration. However, unlike river-groundwater interactions, the driving forces for 736 

interactions between lakes/reservoirs and groundwater are mainly hydrostatic forces 737 

due to the slower flow velocities of surface water in lakes/reservoirs. The relationship 738 

between groundwater discharge and lake/reservoir infiltration is often determined by 739 
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the hydraulic gradient between groundwater and the lake/reservoir. As lakes/reservoirs 740 

are usually located at the lowest points of their watersheds, surface runoff and 741 

groundwater runoff from the watershed converge into the lakes/reservoirs. Therefore, 742 

most lakes/reservoirs receive groundwater discharge, and the mode of groundwater 743 

discharging into lakes/reservoirs is the most common. 744 

In some closed-basin lakes without surface runoff inputs, the contribution of 745 

groundwater discharge to lake water volume can even exceed 90% (Gurrieri and Furniss, 746 

2004; Stets et al., 2010). For lakes with surface runoff inputs, groundwater can still be 747 

a significant source of their water volume. For example, a study on Væng Lake found 748 

that the average groundwater discharge intensity was as high as 124.1 mm/d, 749 

accounting for 66% of the total inflow to the lake (Kidmose et al., 2013).In plain or 750 

wetland areas with varying factors such as rainfall and human activities, groundwater 751 

discharge and lake infiltration often fluctuate seasonally between wet and dry periods 752 

(Li et al., 2020b). Even in regions with abundant rainfall and surface runoff, the 753 

contribution of groundwater to lake water supply should not be overlooked. For 754 

instance, in the Poyang Lake and Dongting Lake areas in China, groundwater discharge 755 

can still contribute to about 10% of the total inflow to the lakes(Liao et al., 2018; Sun 756 

et al., 2021). 757 

In addition to supplying water to lakes, groundwater also carries nutrients that can 758 

become a potential source of lake nutrients (Lewandowski et al., 2015; Rosenberry et 759 

al., 2015). Nitrogen and phosphorus carried by groundwater entering the lake can 760 

exacerbate the lake's nutrient levels, promoting the growth of algae and aquatic 761 

microorganisms, severely degrading water quality, and reducing the stability and 762 

diversity of aquatic organisms. Numerous studies have shown that groundwater 763 

discharge plays an important role in the nutrient balance of lakes(Knights et al., 2017). 764 

Even if groundwater discharge has a small contribution to the water balance of lakes, it 765 

can still be a significant input of nutrients due to the potentially high nutrient 766 

concentration in groundwater (Lewandowski et al., 2015). For instance, in a glacier lake 767 
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in the Qinghai-Tibet Plateau of China, groundwater discharge at the lake bottom 768 

accounts for only 7.0% of the total inflow, but the total nitrogen carried by the 769 

groundwater accounts for 42.9% of the total nutrient input (Luo et al., 2018). In the case 770 

of Lake Arendsee in Germany, the phosphorus load from groundwater discharge 771 

contributes to more than 50% of the total phosphorus load entering the lake 772 

(Meinikmann et al., 2015). 773 

 Ocean-groundwater interaction 774 

In the hydrological cycle, surface water and groundwater eventually return to the 775 

ocean. At the regional scale, the interaction pattern between groundwater and the ocean 776 

is typically characterized by groundwater discharging to the ocean. However, dynamic 777 

changes in the exchange of groundwater and seawater still occur near the intertidal zone 778 

due to factors such as ocean tides and coastal groundwater extraction. The main driving 779 

forces behind groundwater-ocean interaction can be categorized into land-based factors 780 

and ocean-based factors (Li and Wang, 2015; Wilson, 2005). Land-based factors 781 

include terrain gradients, density gradients, and thermal gradients, while ocean-based 782 

factors involve tides, waves, and climate. Additionally, long-term cyclical changes in 783 

sea levels influenced by solar activity are also considered. 784 

From a global perspective, groundwater is not the primary source of replenishment 785 

for the ocean, as it accounts for only 0.6% of the total freshwater input into the sea 786 

(Luijendijk et al., 2020). However, groundwater plays a crucial role in ensuring water 787 

resource security and water environmental protection in coastal areas. Excessive 788 

groundwater extraction in coastal regions can lead to a decline in freshwater levels, 789 

seawater intrusion, and subsequent ecological issues like soil salinization. Moreover, 790 

extraneous substances such as carbon, iron, silicon, and nitrogen present in groundwater 791 

can impact coastal ecosystems by affecting nutrient levels and solute concentrations. 792 

Groundwater discharges are often concentrated in sensitive coastal ecosystems, such as 793 

river mouths, salt marshes, and coral reefs, posing risks of water pollution and 794 

eutrophication in these areas. 795 
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Currently, research on the interaction between the ocean and groundwater mainly 796 

focuses on seawater intrusion, the freshwater-saltwater interface, and submarine 797 

groundwater discharge issues. Kaleris and Ziogas (2013) employed numerical models 798 

and approximate analytical solutions to investigate the impact of cutoff walls on the 799 

progress of submarine groundwater discharge in the presence and absence of 800 

groundwater extraction. Muller et al. (2023) combined numerical simulations of radon 801 

as a groundwater tracer with advective transport to propose a method for quantifying 802 

deep submarine groundwater flow using autonomously measured ocean surface data. 803 

 Physics-based Groundwater-surface water coupled model 804 

 Types of physics-based groundwater-surface water coupled model 805 

In the 1970s, Freeze and Harlan (1969) proposed the concept of coupling surface 806 

water and groundwater models. Subsequently, the simulation of coupled surface water-807 

groundwater systems became a hot topic in the field, drawing widespread attention from 808 

researchers(Anibas et al., 2011; Dewandel et al., 2006; Freeze, 1972; Govindaraju and 809 

Kavvas, 1991; Smith and Woolhise.Da, 1970). Pikul et al. (1974) coupled the one-810 

dimensional Richards equation and the Boussinesq equation to accurately simulate 811 

groundwater levels. Govindaraju and Kavvas (1991) developed a one-dimensional 812 

coupled model for surface water flow and a three-dimensional model for groundwater 813 

flow. Woolhiser et al. (1996) investigated the impact of heterogeneity on groundwater 814 

flow by coupling a surface water flow model with the Smith-Parlange infiltration model. 815 

With an improved understanding of hydrological mechanisms and advancements in 816 

computer technology, various coupling models have been developed and 817 

applied(Hassan et al., 2014; Im et al., 2009; Sandu and Virsta, 2015; Sudicky et al., 818 

2008; Zhu et al., 2012). In this thesis, the surface water-groundwater coupling models 819 

are categorized into three types: Concept coupled models, Boundary/Sink coupled 820 

models, and Fully coupled models. 821 
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1. Concept coupled model 822 

The Concept coupled model is typically based on the principles of water cycle and 823 

water balance for a watershed or study unit. It uses linear equations to calculate the 824 

changes in water quantities for different components. In the Concept coupled model, 825 

the transformation of water quantities among various hydrological processes is explicit 826 

and well-ordered, making it widely applicable for integrated water resource assessment. 827 

One of the widely used Concept coupled models is the VIC (Variable Infiltration 828 

Capacity model) (Chandel and Ghosh, 2021; Pedretti et al., 2012). The VIC model is a 829 

semi-distributed macro-scale hydrological model that simulates macro-scale 830 

hydrological processes by computing the water balance equation (Liang et al., 1994; 831 

Liang et al., 1996; Liang et al., 1999). For instance, Joseph and Ghosh (2023) developed 832 

a new irrigation module for VIC model, and applied to irrigation scenarios in India. 833 

Liang et al. (2003) proposed a new parameterization method based on the VIC model 834 

to consider the dynamic interactions between surface water and groundwater on soil 835 

moisture, evapotranspiration, runoff, and recharge and applied this method to the 836 

Tulpehocken Creek and West Conewago Creek watersheds in Pennsylvania. However, 837 

these models have significant limitations in their application due to the oversimplified 838 

assumptions about the interactions and transformations between surface water and 839 

groundwater models. 840 

2. Boundary/Sink coupled model 841 

Due to the relative ease of obtaining surface water observation data, the 842 

establishment and validation of surface water models are more straightforward. Many 843 

researchers use an independent model to calculate surface water process such as runoff 844 

and infiltration, which are then used as boundary conditions or source/sink terms for 845 

the transient partial differential equations describing the groundwater models in 846 

coupled simulations. This type of model is referred to as the Boundary/Sink coupled 847 

model in the thesis. The Boundary/Sink coupled model conveniently integrates existing 848 

surface water and groundwater models, making the most of hydrological and 849 
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meteorological data as well as hydrogeological information. One representative 850 

example of this model is the combination of the Soil Water Assessment Tool (SWAT) 851 

and the MODFLOW groundwater model, known as the SWAT-MODFLOW model. The 852 

basic process of connecting SWAT and MODFLOW involves transferring deep 853 

percolation calculated by SWAT to supply groundwater flow in MODFLOW's grid cells 854 

and exchanging groundwater-surface water interaction fluxes calculated by 855 

MODFLOW with SWAT's river network(Bailey et al., 2016; Kim et al., 2008). Since 856 

the release of SWATMOD-Prep, a graphical user interface for SWAT-MODFLOW 857 

developed by Bailey et al. (2017), SWAT-MODFLOW has been applied in various 858 

watersheds in countries such as the United States (Guevara-Ochoa et al., 2020), Iran 859 

(Jafari et al., 2021), and Denmark (Liu et al., 2020b). 860 

Spatiotemporal responses to hydrological events with riparian or hyporheic zones 861 

and impacts on surface-groundwater exchanges have also been investigated by 862 

analytical models in extant literature (Chen and Chen, 2003; Hantush, 2005; McCallum 863 

and Shanafield, 2016; Zlotnik and Huang, 1999). Singh (2004) considered stream 864 

boundary resistance and presented a 1-D analytical solution for semi-infinite aquifer 865 

responses to a sinusoidal river stage fluctuation. Liang et al. (2017c) developed a semi-866 

analytical solution for base flow recession caused by recharge by considering lateral 867 

unsaturated discharge. Their results suggest that the unsaturated zone impedes the 868 

discharge of saturated flow to the river. These studies, however, only considered 869 

groundwater flow in a cross-section of a river-aquifer system. To explore the plane view 870 

of the surface-groundwater exchange, Liang et al. (2018a) presented an analytical 871 

solution for horizontal 2-D unconfined groundwater flow. The results demonstrated that 872 

the proposed 2-D solution performs better than 1-D cross-section solution as the 1-D 873 

model overestimates both the hydraulic head near the upstream and underestimates the 874 

hydraulic head near the downstream. 875 
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3. Fully coupled model 876 

The Fully coupled model involves a rigorous description of hydrological processes 877 

for surface water and groundwater using transient partial differential equations. This 878 

model couples surface water and groundwater by representing their exchange fluxes as 879 

source/sink terms and iteratively calculates the movement of both surface water and 880 

groundwater within the study area. For instance, the HGS (HydroGeoSphere) model 881 

employs the two-dimensional Saint-Venant equation to describe surface water flow and 882 

the three-dimensional Richards equation to describe groundwater flow. The exchange 883 

fluxes between surface water and groundwater are described using Darcy's law to 884 

establish the coupling equations (Brunner and Simmons, 2012; Therrien et al., 2010). 885 

This model has been applied to explore changes in surface water-groundwater 886 

interactions under climate change conditions (Goderniaux et al., 2009) and during 887 

freezing and thawing processes (Lemieux et al., 2008). Other fully coupled models such 888 

as CATHY (CATchment Hydrology) (Paniconi and Putti, 1994; Paniconi and Wood, 889 

1993) and ParFlow (Maxwell et al., 2009) have also been widely used for surface water-890 

groundwater coupled simulations (Kollet et al., 2017; Kollet and Maxwell, 2006; Kollet 891 

et al., 2010; Maxwell and Condon, 2016; Painter et al., 2016). While the Fully coupled 892 

model considers detailed physical processes of the hydrological cycle, its development 893 

requires a substantial number of precise parameters and data support. Establishing and 894 

calibrating the model can be time-consuming and demands extensive expertise, making 895 

it challenging to apply the model on a broader scale. 896 

 Challenge and limitation of physics-based groundwater-surface water coupled 897 

model 898 

Although the groundwater-surface water coupled model has impressive 899 

development. It is still facing significant fresh and old challenges and limitations now. 900 

1. The impact of human activities on the hydrological cycle poses a significant 901 

challenge for groundwater-surface water coupled models. Human activities are highly 902 

complex and nonlinear, making it difficult to accurately represent them using partial 903 
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differential equations or linear equations. Incorporating human activity into physics-904 

based models based on these equations is a difficult task. 905 

2. Physics-based hydrological models require a thorough understanding of 906 

hydrology. Neglecting crucial processes or relationships due to limitations in 907 

knowledge may lead to errors in the model.  For example, neglecting the vadose zone's 908 

role in calculating baseflow recession can affect estimates of aquifer parameters (Liang 909 

et al., 2017b). 910 

3. The spatial heterogeneity of groundwater aquifers and surface water underlays 911 

at different scales affects the values of hydrological parameters, especially 912 

hydrogeological parameters. For instance, the coefficient of dispersion tends to increase 913 

with scale, leading to significant differences between field and laboratory 914 

measurements(Bear, 2012). 915 

4. Computational cost and efficiency are ongoing challenges. Many hydrological 916 

problems, such as flood forecasting, require timely and accurate predictions. However, 917 

the complexity of models and the computational limitations of computers make rapid 918 

and precise simulations and predictions challenging (Costabile et al., 2017). Parallel 919 

computing or simplified models can improve simulation speed. However, parallel 920 

computing is costly and challenging, while simplified models may neglect important 921 

hydrological processes, compromising result accuracy.  922 

5. The advent of advanced data collection instruments has led to an explosive 923 

growth in observational data for both surface water and groundwater. Traditional 924 

models based on physical processes necessitate continuous adjustments and validations 925 

to effectively leverage new data. However, coping with such vast amounts of data 926 

through conventional means is impractical. Addressing and fully harnessing the 927 

potential of this abundant data for modelling and prediction requires innovative 928 

approaches that surmount the bottlenecks in coupling groundwater and surface water 929 

using conventional methods. 930 
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 Application of Deep learning in hydrology research 931 

In order to overcome the above shortcomings, data-based methods are used as 932 

substitute or supplement to process-based ones in the field of hydrology research. DL 933 

has attracted the attention of scholars in various fields, including river hydrology and 934 

water quality modelling (Xu and Liang, 2021). The application of Deep Learning in 935 

hydrology research can not only works as a stand-alone model in hydrology research 936 

but also serves as an auxiliary tool for physics-based method. 937 

 Deep learning as stand-alone model 938 

1. hydrologic predictions. 939 

DL has emerged as a potential means to overcome uncertainty and nonlinearity in 940 

hydrology sciences(Shen, 2018). Its application in hydrological forecasting is primarily 941 

attributed to its capability to handle complex and nonlinear data patterns, utilize 942 

extensive data for training, autonomously learn features from data, exhibit robust 943 

predictive abilities, and efficiently manage large-scale datasets. These attributes enable 944 

DL to capture the intricate nature of hydrological processes and improve the accuracy 945 

of hydrological forecasting. Consequently, many scholars have conducted 946 

comprehensive reviews of using DL methods in hydrological prediction (Shen, 2018; 947 

Xu and Liang, 2021). This section provides a concise overview focusing on 948 

groundwater and surface water aspects. 949 

Regarding surface water, Ahmed et al. (2022) introduced an innovative hybrid DL 950 

model for forecasting river water levels. This model incorporates Convolutional Neural 951 

Networks (CNN), Bidirectional Long Short-Term Memory, and Ant Colony 952 

Optimization. To extract essential features from predictive variables, the model 953 

employs Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and 954 

Variational Mode Decomposition techniques, leading to a significant improvement in 955 

the accuracy of river water level prediction. In another study, Xu et al. (2022b) 956 

introduced a hybrid DL model that combines CNN with Gated Recurrent Unit (GRU) 957 

to predict future average runoff in the Yangtze River. They trained the model using data 958 
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from six hydrological stations along the Yangtze River's main stem and six tributary 959 

stations, with inputs from Global Climate Model forecasts. Furthermore, DL has been 960 

applied in optimizing control for hydraulic engineering projects. Xu et al. (2021) 961 

proposed a novel DL-based reinforcement learning framework for optimizing 962 

hydropower operations. The framework comprises two Artificial Neural Networks 963 

(ANNs), one to represent the relationships between states, actions, and rewards, and the 964 

other for defining the decision value function used in reward evaluation. Testing on the 965 

Hengren hydroelectric system in China demonstrated its superior performance 966 

compared to two classical hydropower operation methods - decision trees and random 967 

dynamic programming. 968 

For groundwater, Wunsch et al. (2022) applied a 1D-CNN method to build models 969 

for 118 observation points in Germany. They then utilized the trained CNN models to 970 

predict the future groundwater level response to climate change at selected locations. 971 

The climate data used in this research are derived from different Representative 972 

Concentration Pathway scenarios. McKenzie et al. (2023) used DL to forecast coastal 973 

seawater radon (222Rn) content in areas influenced by Submarine Groundwater 974 

Discharge. The model provided short-term predictions of radon content, and the fully 975 

connected deep neural network achieved accurate predictions using water depth, 976 

temperature, salinity, air temperature, and wind speed as input features. 977 

2. Data Mining 978 

Deep learning has proven to be an effective approach for uncovering hidden 979 

patterns, correlations, and knowledge within big datasets. Consequently, apart from its 980 

utilization in forecasting hydrological variables and processes, deep learning has also 981 

gained widespread application in the field of hydrological data mining. By delving 982 

deeply into hydrological data and analysing concealed patterns, deep learning has been 983 

extensively employed for examining relationships among hydrological variables, data 984 

reconstruction, and outlier detection. 985 
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Understanding the mechanisms of interaction among multiple variables is of 986 

paramount importance in the dynamics of water systems. With the continuous increase 987 

in the volume of hydrological observational data, the application of deep learning 988 

techniques to identify relationships among hydrological variables, independent of 989 

reliance on prior physical knowledge, has gradually become feasible. Jing et al. (2023) 990 

employed two deep learning models, namely Vanilla-LSTM and encoder-decoder-991 

LSTM, to establish a groundwater model for the North China Plain. They utilized the 992 

Gini coefficient and permutation feature importance analysis to determine the 993 

contributions of various driving factors in the different models. The results indicated 994 

that factors related to human activities exerted a significantly greater influence on 995 

groundwater level variations compared to other factors. Li et al. (2023) employed a 996 

convolutional recurrent deep learning model to predict the high-resolution 997 

spatiotemporal changes in grassland coverage in arid regions. They discovered that 998 

ecological flow regulation was the primary driver of grassland greening in the Gobi 999 

Desert. Jiang et al. (2022) utilized a Long Short-Term Memory (LSTM) network to 1000 

establish a flood prediction model for the contiguous United States. Their analysis 1001 

revealed that 70.7% of the watersheds were primarily dominated by a single flood 1002 

mechanism. 1003 

Time series data is essential for hydrological analysis (Alley and Taylor, 2001). 1004 

However, due to technical issues such as equipment failures and maintenance, as well 1005 

as unexpected events like natural disasters, hydrological monitoring often suffers from 1006 

missing time series data. The application of DL methods for time series data imputation 1007 

has emerged as one of the most active research areas in the past two decades 1008 

(Kulanuwat et al., 2021; Yang et al., 2021). For example, the GRACE (the Gravity 1009 

Recovery and Climate Experiment) Follow-On mission began operating a year after the 1010 

failure of GRACE. The data gap during this year poses a challenge for quantifying 1011 

hydrological drought events within that timeframe. Mo et al. (2022) proposed an 1012 

innovative Bayesian Convolutional Neural Network (BCNN) to reconstruct the missing 1013 
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satellite signals during this interval and tested its performance using previous GRACE 1014 

data. The test results demonstrated that the proposed BCNN achieved higher R and 1015 

NSE scores in most regions. 1016 

During hydrological monitoring, outliers can occur due to various reasons. These 1017 

outliers may arise from factors such as equipment failures, which, if directly used, can 1018 

deteriorate the quality of hydrological system modelling. However, outliers in 1019 

monitoring data can also represent significant and non-negligible information about 1020 

abnormal changes in the physical/chemical conditions of the hydrological system. 1021 

Numerous studies have been conducted to identify outliers using various deep learning 1022 

techniques(Fang et al., 2020; Hu et al., 2021). For instance, Kim et al. (2022) utilized 1023 

Long Short-Term Memory (LSTM) as an ensemble regression model. This approach 1024 

combined statistical features of groundwater data and seasonal variations in 1025 

precipitation data to estimate the trend and reasonable range of groundwater levels. The 1026 

study effectively identified outliers in three groundwater monitoring wells located in 1027 

the southern region of South Korea under seasonal and precipitation pattern 1028 

backgrounds. 1029 

 Deep learning as an auxiliary tool for physics-based method 1030 

Deep learning methods can serve as both standalone approaches for hydrological 1031 

research and as complementary tools to address challenges within process-based 1032 

modelling. Here, a brief overview of how deep learning has been integrated with 1033 

process-based modelling to enhance or optimize various components of the latter is 1034 

provided. 1035 

1.Parameterization 1036 

In most process-based models, the characteristic of media and fluid is described 1037 

by the specification of parameters. However, the parameters cannot be quantified or 1038 

measured directly. Moreover, the lots of parameters are affected by the scale required 1039 

by the model. For example, due to preferential flow, the hydraulic conductivity 1040 

measured in the laboratory may be several orders of magnitude smaller than that at the 1041 
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watershed scale. Determining appropriate parameter values for hydrological models is 1042 

a crucial issue in hydrological science. Currently, deep learning is being employed for 1043 

direct or indirect parameter calibration. 1044 

The process of directly calibrating parameters using deep learning is similar to 1045 

hydrological process prediction. This approach often relies on a large amount of data to 1046 

establish a model that captures the relationship between factors influencing the target 1047 

parameter and the target parameter itself. This model is then used to predict the values 1048 

of the target parameter in a new scenario. For example, Feng et al. (2022) proposed a 1049 

differentiable parameter learning framework to regionalize the physical parameters for 1050 

a process-based model, the HBV (Hydrologiska Byråns Vattenbalansavdelning) 1051 

hydrologic model. In their framework, a deep LSTM neural network is applied to output 1052 

physical parameters with the inputs of attributes factors like soil, land cover, geology, 1053 

and forcing factors like precipitation, temperature and evapotranspiration. For the 1054 

subsurface model, Srisutthiyakorn (2016) demonstrated the feasibility of using CNN to 1055 

directly predict permeability from rock images. Building upon this work, Wu et al. 1056 

(2018) extended the application of CNN by incorporating additional information from 1057 

two parameters, porosity and specific surface area, into the fully connected layers of 1058 

the network, resulting in the proposed physically informed CNN architecture. The 1059 

results demonstrated that the physically informed architecture generally exhibited 1060 

superior predictive performance compared to traditional CNN models in most cases.  1061 

The indirect process is solving inverse problems, typically using observed data 1062 

and a known model. However, solving inverse problems often requires repeatedly 1063 

running the model, leading to a significant computational burden. Therefore, alternative 1064 

model approaches are frequently employed. Deep learning methods are also among the 1065 

commonly used alternative model approaches. The specific details will be discussed in 1066 

the next section. 1067 
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2.Surrogate model 1068 

Physics-based numerical models have long served as the primary quantitative tools 1069 

in hydrological science. However, these models often incur a high computational 1070 

burden due to the complex physical processes involved. Consequently, it is challenging 1071 

to deal with optimizing problems and uncertainty analysis, which require multiple 1072 

model runs and generate huge computational demands. Surrogate models replicate 1073 

process-based model outcomes as a function of inputs and/or parameters, offering 1074 

significantly faster execution. (Razavi et al., 2012). Deep learning techniques excel in 1075 

representing nonlinear functions, making them well-suited for surrogate modelling. 1076 

Generally, the more input or output variables a surrogate model aims to emulate, 1077 

the larger the training dataset required. When using high-fidelity surrogate models, a 1078 

substantial amount of data from the original model is needed, which often entails 1079 

multiple runs and a significant computational burden. Hence, many studies focus on 1080 

low-fidelity surrogate models that replace only specific features or components of 1081 

physics-based numerical models. To reduce the number of input variables, sensitivity 1082 

analysis and other techniques are commonly employed. For example, Wang et al. (2023) 1083 

conducted a local sensitivity analysis to identify four key parameters that significantly 1084 

influence pollutant transport. They then generated data specifically for these four 1085 

parameters and trained a deep belief network-based surrogate model for multiphase 1086 

flow pollutant source inversion. By focusing on a reduced set of parameters, they 1087 

greatly alleviated the data generation challenge. 1088 

With the advancements in algorithms and computational power, researchers have 1089 

been exploring alternative approaches to the overall modelling process with high 1090 

fidelity. For instance, Maxwell et al. (2021) employed six deep learning models with 1091 

different structures, including 2D CNN, 3D CNN, and U-Net, to construct emulators 1092 

for the Parflow model. They assessed the emulator's accuracy in simulating surface 1093 

pressures in The Tilted V Problem. The results indicated that machine learning models 1094 

can capture general physical behaviours, with deeper networks outperforming models 1095 
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with fewer parameters. Tran et al. (2021) proposed a simulator called ParFlow-ML 1096 

based on a predictive recurrent neural network. ParFlow-ML takes ParFlow's input as 1097 

input and predicts ParFlow's output, aiming to provide a comprehensive replacement 1098 

for the ParFlow model. The results showed a remarkable consistency between the 1099 

simulator's predictions and ParFlow's simulated results in terms of flow rates, 1100 

groundwater table depth, and total water storage. Furthermore, the simulator exhibited 1101 

a speed advantage, performing 42 times faster than ParFlow. 1102 

3. Uncertainty Analysis and Error Estimation 1103 

Errors in hydrological simulations have had significant implications for their 1104 

applications in flood prediction and water resources management. Accurately 1105 

characterizing error properties, such as heteroscedasticity and autocorrelation, can 1106 

enhance hydrological predictions. Solomatine and Shrestha (2009) attempted to employ 1107 

various machine learning (ML) methods for model uncertainty analysis and utilized the 1108 

results as correctors for physics-based models. Subsequently, deep learning methods 1109 

have also been applied to uncertainty analysis and correction of results based on 1110 

physics-based models. 1111 

Sun et al. (2019) apply a CNN to learn the "mismatch" spatiotemporal patterns 1112 

between the total water storage anomalies observed by GRACE and the simulated data 1113 

by the NOAH. And then employed the trained CNN to improve the NOAH model 1114 

performance without requiring GRACE data in the new scenario. Results show that 1115 

with the assistance from CNN models, the NOAH-simulated result can achieve a 50% 1116 

improvement in NSE efficiency. Li et al. (2021a) established a MIKE SHE model to 1117 

simulate the hydrology process in the Yellow River in China from 1992 to 2015. Then 1118 

they introduced a probabilistic LSTM network to model hydrological residual errors 1119 

and make probabilistic predictions using the inferred error distribution and optimal 1120 

predictions. The findings of the study indicate that the suggested approach yields 1121 

uncertainty intervals that are more than 50% narrower while maintaining the optimal 1122 

probability coverage. Han and Morrison (2022) employed a LSTM model with 1123 
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sequence-to-sequence structure to estimate errors in hourly streamflow predictions 1124 

from the National Water Model for the Russian River Basin in California, USA. 1125 

Utilizing observed precipitation and errors from upstream stage sensors, they developed 1126 

lead-time hourly streamflow error predictions spanning 1 to 18 hours, improving the 1127 

predictive performance of the National Water Model. The model demonstrated more 1128 

satisfactory predictive performance compared to the independent results of the National 1129 

Water Model. 1130 

4. Sub model of physics-based model  1131 

Physical-based models often utilize partial differential equations (PDE) and 1132 

ordinary differential equations (ODE) to describe the various processes involved in the 1133 

hydrological cycle. However, due to the influence of complex nonlinear factors such as 1134 

heterogeneity, anisotropy, and human activities, accurately describing the 1135 

interconversion processes of hydrological elements by PDE and ODE becomes 1136 

challenging. Furthermore, certain hydrological processes are discontinuous, such as the 1137 

generation of methane bubbles in reservoir sediments and attempting to describe such 1138 

processes using PDE and ODE would require extensive iterations and may even be 1139 

infeasible to solve. In recent years, researchers have proposed leveraging the powerful 1140 

nonlinear mapping and fitting capabilities of deep learning methods to describe 1141 

processes that are difficult to characterize using PDE and ODE. These methods are then 1142 

embedded within physical-based models, aiming to enhance the accuracy and 1143 

computational efficiency of the models. 1144 

Bhasme et al. (2022) employed various deep learning methods such as LSTM, B-1145 

LSTM and machine learning methods as predictors for forecasting the rainfall-1146 

evaporation process and the rainfall-evaporation-surface runoff process. These 1147 

processes were then integrated into the conceptual hydrological model ABCD (Thomas, 1148 

1981) for hydrological prediction. The researchers applied this approach to predict 1149 

surface runoff in 10 sub-basins in India. The results demonstrate the superior 1150 

performance of the proposed model in comparison to both the purely conceptual ABCD 1151 
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model and ML algorithms, as the proposed model maintains the physical consistency 1152 

of water balance. The systematic integration of the conceptual model structure with DL 1153 

algorithms offers a promising approach to enhance the accuracy of predicting crucial 1154 

hydrological processes, thereby contributing to improved flood risk assessment.  1155 

Summary  1156 

This chapter provides a comprehensive overview of the pertinent literature. 1157 

Through an analysis of the references, the following conclusions have been drawn: 1158 

1. Within the coupled model frameworks mentioned above, the concept of 1159 

coupling hydrological processes has led to oversimplification, while fully 1160 

coupled models incur computationally intensive demands. Consequently, this 1161 

thesis adopts a boundary-coupled framework for investigation. 1162 

2. In the cited literature, deep learning methodologies have found extensive use 1163 

in hydrological prediction. However, limited attention has been given to the 1164 

impact of different input variables on forecasting. The evaluation of how input 1165 

variable selection influences model predictions and improves accuracy when 1166 

multiple input variables are employed constitute unresolved scientific 1167 

questions. 1168 

3. Analytical solutions possess the advantageous traits of flexibility and 1169 

convenience, rendering them a commonly employed tool for studying 1170 

interactions between surface water and groundwater in riparian zones. 1171 

Nevertheless, analytical models considering the layered heterogeneity of 1172 

aquifers in riparian zones, remain unexplored. 1173 

4. Deep learning models exhibit exceptional capacity for nonlinear mapping; 1174 

however, their black-box nature has been subject to scrutiny. On the other hand, 1175 

analytical models demand less computational effort and are adept at depicting 1176 

the fundamental physical principles underlying groundwater flow. Nonetheless, 1177 

their applicability is confined to specific conditions, such as simple aquifer 1178 

geometries and homogeneous parameters. Integrating analytical solutions and 1179 
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deep learning to capitalize on their respective strengths and compensate for 1180 

their limitations remains an outstanding scientific query. 1181 

 1182 

  1183 
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Chapter 3 Literature Review for Coupled deep learning and physics-1184 

based model 1185 

Despite numerous successful DL applications in aquatic sciences, challenges and 1186 

risks remain in applying these approaches to improve water resources and carbon 1187 

emission management. The first issue concerns the inadequacy of detection facilities. 1188 

The accuracy of deep learning methods relies on the quantity of observational data. 1189 

Without enough observational data, it becomes challenging for deep learning to achieve 1190 

results of satisfactory precision (Cao et al., 2022; Wang et al., 2020a). However, even 1191 

in developed countries with well-established infrastructures, the cost of obtaining a 1192 

substantial volume of high-precision environmental monitoring data still hinders the 1193 

application of deep learning in the short-term (Reichstein et al., 2019). Secondly, DL 1194 

methods work well only when the training and test data are drawn from the same data 1195 

feature space and the same probability distribution (Pan and Yang, 2010). This implies 1196 

that DL methods must be specifically designed and tailored for specific contexts. 1197 

Furthermore, due to the influence of factors such as watershed shape and vegetation, 1198 

the data characteristics of different aquatic systems indicators in various watersheds 1199 

often differ. Using models from other study areas directly for prediction and decision-1200 

made would lead to uncontrollable risks. The black-box nature of DL models is also a 1201 

contributing factor to the associated risks. The DL model is only trained by the available 1202 

dataset without considering explicit mechanisms in the training process. Flawed or 1203 

deliberately crafted hydrological data would result in physically inconsistent or 1204 

implausible predictions and pose significant risks to water security (Reichstein et al., 1205 

2019).  1206 

Recently, researchers have investigated methods to enhance the performance of 1207 

deep learning models and mitigate associated risks (Huang et al., 2022; Reichstein et 1208 

al., 2019). These research findings have started to find preliminary applications in the 1209 
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field of hydrology. This section provides a brief overview of two latest deep learning 1210 

techniques, namely Physics-Informed Neural Networks (PINNs) and transfer learning 1211 

and analyses their applications in the domain of hydrology. 1212 

 Physics-Informed Neural Networks (PINN) 1213 

Many researchers try to integrate DL and physics-based models and they introduce 1214 

them as ‘Physics-Informed Neural Networks’ or ‘Physics-Guided Neural Networks’. 1215 

To provide a clear and concise definition for further discussion in the thesis, the PINN 1216 

is defined as follows: Physics-Informed Neural Network (PINN) is a framework that 1217 

tightly integrates the structures of neural networks with mathematical equations, such 1218 

as PDEs and ODEs, that describe physical laws. This integration allows for a seamless 1219 

combination of the neural network's architecture and the errors associated with the 1220 

equations. 1221 

Raissi et al. (2019) first proposed a PINN farmwork, in which residual of physics 1222 

principles (e.g. government equation) is incorporated as a regulation in the loss function 1223 

to implement physical constraints of the neural network. Since then, they have been 1224 

applied in various fields such as geometry identification problems in materials (Zhang 1225 

et al., 2022a), Heat Transfer Problems (Cai et al., 2021), fluid dynamics computations 1226 

(Cai et al., 2022b; Mao et al., 2020). Chen et al. (2024) makes a review of PINN solver 1227 

for numerical analysis in geoengineering. The results indicate that, compared to 1228 

traditional methods, PINNs need more time to train the model and occasionally result 1229 

in lower accuracy. However, the trained PINN model can be easily applied repeatedly, 1230 

showcasing its advantages in uncertainty analysis and parameter inversion tasks. Here, 1231 

a concise review of the application of PINNs in hydrology based on the neural network 1232 

structures utilized in PINNs is provided  1233 

 Multi-Layer Perceptron 1234 

One of the neural network structures used in PINNs is the Multi-Layer Perceptron 1235 

(MLP). Due to its simplicity and effectiveness, the MLP was one of the earliest neural 1236 

networks applied in the context of PINNs and remains one of the most widely used 1237 
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architectures in PINN research. Due to the potential of PINN to be easily invoked 1238 

multiple times after training, it is often employed as a surrogate model. 1239 

Wang et al. (2020a) proposed the theory guide neural network (TgNN) framework 1240 

by incorporating physics principles with expert experience into the loss function to 1241 

simulate groundwater flow. The TgNN was then tested in complicated scenarios like 1242 

changed boundary conditions, noisy data or outliers. The result showed that Compared 1243 

with the data-driven DL model, the TgNN achieves far superior results in scenarios 1244 

such as training from noisy data and predicting with changed boundary conditions. 1245 

Based on the TgNN framework, (Wang et al., 2021a) then proposed an inverse 1246 

modelling method for groundwater parameters which incorporate of prior geological 1247 

statistical information. Test results indicate that, even with sparse spatial measurements 1248 

or imprecise prior statistics, the TgNN-based inversion method can still effectively 1249 

perform. Tartakovsky et al. (2020) extended the application of PINN to estimate 1250 

hydraulic conductivity in unsaturated flow. They demonstrated that incorporating 1251 

physical constraints improves the accuracy of the DNN approximation for sparse 1252 

observational functions. Furthermore, they showed that the physics-informed DNN 1253 

approach outperforms the state-of-the-art maximum a posteriori probability method in 1254 

terms of accuracy. 1255 

Traditional numerical solvers often face computational challenges when dealing 1256 

with highly nonlinear PDEs in high-dimensional spaces such as the Richardson–1257 

Richards equation and Navier-Stokes equations. Although PINN may not achieve the 1258 

same level of accuracy and efficiency as traditional methods, it still holds the potential 1259 

to be a competitive numerical solver for such cases. Jin (2021) effectively utilizes 1260 

PINNs to simulate incompressible laminar and turbulent flows. Developing a Navier-1261 

Stokes flow network, the study explores the velocity-pressure formulation and the 1262 

vorticity-velocity formulation. 1263 

The results showcase a remarkable level of accuracy achieved by the PINN 1264 

methodology. For groundwater, Bandai and Ghezzehei (2022) employed PINN to solve 1265 
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the Richards equation for simulating water flow in unsaturated, homogeneous, and 1266 

heterogeneous soils. The study discovered that using a suitable activation function 1267 

could enhance the accuracy of PINN to a comparable level with traditional numerical 1268 

methods. However, training PINN required longer computational time, and the results 1269 

also exhibited a strong dependence on the initialization of the neural network. Zhang et 1270 

al. (2022c) tried to improve the accuracy and efficiency of PINN in solving groundwater 1271 

equations by considering constraints, sampling strategies, and training schemes. It was 1272 

found that incorporating a hard-constrained loss function, employing a locally refined 1273 

sampling strategy (LRS), and adopting a two-stage training strategy using a snowball-1274 

like approach was effective in reducing computational load and enhancing model 1275 

performance. 1276 

 Convolutional neural network 1277 

Convolutional Neural Networks (CNNs) serve as another branch of PINN. In 1278 

comparison to MLP, CNNs offer advantages such as reduced model parameters through 1279 

local connections and parameter sharing, leading to improved computational efficiency. 1280 

Additionally, CNNs are commonly used for image processing tasks, extracting pixel-1281 

level features through convolutional operations. This characteristic bears similarities to 1282 

the finite difference method. Therefore, physics-informed CNNs (PICNN) typically 1283 

transform physics constraints, such as PDEs, into difference forms to accommodate the 1284 

characteristics of CNNs. This is the primary distinction between PICNN and PIMLP 1285 

models. 1286 

Wang et al. (2021b) developed the Theory-Guided Convolutional Neural Network 1287 

(TgCNN) aiming at efficiently quantifying uncertainty and assimilating data in 1288 

reservoir flow with uncertain model parameters. The results indicate that the TgCNN 1289 

can be constructed with a relatively small amount of training data while achieving 1290 

satisfactory accuracy and exceptional efficiency. Wang et al. (2022) expanded the 1291 

Theory-Guided Convolutional Neural Network (TgCNN) framework to address two-1292 

phase porous media flow problems. The TgCNN surrogates are also used for 1293 
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permeability field inversion, achieving improved efficiency and satisfactory accuracy. 1294 

He et al. (2021) proposed a Theory-Guided Fully Convolutional Neural Network 1295 

(TgFCNN) model to address the inverse problem of subsurface pollutant migration. 1296 

The TgFCNN model demonstrates strong generalization and extrapolation capabilities, 1297 

providing satisfactory accuracy in estimating unknown pollutant source parameters and 1298 

permeability fields. 1299 

 Recurrent Neural Network 1300 

RNNs serve as the other network structure within the framework of PINNs. RNNs 1301 

are particularly suitable for handling sequential data and capturing temporal 1302 

dependencies within the input data. Niu et al. (2019) illustrated the connections between 1303 

architectural structures in the RNN family and numerical methods. This study offers 1304 

theoretical support for employing RNNs to tackle problems related to ODEs and system 1305 

dynamics.  1306 

Jiang et al. (2020) incorporated the snowmelt process into streamflow simulation. 1307 

The authors employed non-analytical solvable ODEs to capture the dynamics of 1308 

watershed hydrology and integrated these ODEs into an RNN-based model. The 1309 

research was applied to the continental United States, and the testing results 1310 

demonstrated the enhanced predictive accuracy, strong transferability, and intelligent 1311 

inference capabilities of the model. For groundwater, Cai et al. (2022a) proposed a 1312 

general hybrid model for simulating groundwater levels. This model incorporated a 1313 

cyclic neural layer based on the water balance equation as a physical constraint into a 1314 

popular deep learning architecture. The model was applied to simulate groundwater 1315 

levels in 91 locations across the continental United States. The modelling case 1316 

demonstrated that the hybrid model outperformed traditional deep learning models in 1317 

terms of predictive accuracy. Additionally, the hybrid model exhibited greater stability 1318 

in simulating groundwater levels under different input strategies. The findings highlight 1319 

the advantages of the hybrid approach in groundwater level simulation, indicating 1320 



59 

 

improved performance and reliability compared to solely relying on deep learning 1321 

models. 1322 

 Transfer learning 1323 

Transfer learning (TL) is also a trend in applying DL. Transfer learning is effective 1324 

to recognize the knowledge learned in a previous task to a new task (Pan and Yang, 1325 

2010). The previous task is usually an efficient machine learning model which has 1326 

already been trained on large datasets and the new task is usually a related problem to 1327 

the previous task but with smaller training datasets. The transfer learning method has 1328 

been widely used in practical applications (Al-Mubaid and Umair, 2006; Chen et al., 1329 

2021; Ding et al., 2020; Fang et al., 2022; Fung et al., 2006; Li et al., 2021c; Raab and 1330 

Schleif, 2018; Sarinnapakorn and Kubat, 2007; Willard et al., 2021; Zhou, 2020). In 1331 

this chapter, the applications of transfer learning in geotechnics and hydrology will be 1332 

discussed. 1333 

Application of transfer learning in geotechnics 1334 

In the past five years, transfer learning has gradually been applied in geotechnical 1335 

engineering. Phoon and Zhang (2023) suggest that the limited amount of information 1336 

in geotechnical engineering has hindered the application of machine learning methods 1337 

in geotechnics. Meanwhile, transfer learning is an effective approach to address this 1338 

issue, although there is currently limited research in this area. This section summarizes 1339 

the application of transfer learning in three aspects: geological exploration, engineering 1340 

applications, and prediction and prevention of geological disasters. 1341 

In geological exploration and surveying, transfer learning enables the transfer of 1342 

knowledge from geological exploration or surveying data to new exploration scenarios, 1343 

thereby enhancing the predictive and interpretive capabilities of geological structures 1344 

and subsurface geological information. For instance, Zhou et al. (2024) developed a 1345 

"U-shaped" convolutional neural network (U-Net) to predict the depths of soil stratum 1346 

boundaries using data from cone penetration testing (CPT), standard penetration testing 1347 

(SPT), and laboratory index testing. The U-Net model was pretrained on openly 1348 
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accessible data from various sites worldwide and then fine-tuned through transfer 1349 

learning on a dataset specifically collected for the Suzhou Metro Line 6 project. The 1350 

soil profiles predicted by the model exhibited considerable consistency with benchmark 1351 

profiles developed by engineering experts. 1352 

In the prediction and prevention of geological disasters, transfer learning 1353 

facilitates the application of existing geological disaster data and model knowledge to 1354 

new regions or scenarios for predicting and mitigating geological hazards such as 1355 

landslides and debris flows, thus reducing disaster losses. Qin et al. (2022) proposed a 1356 

transfer learning approach based on LSTM deep learning models to evaluate the risk of 1357 

rock bursts. This method can transfer knowledge learned from complete monitoring 1358 

data from adjacent sensors to the target sensor with missing monitoring data to enhance 1359 

prediction. The results demonstrate that transfer learning methods can significantly 1360 

improve the predictive performance of the target domain and further enhance predictive 1361 

performance by increasing the size of available training data in the target domain. 1362 

In engineering applications, transfer learning allows the application of existing 1363 

engineering experience to new engineering projects to guide engineering decisions and 1364 

enhance engineering stability and safety. Zhang et al. (2023) combined principal 1365 

component analysis (PCA)-based neural networks (NN) with transfer learning (TL) 1366 

techniques (i.e., PCA-NN-TL) to analyse the stability of slopes with different spatial 1367 

distributions. They argue that the PCA-NN-TL algorithm also holds great potential for 1368 

assessing slope stability when training data is limited. 1369 

Application of transfer learning in hydrology 1370 

Since 2020, the transfer learning method has been introduced into the hydrology 1371 

community (Cao et al., 2022; Li et al., 2021c; Zhao et al., 2021; Zhou, 2020). Most 1372 

studies have focused on data interpolation and hydrological prediction in areas where 1373 

observed data is missing or unavailable(Li et al., 2021c; Zhao et al., 2021). For example, 1374 

Willard et al. (2021) developed a meta-learning model for predicting lake water 1375 

temperatures in regions lacking monitoring data, drawing knowledge from well-1376 
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behaved lake models. They underscored that transfer learning shows promise as an 1377 

approach suitable for unmonitored systems and environmental variables. Xiong et al. 1378 

(2022) developed an LSTM model for estimating riverine nitrogen export in China. 1379 

They further retrained the model for multiple catchments in North America, Europe, 1380 

and Asia. The retrained model led to a significant improvement in accuracy, nearly 1381 

doubling the precision of the results obtained by the model without retraining. The other 1382 

branch of transfer learning in hydrology is to employ it and image-based DL for 1383 

hydrological automatic observation networks(Eltner et al., 2021; Vandaele et al., 2021). 1384 

For example, Eltner et al. (2021) derived initial parameters from the widely recognized 1385 

pre-trained ImageNet segmentation. Subsequently, they trained a CNN to to segment 1386 

water in images captured by a Raspberry Pi camera, establishing an automatic and 1387 

reliable water level measurements.  1388 

The aforementioned studies primarily focused on gathering knowledge from 1389 

observed data and then transfering it to study a new area. This approach partially 1390 

addresses the challenge that the hydrological observation data is difficult to obtain. 1391 

However, it’s still difficult to find data-rich watersheds. Moreover, transfer learning 1392 

typically requires a certain level of similarity between the source domain and the target 1393 

domain. Directly transferring knowledge from other watershed data can lead to 1394 

uncontrolled transfer learning results. Model data is considered as a form of big data in 1395 

geosciences. Compared to observed data, model data offers the advantages of being 1396 

abundant and easily accessible. However, there is limited research regarding the 1397 

application of transfer learning with numerical models in hydrology. Ma et al. (2022) 1398 

proposed an LSTM-TL model to transfer the modeled relationship between 1399 

groundwater table depth and input hydrometeorological forcings to the observation-1400 

based estimation in 2569 monitoring wells in European. The LSTM-TL agree with the 1401 

in-situ data well and shows the advantage of DL and physics-based model by transfer 1402 

learning. 1403 
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PINN and Transfer learning 1404 

PINN and transfer learning are two prominent techniques in the field of machine 1405 

learning, each exhibiting unique advantages and application prospects in solving 1406 

diverse problems. 1407 

Firstly, PINN represents an integration of physics principles and neural networks, 1408 

aiming to embed known physical laws or constraints directly into neural network 1409 

models. This approach enhances the model's ability to accurately represent physical 1410 

phenomena by incorporating the governing equations or constraints as part of the loss 1411 

function during training. PINN finds extensive applications in solving complex 1412 

physical problems, such as fluid dynamics, solid mechanics, and heat conduction, 1413 

primarily dealing with PDEs. By ensuring that the model outputs adhere to physical 1414 

laws through constraint enforcement during training, PINN achieves precise prediction 1415 

and solution of physical problems. 1416 

In contrast, transfer learning focuses on knowledge transfer and application. Its 1417 

fundamental concept involves leveraging knowledge or models learned from one 1418 

domain (source domain) to assist learning tasks in another related but data-scarce 1419 

domain (target domain). Transfer learning has broad applications across various 1420 

domains, including natural language processing, computer vision, and medical 1421 

diagnosis.  1422 

Although PINN and transfer learning differ significantly in methodology and 1423 

application, there exist intersections between them. For example, when we use data 1424 

generated by PDEs as the source domain data for transfer learning, transfer learning 1425 

can also be "physics-guided". At the same time, combining transfer learning with the 1426 

principles of Physics-Informed Neural Networks (PINN) enhances the performance and 1427 

efficiency of the model (Prantikos et al., 2023). 1428 

 Summary  1429 

This chapter provides a comprehensive overview of PINN and transfer learning. 1430 

Through an analysis of the references, the conclusion is: PINN and transfer learning are 1431 
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both hot topics in current machine learning research, with promising prospects in 1432 

theoretical studies and practical applications in the hydrology domain. Considering the 1433 

heavy computational burden of PINN training and the abundance of analytical solutions 1434 

for PDEs in hydrology literature, employing transfer learning for further research 1435 

appears more suitable.  1436 
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Chapter 4 Daily runoff forecasting by deep recursive neural 1437 

network 1438 

Runoff forecasting plays a significant role in water resources planning and 1439 

management, for example, flood control, dam planning and reservoir operation 1440 

(Napolitano et al., 2011; Yuan et al., 2018). However, rain-runoff forecasting is a 1441 

difficult issue in hydrological process simulation, because of the highly non-linear 1442 

behaviour of the factors governing the hydrology system in the space-time domain 1443 

(Wang et al., 2009; Zhu et al., 2016). In the past decades, a great deal of effort has been 1444 

devoted to runoff prediction(Yuan et al., 2018).  1445 

Although the physics-based model is widely used in runoff research, the physics-1446 

based model is powerless to deal with uncertainties, high complexity, non-stationarity, 1447 

dynamism and non-linear factors, which affect runoff (Yoon et al., 2011). DL is a new 1448 

hot topic in mechanical learning. Recently, researchers have paid attention to RNN and 1449 

its variants (such as LSTMs and GRUs) and have found that deep RNNs have better 1450 

performance for runoff time-series prediction (Chen et al., 2020; Cheng et al., 2020; 1451 

Kao et al., 2020; Kratzert et al., 2018; Wang et al., 2020b; Xiang et al., 2020). According 1452 

to the input variables, the Rainfall-Runoff studies can be divided into 2 categories:(1) 1453 

Some researchers employ rainfall data as input to predict runoff (Hu et al., 2018; Le et 1454 

al., 2019); (2) Other researchers prefer to incorporate rainfall data with multiple 1455 

meteorological as input parameters, enabling various factors related to runoff to be 1456 

considered within the model (de la Fuente et al., 2019). However, limited research has 1457 

been focused on the influence of different input variables on rain-runoff forecasting by 1458 

using deep RNN. 1459 

In order to consider the impact of the selection of input variables on the model 1460 

prediction and find a way to improve accuracy when multiple input variables, this 1461 

chapter investigates the performance of deep RNN models on runoff forecasting with 1462 
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different input variables and an optimized input is identified based on the PCA method. 1463 

To make the result more credible, two USGS stations in different climatic zones are 1464 

chosen as study areas. A general description of different algorithms and data sources 1465 

are provided in Section 4.1. The predicted results with different inputs are discussed in 1466 

Section 4.2. A summary is presented in Section 4.3. 1467 

The relationship between this chapter and chapter 5-chapter 7 is show in Figure 1468 

4.1. The Deep RNN model proposed in this chapter provide a tool for surface water 1469 

prediction. the predicted surface water will be employed as the boundary conditions for 1470 

the groundwater prediction model.  1471 

 1472 
Figure 4.1 Relationship between this chapter and chapter 4, chapter 5 and chapter 6 1473 

 1474 

 Method and data 1475 

 Data collection 1476 

To cover diverse hydro-climatological regimes, the Muskegon River and the Pearl 1477 

River were chosen as the study area. As shown in Figure 4.2, The Muskegon River is 1478 
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located at the west of Michigan, U.S. state and it belongs to temperate continental 1479 

climate. The river comes from Houghton Lake and flows southwest to Muskegon Lake 1480 

stretching nearly 384km. Muskegon River basin is nearly 6,100 km2 and is composed 1481 

of 40 sub-watersheds (Ray et al., 2010). Muskegon River plays a crucial role in the 1482 

social economy and natural ecology of the basin. Rogers Dam, Hardy Dam and Croton 1483 

Dam on Muskegon River provide nearly 23000 people with a cleaner source of 1484 

electricity. The runoff of Muskegon River influences the ecosystem and 1485 

biogeochemistry in Lake Michigan  (Johengen et al., 2008). 1486 

The Pearl River is in southern Mississippi, U.S. state which belongs to humid 1487 

subtropical climate. The Pearl River runs from Neshoba County and flows to Lake 1488 

Borgne with the length of length of 715 km (Taylor and Grace, 1995). The Ross Barnett 1489 

Reservoir is the most important water facility which provides drinking water for 1490 

residents in Metropolitan Jackson. 1491 

 1492 

Figure 4.2 Overview of Muskegon river and the pearl river catchment 1493 

Daily runoff time series data is gathered from USGS Hydrological station 1494 

02489500 and 04121970. Daily meteorological time-series data is collected from 1495 
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Weather Underground and NOAA. The meteorological data includes the following data 1496 

(Table 4.1): 1497 

Table 4.1 Details of the meteorological data in the Muskegon River and Pearl River 1498 

 meteorological time 

series data in the Muskegon 

River 

meteorological time 

series data in the Pearl River 

Indexes 

⚫ Max-temperature (°C), 

⚫ Mean-temperature (°C), 

⚫ Min-temperature (°C), 

⚫ Max-dew point (°C), 

⚫ Mean-dew point (°C), 

⚫ Min-dew point (°C), 

⚫ Max-humidity (%), 

⚫ Mean-humidity (%), 

⚫ Min-humidity (%), 

⚫ Max-sea level pressure 

(hPa), 

⚫ Mean-sea level pressure 

(hPa), 

⚫ Min-sea level pressure 

(hPa), 

⚫ Max-windspeed (km/h), 

⚫ Mean-windspeed 

(km/h), 

⚫ Min-visibility (km), 

⚫ Max-visibility (km), 

⚫ Mean-visibility (km), 

⚫ Precipitation (mm). 

⚫ Max-temperature (°C), 

⚫ Mean-temperature (°C), 

⚫ Min-temperature (°C), 

⚫ Max-dew point (°C), 

⚫ Mean-dew point (°C), 

⚫ Min-dew point (°C), 

⚫ Max-humidity (%), 

⚫ Mean-humidity (%), 

⚫ Min-humidity (%), 

⚫ Max-sea level pressure 

(hPa), 

⚫ Mean-sea level pressure 

(hPa), 

⚫ Min-sea level pressure 

(hPa), 

⚫ Max-windspeed (km/h), 

⚫ Mean-windspeed 

(km/h), 

⚫ Precipitation (mm). 

 

 

Duration 01/10/1995-01/01/2020 01/01/2000-01/01/2020 

 Data pre-processing 1499 

Data pre-processing consists of data division and data cleaning. In addition, as 18 1500 

indicators of data are collected, PCA is employed to reduce the dimensionality of the 1501 

input data, to provide an alternate input dataset (See below.) 1502 

Data cleansing: The missing or outlying points in time series data reduce the 1503 

accuracy and quality of training and prediction. To discount the influence, the outlying 1504 

data are identified by the 6𝜎 rule which assumes data outside the range of �̅� ± 6𝜎𝐷 is 1505 

outlying data (Jeong et al., 2017), where �̅�  and 𝜎  are the average value and the 1506 
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standard deviations of time series data respectively. The outlying points and vacancy 1507 

are replaced by the average value of the same date in different years. 1508 

To avoid the influence of dimension on the training process, data are normalized 1509 

into a standardized range by the following equation: 1510 

 𝐷𝑁 =
𝐷−�̅�

𝜎𝐷
  Equation 4.1  1511 

Data division: To prevent overfitting and test the predictive capabilities of the 1512 

model, the data is divided into two parts: 80% is used to train the suggested models, 1513 

and the other 20% is used to test the trained models. In physics-based modelling, the 1514 

value of past history is tied to the time lag between input and output response, such as 1515 

the rainfall and the groundwater table response. However, in data-based modelling, the 1516 

past history is just a hyperparameter which is not directly related to physical behaviour 1517 

(Jeong and Park, 2019). So, in the training and testing part, the value of history is 1518 

identified by trial-and-error. 1519 

The PCA method: The PCA method extracts several principal comprehensive 1520 

variables from original data by covariance matrix, to persist core information and 1521 

eliminate noise. PCA has been widely used in the literature and data mining since its 1522 

introduction by Pearson (1901). The calculation processes of PCA method are as 1523 

follows (Hotelling, 1933): 1524 

1) Processing the normalized data as matrix 𝐷𝑁; 1525 

2) Calculating the correlation coefficient matrix 𝐶𝑐𝑚 based on the matrix 𝐷𝑁 as: 1526 

 𝐶𝑐𝑚𝑖𝑗 = 𝐶𝑜𝑣(𝐷𝑁𝑖
, 𝐷𝑁𝑗

) Equation 4.2 1527 

where 𝐷𝑁𝑖
 is the indicator vector in matrix 𝐷𝑁. 1528 

3) Calculating feature values 𝑓𝑣 and feature vectors of matrix 𝐶𝐶𝑀 and put feature 1529 

values in orderas 𝑓𝑣1 ≥ 𝑓𝑣2 ≥ ⋯ ≥ 𝑓𝑣𝑛. 1530 

4) Calculating the principal component contribution rate 𝐶𝑐𝑟𝑖  and the cumulative 1531 

contribution rate 𝐶𝐶𝑅: 1532 



69 

 

 𝐶𝑐𝑟𝑖 =
𝜆𝑖

∑ 𝜆𝑘
𝑛
𝑘=1

  Equation 4.3 1533 

 𝐶𝐶𝑅 =
∑ 𝜆𝑝

𝑖
𝑝=1

∑ 𝜆𝑘
𝑛
𝑘=1

  Equation 4.4 1534 

5) When the cumulative contribution rate was greater than 85%, the number of 1535 

principal components can be determined. 1536 

 Baseline model 1537 

In data-based model research, it is recommended to use some simple but effective 1538 

forecasting method as a baseline model to provide benchmarks (Hyndman and 1539 

Athanasopoulos, 2018). In this article, ridge regression is employed as the baseline 1540 

model. Ridge regression (Hoerl, 1959) is an effective method which is widely used in 1541 

machine learning and hydrology (Chen et al., 2018; Miche et al., 2020). Based on linear 1542 

regression, an L2 regularization term is applied in the loss function of ridge regression. 1543 

In this way, ridge regression gains a better ability of generalization. To make the 1544 

baseline model concise, rainfall data is input as it is the common variable in different 1545 

inputs considered in this research. 1546 

 RNNs 1547 

RNNs consist of the input layer, hidden layer (or hidden layers) and output layer, 1548 

but different from other ANNs (artificial neural networks), RNNs have fabulous 1549 

memory ability as these networks introduce state variables to store past information, 1550 

and then determine the current outputs, together with the current inputs.  1551 

The RNNs model can be trained by the BPTT (Back Propagation Through Time) 1552 

method which calculates not only the gradient of the cost corresponding to the input 1553 

weights but also the gradient of the cost corresponding to the hidden weights of the 1554 

previous time steps. However, the error of partial derivative accumulates through time 1555 

steps in the BPTT method. Meanwhile, when the time step is large, the gradient will 1556 

either get very small and vanish, or get very large and explode. This problem is 1557 

commonly known as the vanishing/exploding gradient problem. In recent years, the 1558 
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hidden block in RNNs has been replaced by the LSTM block or GRU block to combat 1559 

vanishing/exploding grad. 1560 

1. LSTM 1561 

LSTM neural network (Hochreiter and Schmidhuber, 1997) replaces the hidden 1562 

block in RNNs with three logic gates and a memory cell as shown in Figure 4.3. 1563 

 1564 

Figure 4.3 Neuron in the hidden layer of LSTM at time step t 1565 

In the training process, the memory cell state 𝐶𝑠𝑡 and hidden state 𝐻𝑠𝑡 would be 1566 

updated selectively based on the input gate 𝐼𝑔𝑡 and output gate 𝑂𝑔𝑡. The irrelevant 1567 

information in long-term memory would be forgotten by the forget gate 𝐹𝑔𝑡 . The 1568 

hidden block of LSTM neural network can be represented as follows (Amiri, 2015): 1569 

Input gate: 1570 

 𝐼𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑒𝑥𝑖 + 𝐻𝑠𝑡−1𝑊𝑒ℎ𝑖 + 𝑏𝑖)  Equation 4.5 1571 

Forget gate: 1572 

 𝐹𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑒𝑥𝑓 + 𝐻𝑠𝑡−1𝑊𝑒ℎ𝑓 + 𝑏𝑓)  Equation 4.6 1573 

Output gate: 1574 

 𝑂𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑒𝑥𝑜 + 𝐻𝑠𝑡−1𝑊𝑒ℎ𝑜 + 𝑏𝑜)  Equation 4.7 1575 

Cell state: 1576 

 𝐶𝑠𝑡 = 𝐹𝑔𝑡 ⊙ 𝐶𝑠𝑡−1 + 𝐼𝑔𝑡 ⊙ 𝐶𝑠
~

𝑡
  Equation 4.8 1577 

 𝐶𝑠
~

𝑡 = 𝑡𝑎𝑛ℎ(𝐷𝑡𝑊𝑒𝑥𝑐 + 𝐻𝑠𝑡−1𝑊𝑒ℎ𝑐 + 𝑏𝑐)  Equation 4.9 1578 

Hidden state: 1579 

 +

 

Igt

 Dt

Cst-1
Cst

Fgt Ogt

tanh

 

Cst

~
Cst

~

Hst-1 Hst
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 𝐻𝑠𝑡 = 𝑂𝑔𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝐶𝑠𝑡)  Equation 4.10 1580 

where is sigmoid function ( )
1

1 x
x

e


−
=

+
, which can be used as the activation 1581 

function in this step to transform input to the range of 0-1; 𝑊𝑒𝑥𝑖 , 𝑊𝑒𝑥𝑓 , 𝑊𝑒𝑥𝑜, 𝑊𝑒𝑥𝑐 ∈1582 

𝑅𝑑×ℎ, 𝑊𝑒ℎ𝑖 , 𝑊𝑒ℎ𝑓 , 𝑊𝑒ℎ𝑜 , 𝑊𝑒ℎ𝑐 ∈ 𝑅ℎ×ℎ are weight matrixes;and𝑏𝑖 , 𝑏𝑓, 𝑏𝑜, 𝑏𝑐 ∈ 𝑅1×ℎ 1583 

are biases. ⊙ is the Hadamard product of two matrixes. The activation function in this 1584 

step is 𝑡𝑎𝑛ℎ which can ensure hidden states range from -1 to1. 1585 

2.  RU 1586 

The GRU (Cho et al., 2014; Chung et al., 2014) neural network is similar to the 1587 

LSTM neural network. It replaces the hidden block in RNNs with two logic gates and 1588 

the candidate hidden state 𝐻𝑠𝑡

~

 as it is shown in Figure 4.4.  1589 

 1590 

Figure 4.4 Neuron in the hidden layer of GRU at time step t 1591 

The hidden block of GRU neural network can be represented as following (Cho et 1592 

al., 2014; Chung et al., 2014): 1593 

Reset gate： 1594 

 𝑅𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑒𝑥𝑟 + 𝐻𝑠𝑡−1𝑊𝑒ℎ𝑟 + 𝑏𝑟)  Equation 4.11 1595 

Update gate： 1596 

 𝑍𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑒𝑥𝑧 + 𝐻𝑠𝑡−1𝑊𝑒ℎ𝑧 + 𝑏𝑧)  Equation 4.12 1597 

Candidate hidden state： 1598 

 𝐻𝑠𝑡

~

= 𝑡𝑎𝑛ℎ(𝐷𝑡𝑊𝑒𝑥ℎ + (𝑅𝑔𝑡 ⊙ 𝐻𝑡−1)𝑊𝑒ℎℎ + 𝑏ℎ) Equation 4.13 1599 

Hidden state: 1600 

 +

1-   

Rgt Zgt Hst

 Dt

Hst-1 Hst

~
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 𝐻𝑠𝑡 = 𝑍𝑔𝑡 ⊙ 𝐻𝑠𝑡−1 + (1 − 𝑍𝑔𝑡) ⊙ 𝐻𝑠𝑡

~
 Equation 4.14 1601 

where𝑊𝑒𝑥𝑟 , 𝑊𝑒𝑥𝑧, 𝑊𝑒𝑥ℎ ∈ 𝑅𝑑×ℎ  and 𝑊𝑒ℎ𝑟 , 𝑊𝑒ℎ𝑧, 𝑊𝑒ℎℎ ∈ 𝑅ℎ×ℎ  are weight 1602 

matrix;𝑏𝑟 , 𝑏𝑧, 𝑏ℎ ∈ 𝑅1×ℎare biases. The update gate 𝑍𝑔𝑡 is used to capture long-term 1603 

dependencies in time series. Meanwhile, the reset gate 𝑅𝑔𝑡 and the candidate hidden 1604 

state are used to learn the short-term dependencies in time series. The candidate hidden 1605 

state presents the influence of the previous hidden state on present hidden state. If the 1606 

elements in the reset gate are close to 1, the hidden state of the previous hidden state 1607 

will be reserved. If the elements in the reset gate are close to 0, the hidden state of the 1608 

previous hidden state will be forgotten. 1609 

3. Dropout 1610 

Deep RNN is an effective method to deal with big data due to its memory ability. 1611 

However, it would be overfitting when the input is high-dimensional. Dropout is a 1612 

regularization method and provides an effective solution for this problem (Srivastava 1613 

et al., 2014). 1614 

The main idea of dropout is that there is a certain probability that every neuron in 1615 

a certain layer where the dropout method is applied will not be updated during each 1616 

training iteration. In this way, the output will not be overly dependent on some elements 1617 

of the hidden layer. However, due to the memory ability of RNNs, the dropout method 1618 

can only be applied to the no-recurrent connection between layers. 1619 

 Model evaluation criteria 1620 

The root means square error (RMSE), Nash-Sutcliffe Efficiency (NSE), the 1621 

coefficient of determination (R2), the mean absolute error (MAE) and the weighted 1622 

mean absolute percentage error (WMAPE) are used to evaluate the model performance. 1623 
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 Results and discussion 1624 

 Data pre-processing 1625 

Time series datasets are normalized by their mean and standard deviation and the 1626 

SPSS 21 is used to identify the principal component. The correlation coefficient matrix 1627 

is shown in Table 4.2 and Table 4.3.  1628 

Table 4.2 The correlation coefficient matrix of data in Muskegon River 1629 
 MAXTEM MEANTEM MINTEM MAXDEW … MINSEA PRE 

MAXTEM 1.00 0.98 0.93 0.94 … 0.35 0.06 

MEANTEM 0.98 1.00 0.98 0.96 … 0.32 0.09 

MINTEM 0.93 0.98 1.00 0.94 … 0.27 0.12 

MAXDEW 0.94 0.96 0.94 1.00 … 0.18 0.18 

MEANDEW 0.93 0.96 0.96 0.99 … 0.18 0.17 

MINDEW 0.91 0.95 0.96 0.95 … 0.19 0.14 

MAXHUM 0.16 0.16 0.17 0.35 … -0.37 0.23 

MEANHYM -0.12 -0.06 0.02 0.16 … -0.58 0.33 

MINHUM -0.30 -0.21 -0.10 -0.02 … -0.54 0.31 

MAXWIND -0.35 -0.40 -0.44 -0.44 … 0.07 -0.20 

MEANWIND -0.20 -0.25 -0.29 -0.33 … 0.19 -0.27 

MAXSEA -0.07 -0.11 -0.15 -0.21 … 0.24 -0.30 

MEANSEA 0.12 0.11 0.09 0.08 … 0.39 -0.02 

MINSEA 0.35 0.32 0.27 0.18 … 1.00 -0.31 

PRE 0.06 0.09 0.12 0.18 … -0.31 1.00 

Table 4.3 The correlation coefficient matrix of data in Pearl River 1630 

 MAXTEM MEANTEM MINTEM MAXDEW … MINSEA PRE 

MAXTEM 1.00 0.96 0.86 0.87 … -0.38 -0.10 

MEANTEM 0.96 1.00 0.94 0.93 … -0.44 -0.04 

MINTEM 0.86 0.94 1.00 0.91 … -0.43 0.02 

MAXDEW 0.87 0.93 0.91 1.00 … -0.53 0.08 

MEANDEW 0.87 0.94 0.93 0.97 … -0.50 0.05 

MINDEW 0.80 0.87 0.91 0.87 … -0.41 0.03 

MAXHUM 0.19 0.21 0.24 0.41 … -0.29 0.20 

MEANHYM 0.04 0.14 0.27 0.42 … -0.33 0.30 

MINHUM -0.05 0.11 0.29 0.35 … -0.29 0.28 

MAXWIND -0.10 -0.05 -0.01 0.05 … -0.27 0.16 

MEANWIND -0.27 -0.18 -0.12 -0.08 … -0.19 0.15 

MAXSEA -0.57 -0.62 -0.60 -0.64 … 0.87 -0.13 

MEANSEA -0.47 -0.53 -0.51 -0.59 … 0.93 -0.19 

MINSEA -0.38 -0.44 -0.43 -0.53 … 1.00 -0.22 

PRE -0.10 -0.04 0.02 0.08 … -0.22 1.00 
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The eigenvalues, variance contribution rates and cumulative variance contribution 1632 

rates of the correlation coefficient matrix is shown in Table 4.4. 5 components in each 1633 

study areas are extracted, and the cumulative variance contribution rates are 92.102% 1634 

and 91.84%. 1635 

Table 4.4 The Eigenvalues and variance contribution rates 1636 

Muskegon River Pearl River 

Ingredient Eigenvalues Variance Cumulative  Ingredient Eigenvalues Variance Cumulative  

1 6.41 35.63% 35.63% 1 7.27 48.49% 48.49% 

2 4.35 24.19% 59.82% 2 2.64 17.62% 66.11% 

3 2.63 14.61% 74.43% 3 1.82 12.11% 78.23% 

4 1.16 6.42% 80.84% 4 1.23 8.23% 86.46% 

5 1.04 5.78% 86.62% 5 0.81 5.39% 91.84% 

6 0.74 4.13% 90.76% 6 0.54 3.58% 95.42% 

7 0.61 3.39% 94.14% 7 0.21 1.39% 96.81% 

8 0.45 2.48% 96.62% 8 0.14 0.90% 97.71% 

9 0.18 1% 97.62% 9 0.09 0.599% 98.30% 

10 0.16 0.89% 98.51% 10 0.08 0.56% 98.86% 

11 0.13 0.7% 99.22% 11 0.06 0.41% 99.26% 

12 0.05 0.26% 99.48% 12 0.06 0.39% 99.66% 

13 0.04 0.21% 99.69% 13 0.03 0.20% 99.85% 

14 0.02 0.13% 99.82% 14 0.02 0.12% 99.97% 

15 0.01 0.08% 99.9% 15 0.01 0.03% 100.00% 

16 0.01 0.07% 99.96%     

17 0 0.03% 99.99%     

18 0 0.01% 100%     

 1637 

  1638 
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This section employs the PCA method to reduce the dimensionality of the original 1639 

data, reducing the 18-dimensional data of the Muskegon River and the 15-dimensional 1640 

data of the Pearl River to 5 principal components. This dimensionality reduction 1641 

process does not simply discard some indicators; rather, it identifies the primary 1642 

directions (principal components) that best represent the data variation. It then projects 1643 

the original data onto a lower-dimensional space, thereby retaining the main 1644 

information of the data. In simple terms, each principal component is a combination of 1645 

the original data. The principal component matrix of time series dataset is shown in 1646 

Table 4.5. 1647 

Table 4.5 The principal component matrix of time series dataset 1648 

Muskegon River Pearl River 

Indicator 1 2 3 4 5 Indicator 1 2 3 4 5 

MAXTEMP 0.92 0.33 -0.01 0.10 -0.03 MAXTEM 0.83  -0.49  -0.12  0.10  0.07  

MEANTEMP 0.95 0.26 -0.02 0.12 -0.04 MEANTEM 0.90  -0.37  -0.10  0.16  0.08  

MAXDEW 0.97 0.06 0.06 0.13 0.01 MINTEM 0.90  -0.24  -0.02  0.23  0.08  

MINTEMP 0.95 0.18 -0.01 0.13 -0.04 MAXDEW 0.95  -0.11  0.03  0.17  0.04  

MEANDEW 0.98 0.07 0.10 0.11 0.00 MEANDEW 0.96  -0.13  0.08  0.17  0.02  

MINDEW 0.96 0.09 0.13 0.09 -0.01 MINDEW 0.90  -0.17  0.12  0.21  0.03  

MAVHUM 0.35 -0.51 0.55 -0.12 0.19 MAXHUM 0.46  0.35  0.59  -0.16  -0.17  

MEANHUM 0.18 -0.78 0.48 -0.02 0.13 MEANHYM 0.48  0.62  0.57  0.05  -0.13  

MINHUM 0.01 -0.76 0.30 0.04 0.07 MINHUM 0.42  0.64  0.41  0.22  -0.09  

MAXSEA -0.59 0.45 0.41 0.45 0.09 MAXWIND 0.06  0.61  -0.53  0.42  -0.06  

MEANSEA -0.46 0.61 0.51 0.38 0.05 MEANWIND -0.08  0.63  -0.54  0.45  -0.03  

MINSEA -0.32 0.66 0.55 0.30 0.03 MAXSEA -0.80  -0.14  0.29  0.42  0.09  

MAXWIND 0.00 0.22 -0.20 -0.17 0.89 MEANSEA -0.75  -0.27  0.34  0.44  0.08  

MEANWIND 0.13 0.76 -0.31 -0.17 0.23 MINSEA -0.68  -0.37  0.38  0.43  0.09  

MINVIS 0.03 0.78 -0.29 -0.16 -0.02 PRE 0.13  0.49  0.10  -0.15  0.84  

MAXVIS -0.08 -0.34 -0.72 0.46 0.03       

MEANVIS -0.19 -0.35 -0.71 0.41 -0.01       

PRECI 0.18 -0.46 -0.05 0.41 0.35       

As shown in  1649 

  1650 
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This section employs the PCA method to reduce the dimensionality of the original 1651 

data, reducing the 18-dimensional data of the Muskegon River and the 15-dimensional 1652 

data of the Pearl River to 5 principal components. This dimensionality reduction 1653 

process does not simply discard some indicators; rather, it identifies the primary 1654 

directions (principal components) that best represent the data variation. It then projects 1655 

the original data onto a lower-dimensional space, thereby retaining the main 1656 

information of the data. In simple terms, each principal component is a combination of 1657 

the original data. The principal component matrix of time series dataset is shown in 1658 

Table 4.5. 1659 

Table 4.5, there is a strong positive correlation between the first component and 1660 

Max-temperature (°C), Mean-temperature (°C), Min-temperature (°C), Max-dew point 1661 

(°C), Mean-dew point (°C), Min-dew point (°C) in both areas. These indexes reflect the 1662 

temperature of study areas. However, in Pearl River, there is a negative correlation 1663 

between the first component and sea level pressure indexes while in Muskegon River 1664 

it is positive. The second to the fifth component in Muskegon River are the combination 1665 

of other indexes, while the second to the fifth component in Pearl River are humidity 1666 

indexes, wind indexes, sea level pressure and precipitation indexes respectively. The 1667 

similarities and differences between principal components of Muskegon River and 1668 

Pearl River show that the PCA method can extract climatic characteristics in different 1669 

areas. The result of the PCA method is shown in Figure 4.5. 1670 

 

Figure 3.4 a. Five Principle components in Muskegon river. 
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Figure 3.4 b. Five Principle components in Pearl river 

Figure 4.5 Principle components in Muskegon river and Pearl river 1671 

 Training for the ANN  1672 

Different RNN models (LSTM and GRU) are developed to test the influence of 1673 

different inputs on runoff forecasting. These models are implemented using Python 3.7 1674 

and TensorFlow 2.0. The structure includes a input layer, hidden layer 1 with 16 hidden 1675 

neurons, hidden layer 2 with 8 hidden neurons and a output layer. The dropout method 1676 

is used between the hidden layers to deal with overfitting. Meanwhile, the RMSprop 1677 

algorithm is used for training LSTM and GRU in this study. The hyperparameter, past 1678 

history, is set to 30 days, which means input data of every 30 days is used to predicate 1679 

runoff of the next day. 1680 

 Performance of ANN 1681 

Different hidden blocks and inputs are compared to evaluate their effect on model 1682 

performance and to identify the best hidden block and input combination. 6 different 1683 

scenarios are proposed in Table 4.6 to predict the runoff. Ridge regression is used as a 1684 

baseline model. These models are run on a computer with intel core i7-9750H CPU and 1685 

16GB memory. 1686 

Table 4.6 Different scenarios of hidden block and input 1687 

  Input Hidden block kind 

Scenario 1 Rainfall LSTM 

Scenario 2 Rainfall GRU 

Scenario 3 Multiple meteorological data LSTM 
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Scenario 4 Multiple meteorological data GRU 

Scenario 5 Multiple meteorological data with PCA method LSTM 

Scenario 6 Multiple meteorological data with PCA method GRU 

Parts of the forecasting results are provided and compared with the baseline model 1688 

in Figure 4.6. Other results can be found in the support information (Figure S 1-Figure 1689 

S 14). The model evaluation criteria results are provided in Table 4.7 1690 

 

Figure 3.5a Baseline model: Ridge regression based on rainfall data in Muskegon river 

 

Figure 3.5b Scenario 1: LSTM neural network based on rainfall data in Muskegon river 
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Figure 3.5c. Baseline model: Ridge regression based on rainfall data in Pearl river 

Figure 3.5d. Scenario 1: LSTM neural network based on rainfall data in Pearl River 

Figure 4.6 Result for all scenarios  1691 

Figure 4.6 shows runoff forecasting by different models and inputs. The 1692 

observation value (blue line) is castrated with different models. (a) Ridge regression 1693 

based on rainfall data in Muskegon River; (b)LSTM neural network based on rainfall 1694 
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data in Muskegon River; (c) Ridge regression based on rainfall data in Pearl River; (d) 1695 

LSTM neural network based on rainfall data in Pearl River. 1696 

Table 4.7 Model evaluation result 1697 

    

Baseli

ne 

model 

Scenar

io 1 

Scenar

io 2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

  Input 
Rainfal

l 

Rainfal

l 

Rainfal

l 

multiple 

meteorolo

gical data 

multiple 

meteorolo

gical data 

multiple 

meteorolo

gical data 

with PCA 

method 

multiple 

meteorolo

gical data 

with PCA 

method 

Muskegon 

River 

Hidden 

block kind 
- LSTM GRU LSTM GRU LSTM GRU 

NSE -0.186 0.003 -0.012 0.343 0.372 0.844 0.842 

RMSE(ft3/s) 
1358.0

9 

1245.6

5 
1254.9 1010.72 988.31 492.23 496.54 

MAE(ft3/s) 979.4 872.57 895.68 674.75 659.16 276.65 279.6 

R2 
6.00E-

06 
0.15 0.127 0.46 0.49 0.85 0.84 

Time(s) - 403 403 451 405 436 407 

Pearl River 

NSE 
-

0.2821 0.101 0.102 0.163 0.156 0.292 
0.31 

RMSE(ft3/s) 
11279.

868 

10788.

8 

10781.

84 10410.34 10454.19 8672.03 
8549.07 

MAE(ft3/s) 
9104.6

7 

6064.0

7 

6164.5

7 6252.14 6341.64 5376.65 
5107.27 

R2 
0.0031

98 0.27 0.25 0.37 0.31 0.38 
0.41 

Time(s) - 410 407 442 409 435 412 

As shown in Table 4.7 and Figure 4.6 Result for all s, all deep learning models 1698 

have better performance than the baseline model with higher NSE and R2 and lower 1699 

RMSE, MAE and WMAPE, which prove the advantage and effectiveness of the deep 1700 

learning model. 1701 

In Table 4.7, different input has a great influence on model accuracy. Deep RNN 1702 

models with multiple meteorological data inputs (Scenario 3 and Scenario 4) has a 1703 

better performance than rainfall data input only (Scenario 1 and Scenario 2). In both 1704 

areas, the NSEs of Scenario 1 and Scenario 2 are nearly 0, which means the results of 1705 
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deep RNN models with rainfall data input can only reflect the overall trend of runoff. 1706 

Compared with Scenario 1 and Scenario 2, NSE and R2 in both areas are much higher 1707 

in Scenario 3 and Scenario 4, meanwhile, RMSE and MAE reduced by nearly 20% in 1708 

Muskegon River. The improvement of models in Pearl River is relatively small. This 1709 

may be because multiple meteorological data included not only rainfall data, but also 1710 

wind speed, temperature and other meteorological indicators that directly or indirectly 1711 

affect the runoff generation process. This means that meteorological data can provide 1712 

more effective information to achieve higher accuracy. 1713 

With the same hidden block, the accuracy of deep RNN model with PCA input 1714 

(Scenario 5 and Scenario 6) may outperform the model with normal multiple 1715 

meteorological data inputs (Scenario 3 and Scenario 4) NSE and R2 of Scenario 5 and 1716 

Scenario 6 are nearly twice as much as Scenario 3 and Scenario 4 in both areas. 1717 

Meanwhile, in Muskegon River, RMSE, MAE and WMAPE are nearly 50% less than 1718 

Scenario 3 and Scenario 4. This means the PCA method can reflect core information by 1719 

classifying the original data information into several comprehensive variables and 1720 

prevent the interference of useless information. 1721 

With the same input, the deep GRU model can achieve the same accuracy as the 1722 

deep LSTM model and reduce the computational load. This phenomenon is more 1723 

obvious when processing high-dimensional input data. When the input data are just 1724 

rainfall (Scenario 1 and Scenario 2), the calculation time of the deep LSTM model and 1725 

deep GRU model are the same. With the input data changed to PCA data (Scenario 5 1726 

and Scenario 6) and multiple meteorological data (Scenario 3 and Scenario 4), the 1727 

calculation time of deep LSTM model rises dramatically to 436s and 451s in Muskegon 1728 

River and 435s and 442s in Pearl River, while the calculation time of deep GRU model 1729 

ascends slightly to 405s and 407sin Muskegon River and 407s and 412s in Pearl River. 1730 

This phenomenon could be due to the structure of the hidden block. The number of 1731 

parameters which need to be identified in each GRU block is 9 (6 weights and 3 biases) 1732 

while 12 parameters (8 weights and 4 biases) in each LSTM block need to be trained. 1733 
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With the same optimization method and input data, the fewer the number of 1734 

identification parameters, the faster to get the optimal solution. 1735 

 Summary 1736 

In recent years, the deep Recurrent Neural Network (RNN) has been applied to 1737 

predict daily runoff, as its ability to deal with the high nonlinear interactions among the 1738 

complex hydrology factors. However, most of the existing studies focus on the model 1739 

structure and the computational load, without considering the impact of the selection of 1740 

multiple input variables on the model prediction. This article presents a study to 1741 

evaluate this influence and provides a method of identifying the best meteorological 1742 

input variables for a runoff model. Rainfall and multiple meteorological data have been 1743 

considered as input to the model. Principal Component Analysis (PCA) has been 1744 

applied to the data as a contrast, to reduce dimensionality and redundancy within this 1745 

input data. Two different deep RNN models, a long-short-term memory (LSTM) model 1746 

and a gated recurrent unit (GRU) model, have been comparatively applied to predict 1747 

runoff with these inputs. In this study, the Muskegon River and the Pearl River were 1748 

taken as examples. The results demonstrate that the selection of input variables has a 1749 

significant influence on the predictions made using the RNN while the RNN model 1750 

with multiple meteorological input data is shown to achieve higher accuracy than 1751 

rainfall data alone. PCA method can improve the accuracy of the deep RNN model 1752 

effectively as it can reflect core information by classifying the original data information 1753 

into several comprehensive variables. 1754 

 1755 
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Chapter 5 Groundwater Responses to Recharge and Flood in 1756 

Riparian Zones of Layered Aquifers: An Analytical Model  1757 

The analytical model has gained widespread adoption in hydrology research, 1758 

however, one of the limitations in the previous studies is the assumption of the 1759 

homogeneous condition. In fact, heterogeneity is intrinsic in natural aquifers and has 1760 

been studied extensively in hydrogeology (Chang and Yeh, 2016; Feng et al., 2020; 1761 

Hsieh and Yeh, 2014; Li et al., 2020a; Li et al., 2021b; Liang et al., 2019; Sedghi and 1762 

Zhan, 2021). The riverbank often has a two-layer structure which is composed of non-1763 

cohesive and cohesive materials (Thorne and Tovey, 1981). Heterogeneity in riverbank 1764 

sediments not only controls water exchange by deflecting flow downward into the 1765 

sediment or upward into the channel (Ward et al., 2011), but it also alters groundwater 1766 

paths, fluxes, and residence times in the riparian zone (Earon et al., 2020; Gomez‐Velez 1767 

et al., 2014; Pryshlak et al., 2015; Sawyer and Cardenas, 2009). Sawyer and Cardenas 1768 

(2009) conducted numerical simulations of hyporheic flow and solute transport through 1769 

immobile bed forms composed of heterogeneous sediments. Their findings showed that 1770 

the sediment heterogeneity created longer hyporheic mixing paths than the case with 1771 

homogeneous sediments. Liang and Zhang (2013a) presented an analytical solution for 1772 

the water table and lateral discharge in a heterogeneous unconfined aquifer with a time-1773 

dependent source and fluctuating river stage. The heterogeneity that they considered 1774 

consists of a number of sections of different hydraulic conductivity values. More 1775 

recently, Su et al. (2020) evaluated the scale issues inherent in concentration, mixing, 1776 

heterogeneity, and modelling approaches in hyporheic flow based on a numerical model 1777 

and Monte Carlo simulations. Their results revealed that flux variance in the streambed 1778 

is an appropriate metric for assessing the magnitude of hyporheic mixing at all scales. 1779 
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Table 5.1 Review of analytical model considering heterogeneity of aquifer. 1780 

 Research Heterogeneity 
Dimensio

n 

Type of 

aquifer 
Driver force 

1 
Monachesi and 

Guarracino (2011) 
linear increase K 1D confined sea 

2 Chuang et al. (2010) n vertical layers 1D confined sea 

3 Wang et al. (2015) linear increase K 2D confined sea 

4 Li et al. (2011) 2 layers 1D unconfined sea 

5 Li and Jiao (2001) 2 layers 2D confined sea 

6 Jeng et al. (2002) 2 layers 2D unconfined sea 

7 Rathore et al. (2018) n layers 2D confined sea 

8 Rathore et al. (2020) 2D field 2D confined sea 

9 
Liang and Zhang 

(2013a) 
n vertical layers 1D unconfined 

river and 

recharge 

10 
Huang and Yeh 

(2016) 
n vertical layers 2D confined river and well 

11 
Rumynin et al. 

(2019) 

exponential decay 

K 
2D confined 

river and 

recharge 

12 Butler Jr et al. (2007) 2 layers 3D unconfined well and river 

13 
Samani and Sedghi 

(2015) 
2 layers 3D unconfined well 

14 Feng et al. (2021a) 3 layers 2D confined well 

15 Feng et al. (2020) 3 layers 2D confined well 

16 Feng et al. (2019) 2 layers 2D confined well 

17 Yeh and Kuo (2010) 2 layers 2D confined well 

18 
Avci and Ufuk Sahin 

(2014) 
n vertical layers 1D confined well 

19 
Sedghi and Zhan 

(2019) 
2 layers 3D unconfined well 

20 
Sedghi and Zhan 

(2021) 
3 vertical layers 3D unconfined well 

21 Chang et al. (2008) n vertical layers 1D unconfined 

diriclet 

boundary and 

recharge 

22 Saffi (2014) 2 vertical layers 1D confined leaky 

23 Present solution 2 layers 2D unconfined 
river and 

recharge 

Previous work evaluating the heterogeneity of aquifers in analytical models is 1781 

summarized in Table 5.1. To the best of our knowledge, a 2-D analytical model 1782 

describing groundwater flow in the riparian zone (or hyporheic zone) with a two-layer 1783 

structure has not been reported. Therefore, this study aims to fill this knowledge gap by 1784 



86 

 

presenting a semi-analytical solution for this 2-D model. In the semi-analytical model, 1785 

groundwater flow in the two layers is coupled with the continuity of the hydraulic head 1786 

and water fluxes across the interface. The proposed semi-analytical model could be 1787 

used to investigate changes of the hydraulic head and lateral discharge caused by a 1788 

recharge or flood event in a layered aquifer system. The chapter is organized as follows: 1789 

the mathematical model and its solution are presented in section 5.1 and section 5.2, 1790 

respectively. The comparison of the solution with a high-resolution numerical model 1791 

built with COMSOL is given in section 5.3. The results and discussion are presented in 1792 

section 5.4 and the application of the solution to field data is described in section 5.5. 1793 

Section 5.6 presents the summary of this work. 1794 

The relationship between this chapter and chapter 3, chapter5 and chapter 6 is 1795 

show in Figure 4.1. The analytical model presented in this chapter would be used to 1796 

provide the physics information for chapter 5. Meanwhile, the Dirichlet boundary 1797 

condition used in the groundwater model provide potential application to couple the 1798 

surface water simulation result with groundwater. It should be noted that analytical 1799 

models for unconfined groundwater flow in horizontal section and unsaturated-1800 

saturated groundwater flow in vertical section are also presented in the following 1801 

research. 1802 
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 1803 

Figure 5.1 Relationship between this chapter and chapter 3, chapter 5 and chapter 6 1804 
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 1809 

Figure 5.2 (a) Schematic diagram of groundwater flow in a layered aquifer; (b) conceptual 1810 

model of groundwater flow to a river in an unconfined aquifer with two-layer porous 1811 

media. 1812 

A schematic diagram of groundwater flow along a transect of the riparian zone in 1813 

a two-layer unconfined aquifer is displayed in Figure 5.2. The layered aquifer is 1814 

laterally bounded by a watershed divide and a river that fully penetrates the aquifer 1815 

(Figure 5.2a), which is conceptualized in two dimensions (Figure 5.2b). In Figure. 1b, 1816 

the x-axis is along the groundwater flow direction toward the divide, and the z-axis is 1817 

vertically upward. The top of the aquifer is the water table, which receives time-1818 

dependent recharge from rainfall events. The bottom of the aquifer is horizontal and 1819 

impermeable. The upper and lower layers have a uniform initial thickness of 𝐵1 [L] 1820 

and 𝐵2 [L], respectively. The upper and lower layers are both homogeneous, but their 1821 

hydraulic conductivities are different. The governing equation for groundwater flow in 1822 

the aquifer is given as follows: 1823 

 𝑆𝑠1
𝜕ℎ1

𝜕𝑡
= 𝐾𝑥1

𝜕2ℎ1

𝜕𝑥2 + 𝐾𝑧1
𝜕2ℎ1

𝜕𝑧2 , 0 ≤ 𝑧 ≤ 𝜉, 0 ≤ 𝑥 ≤ 𝐿  Equation 5.1 1824 

 𝑆𝑠2
𝜕ℎ2

𝜕𝑡
= 𝐾𝑥2

𝜕2ℎ2

𝜕𝑥2 + 𝐾𝑧2
𝜕2ℎ2

𝜕𝑧2 , −𝐵2 ≤ 𝑧 ≤ 0, 0 ≤ 𝑥 ≤ 𝐿  Equation 5.2 1825 

The initial head is defined as a uniform value: 1826 

 ℎ1(𝑥, 𝑧, 𝑡) = ℎ2(𝑥, 𝑧, 𝑡) = ℎ0, 𝑡 = 0  Equation 5.3 1827 

and the boundary conditions are defined as: 1828 
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 ℎ1(𝑥, 𝑧, 𝑡) = ℎ2(𝑥, 𝑧, 𝑡) = ℎ𝑏(𝑡), 𝑥 = 0  Equation 5.4 1829 

 
𝜕ℎ1

𝜕𝑥
(𝑥, 𝑧, 𝑡) =

𝜕ℎ2

𝜕𝑥
(𝑥, 𝑧, 𝑡) = 0, 𝑥 = 𝐿  Equation 5.5 1830 

 
𝜕ℎ2

𝜕𝑧
(𝑥, 𝑧, 𝑡) = 0, 𝑧 = −𝐵2   Equation 5.6 1831 

where subscripts 1 and 2 represent the upper and lower layer, respectively; 𝑆𝑠 is 1832 

the specific storage [L-1]; ℎ  is the hydraulic head [L];  𝐾𝑥  and 𝐾𝑧  are hydraulic 1833 

conductivity in x-direction (horizontal) and z-direction (vertical), respectively; 𝜉 is the 1834 

instantaneous location of the moving water table; 𝐻0 is the initial head, which is the 1835 

same as water table [L]; and ℎ𝑏(𝑡) is the fluctuating river stage [L].  1836 

Equation 5.1 and Equation 5.2 are coupled by the interface conditions representing 1837 

the continuity of the hydraulic head and vertical fluxes, respectively (Liang et al., 2017a; 1838 

Liang et al., 2017c): 1839 

 ℎ1(𝑥, 𝑧 = 0, 𝑡) = ℎ2(𝑥, 𝑧 = 0, 𝑡), 𝑧 = 0   Equation 5.7 1840 

 𝐾𝑧1
𝜕ℎ1

𝜕𝑧
(𝑥, 𝑧, 𝑡) = 𝐾𝑧2

𝜕ℎ2

𝜕𝑧
(𝑥, 𝑧, 𝑡),   𝑧 = 0  Equation 5.8 1841 

The upper boundary (𝑧 = ξ) of the unconfined aquifer with a recharge term is a 1842 

free surface (moving water table) that can be described by the following equation (Bear, 1843 

2012): 1844 

 [𝐾𝑧1 + 𝑊(𝑡)]
𝜕ℎ1

𝜕𝑧
= −𝑆𝑦

𝜕ℎ1

𝜕𝑡
+ 𝑊(𝑡) + 𝐾𝑥1 (

𝜕ℎ1

𝜕𝑥
)

2
+ 𝐾𝑧1 (

𝜕ℎ1

𝜕𝑧
)

2
 Equation 5.9 1845 

where  𝑆𝑦 is the specific yield [-]; and 𝑊(𝑡) is the time-dependent recharge rate 1846 

[LT-1]. The coupled equations (1)- (3) are difficult to solve analytically because of the 1847 

nonlinear nature of the upper boundary condition (4a) and the unknown location of the 1848 

moving water table ξ. To resolve this issue, Equation 5.9 is linearized by using the 1849 

perturbation technique (Dagan, 1964), which is widely adopted to simulate water flow 1850 

in unconfined aquifers (Malama et al., 2011; Neuman, 1972a; Zhan and Zlotnik, 2002a). 1851 

First, the water table is imposed on a fixed position (𝑧 = 𝐵1 ) by assuming that the 1852 

magnitude of water table fluctuation is much less than the aquifer thickness. Second, 1853 

the two quadratic terms are ignored because they are much smaller than the other terms 1854 

of Equation 5.9. Finally, the recharge term on the left side of Equation 5.9 is also 1855 

ignored because the aquifer recharge rate 𝑊 is usually orders of magnitude smaller 1856 
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than the hydraulic conductivity 𝐾𝑧1. Based on the above assumptions, the water table 1857 

boundary can be simplified to the linearized form: 1858 

 𝐾𝑧1
𝜕ℎ1

𝜕𝑧
= −𝑆𝑦

𝜕ℎ1

𝜕𝑡
+ 𝑊(𝑡), 𝑧 = 𝐵1 Equation 5.10 1859 

To test the validity of the linearized boundary condition (Equation 5.10), a 1860 

numerical experiment to compare the nonlinear (Equation 5.9) and linearized boundary 1861 

conditions (Equation 5.10) is conducted. Specifically, the coupled equations Equation 1862 

5.1- Equation 5.8 with the boundary conditions Equation 5.9 and Equation 5.10 are 1863 

solved numerically, respectively. Then the hydraulic head predicted by the model with 1864 

the nonlinear boundary (Equation 5.9) is compared to that of the model with the 1865 

linearized boundary (Equation 5.10). It should be noted that the nonlinear boundary in 1866 

the numerical model is fixed at 𝑧 = 𝐵1  rather than the moving water table, which 1867 

requires the magnitude of water table fluctuation to be much less than the aquifer 1868 

thickness. The details are presented in the supporting information S2.4. The results 1869 

indicate that the error caused by ignoring the quadratic terms and the recharge term on 1870 

the left side of Equation 5.9 is very small when the recharge rate is less than one-tenth 1871 

of the vertical hydraulic conductivity, which is widespread in the real world. It implies 1872 

that the linearized boundary (Equation 5.10) is an appropriate approximation to the 1873 

moving water table boundary.  1874 

 Solutions 1875 

 Solutions for hydraulic head 1876 

The governing Equation 5.1 and Equation 5.2 are solved by the Laplace and the 1877 

Fourier sine transforms, and the details of the derivation are presented in the supporting 1878 

information S2.1- S2.3. The Laplace domain solutions of Equation 5.1 and Equation 1879 

5.2 with the initial condition (Equation 5.3) and boundary conditions Equation 5.4- 1880 

Equation 5.10 can be respectively written as: 1881 
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ℎ̅1𝐷(𝑥𝐷, 𝑧𝐷) = ℎ̅𝑏𝐷 + ∑ [𝐶1𝑎 𝑒𝑥𝑝(−𝛺1𝑛𝑧𝐷) + 𝐶1𝑏 𝑒𝑥𝑝(𝛺1𝑛𝑧𝐷) − 𝜆1]∞
𝑛=0 √2 sin(𝜔𝑛𝑥𝐷)  1882 

Equation 5.11 1883 

ℎ̅2𝐷(𝑥𝐷 , 𝑧𝐷) = ℎ̅𝑏𝐷 + ∑ [𝐶2𝑎 𝑒𝑥𝑝(−𝛺2𝑛𝑧𝐷) + 𝐶2𝑏 𝑒𝑥𝑝(𝛺2𝑛𝑧𝐷) − 𝜆2]∞
𝑛=0 √2 sin(𝜔𝑛𝑥𝐷)1884 

   Equation 5.12 1885 

where the subscript ‘D’ denotes the dimensionless terms hereinafter; the overbar 1886 

denotes a variable in the Laplace domain; the definition of all dimensionless variables 1887 

is summarized in Table 5.2 and the supporting information S2.1; and the definitions of 1888 

variables 𝐶1𝑎, 𝐶1𝑏 , 𝐶2𝑎, 𝐶2𝑏 , 𝛺1𝑛, 𝛺2𝑛, 𝜆1, 𝜆2, and 𝜔𝑛  are presented in the supporting 1889 

information 2.3.  1890 

Table 5.2 Definition of dimensionless variables. 1891 

ℎ1𝐷 =
ℎ1

ℎ0
 ℎ2𝐷 =

ℎ2

ℎ0
 

𝑥𝐷 =
𝑥

𝐿
 𝑧𝐷 =

𝑧

𝐿
 

𝐵1𝐷 =
𝐵1

𝐿
 𝐵2𝐷 =

𝐵2

𝐿
 

𝐾𝑥𝑥 = √𝐾𝑥1𝐾𝑥2 𝑆𝑠𝑠 = √𝑆𝑠1𝑆𝑆2 

𝑡𝐷 =
𝐾𝑥𝑡

𝑆𝑠𝐿2
 𝑅𝐾 =

𝐾𝑥2

𝐾𝑥1
 

𝑅𝑆 = √
𝑆𝑠2

𝑆𝑠1
 𝐾1𝐷 =

𝐾𝑧1

𝐾𝑥1
 

𝐾2𝐷 =
𝐾𝑧2

𝐾𝑥2
 ℎ𝑏𝐷 =

ℎ𝑏

ℎ0
 

𝑊𝐷 =
𝑊𝐿

𝐾𝑥ℎ0
 𝑆𝑦𝐷 =

𝑆𝑦

𝑆𝑠𝐿
 

𝑅𝑣 =
𝐾1𝐷

𝐾2𝐷𝑅𝐾
2  𝑄𝐷 =

𝑄

ℎ0𝐾𝑥
 

𝑄1𝐷 =
𝑄1

ℎ0𝐾𝑥
 𝑄2𝐷 =

𝑄2

ℎ0𝐾𝑥
 

 1892 
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 Solutions for lateral discharge 1893 

On the basis of Darcy’s Law, the lateral discharge of groundwater per unit width 1894 

along the river channel (at 𝑥 = 0) can be expressed as the sum of lateral discharges for 1895 

two layers as follows: 1896 

 𝑄(𝑡) = 𝑄1(𝑡) + 𝑄2(𝑡) = − ∫ 𝐾𝑥1
𝜕ℎ1

𝜕𝑥
|𝑥=0𝑑𝑧

𝐵1

0
− ∫ 𝐾𝑥2

𝜕ℎ2

𝜕𝑥
|𝑥=0𝑑𝑧

0

−𝐵2
  Equation 5.13 1897 

where 𝑄1(𝑡)  and 𝑄2(𝑡)  are the lateral discharge of layer 1 and layer 2, 1898 

respectively [L2 T-1]. Equation 5.13 can be transformed to its dimensionless form: 1899 

𝑄𝐷(𝑡𝐷) = 𝑄1𝐷(𝑡𝐷) + 𝑄2𝐷(𝑡𝐷) = −
1

√𝑅𝐾
∫

𝜕ℎ1𝐷

𝜕𝑥𝐷
|𝑥𝐷=0𝑑𝑧𝐷

𝐵1𝐷

0
− √𝑅𝐾 ∫

𝜕ℎ2𝐷

𝜕𝑥𝐷
|𝑥𝐷=0𝑑𝑧𝐷

0

−𝐵2𝐷

1900 

   Equation 5.14 1901 

where 𝑅𝐾 = 𝐾𝑥2/𝐾𝑥1; and the other definitions of dimensionless parameters can 1902 

be found in Table 3.2. Conducting Laplace transform on Equation 5.14 yields the 1903 

following: 1904 

�̅�𝐷 = �̅�1𝐷 + �̅�2𝐷 = −
1

√𝑅𝐾
∫

𝜕ℎ̅1𝐷

𝜕𝑥𝐷
|𝑥𝐷=0𝑑𝑧𝐷

𝐵1𝐷

0
− √𝑅𝐾 ∫

𝜕ℎ̅2𝐷

𝜕𝑥𝐷
|𝑥𝐷=0𝑑𝑧𝐷

0

−𝐵2𝐷
  Equation 1905 

5.15 1906 

Substituting Equation 5.11 and Equation 5.12 into Equation 5.15 leads to: 1907 

 �̅�1𝐷 = −√
2

𝑅𝐾
∑ 𝜔𝑛 [

𝐶1𝑎(1−exp(−Ω1n𝐵1𝐷))+𝐶1𝑏(exp(Ω1n𝐵1𝐷)−1)

Ω1n
− 𝜆1𝐵1𝐷]∞

𝑛=0  Equation 5.16 1908 

 �̅�2𝐷 = −√2𝑅𝐾 ∑ 𝜔𝑛 [
𝐶2𝑎(exp(Ω2n𝐵2𝐷)−1)+𝐶2𝑏(1−exp(−𝐵2𝐷Ω2n))

Ω2n
− 𝜆2𝐵2𝐷]∞

𝑛=0   Equation 1909 

5.17 1910 

�̅�𝐷 = �̅�1𝐷 + �̅�2𝐷 = −√
2

𝑅𝐾
∑ 𝜔𝑛 [

𝐶1𝑎(1−exp(−Ω1n𝐵1𝐷))+𝐶1𝑏(exp(Ω1n𝐵1𝐷)−1)

Ω1n
− 𝜆1𝐵1𝐷]∞

𝑛=0 −1911 

√2𝑅𝐾 ∑ 𝜔𝑛 [
𝐶2𝑎(exp(Ω2n𝐵2𝐷)−1)+𝐶2𝑏(1−exp(−𝐵2𝐷Ω2n))

Ω2n
− 𝜆2𝐵2𝐷]∞

𝑛=0   Equation 5.18 1912 

 Solutions for fluxes between two layers 1913 

Water exchange occurs between the two layers of the aquifer induced by 1914 

fluctuating river stage and recharge events. Darcy’s velocity across the interface of the 1915 

two layers is: 1916 
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 𝑞𝐸(𝑥, 𝑡) = −𝐾𝑧1
𝜕ℎ1

𝜕𝑧
|𝑧=0   Equation 5.19 1917 

Based on Equation 5.19, the dimensionless Darcy’s velocity across the interface 1918 

can be written as: 1919 

 �̅�𝐸𝐷(𝑥𝐷) = √2
𝐾1D

√𝑅𝐾
∑ 𝛺1𝑛(𝐶1𝑏 − 𝐶1𝑎)∞

𝑛=0 sin(𝜔𝑛𝑥𝐷)  Equation 5.20 1920 

Given Equation 5.20, the dimensionless exchange fluxes along the interface of two 1921 

layers can be obtained by: 1922 

 �̅�𝐸𝐷 = ∫ �̅�𝐸𝐷(𝑥𝐷)𝑑𝑥𝐷
1

0
= √2

𝐾1D

√𝑅𝐾
∑ (𝐶1𝑏 − 𝐶1𝑎)

𝛺1𝑛

𝜔𝑛

∞
𝑛=0   Equation 5.21 1923 

Both solutions of head and discharge presented above involve the time-varying 1924 

river stage 𝐻𝑏(𝑡)  and recharge rate 𝑊(𝑡) . Both river stage and recharge should be 1925 

specified if one aims to evaluate the head and discharge. In this study, the river stage is 1926 

presented by a piecewise-linear function with time, and the recharge rate is presented 1927 

by a piecewise-constant function with time. Therefore, ℎ𝑏(𝑡) and 𝑊(𝑡) can be written 1928 

in the following forms:  1929 

 ℎ𝑏(𝑡) =
ℎ𝑏𝑖−ℎ𝑏𝑖−1

𝑡𝑖−𝑡𝑖−1
(𝑡 − 𝑡𝑖−1) + ℎ𝑏𝑖−1,       𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖  Equation 5.22 1930 

 𝑊(𝑡) = 𝑊𝑗 ,    𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖  Equation 5.23 1931 

where ℎ𝑏𝑖 is the observed river stage at time 𝑡𝑖; and 𝑊𝑗 is a constant for the time 1932 

interval 𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖  with 𝑡0 = 0 . The piecewise-linear approximation is the most 1933 

practical approach for treating the actual river stage because it permits approximation 1934 

of any river hydrograph with desired accuracy if small time increments are used (Liang 1935 

et al., 2020). Taking dimensionless and Laplace transform on Equation 5.22 and 1936 

Equation 5.23 yields: 1937 

ℎ̅𝑏𝐷 = ∑ 𝑒−𝑝𝑡𝐷𝑖−1
𝛼𝑖+𝑝ℎ𝐷𝑖−1

𝑝2 − 𝑒−𝑝𝑡𝐷𝑖 [
𝛼𝑖(1+𝑝𝑡𝐷𝑖)

𝑝2 +
(ℎ𝐷𝑖−1−𝛼𝑖𝑡𝐷𝑖−1)

𝑝
]∞

𝑖=1   Equation 5.24 1938 

 �̅�𝐷 = ∑
𝑊𝐷𝑖

𝑝
[exp(−𝑝𝑡𝐷𝑖−1) − exp(−𝑝𝑡𝐷𝑖)]∞

𝑖=1   Equation 5.25 1939 

where p is the Laplace transform parameter; 𝛼𝑖  is the variation rate of the 1940 

hydraulic head during 𝑡𝐷𝑖 to 𝑡𝐷𝑖−1; and the definitions of dimensionless variables ℎ𝑏𝐷 1941 

and 𝑊𝐷 are presented in Table 3.2. 1942 
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Equation 5.11, Equation 5.12, Equation 5.16, Equation 5.17, Equation 5.18, 1943 

Equation 5.19 and Equation 5.20 are the Laplace domain solutions. Due to the 1944 

complicated mathematical expressions, it is challenging to obtain closed-form solutions 1945 

by inverse Laplace transforms analytically. There are, however, several numerical 1946 

inverse Laplace methods that fix this problem, such as the Zakian method (Zakian, 1947 

1969), Fourier series method (Dubner and Abate, 1968), Stehfest method (Stehfest, 1948 

1970), Crump technique (Crump, 1976), Talbot algorithm (Talbot, 1979), and de Hoog 1949 

algorithm (De Hoog et al., 1982). The de Hoog algorithm is used to invert the Laplace 1950 

solutions into the time domain because a solution involving the piecewise functions 1951 

Equation 5.25 commonly requires complex versions of the numerical inverse Laplace 1952 

method (Liang et al., 2017c). 1953 

 Comparison with Numerical Solutions 1954 

To test the validity of the semi-analytical solutions Equation 5.11, Equation 5.12, 1955 

Equation 5.16, Equation 5.17 and Equation 5.18, they are compared with the numerical 1956 

solutions of the dimensionless governing Equation S 1- Equation S 9. The dimensionless 1957 

parameter values of the model are: 𝐾1𝐷 = 1, 𝐾2𝐷 = 1, 𝑅𝐾 = 0.1, 𝐵1𝐷 = 0.04, 𝐵2𝐷 =1958 

0.04, and 𝑆𝑦𝐷 = 0.8. Synthetic numerical simulations are carried out for two scenarios: 1959 

(1) groundwater flow induced by two rainfall recharge events which occur at 0.5 ≤ 𝑡𝐷 <1960 

1.0 with a constant rate of 𝑊𝐷 = 0.2, and 3.0 ≤ 𝑡𝐷 < 3.5 with a constant rate of 𝑊𝐷 =1961 

0.8 (Figure 5.3a), and the river stage is constant or 𝐻𝑏𝐷 = 1; and (2) groundwater flow 1962 

induced by a flood event, in which the dimensionless river hydrograph is described with 1963 

a diffusive-type flood wave (Figure 5.3b), and no recharge or 𝑊𝐷 = 0. 1964 

The dimensionless governing Equation S 1-Equation S 9 are numerically solved 1965 

using COMSOL Multiphysics (COMSOL Inc., Burlington, MA, U.S.A.), a Galerkin 1966 

finite-element software package that includes a partial differential equation (PDE) 1967 

solver for modelling the type of governing equations of this study. Triangulations are 1968 

used for the elements of the 2-D cross-section domain. To ensure sufficient accuracy of 1969 

the simulation, the elements near the water table, the interface between two layers, and 1970 

the river are refined with the minimum mesh-size of 0.002 and the maximum mesh-size 1971 

of 0.01, which includes 28860 triangular elements and 14799 nodes. The time step ∆𝑡𝐷 1972 

is 0.0025 for the two scenarios.  1973 
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Figure 5.3c and Figure 5.3d show the responses of the hydraulic heads in the upper 1974 

layer and the lower layer to the recharge and flood events, respectively. Figure 5.3e and 1975 

Figure 5.3f also present the lateral discharge induced by the recharge and the flood 1976 

events, respectively. These figures indicate that the analytical solutions (solid curves) 1977 

for both hydraulic head and discharge well agree with those of numerical solutions 1978 

(circle symbols) over the entire simulation period. Through the above comparison, the 1979 

analytical solutions of this study appear to be acceptable for predicting the hydraulic 1980 

heads and the discharges for the model. 1981 

 1982 

Figure 5.3. Comparison of the analytical solutions (solid curves) and the numerical 1983 

solutions (open circles) for two recharge events (left column) and a flood event (right 1984 

column): (a) the dimensionless recharge 𝑊𝐷  against dimensionless time 𝑡𝐷 ; (b) the 1985 

dimensionless hydraulic head ℎ𝐷  against 𝑡𝐷  at two locations; (c) the dimensionless 1986 

discharge 𝑄𝐷  against 𝑡𝐷 . For the right column: (d) the dimensionless river stage ℎ𝑏𝐷 1987 

against 𝑡𝐷; (e) ℎ𝐷 against 𝑡𝐷 at two locations; (f) 𝑄𝐷 against 𝑡𝐷. 1988 

 1989 
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 Results and Discussion 1990 

 Effects of layered heterogeneity on hydraulic heads 1991 

In this study, the layered heterogeneity is mainly represented by a dimensionless 1992 

parameter 𝑅𝐾 = 𝐾𝑥2/𝐾𝑥1 that quantifies the contrast in hydraulic properties of the two 1993 

layers. This section first investigates how the layered heterogeneity impacts the 1994 

responses of hydraulic heads to the time-varying recharge and the fluctuating river stage. 1995 

To clearly demonstrate the impacts of 𝑅𝐾, it is assumed that the aquifer is isotropic, 1996 

and the specific storage of two layers are equal. The other parameters of the aquifer are 1997 

as follows: 𝐾1𝐷 = 1, 𝐾2𝐷 = 1, 𝑅𝑆 = 1, 𝐵1𝐷 = 0.04, 𝐵2𝐷 = 0.04, and 𝑆𝑦𝐷 = 0.8.  1998 

Figure 5.4 displays the responses of the hydraulic heads to a recharge event (𝑊𝐷 =1999 

0.25 during 0.5 ≤ 𝑡𝐷 < 1.0) and a flood wave for different values of 𝑅𝐾 (0.01, 1.0, 2000 

and 100). Figure. 3b and 3c show that 𝑅𝐾 has a significant impact on the responses of 2001 

hydraulic heads to the recharge event. For the large 𝑅𝐾 (=100), the hydraulic head in 2002 

the upper layer (blue solid curve) is markedly larger than that of the lower layer (blue 2003 

triangle symbol). For the small 𝑅𝐾 (=0.01), the hydraulic head in the upper layer (red 2004 

solid curve) is close to that of the lower layer (red triangle symbol). Furthermore, for 2005 

the homogeneous case (𝑅𝐾 = 1), the hydraulic head in the upper layer (cyan solid curve) 2006 

is the same as that of the lower layer (cyan triangle symbol). These observations 2007 

indicate that the aquifer has a significantly downward hydraulic gradient induced by 2008 

the recharge when the upper layer has a smaller permeability. In contrast, for the case 2009 

of the larger permeability in the upper layer, the aquifer has no obvious vertical 2010 

hydraulic gradient, which is similar to the homogeneous case. These observations imply 2011 

that the heterogeneous hydraulic conductivity regulates the groundwater flow path. The 2012 

upper layer with the low permeability hinders groundwater lateral discharging into the 2013 

river in the upper layer and forces water to flow downward into the highly permeable 2014 

layer. In contrast, when the upper layer has a high permeability, it provides a fast flow 2015 

path for the lateral discharge in the upper layer and prevents water from flowing 2016 

downward into the lower layer. 2017 
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Figure 5.4e presents the response of the hydraulic heads to the flood event. Similar 2018 

to the case of the recharge event, there is little difference in hydraulic heads between 2019 

the upper and lower layers for the homogenous case (𝑅𝐾 = 1) and the case in which 2020 

the upper layer has a higher permeability (𝑅𝐾 = 0.01). For the case in which the upper 2021 

layer has a lower permeability (𝑅𝐾 = 100), however, the hydraulic head in the upper 2022 

layer (blue solid curve) is significantly lower than that of the lower layer (blue triangle 2023 

symbol) in the early time (𝑡𝐷 < 0.3), and the hydraulic head in the upper layer becomes 2024 

higher in the later time. The hydraulic head profile (Figure 5.4f) further illustrates that 2025 

for the case of 𝑅𝐾 = 100  the aquifer has a markedly upward hydraulic gradient at 2026 

𝑡𝐷 = 0.1 (the rise phase of heads), and it has a markedly downward hydraulic gradient 2027 

at 𝑡𝐷 = 0.4  (the decline phase of heads). For the cases of 𝑅𝐾 = 0.01  and 1, the 2028 

vertical hydraulic gradients are small, which is in accordance with the observations in 2029 

Figure 5.4d. The diverse hydraulic gradients reflect the impacts of heterogeneity on the 2030 

water flow path. When the upper layer has a lower permeability, most of the river water 2031 

initially infiltrates into the lower layer during the flood period and then flows upward 2032 

into the upper layer. The flow pattern changes in reverse during the recession period. 2033 

When the upper layer has a higher permeability, the vertical flow in the aquifer is not 2034 

obvious, which will be further illustrated later. 2035 
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 2036 

Figure 5.4 Responses of the dimensionless hydraulic heads to the recharge event (left 2037 

column) and the flood event (right column) for the different 𝑅𝐾 (0.01, 1, and 100). For 2038 

the left column: (a) the dimensionless recharge 𝑊𝐷  against time 𝑡𝐷 ; (b) the 2039 

dimensionless hydraulic head ℎ𝐷 against 𝑡𝐷 at the upper layer (𝑥𝐷=0.2, 𝑧𝐷=0.02, solid 2040 

curves) and the lower layer (𝑥𝐷=0.2, 𝑧𝐷=-0.02, triangle curves); (c) the vertical profiles 2041 

of ℎ𝐷 for the different times (𝑡𝐷=0.75, solid curves and 𝑡𝐷=2, dashed curves). For the 2042 

right column: (d) the dimensionless river stage ℎ𝑏𝐷 against 𝑡𝐷; (e) ℎ𝐷 against 𝑡𝐷 at the 2043 

upper layer (𝑥𝐷=0.04, 𝑧𝐷=0.02, solid curves) and the lower layer (𝑥𝐷=0.04, 𝑧𝐷=-0.02, 2044 

triangle curves ); (f) the vertical profiles of ℎ𝐷  for the different times (𝑡𝐷 =0.1, solid 2045 

curves and 𝑡𝐷=0.4, dashed curves). 2046 

To clearly illustrate the effects of the layered heterogeneity, the vertical profiles of 2047 

the hydraulic heads for the different 𝑅𝐾 (0.01, 1, and 100) induced by the recharge 2048 

event and the flood event based on our semi-analytical solution are presented in Figure 2049 

5.5 and Figure 5.6, respectively. The other parameter values are the same as those in 2050 

Figure 5.4. Figure 5.5 indicates that there is no significant vertical hydraulic gradient 2051 

when 𝑅𝐾 ≤ 1, while the downward hydraulic gradient is evident when 𝑅𝐾 > 1. This 2052 

means that the heterogeneity does not necessarily cause discrepancies in hydraulic 2053 

heads between the two layers; the differences in hydraulic heads between the two layers 2054 



99 

 

only occur when the upper layer is less permeable than the lower layer. In the other case, 2055 

the difference in hydraulic heads is miniscule. In addition, Figure 5.5 also shows that 2056 

the hydraulic heads of both cases of 𝑅𝐾 = 0.01 and 𝑅𝐾 = 100 are generally larger 2057 

than that of the case of 𝑅𝐾 = 1 for different times. This implies that the heterogeneity 2058 

leads to faster recession processes for the aquifer and results in lower hydraulic heads. 2059 

For the flood event, the impacts of the heterogeneity are similar to the case of the 2060 

recharge event. The hydraulic heads between the two layers differ only when the upper 2061 

layer is less permeable than the lower layer. However, the difference with the case of 2062 

the recharge event is that the aquifer has an upward hydraulic gradient during the rising 2063 

phase of the hydraulic heads, and a downward hydraulic gradient during the declining 2064 

phase. This means that there is a significant water interaction between the two layers 2065 

induced by the flood event when the hydraulic conductivity of the upper layer is lower 2066 

than that of the lower layer. 2067 

 2068 

Figure 5.5 Vertical profiles of the dimensionless hydraulic heads induced by the recharge 2069 

event for the different 𝑅𝐾 (0.01, 1, and 100) at different dimensionless times 𝑡𝐷 (0.75, 1, 2070 

and 2). 2071 

 2072 
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 2073 

Figure 5.6 Vertical profiles of the dimensionless hydraulic heads induced by the flood 2074 

event for the different 𝑅𝐾 (0.01, 1, and 100) at different dimensionless times 𝑡𝐷 (0.075, 2075 

0.1, and 1). 2076 

 Effects of layered heterogeneity on lateral discharge 2077 

In this section, the effects of layered heterogeneity on the recession processes 2078 

induced by a recharge event and the river-aquifer exchange induced by a flood event is 2079 

investigated. Figure 5.7b displays the discharge (baseflow) recession induced by a 2080 

recharge event (Figure 5.7a) for the different 𝑅𝐾  (0.01, 1, and 100). The other 2081 

parameters are the same as those in Figure 5.4. Figure 5.7b shows that the discharge 2082 

has a larger peak value and a faster recession process when 𝑅𝐾 is small. For the large 2083 

𝑅𝐾 (=100), the discharge has a smaller peak value and a slower recession process. This 2084 

means that when the upper layer has a high permeability, water from the recharge event 2085 

will be quickly discharged into the river. When the upper layer has a low permeability, 2086 

most of the water from the recharge event will infiltrate into the lower layer. Meanwhile, 2087 

for the homogeneous case (𝑅𝐾 = 1), the discharge has the smallest peak value and the 2088 

slowest recession process. This is because the geometric mean of the hydraulic 2089 

conductivity in the heterogeneous case would be controlled by the minimum value. 2090 

Figure 5.7d shows the response of river-aquifer exchanges to a flood event (Figure 2091 

5.7c) for different 𝑅𝐾 (0.01, 1, and 100). The discharge is negative in the early phase 2092 

and positive in the later phase, which means that the aquifer receives water from the 2093 
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river at the beginning and then releases it to the river. For the small 𝑅𝐾  (=0.01), 2094 

however, the interaction between river and aquifer is much greater and more water 2095 

migrates into the aquifer and then back into the river. For the large 𝑅𝐾 (=100), the 2096 

interaction is less than that in the small 𝑅𝐾 case, and the arrival time of peak inflow 2097 

and peak discharge lags compared with that in the small 𝑅𝐾 case. This indicates that 2098 

when the upper layer has a high permeability, the exchange between aquifer and river 2099 

is more rapid. When the lower layer has a high permeability, there is a marked vertical 2100 

hydraulic gradient (which can be found in Figure 5.6). In the early phase, the vertical 2101 

hydraulic gradient causes some water in the lower layer to migrate to the upper layer, 2102 

which reduces peak inflow and delays the arrival time of peak inflow. In the later phase, 2103 

the hydraulic gradient and exchange flow reverse and water from the upper layer 2104 

migrates to the lower layer reducing peak discharge and delaying the arrival time of 2105 

peak discharge. For the homogeneous case (𝑅𝐾 = 1), the discharge has the smallest 2106 

peak inflow and peak discharge. The reason for this is the same as that for the recharge 2107 

event. 2108 

 2109 

Figure 5.7 Responses of the dimensionless lateral discharge 𝑄𝐷 to the recharge event 2110 

(left column) and the flood event (right column) for the different 𝑅𝐾 (0.01, 1, and 100). 2111 

For the left column: (a) the recharge 𝑊𝐷  against dimensionless time 𝑡𝐷 ; (b) the 2112 
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dimensionless discharge 𝑄𝐷  against 𝑡𝐷 . For the right column: (c) the river stage ℎ𝑏𝐷 2113 

against 𝑡𝐷; (d) the dimensionless discharge 𝑄𝐷 against 𝑡𝐷.ttt 2114 

Equivalent hydraulic conductivity is often employed to simplify heterogeneity. For 2115 

groundwater flow parallel to aquifer layers, the equivalent hydraulic conductivity is 2116 

equal to the arithmetic mean of all individual hydraulic conductivities of the layers 2117 

(Equation 5.26). For groundwater flow perpendicular to aquifer layers, the equivalent 2118 

hydraulic conductivity is equal to the harmonic mean of all individual hydraulic 2119 

conductivities of the layers (Equation 5.27). 2120 

 𝐾𝑝 =
∑ 𝐾𝑖𝐵𝑖

𝑛
1

∑ 𝐵𝑖
𝑛
1

  Equation 5.26 2121 

 𝐾𝑣 =
∑ 𝐵𝑖

𝑛
1

∑
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𝐾𝑖

𝑛
1

 Equation 5.27 2122 

where 𝐾𝑖 is the hydraulic conductivity of layer 𝑖; and 𝐵𝑖 is the thickness of layer 2123 

𝑖. However, the equivalent method is derived based on a steady flow. In order to verify 2124 

the applicability of the equivalent formula in the riparian zone, the equivalent hydraulic 2125 

conductivity on transient lateral discharge is employed.  2126 

It should be noted that the result has to be discussed with dimension, as the 2127 

hydraulic conductivity influences the dimensionless form of time. In this part, the 2128 

hydraulic conductivities are 1( 𝑚/𝑑) and 10( 𝑚/𝑑) for the upper layer and the lower 2129 

layer, respectively. Therefore, the arithmetic mean would be 5.5( 𝑚/𝑑)  and the 2130 

harmonic mean would be 1.8( 𝑚/𝑑). The other parameters of the aquifer are as follows: 2131 

𝑆𝑠1 = 𝑆𝑠2 = 0.001(𝑚−1) , 𝑆𝑦 = 0.2 , 𝐵1 = 𝐵2 = 10(𝑚) , 𝐿 = 250(𝑚) . These 2132 

parameters would be the same as those in Figure 5.3 if they are transformed into 2133 

dimensionless form. 2134 

Figure 5.8a presents the responses of lateral discharge to a recharge event for 2135 

arithmetic mean, harmonic mean, and the heterogeneous aquifer. When the arithmetic 2136 

mean (red curve) is employed, the lateral discharge is remarkably smaller than that in 2137 

the heterogeneous case. Meanwhile, in the recession process, the difference between 2138 

them decreases. When the harmonic mean   (blue curve) is employed, the lateral 2139 

discharge is similar to that in the heterogenous case at the beginning, but the lateral 2140 
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discharge based on harmonic mean decreases more slowly than that in the heterogenous 2141 

case after 60 d. Figure 5.8b shows the responses to a flood event. When the arithmetic 2142 

mean (red curve) is employed, the interaction between river and aquifer is much less, 2143 

and the arrival time of peak value is earlier than that in heterogeneous case. When the 2144 

harmonic mean (blue curve) is used, the interaction would be overestimated, and the 2145 

arrival time of peak value for the harmonic mean is slightly earlier than that in the 2146 

heterogeneous case. These observations indicate that, for both the recharge event and 2147 

flood event, the harmonic mean would overestimate the discharge and the arithmetic 2148 

mean would underestimate it. The reason for this is that the arithmetic mean depends 2149 

on the large hydraulic conductivity and would overestimate the overall hydraulic 2150 

conductivity. In comparison, the harmonic mean depends on the small hydraulic 2151 

conductivity and would underestimate the overall hydraulic conductivity. 2152 

Figure 5.8 Responses of the discharge 𝑄 to the recharge event (a) and the flood event (b) 2153 

for the arithmetic mean, heterogeneous hydraulic conductivity, and harmonic mean. (a) The 2154 

dimensionless discharge 𝑄𝐷 against dimensionless time 𝑡𝐷 in the recharge event; (b) the 2155 

dimensionless discharge 𝑄𝐷 against 𝑡𝐷 in the flood event. 2156 

 Exchange fluxes between two layers 2157 

The dimensionless exchange flux across the interface between the two layers 𝑞𝐷 2158 

is the direct reflection of the impacts of the contrast in properties between the two 2159 

considered layers on groundwater flow. To gain insight into the pattern of the exchange 2160 

flux, Figure 5.9 displays the spatial distribution of 𝑞𝐷 along the interface at different 2161 

times for a recharge event (Figure 5.9a) and flood event (Figure 5.9b). The parameters 2162 
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used in Figure 5.9 are the same as those in Figure 5.3. For a recharge event (Figure 2163 

5.9a), all 𝑞𝐷 values are negative, which means that the groundwater in the upper layer 2164 

migrates into the lower layer. There is a peak of 𝑞𝐷 close to the left boundary in the 2165 

early phase. This peak value increases over time, and the location of the peak value 2166 

moves toward the right as time progresses, as well. When the recharge process ends 2167 

(𝑡𝐷 = 1), the flux from the upper layer decreases. However, some groundwater in the 2168 

upper layer still flows across the interface into the lower layer. 2169 

For a flood event (Figure 5.9b), all 𝑞𝐷  values are positive in the early phase, 2170 

which means that water in the lower layer migrates into the upper layer. In addition, 𝑞𝐷 2171 

varies with 𝑥𝐷 , and the peak of 𝑞𝐷  is close to the left boundary. This peak value 2172 

increases by 𝑡𝐷 = 0.1  before decreasing, and the location of the peak value moves 2173 

toward the right as time progresses. In the flood recession process, the flux at the left 2174 

region gently becomes negative, which means that the water in the upper zone migrates 2175 

into the lower layer in this region. However, some water in the lower layer still flows 2176 

across the interface into the upper layer at the right regions. As time passes, 𝑞𝐷 2177 

gradually becomes negative at more locations of the interface, which indicates that the 2178 

water flowing from the upper layer into the lower layer gradually dominates the 2179 

exchange flux between the two regions. 2180 
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Figure 5.9 Distributions of dimensionless exchange flux across the interface of the two 2181 

zones along the x‐direction at different times in the recharge event (a) and the flood event 2182 

(b). 2183 

To investigate the impacts of the distinction in properties between the two 2184 

considered layers on the total exchange flux between the two regions, the response of 2185 

dimensionless total exchange flux over the interface (𝑄𝑒𝑥𝐷(𝑡𝐷)) to a recharge event and 2186 

a flood event for different 𝑅𝐾(0.01, 1, and 100) are presented in Figure 5.10. 𝑄𝑒𝑥𝐷 is 2187 

evaluated using the integration of 𝑞𝑒𝑥𝐷  over the interface, i.e., 𝑄𝑒𝑥𝐷(𝑡𝐷) =2188 

∫ 𝑞𝑒𝑥𝐷𝑑𝑥𝐷
1

0
. The other parameters used in Figure 5.10 are the same as those in Figure 2189 

5.4. For the recharge event (Figure 5.10a), exchange flow from the upper layer to the 2190 

lower layer increases as the recharge event occurs, and then decreases to zero gradually 2191 

after the recharge. It can also be noticed that for a larger 𝑅𝐾 , there is more water 2192 

migrating into the lower layer. These observations are consistent with the conclusions 2193 

reached above, namely that an upper layer with the low-permeability forces water to 2194 

flow downward into the highly permeable layer. When the upper layer has a high 2195 

permeability, it would provide a fast flow path for the lateral discharge, and the lower 2196 

layer would function as an aquitard. For the flood event (Figure 5.10b), the total 2197 

exchange between layers is maximized when 𝑅𝐾  increases. For a small 𝑅𝐾 , the 2198 

amount of water being exchanged between layers is small. For a large 𝑅𝐾, the upper 2199 

layer releases more water to the lower layer in the early phase. Then the water moves 2200 

back, and leads to a slight downward vertical exchange. For the homogeneous case, the 2201 

mechanism of exchange flow is similar to that for a large 𝑅𝐾 with a smaller peak and 2202 
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bottom. These findings suggest that when the upper layer has a high permeability, the 2203 

vertical hydraulic gradient becomes smaller and the upper layer with a low-permeability 2204 

would result in a larger vertical hydraulic gradient, although the direction is opposite. 2205 

 2206 

Figure 5.10 Response of dimensionless total exchange flux 𝑄𝑒𝑥𝐷 to the recharge event 2207 

(a) and the flood event (b) for different values of  𝑅𝑥 . (a) The dimensionless total 2208 

exchange flux 𝑄𝑒𝑥𝐷  against dimensionless time 𝑡𝐷  in the recharge event; (b) the 2209 

dimensionless total exchange flux 𝑄𝑒𝑥𝐷 against 𝑡𝐷 in the flood event. 2210 

 2211 

 Application to Field Data 2212 

The present solution is applied to observed hydraulic heads in a riparian zone on 2213 

White Clay Creek within the Christina River Basin Critical Zone Observatory in 2214 

Southeastern Pennsylvania (Sawyer et al., 2014). The riparian zone has a two-layer 2215 

structure. The upper layer includes organic-rich silt and silty clay, whose hydraulic 2216 

conductivity ranges from 0.47×10-6 m/s to 4.7×10-6 m/s. The lower layer is silty gravel, 2217 

whose hydraulic conductivity ranges from 0.59× 10-6 m/s to 59× 10-6 m/s. Five 2218 

observation wells (referred to as well 110, 119, 120, 121, and 122) are installed on the 2219 

west bank. The details of the field are provided by Sawyer et al. (2014). 2220 

The measured precipitation and river stage are presented in Figure 5.11a. The 2221 

analytical model is applied to simulate the response of the hydraulic head to the storm. 2222 

The change of the hydraulic head (∆𝐻) relative to its initial value is employed to fit the 2223 

present model. The aquifer recharge is difficult to estimate directly but it is usually 2224 

proportional to the precipitation, which is helpful in estimating recharge. Here it is 2225 

assumed that the recharge is proportional linearly to the precipitation with an unknown 2226 
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ratio 𝑅𝑝𝑖. Thus, the recharge can be obtained by estimating the ratio of the recharge and 2227 

precipitation 𝑅𝑝𝑖. The aquifer parameters are estimated by minimizing the sum of the 2228 

squared differences between simulated and observed heads. The estimated parameters 2229 

are: 𝐾1 = 0.1𝑚/𝑑, 𝐾2 = 2𝑚/𝑑, 𝑆𝑦 = 0.021, 𝑆𝑠1 = 𝑆𝑠2 = 1 × 10−5 1/𝑚, 𝐵1 =2230 

1.0𝑚, 𝐵2 = 6.0𝑚, 𝐿 = 60𝑚, and 𝑅𝑝𝑖 = 0.2. The initial water table is equal to the river 2231 

stage (H=101.4 m), and the interface between the two layers is located at 100.9 m. It 2232 

should be noted that the thicknesses of the upper and lower layers are presumed by 2233 

combining the distribution of soils and comparing the analytical solutions with the 2234 

observation data.   2235 

Figure 5.11b-Figure 5.11f shows that the present solution agrees with the observed 2236 

hydraulic heads of five wells, while it performs poorly for well 122. The reason for this 2237 

is that the observed values in well 122 might be affected by the unsaturated zone, which 2238 

is not considered in the present solution. Furthermore, the change of hydraulic head in 2239 

well 122 is the highest, which implies that the recharge event has a greater impact on 2240 

the hydraulic head than the flood event. This is because the upper layer with the lower-2241 

permeability has a higher hydraulic head in the recharge event and a lower hydraulic 2242 

head in the flood event, as displayed in Figure 5.5 and Figure 5.6, respectively. 2243 

Furthermore, a clear tail phenomenon exists in each well and, when the well is further 2244 

away from the river, this phenomenon is more obvious. This is attributable to the fact 2245 

that a well that is far from the river needs more time to discharge the water received 2246 

from precipitation.  2247 
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 2248 
Figure 5.11 Field data observed by Sawyer et al. (2014) and the analytical model solutions. 2249 

(a) The observed precipitation and river stage against time (𝑡); the comparison between 2250 

the analytical model solutions and the change of observed hydraulic head (∆𝐻) against 2251 

time (𝑡) for well 122 (b), well 110 (c), well 121 (d), well 120 (e) and well 119 (f). Solid 2252 

colored lines represent analytical solutions, and colored triangles represent field data 2253 

To further investigate the effect of a two-layer structure on this case for the 2254 

recharge event, precipitation, exchange flux, and discharge are shown in Figure 5.12. 2255 

Figure 5.12a presents precipitation, total exchange flux between the two layers, and 2256 

discharge from both layers against time. To make the difference between total exchange 2257 

flow and discharge clearer, the absolute value of total exchange flow is presented in 2258 

Figure 5.12a. It can be seen in Figure 5.12a that the peak of precipitation and total 2259 

exchange flux between the two layers appear in chronological order, and the total 2260 

exchange flux between the two layers is almost the same as the discharge from the 2261 

lower layer. The time difference between precipitation and total exchange flux is 0.6 d. 2262 

The discharge from the upper layer is minimal compared with that from the lower layer. 2263 

These phenomena reflect the path of groundwater flow in White Clay Creek. With the 2264 

recharge by precipitation, most of the groundwater would flow into the lower layer and 2265 

discharge to the river. Four specific times are selected to examine the exchange flux, 2266 

i.e., before the storm (t = 0.5 d), during the storm (t = 1.22 d), at the peak of total 2267 
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exchange flux (t = 1.75 d) and after the storm (t = 3.75 d), as shown in Figure 5.12b. 2268 

Before the storm, the exchange flux is almost zero everywhere. During the storm (t = 2269 

1.22 d), the location of the peak values of exchange flux is near the left boundary. 2270 

Moreover, the exchange flux is positive at the left region and negative in the other 2271 

regions. This means that the water in the lower layer migrates into the upper layer at 2272 

the left region due to the stage of the rising river; at the other regions, the recharge event 2273 

and the upper layer with lower-permeability cause a downward vertical exchange flow. 2274 

When the total exchange flow reaches its maximum (t = 1.75 d), the flux at all regions 2275 

is negative, and there is a trough near the left boundary. This means that the water in 2276 

the upper layer migrates into the lower layer, and the decreasing stage of the river would 2277 

result in a higher exchange flux near the left boundary. After the storm (t = 3.75 d), the 2278 

flux at all regions is both negative and small. This indicates that the upper layer with 2279 

the low-permeability exerts a damping effect on downward exchange flow, and the 2280 

small and longstanding discharge to the lower layer would lead to the tailing 2281 

phenomenon observed in Figure 5.12a. 2282 

 2283 

Figure 5.12. The effect of the two-layer structure on the hyporheic flow mechanism. (a) 2284 

The precipitation, total exchange flow between two layers, discharge from the bottom 2285 

layer, and discharge from the upper layer; (b) exchange flow between two layers at 2286 

specific times. 2287 

Results from the case study shown above clearly show that the 2-D semi-analytical 2288 

model is capable of capturing the dynamic interactions of a two-layered aquifer in 2289 

response to recharge and flooding. Here the utility of the approach more broadly and 2290 
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potential implications is discussed. Two-layered aquifer systems are commonly found 2291 

in floodplains and riparian zones and in many areas, the upper fine-textured layer is 2292 

intensely cropped (Devito et al., 2000; Kalkhoff et al., 1992; Wang and Squillace, 1994). 2293 

Applications of nitrogen fertilizer (Kalkhoff et al., 1992) and herbicides (Wang and 2294 

Squillace, 1994) applied to the upper layer are potentially mobilized to the more 2295 

permeable lower layer during recharge and flood events. Similarly, two-layered systems 2296 

occurring in riparian zones will have implications for implementing conservation 2297 

practices designed to remediate subsurface contamination such as riparian buffers 2298 

(Mayer et al., 2007) and saturated buffers (Jaynes and Isenhart, 2014). These riparian 2299 

buffer practices are most effective when groundwater flow high in nitrogen interacts 2300 

with the organic-rich sediments.  Hence, two-layered alluvial aquifers and riparian 2301 

zones found along many rivers and streams may be severely compromised by variable 2302 

hydraulic gradients imposed from periodic recharge and flood events and more work is 2303 

needed to apply the 2-D semi-analytical model to these conditions.  2304 

Finally, there are a number of limitations that should be addressed for better 2305 

application of the semi-analytical solution of this study. First, the present solution does 2306 

not consider the impacts of the semipervious riverbed. The hydraulic conductivity of 2307 

the riverbed is usually lower than that of the aquifer and it will dampen surface-2308 

groundwater exchanges, depending on the riverbed hydraulic conductance (Huang et 2309 

al., 2014; Sun and Zhan, 2007). The impacts of the semipervious riverbed can be 2310 

considered by replacing the Dirichlet boundary condition on the river with a Robin (or 2311 

third-type) boundary condition. Second, the heterogeneous aquifer considered in the 2312 

research is caused by the layered structure of the riparian zone. The heterogeneity of 2313 

the realistic riparian zone, however, is more complicated. For example, the macropores 2314 

will provide preferential vertical flow paths. The lens and plant roots in the riparian 2315 

zone will obstruct groundwater flow. These all enhance the heterogeneity of the aquifer 2316 

and limit the application of the present solution. Third, the linearized water table 2317 

boundary (4b) requires that the magnitude of water table fluctuation is much less than 2318 
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the aquifer thickness. However, it is difficult to address exactly how small is “much 2319 

less”. This question may be addressed by comparing the present model with a numerical 2320 

model that considers a free moving water table. However, such a model will involve 2321 

complicated moving-mesh treating and iterative solving on an unknown water table, 2322 

which could be future work.  2323 

 Summary 2324 

A riparian zone is an important element in a river-aquifer system, controlling water 2325 

exchange and other chemical and biological processes between a river and an aquifer. 2326 

Complex groundwater flow patterns may occur due to aquifer heterogeneity within a 2327 

riparian zone. The purpose of this study is to investigate the impacts of layered 2328 

heterogeneity on water exchange in the riparian zone using a mathematical model for 2329 

groundwater flow in a two-layer aquifer that is recharged by precipitation and floods. 2330 

A semi-analytical solution is derived for the hydraulic head, lateral discharge, and 2331 

fluxes between the layers. Results demonstrate that the hydraulic conductivity 2332 

difference between the two layers enhances lateral flow in the higher permeable layer 2333 

and, more importantly, generates vertical flow between the two layers. The vertical flow 2334 

induced by the recharge event is downward while it could be upward or downward 2335 

induced by the flood event, which is determined by the contrast in permeabilities of the 2336 

two layers. Using an equivalent hydraulic conductivity approach underestimates the 2337 

discharge of the two-layer aquifer due to recharge or flood. The analytical solution 2338 

closely matched the observed hydraulic heads in the riparian zone well of White Clay 2339 

Creek and provided reasonable estimates of aquifer parameters. The present solution 2340 

provides a valuable basis for further study of chemical and biological processes in the 2341 

riparian zone. 2342 
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Chapter 6 Deep transfer learning for groundwater flow in 2343 

heterogeneous aquifers using a simple analytical model  2344 

Aquifer heterogeneity is one of the key factors to model groundwater flow 2345 

properly (Li et al., 2019) as it is the main source of uncertainty in groundwater 2346 

modelling (Refsgaard et al., 2012). Unfortunately, it is unrealistic to fully characterize 2347 

the aquifer heterogeneity using traditional parameter estimation methods, such as 2348 

pumping tests, due to technical and financial limitations (Binley et al., 2015; Yeh and 2349 

Liu, 2000). Therefore, the accurate predictions of water flow and contaminant 2350 

transport in heterogeneous aquifers is always a challenge. 2351 

Analytical models commonly provide simple and convenient tools in 2352 

groundwater flow modelling, e.g., they are commonly applied to the parameter 2353 

estimation of aquifer tests (Chang and Yeh, 2013; Liang et al., 2018b; Neuman, 2354 

1972b; Wen et al., 2013; Zhan and Zlotnik, 2002b), the quantification of simple 2355 

aquifer systems (Liang et al., 2017d; Liang and Zhang, 2012), and the verification of 2356 

numerical models (Walton, 1979). However, they are valid only under very specific 2357 

conditions, such as simple aquifer geometry and homogeneous parameters. Although 2358 

several studies have developed the analytical models that account for the layered 2359 

heterogeneities (Feng et al., 2021b; Liang and Zhang, 2013b; Zhang et al., 2022b), the 2360 

more complicated heterogeneous field is still out of the capacity of analytical models. 2361 

Despite all this, the analytical model requires less computational effort and has the 2362 

ability to present the first-order physical principle of groundwater flow. This 2363 

characteristic would provide important information for the data-based machine 2364 

learning model. 2365 
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To the best of the authors' knowledge, the model that integrates the analytical 2366 

solution and the DL model by transfer learning method has not been reported before. 2367 

Therefore, this study aims to fill this knowledge gap by incorporating the knowledge 2368 

of a simple analytical model into a deep neural network by transfer learning 2369 

technique. The proposed transfer learning model could significantly improve the 2370 

prediction of groundwater flow in a heterogeneous aquifer by incorporating the 2371 

knowledge of the analytical solution of a homogeneous aquifer. The section is 2372 

organized as follows: Section 5.1 presents the problem and the method. Section 5.2 2373 

presents the results of the experiments performed with the method. Finally, Section 2374 

5.3 provides a summary. 2375 

The relationship between this chapter and chapter 3, chapter 4, chapter 6 is show 2376 

in Figure 6.1. A deep transfer learning model guided by a simple analytical model to 2377 

predict groundwater flow in heterogeneous aquifers. Transfer learning is used to 2378 

improve the hydraulic head prediction in relatively complicated problems where the 2379 

analytical model is invalid. The result of this chapter provide a basement for the 2380 

catchment groundwater prediction in the chapter 6. 2381 
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 2382 

 Figure 6.1 Relationship between this chapter and chapter 3, chapter 4 and chapter 6 2383 

 2384 

Methodology 2385 

 Mathematical models and solution 2386 

 2387 

Figure 6.2 (a) Schematic diagram of groundwater flow in an unconfined aquifer; (b) The 2388 

recharge 𝑊 for unconfined aquifer against time 𝑡; (c) conceptual model of groundwater 2389 

flow to a river in a heterogeneous unconfined aquifer. 2390 

 2391 
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A schematic diagram of horizontally two-dimensional (2-D) groundwater flow 2392 

in an unconfined aquifer is displayed in Figure 6.2. The aquifer is laterally bounded 2393 

by a watershed divide and a river that fully penetrates the aquifer (Figure 6.2a). The x-2394 

axis is along the groundwater flow direction toward the divide, and the y-axis is 2395 

parallel to the river channel. The top of the aquifer is the water table, which receives 2396 

time-varying recharges from precipitation. The bottom of the aquifer is horizontal and 2397 

impermeable. The aquifer is heterogeneous and anisotropic. Given the Dupuit 2398 

assumption, groundwater flow can be described by the following 2-D Boussinesq 2399 

equation: 2400 

 
𝜕

𝜕𝑥
(𝐾(𝑥, 𝑦)ℎ

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾(𝑥, 𝑦)ℎ

𝜕ℎ

𝜕𝑦
) + 𝑊(𝑡) = 𝑆𝑦

𝜕ℎ

𝜕𝑡
  Equation 6.1 2401 

 ℎ(𝑥, 𝑡) = ℎ0,   𝑡 = 0  Equation 6.2 2402 

 ℎ(𝑥, 𝑡) = ℎ𝑏,   𝑥 = 𝐿  Equation 6.3 2403 

 
𝜕ℎ

𝜕𝑥
= 0, 𝑥 = 0  Equation 6.4 2404 

 
𝜕ℎ

𝜕𝑦
= 0, 𝑦 = 0 and 𝑦 = 𝑀  Equation 6.5 2405 

where ℎ is the hydraulic head [L]; 𝐾(𝑥, 𝑦) is the heterogeneous hydraulic 2406 

conductivity [LT-1]; 𝑊(𝑡) is the time-varying recharge rate [LT-1]; 𝑆𝑦 is the specific 2407 

yield [-]; ℎ0 is the initial hydraulic head [L]; ℎ𝑏 is the river stage [L]. L is the 2408 

distance between of the water divide and the river [L]; M is the width of aquifer in the 2409 

y-direction [L]. The time-varying recharge rate 𝑊(𝑡) could be any function form. In 2410 

this study a pricewise function with time is used to represent the recharge rate 2411 

 𝑊(𝑡) = 𝑊𝑖 ,      𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖 , 𝑖 = 1, 2,3 …  Equation 6.6 2412 

where 𝑊𝑖 is constant for a giving time interval 𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖. It should be noted 2413 

that Equation 6.6 is more flexible to describe the any time-varying recharge rate when 2414 

the time interval is small sufficiently. 2415 
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In this study, the log hydraulic conductivity field is assumed to be Gaussian and 2416 

stationary, with isotropic exponential correlation. The heterogeneous hydraulic 2417 

conductivity field is generated by the sequential Gaussian simulation of the GStools 2418 

which is a toolbox for geostatistical modelling in Python (Muller et al., 2022). The 2419 

governing equation (1a) with its initial and boundary conditions is numerically solved 2420 

using COMSOL Multiphysics (COMSOL Inc., Burlington, MA, U.S.A.), a Galerkin 2421 

finite-element software package that includes a partial differential equation (PDE) 2422 

solver for modelling the type of governing Equation 6.1. The numerical model is 2423 

mainly used to generate training and testing data and to be a benchmark to validate 2424 

the DL model.  2425 

For a homogeneous and isotropic aquifer, the governing Equation 6.1-Equation 2426 

6.4 reduce to a one-dimensional (1-D) Boussinesq equation as follows 2427 

 𝐾
𝜕

𝜕𝑥
(ℎ

𝜕ℎ

𝜕𝑥
)+𝑊(𝑡) = 𝑆𝑦

𝜕ℎ

𝜕𝑡
  Equation 6.7 2428 

 ℎ(𝑥, 𝑡) = ℎ0,   𝑡 = 0  Equation 6.8 2429 

 ℎ(𝑥, 𝑡) = ℎ𝑏,   𝑥 = 𝐿  Equation 6.9 2430 

 
𝜕ℎ

𝜕𝑥
= 0, 𝑥 = 0  Equation 6.10 2431 

Equation 6.7 with its initial and boundary conditions and the time-varying 2432 

recharge rate (Equation 6.6) can be analytically solved using the integral transform 2433 

method. The solution of the hydraulic head of Equation 6.7-Equation 6.10 can be 2434 

written as (Liang and Zhang, 2012) 2435 

ℎ2(𝑥, 𝑡) = ℎ0
2 +

4

𝐿𝐾
∑ cos(𝜔𝑛𝑥)∞

𝑛=0
(−1)𝑛

𝜔𝑛
3  [𝑊𝑖 − 𝑊1𝑒−𝜔𝑛

2 𝛽𝑡 + ℋℯ(𝑖 − 1) ∑ (𝑊𝑗 −𝑖−1
𝑗=1

2436 

𝑊𝑗+1) 𝑊1𝑒𝜔𝑛
2 𝛽(𝑡𝑗−𝑡)],     𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖 , 𝑖 = 1, 2,3 …   Equation 6.11 2437 

Where: 2438 
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 𝜔𝑛 =
(2𝑛+1)𝜋

2𝐿
, 𝛽 =

𝐾ℎ̅

𝑆𝑦
   Equation 6.12 2439 

ℎ̅ is the average saturated thickness of aquifer [L]; and ℋℯ(∙) is Heaviside 2440 

function. In the solution (Equation 6.11), the static river stage ℎ𝑏 is assumed to be 2441 

equal to the initial head ℎ0. The analytical solution will provide the prior physics 2442 

knowledge for the DL model.  2443 

 Deep Neural Network 2444 

The Deep Neural Network (DNN) is a powerful machine learning method, which 2445 

has a higher ability to represent complex systems than traditional neural networks 2446 

(Raghu et al., 2017) due to multiple neuron layers in neural network architectures. 2447 

Besides the hidden layers, there is an input layer and an output layer in the neural 2448 

network architecture, each of which consists of several neurons. It is assumed that 2449 

there are 𝑚 hidden layers, the input is a vector 𝑋, and the output is a vector 𝑂. The 2450 

forward formulation of the DNN can be written as:  2451 

 𝐻1 = 𝜎(𝑊𝑒1𝑋 + 𝑏1)  Equation 6.13 2452 

 𝐻2 = 𝜎(𝑊𝑒2𝐻1 + 𝑏2)  Equation 6.14 2453 

 ⋮  2454 

 𝐻𝑚 = 𝜎(𝑊𝑒𝑚𝐻𝑚−1 + 𝑏𝑚)  Equation 6.15 2455 

 𝑂 = 𝜎(𝑊𝑒𝑚+1𝐻𝑚 + 𝑏𝑚+1)  Equation 6.16 2456 

where 𝐻𝑖 is the output of 𝑖th hidden layer; 𝑊𝑒 and 𝑏 are matrix of weight 2457 

and vector of bias, respectively; 𝑊𝑒 and 𝑏 is usually combined as a DNN 2458 

parameter 𝜃𝑁 = {𝑊𝑒𝑖 , 𝑏𝑖}𝑖=1
𝑚+1; 𝜎 is the activation function. Hyperbolic tangent 2459 

(Tanh) and sigmoid are widely adopted as activation functions of the DNN for a 2460 

regression problem. In this study, the Tanh function 𝜎(𝑥) =
2

(1−𝑒−2𝑥)−1
 is adopted to 2461 

avoid the zigzag problem. The result of DNN can be expressed as 𝑂 = 𝑁𝑁(𝑋, 𝜃), and 2462 

the loss function can be defined as the mean square error between the DNN result 2463 

𝑁𝑁(𝑋, 𝜃) and the observed data 𝑌, which can be written as: 2464 
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 𝐿(𝜃) =
1

𝑛
∑ |𝑁𝑁(𝑥𝑖 , 𝜃) − 𝑦𝑖|𝑛

𝑖=1
2
  Equation 6.17 2465 

where 𝑛 is the total number of training data. The DNN parameters 𝜃 can be 2466 

estimated by minimizing the loss function: 2467 

 𝜃 = arg min
𝜃∗

1

𝑛
∑ |𝑁𝑁(𝑥𝑖 , 𝜃∗) − 𝑦𝑖|2𝑛

𝑖=1   Equation 6.18 2468 

It should be noted that in order to avoid the influence of dimension on the training 2469 

process, training and testing data are normalized as follows in pre-processing.  2470 

 𝐷𝑛𝑖 = 2
𝐷𝑖−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
− 1  Equation 6.19 2471 

where 𝐷 represents data used in the model, 𝐷𝑚𝑎𝑥and 𝐷𝑚𝑖𝑛 are the maximum 2472 

and minimum values of data 𝐷. 2473 

 Transfer Learning 2474 

Transfer learning (TL) addresses problems with smaller training datasets, by 2475 

repurposing efficient machine learning models, already trained on related large 2476 

datasets of well-known problems (Vandaele et al., 2021). The traditional deep learning 2477 

model is aimed to find a function 𝑁𝑁 to link the input vector 𝑋 and the observe data 2478 

𝑌 from the dataset 𝐷 = {(𝑥𝑖 , 𝑦𝑖)𝑖=1
𝑛 , : 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌}, where 𝑛 is the number of input 2479 

or observed data. The function 𝑁𝑁 should be able to accurately reproduce the output 2480 

of the model with a given input. For the TL model, the aim is also to train a function 2481 

to link the input vector 𝑋𝑡 and the observe data 𝑌𝑡 from a target dataset 𝐷𝑡 =2482 

{(𝑥𝑡𝑖 , 𝑦𝑡𝑖)𝑖=1
𝑛 , : 𝑥𝑡𝑖 ∈ 𝑋𝑡 , 𝑦𝑡𝑖 ∈ 𝑌𝑡} that could be a relatively sparse dataset. The TL 2483 

model transfers the knowledge from a source task 𝑠 with the input vector 𝑋𝑠, the 2484 

observed data 𝑌𝑠, and the dataset 𝐷𝑠 to the target dataset. In this study, the target 2485 

dataset is the hydraulic head of the heterogeneous aquifer calculated by the numerical 2486 

model and the source dataset is the hydraulic head of the homogeneous aquifer 2487 

calculated by the analytical model. 2488 
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The pre-training and fine-tuning is a very popular TL method, which is also 2489 

known as the parameter-transfer approach. In this method, it is assumed that the 2490 

source tasks and the target tasks share the same parameters or prior distributions of 2491 

the hyperparameters of models. Firstly, the pre-training model will be identified using 2492 

the source tasks database 𝐷𝑠 that is generated by the analytical solution. Then, 2493 

several layers of the pre-training model would be frozen. The parameters of the 2494 

remaining layers 𝜃𝑇 will be fine-tuned by the target tasks dataset that is generated by 2495 

the numerical model. These parameters will be finally estimated by minimizing the 2496 

loss function: 2497 

 𝜃𝑇 = arg min
𝜃∗

∑
1

𝑛∗
|𝑁𝑁(𝜃∗|𝜃0, 𝑥𝑡𝑖) − 𝑦𝑡𝑖|

2𝑛∗

𝑖=1   Equation 6.20 2498 

where 𝑛∗ is the number of target training datasets used to fine-tune the 2499 

pretraining model. 𝜃0 is the parameter of the pre-training model. The flowchart of 2500 

the pre-training with fine-tuning method is illustrated in Figure 6.3.  2501 

 2502 
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Figure 6.3 Workflow of the pre-training and fine-tuning methods in the transfer learning 2503 

model. 2504 

 2505 

 Overview of framework 2506 

The purpose of this study is to propose a transfer learning framework to predict 2507 

hydraulic heads of heterogeneous aquifers. The analytical solution of a homogeneous 2508 

aquifer provides the source dataset and prior physics knowledge, and the numerical 2509 

model of a heterogeneous aquifer is employed as a proxy to generate the target dataset 2510 

and test the capacity of TL model. The TL model is implemented in the following 2511 

steps.  2512 

Firstly, the analytical model is employed to generate the source dataset 𝐷1 with 2513 

a specific hydraulic conductivity 𝐾1. Then, the source dataset is normalized by the 2514 

maximum and minimum values of dataset 𝐷1 as Equation 6.19. A DNN model is 2515 

trained by the normalized source dataset 𝐷𝑛1 and serves as a pre-training model, 2516 

where the output data are the normalized hydraulic heads and the input data are the 2517 

locations of the observed points, the observed times, and the recharge rates. 2518 

The difference between the source dataset and the target dataset is they are 2519 

generated by different hydraulic conductivity. If layers of the pre-training model 2520 

which are more sensitive to hydraulic conductivity are identified and then set 2521 

retrainable, the TL model will be more effective. To analyse the impact of hydraulic 2522 

conductivity on layers of the pre-training model, a new DNN model is established to 2523 

provide a comparison. The new DNN model has the same structure as the pre-training 2524 

model, but it is trained by a new dataset 𝐷2 which is generated by the analytical 2525 

model with hydraulic conductivities 𝐾2. The effects of the hydraulic conductivity on 2526 

layers of the pre-training model are identified by comparing the two models. After 2527 
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that, the layers in pre-training model, which are insensitive to the hydraulic 2528 

conductivity, will be frozen and the remaining layers will be set to retrainable.  2529 

Several scenarios are designed to test the TL model. A homogeneous scenario is 2530 

implemented first. In the homogeneous scenario, the target dataset is generated with 2531 

𝐾3. For heterogeneous scenarios, the spatial and temporal performance of the TL 2532 

model, the effect of heterogeneity and recharge uncertainty on the TL model result are 2533 

discussed respectively. In these scenarios, target datasets are generated with hydraulic 2534 

conductivity fields.  2535 

For each scenario above, the target dataset is divided into training data and 2536 

testing data. The observation points are randomly selected and the daily hydraulic 2537 

head in each point is set to the training data. Retrainable parameters in the pre-training 2538 

model would be fine-tuned by these training data. The groundwater field at a specific 2539 

time or temporal hydraulic head at a specific point is applied as a reference to 2540 

evaluate the performance of the TL model. To make the result more reliable, the Deep 2541 

Back Propagation Neural Network (DBPNN) is used as a baseline model. The 2542 

benchmark model is trained solely on observed data generated by the numerical 2543 

model. On the other hand, the proposed model is trained using observed data and 2544 

analytical knowledge based on the transfer learning method. Both the proposed model 2545 

and the benchmark model have the same structure, including the number of layers and 2546 

neurons, and are trained using the same optimization methods. By comparing the 2547 

proposed model and the benchmark model, it would be easy to determine if 2548 

incorporating analytical knowledge can effectively improve the accuracy of 2549 

groundwater prediction. It should be noted that hydraulic conductivity is used only in 2550 

mathematical models to generate data. Moreover, the source dataset and target dataset 2551 
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are both normalized by the maximum and minimum values of dataset 𝐷1 to make the 2552 

prediction comparable. 2553 

 Result and Discussion 2554 

This section first investigates the effect of hydraulic conductivity on the pre-2555 

training model, then test the performance of the TL model for the predication of 2556 

hydraulic heads in a homogeneous aquifer (homogeneous scenario) and the 2557 

predication of hydraulic heads in a heterogeneous aquifer (heterogeneous scenarios), 2558 

respectively. For the heterogeneous scenario, the section further investigates the 2559 

impacts of heterogeneity of the conductivity and recharge uncertainty on the 2560 

performance of the TL model. 2561 

 Pre-training  2562 

A fully connected neural network with 6 hidden layers and 15 neurons in each 2563 

hidden layer is used as the pre-training neural network. The dataset 𝐷1 is generated 2564 

by the 1D analytical solution with 34 grid blocks and 50-time steps, where 𝐾 =2565 

3𝑚/𝑑, 𝑆𝑦 = 0.1, 𝐿 = 100𝑚, and ℎ0 = 20𝑚. The recharge rate is presented in Figure 2566 

1b. The pre-training model is validated by the normalized dataset 𝐷𝑛1 using the 2567 

80/20 rules which means 80% of the data will be used to train the suggested models, 2568 

and the remaining 20% will be used to test the models. With the same input of testing 2569 

data, the normalized hydraulic head forecasting by the pre-training neural network is 2570 

very close to the analytical solution with the mean square error (MSE) of 1.6E-08, 2571 

indicating that the pre-training neural network has been well trained and could be 2572 

used to surrogate the analytical solution. The well-trained neural network can provide 2573 

an important foundation for follow-up transfer learning.  2574 

To identify the influence of hydraulic conductivity on weight and bias, a new 2575 

DNN model is established. The new DNN model has the same structure as the pre-2576 
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training model, but it is trained by a dataset 𝐷2 generated with 𝐾 = 5𝑚/𝑑 using the 2577 

80/20 rules. The difference between the new DNN model and the pre-training model 2578 

is evaluated by relative change rate (RCR). The RCR is defined as: 2579 

 𝑅𝐶𝑅 =
1

𝐼
∑

|𝜃𝑝𝑟𝑒𝑖−𝜃𝐷𝑁𝑁𝑖|

𝜃𝑝𝑟𝑒𝑖

𝐼
𝑖   Equation 6.21 2580 

where 𝜃𝑝𝑟𝑒 and 𝜃𝐷𝑁𝑁 are parameter matrix in the pre-training model and the 2581 

new model respectively, 𝐼 is the number of elements in the parameter matrix. To 2582 

make trials more comparable and convincing, the new DNN model is trained for 15 2583 

times with the randomly selected training data from the dataset 𝐷2. Figure 6.4 2584 

displays the average relative change rate of each layer in the new neural network and 2585 

the pre-training neural network of 15 times comparison. The result shows that the 2586 

relative change rate of bias is relatively stable, except for bias in layer 4. Compared 2587 

with bias, the change of weights is more pronounced, especially in layers 2, 3 and 4. 2588 

The relative change rate of weights in layer 3 is at least 6 times more than that of the 2589 

bias. It suggests that the parameters in layers 2, 3 and 4 of the pre-training models are 2590 

much more sensitive to the hydraulic conductivity. Therefore, layers 2, 3 and 4 of the 2591 

pre-training model will be set as retrainable and other layers will be frozen. 2592 

 2593 
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Figure 6.4 The average relative change rate of weight and bias in the neural network for 2594 

15 times comparison between pre-training neural network and a new neural network. The 2595 

pre-training neural network is trained and tested by data 𝐷𝑛1 generated by the analytical 2596 

model with 𝐾1 = 3𝑚/𝑑 . The new neural network has the same structured as the pre-2597 

training neural network but is trained for 15 times with the randomly selected training 2598 

data from the dataset 𝐷𝑛2. 2599 

 2600 

 Homogeneous scenario 2601 

For the homogeneous scenario, the time series (50 days) of hydraulic heads are 2602 

respectively generated at 2, 5, 10, 15, and 20 observe points with 50-time steps, where 2603 

𝐾 = 7 𝑚/𝑑 and the other parameters are the same as that in Figure 6.5. These 2604 

observation points are randomly selected and the locations of them are summarized in 2605 

Table 6.1. 2606 

Table 6.1 The positions of the observe points for the homogeneous scenario 2607 

Number 

of observe 

points 

location (in x-direction, m) 

2 

observe 

points 

51.5 35.5    

5 

observe 

points 

43.5 11.5 36.5 19.5 14.5 

10 

observe 

points 

66.5 44.5 52.5 36.5 17.5 

1.5 93.5 78.5 11.5 39.5 

15 

observe 

points 

86.5 60.5 94.5 27.5 92.5 

81.5 32.5 0.5 78.5 21.5 

40.5 87.5 34.5 71.5 62.5 

20 

observe 

points 

57.5 4.5 67.5 34.5 83.5 

52.5 6.5 59.5 8.5 90.5 

44.5 20.5 47.5 65.5 13.5 
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21.5 12.5 97.5 75.5 74.5 

The groundwater field on the 33rd day is employed as testing data, which is 2608 

discretized to 34 grids. Figure 6.5 displays the testing result of the TL model, the TL 2609 

model (all retrainable), and the DBPNN model for the homogeneous scenario, where 2610 

the red curves are the reference head and the blue curves are the predicted heads of 2611 

the neural networks. It indicates that for a given training data, both the TL and TL (all 2612 

retrainable) models well agree with the reference heads while the DBPNN model 2613 

generally fails to fit the reference heads even though its trained data includes the 20 2614 

observation points. It implies that the prior knowledge of the analytical solution in the 2615 

pre-training model significantly improves the performance of neural networks. The 2616 

pre-training model that implants the physic knowledge provides a better initial neural 2617 

network parameter, which in turn reduces the search range in the fine-tuning process. 2618 

While the DBPNN model initializes the parameters randomly and requires more 2619 

training data to explore the whole parameter space. It may be encouraging to point out 2620 

that even in the case of sparse data, the results of the TL and TL (all retrainable) 2621 

models are satisfactory as well (Figure 6.5).  2622 



126 

 

 2623 

Figure 6.5 Comparisons of the predicted hydraulic head (blue curve) using the TL, TL 2624 

(all retrainable) and DBPNN models with the reference head (red curve) for the different 2625 

cases which have the different number of observe points. The pretraining phase of both 2626 

TL and TL (all retrainable) models are trained by 𝐷𝑠𝑛  which is generated by the 2627 

analytical model with 𝐾 = 3𝑚/𝑑 . The reference head is the normalized groundwater 2628 

head on 33rd day, which is generated by the analytical model with 𝐾 = 7 𝑚/𝑑. 2629 

Why the DBPNN poorly performs even with the large amounts of training data is 2630 

explained as follows. These three models share the same convergence criteria in fine-2631 

tuning process. The epoch is limited to ensure all of these neural networks are 2632 



127 

 

comparable and would not overfit in the sparse data. With the limited epoch, the 2633 

DBPNN model may be not fully trained for the dense training data. The performances 2634 

of TL and TL (all retrainable) models appear similar. It further confirms the 2635 

conclusion above that the layers 2, 3 and 4 of the pre-training model are much more 2636 

sensitive to the hydraulic conductivity.  2637 

It should be noted that the location of the observation point for training data may 2638 

affect the results of three models. To investigate this impact and to further 2639 

demonstrate the capacity of the TL model, the location of each observation point is 2640 

generated randomly 50 times. The MSE of the three models training by each 2641 

realization are evaluated by comparing them to the true values. The distributions of 2642 

MSE for three models at different numbers of observation points are displayed in 2643 

Figure 6.6, where the model parameters are the same as those in Figure 6.5. It shows 2644 

that with the same number of observation points, both the interquartile range (IQR) 2645 

and mean of MSE of TL and TL (all retrainable) models are much smaller than that of 2646 

the DBPNN model. For example, for the 2 observation points the mean of MSE for 2647 

the DBPNN model is about 1.5 while that for the TL and TL (all retrainable) models 2648 

are 0.004 and 0.003, respectively. Moreover, the IQR and mean of MSE drop 2649 

remarkably with the observation points increasing until the number of observation 2650 

points reaches to 10. When the number of observation points is more than 10, the 2651 

MSE almost remains a constant value with the number of observation points 2652 

increasing. It is consistent with the observations in Figure 6.5, which further proves 2653 

the advantages of the TL model. 2654 
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 2655 

Figure 6.6 The MSE distribution of the TL, TL (all retrainable) and DBPNN models 2656 

plotted against number of observe points, where the observe points are randomly realized 2657 

for 50 times and the reference head is generated by the analytical model with K=7 m/d.  2658 

 2659 

 Heterogenous scenario 2660 

In this scenario, the performance of the TL model on the prediction of hydraulic 2661 

head in heterogeneous aquifers is investigated. The heterogeneous ln 𝐾 field is 2662 

described by the exponential covariance function with mean 𝜇 = 0, variance 𝜎2 = 2 2663 

and correlation length 𝑙 = 20𝑚, which is generated using the GStools (Figure 6.7a). 2664 

The recharge rate and other parameters are the same as that of the homogeneous 2665 

scenario. The hydraulic heads of the heterogeneous aquifer are obtained by the 2666 

numerical solution. The time series of numerical hydraulic heads from 10, 20, 50, 100 2667 

and 200 observation points are extracted as the five training datasets for the TL, TL 2668 

(all retrainable), and DBPNN models. The hydraulic heads on the 33rd day are 2669 

employed as the testing data (Figure 6.7b, reference heads), where the groundwater 2670 

flow field is discretized to 100*100 grids. 2671 
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 2672 

Figure 6.7 (a) The heterogeneously hydraulic conductivity field, and (b) the reference 2673 

hydraulic head on 33rd day predicted by the numerical model using the conductivity field 2674 

(a). 2675 

1) the spatial performance  2676 

The absolute difference between the reference heads and the predicted heads by 2677 

TL, TL (all retrainable), and DBPNN models using the five training datasets are 2678 

presented in Figure 6.8, where the left column is the randomly selected observation 2679 

points corresponding to the different training datasets. Figure 6.8 shows that the errors 2680 

of TL and TL (all retrainable) models are very close, and both are significantly lower 2681 

than the errors of the DBPNN model. It is interpreted that such improvement of the 2682 

TL model is majorly benefit from a better initial parameter in the fine-tuning process 2683 

due to the physic knowledge from the analytical solution. It may also be interesting to 2684 

note that the DBPNN model performs better for more training data but the 2685 

performances of both TL and TL (all retrainable) models do not improve substantially 2686 

as the amount of training data increases. This implies that, based on the knowledge 2687 

provided by the analytic solution, the transfer learning model can reproduce the 2688 

hydraulic heads of the heterogeneous aquifer more accurately, even for very sparse 2689 

training data (e.g., hydraulic heads from 10 observation points). However, the 2690 

performance of the DBPNN model mainly depends on the amount of training data, 2691 

which performs poorly for a small amount of data. 2692 
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 2693 

Figure 6.8 Absolute errors between the predicted hydraulic heads using the TL, TL (all 2694 

retrainable) and DBPNN models and the reference head for the different cases. The 2695 

pretraining phase of both TL and TL (all retrainable) model are trained by 𝐷𝑛1 which is 2696 

generated by the analytical model with 𝐾 = 3𝑚/𝑑. The reference head is the normalized 2697 

groundwater head on 33rd day, which is generated by the numerical model with the 2698 

heterogeneously hydraulic conductivity field. 2699 

To reduce the impacts of the sampling campaign of observation points for each 2700 

training dataset, each sampling campaign is randomly implemented 200 realizations. 2701 

For each realization, the TL, TL (all retrainable) and DBPNN models are trained and 2702 

tested, respectively. The distributions of MSE for three models are displayed in Figure 2703 

6.9. With the observation points increasing until the number of observation points 2704 

reaching 20, the IQR and mean MSE of TL, TL (all retrainable) and DBPNN all drop 2705 

greatly. When number of observation points is more than 20, the IQR and mean of 2706 
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MSE changed slightly. This is in agreement with Figure 6.8. With the same number of 2707 

observation points, the mean MSE of TL and TL (all retrainable) is about 20 times 2708 

smaller than that of DBPNN. It proves that the transfer learning method has the 2709 

capacity of transferring homogeneous knowledge to heterogeneous problem and 2710 

improve the accuracy of hydraulic head prediction.  2711 

 2712 

Figure 6.9 MSE distribution of the TL, TL (all retrainable) and DBPNN model plotted 2713 

against number of observe points, where the observe points are randomly realized for 200 2714 

times and the reference head is generated using the numerical model with the 2715 

heterogeneously hydraulic conductivity field. 2716 

It should also be noted that if the analytical model is directly used to predict the 2717 

hydraulic head of the heterogenous aquifer directly, the MSE is 1.38. Compared with 2718 

Figure 6.9, the result is close to the mean MSE of the DBPNN model with 20 2719 

observation points but falls behind that for both TL and TL (all retrainable) models. It 2720 

implies that the transfer learning method combines the physical knowledge from the 2721 

analytical model and has a higher prediction ability than both of analytical model and 2722 

the classic DL model. 2723 
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A statistics analysis of a minimum number of iterations required for convergence 2724 

in the 200 times training processes mentioned earlier is also carried on to discuss the 2725 

computational efficiency of the proposed method in comparison to the baseline 2726 

models. All these models were implemented in Python 3.8 using the TensorFlow 2.3 2727 

framework. The experiments were conducted on a workstation equipped with an Intel 2728 

Xeon W2255 CPU and 128 GB of memory. It should be noted that the convergence 2729 

criteria are set to a maximum of 3000 iterations and a minimum gradient change of 2730 

5E-6 during the training process. The iteration counts are summarized in Table 6.2 2731 

below: 2732 

Table 6.2 Number of iterations in the training process of proposed method and baseline 2733 

model 2734 

Number of observation 

points 

Training iterations 

pre-

training 

transfer 

learning 

baseline 

model 

10 

1305 

1530 3000 

20 1645 3000 

50 2048 3000 

100 2256 3000 

200 2328 3000 

Table 6.2 indicates that the pre-training process of the proposed method requires 2735 

approximately 1300 iterations. During the transfer learning process of the proposed 2736 

model, as the number of observation points increases, the number of training 2737 
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iterations also increases, rising from 1500 to 2300 iterations. In contrast, the baseline 2738 

model consistently required 3000 training iterations, as constrained by the maximum 2739 

iteration setting. This implies that the baseline model exhibited lower training 2740 

efficiency, and it may need significantly more than 3000 training iterations to achieve 2741 

training performance comparable to that of the proposed model. 2742 

2) the temporal performance 2743 

To illustrate the performance of the TL model on time series, the TL model is 2744 

employed to predict the temporal hydraulic heads. Figure 6.10 displays the time series 2745 

of hydraulic heads predicted by the three models at a giving point (𝑥 = 27𝑚, 𝑦 =2746 

30𝑚), where the model parameters are the same as those in Figure 4. It shows that the 2747 

TL model reproduces the time fluctuation of hydraulic heads better than the DBPNN 2748 

model. 2749 
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 2750 

Figure 6.10 Comparisons of the predicted hydraulic head (blue curve) using the TL, TL 2751 

(all retrainable) and DBPNN models to the reference head (red curve) for the different 2752 

cases. The pretraining model of TL and TL (all retrainable) is trained by 𝐷𝑛1 which is 2753 

generated by the analytical model with 𝐾 = 3𝑚/𝑑 . The reference head is the daily 2754 

normalized groundwater head in point (𝑥 = 27𝑚, 𝑦 = 30𝑚 ), which is generated by the 2755 

numerical model with the heterogeneously hydraulic conductivity field. 2756 

For the spare training dataset (10 observation points), the MSE of the TL model is 2757 

about 150 times less than that of the DBPNN model. The results of TL and TL (all 2758 
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retrainable) models are similar for each case. These phenomena are consistent with 2759 

the observations in Figure 6.9. It is interpreted these results to imply taking time and 2760 

recharge as an input variable of the neural network may not be enough to provide 2761 

sufficient temporal information for the neural network, as the recharge is considered 2762 

as input variable in all these models. Meanwhile, it implies that the pre-training model 2763 

trained by the adequate hydraulic head time series from the analytical model would 2764 

contain some effective temporal information and in turn improve hydraulic head time 2765 

series prediction. 2766 

It may be interesting to note that the performances of TL and TL (all retrainable) 2767 

models seem independent on the number of observation points (training data). The 2768 

reasons are as follows. First, the location of observation points is randomly selected. 2769 

When there is an observation point near the testing point, all networks work well. The 2770 

opposite is true. Second, the TL model learns enough temporal information from the 2771 

analytical solution so there may be no urgent requirement for the amount of 2772 

observation points. The performances of TL and TL (all retrainable) models in the 2773 

whole domain is showed to prove our hypothesis.  2774 

Figure 6.11 shows the performance of TL and TL (all retrainable) models in the 2775 

whole domain on the 10th and 20th day with different numbers of observation points, 2776 

where the training data is the same as that in Figure 6.9. The results in Figure 6.11 are 2777 

consistent with those in Figure 6.9. These results all show that, at different times, the 2778 

increase of observation points only improves the prediction on hydraulic heads near 2779 

the right boundary. For using more observation points (training data), the 2780 

improvement of the TL model is unremarkable on the 10th, 20th and 33rd days. This 2781 

also implies that the temporal information from the analytical solution constrains and 2782 

guides the neural network. 2783 
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 2784 

Figure 6.11 Absolute error between predicted hydraulic head using the TL and TL (all 2785 

retrainable) models. The pretraining model of TL and TL (all retrainable) is trained by 2786 

𝐷𝑛1 which is generated by the analytical model with 𝐾 = 3𝑚/𝑑. (a)-(j) the reference 2787 

head is the normalized groundwater head on 10th day, which is generated by the numerical 2788 

model with the heterogeneously hydraulic conductivity field. (k)-(t) the reference head is 2789 

the normalized groundwater head on 20th day, which is generated by numerical model 2790 

with the heterogeneously hydraulic conductivity field. 2791 

 2792 

3) Effect of heterogeneity 2793 

The heterogeneity of the hydraulic conductivity field is described by its variance 2794 

and correlation length. To investigate the effect of heterogeneity on the performance 2795 

of the TL model, three realizations of random field with different correlation length L 2796 
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are employed in this section. Figure 6.12 shows the random ln 𝐾 fields for three 2797 

correlation length 𝑙 (20, 10, and 5 m) and the reference hydraulic head on the 33rd 2798 

day for each ln 𝐾 field, where the mean and variance are the same as those in Figure 2799 

6.7. Training datasets are obtained from 10, 20, 50, 100 and 200 observation points 2800 

and the observation points are randomly selected for 200 times. For each realization, 2801 

the TL, TL (all retrainable) and DBPNN models are trained and tested, respectively. 2802 

 2803 

Figure 6.12 The heterogeneously hydraulic conductivity field with the different 2804 

correlation length (l=5, 10, and 20m) (a, b and c), which are respectively used to generate 2805 

the reference hydraulic heads (d, e, and f). 2806 

 2807 

Figure 6.13 shows distributions of MSE for TL models at hydraulic conductivity 2808 

fields with different correlation length. With the observation points increasing until 2809 

the number of observation points reaching 20, the IQR and mean of MSE drop 2810 

greatly. When the number of observation points is over 20, the IQR and mean of MSE 2811 

improve slightly and when there are more than 50 observation points, the mean of 2812 

MSE remains static where the mean of MSE for 𝑙 = 20 𝑚 is about 0.03, the mean of 2813 

MSE for 𝑙 = 10 𝑚 is about 0.02 and the mean of MSE for 𝑙 = 5 𝑚 is about 0.01. 2814 

This observation is consistent with that of Figure 6.10.  2815 
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 2816 

Figure 6.13 MSE distribution of transfer learning plotted against number of observe 2817 

points for hydraulic conductivity fields with the different correlation length (l=5, 10, and 2818 

20m ) in the case that the observe points are randomly realized for 200 times. 2819 

 2820 

It is also interesting to note that, with the same observation points, a better result 2821 

can be obtained with a smaller IQR and lower mean of MSE for the case with a 2822 

smaller correlation length 𝑙. This result can be explained that the presented transfer 2823 

learning model would be more effective to transfer knowledge between two datasets 2824 

with similar structure or characteristics. When the correlation length is smaller, the 2825 

hydraulic conductivity field is more stochastic to be considered as a stationary field 2826 

and the hydraulic head data generated from it would have a more similar structure or 2827 

characteristic to data generated from the analytical solution. It can also be proved in 2828 

Figure 6.13 MSE distribution of transfer learning plotted against number of observe 2829 

points for hydraulic conductivity fields with the different correlation length (l=5, 10, 2830 

and 20m ) in the case that the observe points are randomly realized for 200 times. that 2831 

with a smaller correlation length 𝑙, groundwater flow in the x-direction is more 2832 

dominant, which means it is more analogous to the 1-D analytical solution proving the 2833 

physics knowledge for the pre-training model.  2834 
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4) Effects of recharge uncertainty  2835 

To assess the impact of different values of hydraulic conductivity K in the 2836 

analytical solution, the analytical model with three distinct K values (0.3 m/d, 3 m/d, 2837 

and 30 m/d) is employed as pre-training models. The reference head, consistent with 2838 

Figure 6.12 The heterogeneously hydraulic conductivity field with the different 2839 

correlation length (l=5, 10, and 20m) (a, b and c), which are respectively used to 2840 

generate the reference hydraulic heads (d, e, and f)., was generated using the 2841 

numerical model, assuming a heterogeneous conductivity field with an average value 2842 

of 3 m/d. To minimize the impact of the observation point sampling campaign, 200 2843 

random realizations for each sampling campaign are conducted. In each of these 2844 

realizations, the transfer learning model was trained and tested, and the corresponding 2845 

results are depicted in Figure 6.14. 2846 

 2847 
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Figure 6.14 MSE distribution of reverse normalization result from the TL models plotted 2848 

against number of observe points for the analytical solution with K=0.3m/d. 3m/d and 30 2849 

m/d. 2850 

 2851 

Figure 6.14 displays the distributions of MSE for the TL models. It is worth 2852 

noting that the normalization process relies on the maximum and minimum values of 2853 

the groundwater head derived from the analytical solution. Given the different K 2854 

values in the analytical model, comparing results in normalized form could be 2855 

challenging. Therefore, the comparisons is based on the reverse normalization results. 2856 

The vertical axis in Figure 6.14 represents the distribution of reverse normalization 2857 

results from the TL models. It is evident that when the number of observation points is 2858 

the same, the mean of the MSE is minimized at K = 3 m/d. This suggests that when 2859 

the K value in the analytical solution aligns with the mean of the hydraulic 2860 

conductivity field, the source dataset becomes more similar to the target dataset, 2861 

resulting in a more effective transfer. 2862 

Furthermore, when K is set to 30 m/d in the analytical solution, the mean of 2863 

MSE is larger compared to that of K = 0.3 m/d. This is due to the fact that when K is 2864 

larger, the water table obtained from the analytical solution becomes closer to a 2865 

straight line, indicating fewer inherent data features. Therefore, when using the 2866 

proposed method in sites with unknown hydraulic conductivity, assigning a smaller 2867 

value to K in the analytical solution can yield better results. 2868 

5) Effects of recharge uncertainty  2869 

In the previous cases, the recharge is the known input variable. However, recharge 2870 

cannot be determined accurately in the fieldwork. Therefore, in this subsection, the 2871 
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performance of the TL model by considering the effects of recharge uncertainty will be 2872 

tested. Noise is added into the recharge data in the following manner: 2873 

 𝑊∗(𝑡) = 𝑊(𝑡) + 𝑊𝑑𝑖𝑓𝑓 × 𝛼% × 𝜀 (9) 2874 

where 𝑊∗(𝑡) is recharge rate including the noise; 𝑊(𝑡) is recharge rate 2875 

estimated by expert experience or field testes; 𝑊𝑑𝑖𝑓𝑓 is the maximum value of 𝑊(𝑡); 2876 

𝛼 is a percentage; 𝜀 is the uniform random variable ranging from −1 to 1. In this 2877 

case, 5%, 10% and 15% noise are added to the estimated recharge 𝑊(𝑡) to present 2878 

the uncertainty of recharge rate. The respective 𝑊∗(𝑡) is employed to generate the 2879 

hydraulic head by the numerical solution, where the other model parameters are same 2880 

as that in Figure 6.10. The hydraulic heads on 33rd day are employed as the testing 2881 

data. The time series of numerical hydraulic heads from 10, 20, 50, 100 and 200 2882 

observation points are extracted as the five training datasets for TL and BPNN. To 2883 

reduce the impacts of the sampling campaign of observation points for each training 2884 

datasets, each sampling campaign are randomly implemented 200 realizations. 2885 

Figure 6.15 shows the distributions of MSE for the TL and DBPNN models 2886 

trained by data generated with different noise. It is found that with the same 2887 

observation points, the mean MSE of the TL model is obviously lower than that of the 2888 

DBPNN model, which is consist with the observations in Figure 6.9. The 2889 

performances of the TL and DBPNN models are both affected by the noise, i.e., the 2890 

TL and DBPNN models produces worse predictions for the case with higher noise. 2891 

However, the TL model is much less affected by the recharge uncertainty relative to 2892 

the DBPNN model. For example, for the 10 observation points, the mean MSE of the 2893 

DBPNN model ranges from 2.2 to 1.7, with the noise decreasing from 15% to 5%. 2894 

However, the mean MSE of the TL model only range from 0.067 to 0.042. This 2895 

indicates that the TL model possesses superior robustness to the DBPNN model. 2896 
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 2897 

Figure 6.15 MSE distribution of the DBPNN (a) and TL (b) models plotted against 2898 

number of observe points for the recharge rate with the different noise in the case that the 2899 

observe points are randomly realized for 200 times, where 5%, 10%, and 15% noise are 2900 

respectively employed. 2901 

 2902 

Summary 2903 

Deep learning models have a good interpolating ability, while their performance 2904 

is limited by data scarcity in groundwater problems. Analytical models present the 2905 

first-order physical principle of groundwater flow, but they are only valid under very 2906 

specific conditions, such as aquifers are homogeneous. This study proposes a novel 2907 

transfer learning framework to integrate the advantages of these two methods. A deep 2908 

learning model guided by a simple analytical model to predict groundwater flow in 2909 

heterogeneous aquifers is presented in this research. It differs from previous deep 2910 

learning research by incorporating the knowledge from a simple analytical model and 2911 

utilizing transfer learning technique to further improve the hydraulic head prediction 2912 

in relatively complicated problems where the analytical model is invalid. The model 2913 

is tested against the traditional deep learning model Deep Back Propagation Neural 2914 
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Network (DBPNN) in scenarios with unknown homogeneous and heterogeneous 2915 

hydraulic conductivity fields. The results show that the proposed model can improve 2916 

the accuracy of the hydraulic head predictions by fusing the analytical knowledge with 2917 

the neural network. The hydraulic conductivity mainly affects the parameters of the 2918 

shallow layers in the neural network, making it possible to employ transfer learning 2919 

in more complicated problems. For all test scenarios, the prediction errors of the 2920 

proposed model are much smaller than that of the DBPNN. The proposed model 2921 

performs satisfactorily even with sparse training data.  2922 

Nevertheless, it is essential to acknowledge several limitations associated with the 2923 

proposed method in this study. 2924 

Firstly, the applicability of the proposed method is constrained by its lack of 2925 

extrapolation capability. The proposed method relies on transfer learning techniques 2926 

to harmonize analytical solutions with observational data. During the transfer learning 2927 

process, the observational data serves as the target dataset, which is a fundamental 2928 

component of transfer learning. Therefore, the method faces limitations when it comes 2929 

to extrapolation due to the absence of observational data beyond the training domain.  2930 

Secondly, the performance of the proposed method can be sensitive to the choice 2931 

of hydraulic conductivity (K) value in the analytical solution. If the estimated value of 2932 

K exhibits a significant bias, it may compromise the accuracy of the proposed method. 2933 

This sensitivity becomes more pronounced when K is either overestimated or 2934 

underestimated.  2935 

Finally, the transfer learning framework outlined in this study primarily focuses 2936 

on heterogeneous aquifers. It is worth noting that in the transfer learning model, 2937 

greater dissimilarity between the source domain and the target dataset can result in 2938 

poorer transfer performance. Specifically, the application of analytical solutions 2939 

requires that the spatial domain of the model is regular. However, in reality, the spatial 2940 

domain of the study area (such as watersheds) is irregular. It introduces the disparities 2941 
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between the groundwater flow field in the study area and the analytical solution, 2942 

potentially affecting the performance of the transfer learning model. 2943 

 2944 
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Chapter 7 Surface water - Groundwater coupled prediction in 2945 

watersheds using deep transfer learning and integrated surface water 2946 

and groundwater model 2947 

In the preceding chapter, the transfer learning method for groundwater flow 2948 

prediction is discussed in a numerical experiment conducted using a simplified two-2949 

dimensional Darcy model as an example. However, the actual field conditions are far 2950 

more complex than the case presented earlier due to the complex shape of the study 2951 

area, heterogeneity, and the influence of the unsaturated zone. The applicability of the 2952 

proposed groundwater transfer learning method at the watershed scale remains to be 2953 

explored. Furthermore, the method relies on known surface water levels and other 2954 

hydrological variables, making it unable to independently predict future changes in 2955 

groundwater levels. 2956 

To address these issues, this chapter focuses on a real-world study area to validate 2957 

the applicability of the proposed groundwater transfer learning method at the watershed 2958 

scale. Meanwhile, the LSTM neural network introduced in Chapter 4 will be utilized to 2959 

forecast future surface water levels and other hydrological variables. Building upon this, 2960 

the transfer learning method will be employed for coupled catchment-scale prediction 2961 

of surface water and groundwater. 2962 

The workflow diagram is depicted in Figure 7.1. A two-dimensional profile 2963 

groundwater model considering the influence of hydrological variables like surface 2964 

water and rainfall recharge is established, and its analytical solution is derived and 2965 

validated. Next, the analytical solution is applied to the watershed to obtain the source 2966 

domain dataset. The pre-training model is then trained based on the source domain data. 2967 

Subsequently, the transfer learning method is used based on source domain data and 2968 

observation data from the study area to regress the watershed scale groundwater head. 2969 
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When the framework for catchment-scale groundwater and surface water prediction is 2970 

employed, the hydrological variables and groundwater observation data will be 2971 

predicted by a Deep LSTM neural network first and then the analytical model and 2972 

transfer learning method will be applied in the same way as regression. A Deep Back-2973 

Propagation Neural Network (DBPNN) is employed as the baseline model to provide a 2974 

benchmark. The baseline model is trained solely based on the observed data generated 2975 

from the numerical model. It is important to note that both the source domain and target 2976 

domain data undergo standardization prior to their utilization.  2977 

 2978 

Figure 7.1 The workflow diagram of this research 2979 

This section is organized as follows: Section 6.1 presents the research area and 2980 

data collection. Section 6.2 presents the methodology. The results of the experiments 2981 

performed with the method are shown in Section 6.3. Finally, Section 6.4 provides a 2982 

summary. 2983 

  2984 
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Research Area and Data Collection 2985 

Research Area 2986 

 2987 

Figure 7.2 Topography and river distribution map of the study area 2988 

Our study area is situated in the central-western region of South Korea and serves 2989 

as one of the headwaters of the Miho River (Figure 7.2). The study area covers an 2990 

approximate area of 194 square kilometres and encompasses the cities of Anseong and 2991 

Icheon in Gyeonggi Province, as well as the counties of Eumseong and Jincheon in 2992 

Chungcheongbuk Province. The elevation ranges from 62 meters to 569 meters, 2993 

showcasing a significant variation in height. The topography within the study area 2994 

exhibits a northwest-to-southeast gradient, with the western region predominantly 2995 

characterized by mountainous and hilly terrain, while the eastern region is primarily 2996 

composed of expansive plains. 2997 
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The annual average flow in this watershed is around 600 millimetres. The region 2998 

displays marked characteristics of a dry season (October to May) and a rainy season 2999 

(June to September). Approximately 70% of the annual precipitation occurs during the 3000 

rainy season. Temperature in the region correlates with precipitation. Average 3001 

temperature during the dry season is 6.9 degrees Celsius and that during rainy season 3002 

is 23.6 degrees Celsius. In the study area, the focal river is Insan-ri, situated in the 3003 

upstream Mihocheon watershed, with a length of approximately 25 kilometres. | 3004 

Improved clarity and conciseness. The tributaries in the basin include Seongsancheon, 3005 

Chijangcheon and Guamcheon, which converge into the Mihocheon near Sandang-ri. 3006 

The watershed area has relatively smaller urban and forested areas, with the urban 3007 

areas being dispersed throughout the region. Forested areas are primarily concentrated 3008 

in the western mountainous region. The dominant land use types within the watershed 3009 

are paddy fields, with agricultural land playing a supplementary role. The aquifer 3010 

system within the watershed is primarily composed of unconsolidated sediments, while 3011 

the western mountainous region consists of aquifers formed by Cretaceous volcanic 3012 

rocks, Cretaceous sedimentary rocks, and paragneiss. Groundwater extraction is 3013 

primarily utilized for agricultural irrigation and domestic purposes. 3014 

 Data collection 3015 

Due to the limited number of groundwater level monitoring points and surface 3016 

water flow and depth observation points in the actual field, it is challenging to validate 3017 

the effectiveness of the proposed method globally by available observation data. 3018 

Therefore, in this study, a surface water-groundwater coupled model for the Miho 3019 

catchment (Joo et al., 2018) is applied to generate enough amount of surface water and 3020 

groundwater data within the watershed to validate the proposed method. 3021 

Joo et al. (2018) established the surface water-groundwater coupled model of 3022 

Miho catchment by Visual HEIFLOW. In the model, both surface and subsurface 3023 

components utilize a unified grid, where the Miho watershed is divided into 2141 grid 3024 

cells with a cell size of 1×1 km. Our research area is a part of the Miho catchment and 3025 
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occupies about 200 grid cells. It is important to note that the daily surface water and 3026 

groundwater observation data from 2004 to 2014 were used to calibrate and validate 3027 

the Miho GSFLOW model, which yielded satisfactory results during the calibration and 3028 

validation periods. This indicates that the Miho GSFLOW model is capable of 3029 

reflecting the surface water and groundwater conditions for generating data in this study. 3030 

Additionally, for computational efficiency, it is worth noting that only the data 3031 

from every 5 days between 2004 and 2007 were utilized to verify the proposed method 3032 

in this study. The location of the observation point, time and recharge at the respective 3033 

time are considered as input variables and the groundwater head is considered as the 3034 

output for the proposed method. 3035 

 Methodology  3036 

 Analytical Model and Solution 3037 

 3038 

Figure 7.3 Conceptual model of unsaturated-saturated groundwater flow interaction with 3039 

river 3040 

 3041 

The schematic diagram in Figure 7.3 illustrates the interaction between 3042 

groundwater and a river within an unsaturated-saturated porous medium. The lateral 3043 

boundaries of the aquifer consist of a watershed and a river that completely traverses 3044 

the aquifer. The groundwater receives time-varying recharge from precipitation trough 3045 

upper boundary. The aquifer's bottom is both horizontal and impermeable. The 3046 
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saturated and unsaturated zones, characterized by uniformity, vertical anisotropy, and 3047 

lateral extent, meet at the interface corresponding to the free groundwater table.  3048 

The government equation of groundwater flow in saturated zone can be given by: 3049 

 𝐾𝑥
𝜕2ℎ

𝜕𝑥2 + 𝐾𝑧
𝜕2ℎ

𝜕𝑧2 = 𝑆𝑠
𝜕ℎ

𝜕𝑡
,    −𝐵𝑠 < 𝑧 ≤ 0  Equation 7.1 3050 

 
𝜕ℎ

𝜕𝑧
= 0,        𝑧 = −𝐵𝑠   Equation 7.2 3051 

 ℎ(𝑥, 𝑧, 𝑡) = 𝐻(𝑡),      𝑥 = 𝐿  Equation 7.3 3052 

 
𝜕ℎ

𝜕𝑥
= 0,      𝑥 = 0  Equation 7.4 3053 

 ℎ(𝑥, 𝑧, 𝑡) = 0,        𝑡 = 0   Equation 7.5 3054 

where 𝐾𝑥 and 𝐾𝑧 are the horizontal and vertical hydraulic conductivity 3055 

respectively [LT-1]; ℎ is the hydraulic head [L]; 𝑆𝑠 is the specific storage [L
-1]; 𝐵𝑠 is 3056 

the thickness of saturated zone [L]; 𝐻(𝑡) is an interpolation function to describe river 3057 

stage [L]; L is the length of the concept model [L].   3058 

Owing to the low conductivity in the unsaturated zone, the angle between the 3059 

flow lines in this layer and the water table is nearly zero. This makes it reasonable to 3060 

assume that groundwater flow in unsaturated zone is vertically one-dimensional and 3061 

Richard’s equation is applied to govern the flow of groundwater in the unsaturated 3062 

zone. In order to facilitate obtaining analytical solutions, this study employs the 3063 

linearized form of Richard’s equation (Kroszynski and Dagan, 1975) as follows: 3064 

 𝐾𝑧
𝜕

𝜕𝑧
(𝑘0(𝑧)

𝜕𝑢

𝜕𝑧
) = 𝐶0(𝑧)

𝜕𝑢

𝜕𝑡
,     0 ≤ 𝑧 ≤ 𝐵𝑢  Equation 7.6 3065 

 𝐾𝑧𝑘0(𝑧)
𝜕𝑢

𝜕𝑧
= 𝐼(𝑡),        𝑧 = 𝐵𝑢  Equation 7.7 3066 

 𝑢(𝑥, 𝑧, 𝑡) = 0,        𝑡 = 0   Equation 7.8 3067 

Where, Moreover, where 𝑢  is the hydraulic head in the unsaturated zone [L]; 3068 

𝑘0(𝑧) and 𝐶0(𝑧) are the relative hydraulic conductivity and the soil moisture capacity 3069 

[L-1] at the initial water content respectively; 𝐵𝑢 is the thickness of saturated zone in 3070 

the z-direction [L]; 𝐼(𝑡) is the infiltration rate [LT-1], which is described by piecewise 3071 

functions. 3072 

The (Gardner, 1958) exponential constitutive model is adopted for unsaturated 3073 

flow: 3074 
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 𝑘0(𝑧) = 𝑒−𝜅𝑧   Equation 7.9 3075 

 𝐶0(𝑧) = 𝑆𝑦𝜅𝑒−𝜅𝑧   Equation 7.10 3076 

Where 𝜅 is the constitutive exponent[L-1] and 𝑆𝑦 is the specific yield. Interface 3077 

conditions are used to couple the flow, which are same as Equation 5.7 and Equation 3078 

5.8: 3079 

 ℎ − 𝑢 = 0,       𝑧 = 0  Equation 7.11 3080 

 
𝜕ℎ

𝜕𝑧
−

𝜕𝑢

𝜕𝑧
= 0,      𝑧 = 0  Equation 7.12 3081 

The coupled equation Equation 7.1-Equation 7.12 can be solved by the Laplace 3082 

and the Fourier sine transforms. S3.1-S3.3 in the supporting information present the 3083 

details of the derivation. The Laplace domain solutions of unsaturated and saturated 3084 

zone flow can be respectively written as: 3085 

 ℎ̅(𝑥, 𝑧, 𝑝) = ∑ (ℂ2 𝑒𝑥𝑝(−Φ𝑛𝑧) + ℂ3 𝑒𝑥𝑝(Φ𝑛𝑧) − 𝜁)𝜓(𝜔𝑛, 𝑥)∞
𝑛=0 + ℎ𝑏

̅̅ ̅(𝑝)  Equation 3086 

7.13 3087 

 �̅�(𝑧, 𝑝) = ∑ (ℂ1
′ 𝑒𝕄𝑧 + ℂ2

′ 𝑒ℕ𝑧)𝜓(𝜔𝑛, 𝑥)∞
𝑛=0   Equation 7.14 3088 

where the definitions of variables ℂ1
′ , ℂ2

′ , ℂ2, ℂ3, Φ𝑛, 𝜁, 𝕄, ℕ and 𝜔𝑛 can be found 3089 

in S3.1-S3.3. 3090 

 The application method of analytical solutions at the watershed scale 3091 

The previous section introduced an analytical solution model for vertical profiles. 3092 

However, due to the curvature of rivers and the irregular shape of watershed boundaries, 3093 

direct application of this analytical solution at the watershed scale is challenging. To 3094 

address this issue, this section proposes a method for estimating groundwater dropdown 3095 

in a watershed by vertical profile analytical model based on the concept of weighted 3096 

averages. The specific method is described as follows: 3097 

1. Hydrological analysis is conducted based on the elevation of the watershed. The 3098 

watershed is divided into several sub-watersheds according to the watershed 3099 

boundaries, and the main rivers within each sub-watershed are identified. 3100 

2. When the sub-watershed is small enough, the river in respective sub-watershed can 3101 

be assumed as a polyline. The river polyline is segmented into several river 3102 

segments by breaking at the inflexion points. 3103 
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3. Buffer zones are created for each river segment. Then the buffer zones are extended 3104 

to the boundaries of the sub-watersheds, as shown in Figure 7.4a. At this stage, the 3105 

sub-watersheds can be classified into the following three categories: Zone 1. Buffer 3106 

areas influenced by only one river segment; Zone 2. Buffer areas influenced by 3107 

multiple river segments; Zone 3. Areas other than Zone 1 and 2. 3108 

4. Vertical lines are drawn perpendicular to the river segments on the plane. The 3109 

profiles are generated along the z-direction. These profiles are approximately 3110 

consistent with the assumed analytical solution. As shown in Figure 7.4b, the 3111 

discrete data points of the profile are obtained, and the analytical solution (Equation 3112 

13) is applied to calculate the average drawdown corresponding to the groundwater 3113 

table in the saturated zone. During the calculation process, the parameters such as 3114 

K are estimated as the averages along the profile. 3115 

5. If a data point falls within the spatial range of Zone 1, the drawdown of groundwater 3116 

level at that point is considered as the calculated value.  3117 

6. If a data point falls within the spatial range of Zone 2, it is influenced by multiple 3118 

river segments. In this case, drawdown of the groundwater level at that point needs 3119 

to be calculated separately for each river segment. It is assumed that 𝑠𝑖 represents 3120 

the drawdown caused by the i-th river segment and 𝑥𝑖 represents the distance from 3121 

the point to the i-th river segment. The drawdown at the point can be expressed as 3122 

𝑠 = ∑
1/𝑥𝑖

∑
1

𝑥𝑖

𝑁
𝑖

𝑠𝑖
𝑁
𝑖 , where 𝑁 represents the total number of river segments influencing 3123 

the point. 3124 

7. There should be no data point within the spatial range of Zone 3. The drawdown of 3125 

groundwater in Zone 3 can be obtained through interpolation using the data from 3126 

Areas 1 and 2.  3127 
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It should be noted that this method is not an accurate approach for estimating the 3128 

drawdown of groundwater in a watershed using analytical solutions. This method only 3129 

provides a rough indication of the groundwater flow trends within the watershed. 3130 

However, this information can serve as prior knowledge and by leveraging the prior 3131 

knowledge obtained through this method, transfer learning techniques can be applied 3132 

to improve the precision of groundwater forecasting. 3133 

Figure 7.4 Diagram of buffer zone generation (a) and data point placement (b) in the 3134 

application of analytical solutions at the watershed scale. 3135 

 Deep LSTM neural network and Deep Transfer Learning  3136 

The Deep LSTM neural network is a branch of deep RNN neural network. It is 3137 

widely used in hydrological variables prediction for its excellent temporal data 3138 

processing ability. The details of the deep LSTM neural network can be found in 3139 

Section 0 Due to the lack of meteorological data, this chapter only uses past river water 3140 

level data and groundwater level data (from 2004 to 2007) to predict river water level 3141 

and groundwater level data in next 2 month. The hyperparameter, past history, was set 3142 

to 7 days. The structure and other parameters of deep LSTM neural network employed 3143 

here are same as Chapter 3. 3144 

Deep transfer learning is an emerging technique in the realm of deep learning, 3145 

which applies transfer learning methods within a deep learning framework. It leverages 3146 
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the knowledge and representations learned from one task or domain to enhance the 3147 

performance of another task or domain. By utilizing the learned representations from 3148 

pre-trained models, deep transfer learning enables the target task to benefit from the 3149 

source task's knowledge and feature extraction capabilities, even when labelled data is 3150 

limited. It helps overcome the need for large-scale labelled data and can result in 3151 

performance improvements, faster convergence rates, and reduced training time. The 3152 

details of deep transfer learning can be found in Section 0 and 0. 3153 

 Result and Discussion 3154 

This section first validates the semi-analytical solutions by comparing it with 3155 

numerical model. Then the semi-analytical solutions are applied to generate source 3156 

data, and the transfer learning technique is employed to predicate groundwater 3157 

drawdown in the research area. Finally, the uncertainty caused by sampling campaign 3158 

of observation points is investigated. 3159 

 Validation of analytical solutions 3160 

To validate semi-analytical solutions Equation 7.13 and Equation 7.14, numerical 3161 

solutions obtained from Equation 7.1-Equation 7.8 are employed to compare with the 3162 

semi-analytical solutions. The model parameters used in the study are as follows: 𝐻𝑢 =3163 

2𝑚 , 𝐻𝑠 = 10𝑚 , 𝐿 = 80𝑚 , 𝜅 = 1.48 1/𝑚  𝐾𝑥 = 𝐾𝑧 = 10−5𝑚/𝑠 , 𝑆𝑦 = 0.18  and 3164 

 𝑆𝑠 = 10−6. For the synthetic numerical simulations, two scenarios are considered: (1) 3165 

groundwater flow induced by two rainfall infiltration events which occur at 2 𝑑𝑎𝑦 ≤3166 

𝑡 < 3 𝑑𝑎𝑦  with a constant rate of 𝐼 = 1.04 × 10−7 𝑚/𝑠 , and 7 𝑑𝑎𝑦 ≤ 𝑡𝐷 < 8 𝑑𝑎𝑦 3167 

with a constant rate of 𝐼 = 5.18 × 10−7 𝑚/𝑠, and the river stage is constant or 𝐻 =3168 

0 𝑚; and (2) groundwater flow induced by a flood event with no infiltration. 3169 

COMSOL Multiphysics is employed to numerically solve the governing equations, 3170 

Equation 7.1-Equation 7.8. The mesh is refined at the interface between two layers and 3171 

the river in COMSOL, with a minimum mesh size of 0.001m and a maximum mesh 3172 

size of 0.1m. This results in a total of 61,694 triangular elements and 31,419 nodes. In 3173 

both scenarios, a time step of ∆𝑡 = 0.1 𝑑𝑎𝑦 is used for the simulations.  3174 

Figure 7.5c and Figure 7.5d illustrate the groundwater head comparison result in 3175 

the recharge and flood events, respectively. Meanwhile, Figure 7.5e and Figure 7.5f 3176 

depict the average groundwater head. These figures demonstrate a close agreement 3177 
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between the analytical solutions (solid curves) and the numerical solutions (circle 3178 

symbols). Through comparison, the analytical solution proposed in this study is 3179 

considered accurate and reliable. 3180 

 3181 

Figure 7.5 Comparison of the analytical solutions (solid curves) and the numerical 3182 

solutions (open circles) for two infiltration events (left column) and a flood event (right 3183 

column): (a) the rainfall infiltration 𝐼(𝑡) against time 𝑡; (b) the river stage 𝐻(𝑡) against 3184 

time 𝑡; (c) the response of hydraulic head ℎ (or 𝑢) to recharge events against time 𝑡 at 3185 

two locations; (d) the response of hydraulic head ℎ (or 𝑢) to flood event against time 𝑡 3186 

at two locations; (e) the response of average hydraulic head ℎ𝑎 to recharge events against 3187 

time 𝑡 at two locations; (f) the response of average hydraulic head ℎ𝑎 to flood event 3188 

against time 𝑡 at two locations; 3189 

 Deep Transfer learning 3190 

A fully connected neural network with 6 hidden layers and 50 neurons in each 3191 

hidden layer is used as the pre-trained neural network. The source domain data is 3192 

generated using the analytical solution. A total of 193 spatial points and 220 time steps 3193 

(2004 to 2007, with a 5-day interval) are generated. The source domain data is 3194 

normalized before being used to train the neural network. The input variables for the 3195 

pre-training model are coordinates (x,y), time(t), and corresponding recharge rates(I(t)), 3196 
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while the output is groundwater drawdown. The Adam optimizer is employed in the 3197 

pretraining process and the learning rate is set as 1%. 3198 

Ten, twenty, and fifty observation points are randomly generated, and the time 3199 

series of groundwater drawdown at these observation points for the period from 2004 3200 

to 2007, with a 5-day interval, are generated as target domain data. The pre-trained 3201 

model is then fine-tuned. During the fine-tuning process, the Adam optimizer is also 3202 

employed and the learning rate is set as 0.5%. The convergence criteria are set as the 3203 

maximum training iterations of 3000 or a change in the loss function less than 1e-5. In 3204 

order to ensure the reliability of the results, a Deep Back-Propagation Neural Network 3205 

(DBPNN) is used as the baseline model to provide a benchmark. It is important to point 3206 

out that the baseline model is trained only using the observation data generated from 3207 

the numerical model. Apart from that, the network structure and optimization methods 3208 

of both the baseline model are the same as the deep transfer learning model. 3209 

Figure 7.6 shows the test results of the deep transfer learning model and the 3210 

DBPNN model under the same scenario. The accuracy of the time series for each point 3211 

is described using RMSE, where the blue colour represents lower RMSE. The figure 3212 

indicates that the deep transfer learning model aligns well with the observed data given 3213 

the training data, while the DBPNN model often fails to fit the reference heads. This 3214 

suggests that the prior knowledge from the analytical solution embedded in the pre-3215 

trained model significantly enhances the performance of the neural network. The pre-3216 

trained model with the incorporation of physical knowledge provides better initial 3217 

parameters for the neural network, which in turn reduces the search space during fine-3218 

tuning. On the other hand, the DBPNN model with randomly initialized parameters 3219 

requires more training data to explore the entire parameter space. It is encouraging that 3220 

the deep transfer learning model yields satisfactory results even in the case of sparse 3221 

data. 3222 

The subpar performance of the DBPNN model, even with a large amount of 3223 

training data, can be elucidated as follows. Under the same convergence criteria, both 3224 
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models underwent a finite number of training iterations, with a maximum of 3000 3225 

iterations or a change in the loss function below 1e-5. With limited training iterations, 3226 

the DBPNN model may have been insufficiently trained to adapt to the dense training 3227 

data. In contrast, the deep transfer learning model required only a small amount of 3228 

training, specifically fine-tuning the parameters of the pre-trained model, to achieve 3229 

more accurate results. Due to the pre-trained model's exposure to prior knowledge 3230 

provided by the analytical solution, it possesses superior parameter configurations from 3231 

the initial state, enabling it to adapt to the target task more swiftly. Consequently, even 3232 

with a finite number of training iterations, the deep transfer learning model attains 3233 

commendable results, while the DBPNN model necessitates a greater volume of 3234 

training data to explore the entirety of the parameter space more effectively. 3235 

 3236 
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 3237 

Figure 7.6 Comparison of accuracy between the proposed method and DBPNN for 10, 20 3238 

and 50 observation points. (a), (b) and (c) the positions of 10, 20 and 50 observation points. 3239 

(d), (e) and (f) RMSE errors between the regressed hydraulic heads using DBPNN model 3240 

for 10, 20 and 50 observation points. (g), (h) and (i) RMSE errors between the regressed 3241 

hydraulic heads using the proposed method for 10, 20 and 50 observation points. 3242 

 Computational load analysis 3243 

To further compare the computational efficiency of the proposed method with the 3244 

baseline models, this section conducts a comparative analysis of the loss function 3245 

variations during the training process for different scenarios. It is important to note that 3246 

these models were implemented in Python 3.8 using TensorFlow 2.3 framework. The 3247 

experiments were conducted on a workstation equipped with an Intel Xeon W2255 3248 

CPU and 128 GB of memory. 3249 
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Figure 7.7 shows the normalized loss of the deep transfer learning model and the 3250 

DBPNN model in training iterations under the Ten, twenty, and fifty observation points. 3251 

As mentioned above, the MSE is employed as the loss function. The convergence 3252 

criteria are set as the maximum training iterations of 3000 or a change in the loss 3253 

function less than 1e-5. The location of observation points and other parameters are the 3254 

same as in Figure 7.6. 3255 

 3256 

Figure 7.7 Loss function of proposed method (dashed curves) and DBPNN (solid curves) 3257 

against the training iterations in the training process for 10, 20 and 50 observation points. 3258 

It can be observed from Figure 7.7 that at the beginning of the training process, 3259 

the proposed model's loss function is significantly lower than that of the baseline model. 3260 

Throughout the training process, although the loss function of the baseline model 3261 

decreases rapidly, the proposed model consistently maintains a lower loss function. 3262 

Additionally, the proposed model achieves convergence, with the minimum gradient 3263 

descent threshold of 1e-5, within only 400-1000 iterations, while the baseline models 3264 

require approximately 2000 iterations. This indicates that the prior knowledge provided 3265 

by the analytical solution endows the neural network with more reasonable initial 3266 

parameter values and constrains the search space during training. As a result, the 3267 

proposed method requires fewer iterations to train a more accurate model. 3268 
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 Uncertainty caused by sampling campaign of observation points 3269 

It is important to note that the locations of observation points in the training data 3270 

can impact the model's outcomes, leading to model uncertainty. To investigate this 3271 

uncertainty and further demonstrate the capabilities of the deep transfer learning model, 3272 

the positions of each observation point were randomly generated 50 times. Similar to 3273 

the previous discussion, 10, 20, and 50 observation points were randomly generated, 3274 

and the resulting time series of groundwater depth measurements every 5 days from 3275 

2004 to 2007 were used as the target domain data for retraining the pre-trained model. 3276 

The root mean square error (RMSE) was employed to quantify the discrepancy between 3277 

the model regressions and the observed values in each realization. The distributions of 3278 

RMSE for the deep transfer learning model and the DBPNN model across different 3279 

numbers of observation points in the 50 realizations are depicted in Figure 7.8. 3280 

 3281 

Figure 7.8 RMSE distribution of proposed method and DBPNN plotted against number 3282 

of observe points, where the observe points are randomly realized for 50 times. 3283 

The results reveal that, for the same number of observation points, the deep 3284 

transfer learning model consistently exhibits significantly lower mean RMSE values 3285 

compared to the DBPNN model. For instance, with 10 observation points, the average 3286 

RMSE of the DBPNN model is approximately 4, while the corresponding average 3287 
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RMSE of the deep transfer learning model is 0.032. Furthermore, as the number of 3288 

observation points increases, the average RMSE values exhibit a pronounced decrease.  3289 

Moreover, the interquartile range (IQR) of the RMSE for the deep transfer learning 3290 

model is considerably smaller than that of the DBPNN model, indicating that the 3291 

proposed transfer learning model outperforms the traditional DBPNN model in 3292 

situations where the data is extremely sparse. This indicates that the proposed model 3293 

effectively handles model uncertainty by integrating analytical knowledge. 3294 

 Watershed groundwater and surface water prediction 3295 

This section employs a Deep LSTM neural network to forecast hydrological 3296 

variables (river stage, recharge), and groundwater observation data for the next two 3297 

months based on data from the years 2004 to 2007. The locations of groundwater 3298 

observation points are depicted in Figure 7.6. The forecasting results of the Deep LSTM 3299 

neural network for hydrological variables and groundwater observation data are 3300 

illustrated in Figure 7.9. It should be noted that this chapter discusses scenarios 3301 

involving 10, 20, and 50 groundwater observation points. For clarity, Figure 7.9d 3302 

provides a comparison between predicted and target values for all 50 groundwater 3303 

observation points. 3304 
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 3305 

Figure 7.9 Deep LSTM neural network prediction result of river stage, recharge and 3306 

observation groundwater head and the comparison between it and target value from 109th 3307 

day to 1156th day. (a) comparison between predicted river stage and target value in grid 3308 

HURID 26. (b) comparison between predicted all river stage and target value. (c) 3309 

comparison between predicted observation groundwater head and target value in grid in 3310 

HRUID 351. (d) comparison between all predicted observation groundwater head and 3311 

target value. (e) comparison between predicted recharge and target value. 3312 

Figure 7.9a and 6.9c indicate that the Deep LSTM neural network exhibits certain 3313 

errors in forecasting river stage and groundwater observation data. The forecast for river 3314 

stage exceeds the actual value by 0.05m, while the forecast for groundwater observation 3315 

data is lower by 0.09m. However, Figure 7.9b and d demonstrate that the Deep LSTM 3316 

neural network can capture the overall trend of hydrological variables (river stage, 3317 

recharge) and groundwater observation data for the next two months. Prediction errors 3318 
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are almost negligible under the influence of the position head. Figure 7.9e suggests that 3319 

despite suboptimal forecasting results for the peak value of recharge, the predictions 3320 

reflect the overall trend of recharge for the next two months. Statistical analysis yields 3321 

a Nash-Sutcliffe Efficiency (NSE) of 0.86, indicating reasonably accurate forecasting 3322 

results that can be applied to groundwater research in the watershed. 3323 

Figure 7.10 shows the prediction results of the deep transfer learning model and 3324 

the DBPNN model under the same scenario. RMSE is applied to describe the accuracy 3325 

of the time series for each point, which is the same as in Figure 7.6. In alignment with 3326 

Figure 7.6, Figure 7.10 reveals that as the number of groundwater observation points 3327 

increases, both the DBPNN and the deep transfer learning model exhibit improved 3328 

prediction accuracy. Furthermore, under equivalent conditions of groundwater 3329 

observation point numbers, the RMSE of the deep transfer learning model is 3330 

significantly lower than that of DBPNN, indicating a markedly higher prediction 3331 

accuracy. This reaffirms the conclusion drawn in the preceding section, highlighting 3332 

that in the context of transfer learning models, the analytical solution provides 3333 

additional physical information for the pre-trained model and effectively enhances the 3334 

precision of groundwater prediction and regression compared to traditional deep 3335 

learning methods. It is noteworthy that, in Figure 7.10, the prediction accuracy of both 3336 

DBPNN and the deep transfer learning model is worse than the regression accuracy 3337 

presented in Figure 7.6. This may be attributed to the cumulative errors in LSTM 3338 

forecasting of hydrological variables and groundwater observation data. 3339 
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 3340 
Figure 7.10 Comparison of watershed hydraulic head prediction accuracy between the 3341 

proposed method and DBPNN for 10, 20 and 50 observation points. (a), (b) RMSE errors 3342 

between the predicted hydraulic heads using DBPNN model for 10, 20 and 50 observation 3343 

points. (d), (e) and (f) RMSE errors between the predicted hydraulic heads using the 3344 

proposed method for 10, 20 and 50 observation points. 3345 

Summary 3346 

This chapter validates an AI-based methodology that combines analytical 3347 

solutions with transfer learning, aiming to generate reliable groundwater flow estimates 3348 

at the watershed scale, particularly under conditions of sparse groundwater flow 3349 

observational data. The fundamental concept of this approach involves employing a 3350 

pretraining model to capture the essential spatial and temporal distribution of 3351 

groundwater within the watershed based on analytical solutions. Subsequently, this 3352 

acquired physical knowledge is transferred through the application of transfer learning, 3353 

facilitating accurate groundwater predictions in real-world scenarios characterized by 3354 

limited data availability. A deep LSTM neural network is utilized to forecast 3355 

hydrological variables such as groundwater observation levels and surface water levels. 3356 

The predictions generated by the deep LSTM neural network serve as the input required 3357 

for the transfer learning process, endowing the proposed transfer learning method with 3358 

predictive capabilities. 3359 
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A traditional DBPNN without the guidance of analytical model is applied as a 3360 

baseline model to ensure a reliable conclusion. The results demonstrate the proposed 3361 

method significantly improves the accuracy of the groundwater flow predictions by 3362 

fusing the analytical knowledge with the neural network. For all test scenarios, the 3363 

errors of the proposed method are much smaller than those of the DBPNN. Even for 3364 

very sparse training data, the transfer learning model still performs satisfactorily. The 3365 

computational load of the proposed method is much smaller than DBPNN. Prior 3366 

knowledge provided by the analytical solution endows the neural network with more 3367 

reasonable initial parameter values and constrains the search space during training. The 3368 

performance of the proposed method and DBPNN model are all affected by the 3369 

locations of observation points. However, with the same amount of observation points, 3370 

the proposed method is more robust than the DBPNN model. 3371 

Transfer learning often benefits from similarities between source and target 3372 

domain data, resulting in better transfer learning outcomes. Therefore, theoretically 3373 

speaking, if the hydrological and hydrogeological characteristics of a new site closely 3374 

resemble those of the original site, it is possible to fine-tune the pre-trained model of a 3375 

specific site using the groundwater observation data from the new site. However, 3376 

considering the rarity of watersheds with identical similar sizes, meteorological 3377 

conditions, and hydrogeological conditions, It’s not recommended to use directly the 3378 

transfer learning method proposed for predictions of other sites using the pre-trained 3379 

model of a specific site. At the same time, it is worth emphasizing that using the transfer 3380 

learning method for predictions of other sites using the pre-trained model of a specific 3381 

site is not impossible. If suitable mathematical expressions can be found to describe the 3382 

differences in hydrological and hydrogeological characteristics between the new site 3383 

and the original site and incorporated into the loss function of transfer learning, this 3384 

issue should be addressable. Some existing literature has attempted transfer learning for 3385 

different-shaped study areas, but such research is still in its infancy and requires further 3386 

exploration.  3387 
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Chapter 8 Conclusion and recommendations 3388 

 Conclusion  3389 

This thesis proposes a new framework that combines artificial intelligence and 3390 

physics-based coupled models for simulating variations in surface water and 3391 

groundwater and details the impact of multiple input variables on surface runoff 3392 

prediction, heterogeneity of groundwater layers, and the utilization of deep learning 3393 

methods to enhance the applicability of the proposed framework. 3394 

Chapter 4 presents a DL model for surface water runoff and shows that the 3395 

selection of model inputs has a great influence on model accuracy. A deep RNN model 3396 

with multiple meteorological data inputs achieves higher accuracy than rainfall data 3397 

input for runoff forecasting. PCA method can be applied to improve the accuracy of the 3398 

deep RNN model effectively as it can reflect core information by classifying the 3399 

original data information into several comprehensive variables. The accuracy of the 3400 

deep LSTMs model and the deep GRUs model is much the same, but the computational 3401 

load of the deep GRUs model is lower, especially with high-dimension input. 3402 

Chapter 5 provides a semi-analytical solution for groundwater flow in riparian 3403 

zone with layered structure and shows that the two-layer structure has a significant 3404 

effect on the responses of groundwater flow to hydrological events. For recharge events 3405 

when the upper layer is less permeable, lateral discharge to the river in this layer is 3406 

impeded and more groundwater flows downward into the more permeable lower layer. 3407 

In contrast, when the upper layer is more permeable, more groundwater flows laterally 3408 

into the river and less downward into the less permeable lower layer. For a flood event 3409 

when the upper layer is less permeable, river water infiltrates mostly into the more 3410 

permeable lower layer during the initial time of the flood period and then flows upward 3411 

into the upper layer, creating a vertical flow from the more permeable lower layer to 3412 

the less permeable upper layer. The direction of the vertical flow is reversed during the 3413 
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recession period. However, this phenomenon is not evident when the upper layer is 3414 

more permeable than the lower layer. The comparison of discharge for the equivalent 3415 

hydraulic conductivity and heterogeneous hydraulic conductivity shows that the 3416 

equivalent hydraulic conductivity method can lead to large errors in discharge. For the 3417 

recharge event, the peak discharge simulated with the harmonic mean of hydraulic 3418 

conductivities is reasonable, but the discharge is overestimated during the recession 3419 

process. The peak discharge simulated with the arithmetic mean of hydraulic 3420 

conductivities would underestimate the peak discharge. For the flood event, the 3421 

discharge simulated with the equivalent hydraulic conductivity method peaks earlier 3422 

than it should be. Moreover, the interaction between river and aquifer simulated with 3423 

the harmonic mean of hydraulic conductivities is overestimated, and that with the 3424 

arithmetic mean of hydraulic conductivities is underestimated. The present solution is 3425 

applied to model the observed hydraulic head and discharge in White Clay Creek within 3426 

the Christina River Basin Critical Zone Observatory in Southeastern Pennsylvania, and 3427 

the estimated values of the aquifer parameters are reasonable. Riparian flow controls 3428 

the active chemical and biological processes in riparian zone, the present solution is a 3429 

convenient calculation method for riparian flow in two-layer aquifer and will provide a 3430 

valuable and solid foundation to clarify chemical and biological reactions in riparian 3431 

zones and alluvial aquifers. 3432 

Chapter 6 shows that the transfer learning method significantly improves the 3433 

accuracy of the hydraulic head predictions by fusing the analytical knowledge with the 3434 

neural network. An analytical solution for unconfined groundwater flow in horizonal 3435 

section is provided for test. For all test scenarios, the errors of the transfer learning 3436 

model are much smaller than those of the BPNN. Even for very sparse training data, 3437 

the transfer learning model still performs satisfactorily. The hydraulic conductivity 3438 

mainly affects the parameters of the shallow layers in the neural network, making it 3439 

possible to employ the transfer learning model to predict groundwater flow in an aquifer 3440 

with a more complicated heterogeneous field. The accuracy of the transfer learning 3441 
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model depends on the correlation length of the heterogeneously hydraulic conductivity 3442 

field. The transfer learning model performs better for a small correlation length. The 3443 

performance of the transfer learning model is affected by the recharge uncertainty. With 3444 

the same recharge uncertainty, the transfer learning model is more robust than the 3445 

DBPNN model. Moreover, under heterogeneous conditions, the proposed transfer 3446 

learning method achieves higher accuracy compared to directly using analytical 3447 

solutions, even with only 10 observation points, MSE of the transfer learning method 3448 

is an order of magnitude smaller than that of the analytical solution. 3449 

Chapter 7 provides an analytical solution for unsaturated-saturated groundwater 3450 

flow in vertical section and applies the transfer learning model in catchment scale. It is 3451 

proved that the deep transfer learning method proposed in Chapter 6 is still working on 3452 

the watershed scale. The deep transfer learning method can significantly improve the 3453 

accuracy of the hydraulic head predictions, even for very sparse training data. Moreover, 3454 

the computational load of the proposed method is much smaller than the baseline model. 3455 

It also should be noted that the three different analytical solutions provided in Chapters 3456 

5, 6, and 7, as well as the analytical solutions provided by previous studies, can all be 3457 

utilized to generate source domain data and applied to the proposed transfer learning 3458 

framework. Given the similarity between the source domain and target domain data in 3459 

transfer learning, the better the transfer learning results. Analytical solutions can be 3460 

selected based on site characteristics and research focus. For example, if considering 3461 

unsaturated flow, the analytical solution provided in Chapter 7 of this thesis can be 3462 

adopted. 3463 

  3464 



169 

 

 Flowchart of surface water and groundwater coupled simulation by the 3465 

proposed method 3466 

The Flowchart for coupled surface water-groundwater simulation using the 3467 

methods provided in this thesis is shown in Figure 8.1. Similar to traditional methods, 3468 

it begins with site investigation for collecting hydrological data, and hydrogeological 3469 

information. Hydrological data mainly include rainfall recharge data and river water 3470 

level fluctuation data for groundwater. Hydrogeological information comprises 3471 

groundwater observation data, lithological data, and hydrogeological parameters 3472 

estimated based on lithological data. 3473 

If only regression of groundwater flow during the observation period is required, 3474 

the process shown by the black line should be followed. Analytical solution models are 3475 

established using hydrological data and estimated hydrogeological parameters to 3476 

provide source domain data for subsequent transfer learning. It should be noted that the 3477 

analytical solutions provided in this thesis or other analytical solutions can be selected 3478 

based on site characteristics and research focus. Finally, groundwater observation data 3479 

are used as target domain data for transfer learning to interpolate the groundwater flow 3480 

field in the watershed. 3481 

If prediction of both surface water and groundwater in the watershed is required, 3482 

the process shown by the orange line should be followed. A deep RNN model is used 3483 

to predict hydrological data and groundwater head from observation data. Subsequently, 3484 

analytical solution models are established using the predicted hydrological data and 3485 

estimated hydrogeological parameters to generate source domain data. Finally, 3486 

predicted groundwater observation data are used as target domain data for transfer 3487 

learning to predict the future groundwater flow field in the watershed. 3488 

 3489 
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 3490 

Figure 8.1 Flowchart of surface water and groundwater coupled simulation by the 3491 

proposed method 3492 

  3493 
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 Recommendation for future work  3494 

The thesis proposes a new framework that combines artificial intelligence and 3495 

physics-based coupled models for simulating variations in surface water and 3496 

groundwater, providing a foundation for integrated water resource management. More 3497 

work could be done in the future: 3498 

1. Deep neural networks are employed to predict surface water flow variations, but 3499 

the uncertainty problems are not considered. Training data inevitably includes 3500 

uncertainty (data uncertainty) due to observation errors, and the deep neural 3501 

network model itself also contains uncertainty due to the incomplete understanding 3502 

of the network and the use of random initializations during its establishment. To 3503 

overcome these limitations, providing uncertainty estimates is crucial to either 3504 

disregard uncertain predictions or convey them to human experts. The provision of 3505 

uncertainty estimates is particularly important in high-risk domains, such as safety 3506 

decision-making. 3507 

2. Analytical solutions are used to describe groundwater movement, which involved 3508 

significant simplifications in the representation of aquifers and groundwater flow 3509 

processes. For instance, in Chapter 5, the upper boundary condition is linearized, 3510 

and in Chapter 7, the unsaturated flow is linearized. While these assumptions 3511 

facilitated the derivation of analytical solutions, they led to inaccuracies in 3512 

predicting results under heavy rainfall conditions. Future work may involve 3513 

considering more realistic assumptions and derivations for boundary conditions to 3514 

improve the accuracy of analytical solutions. 3515 

3. In the proposed framework of coupling surface water and groundwater, the 3516 

boundary coupling method is employed by considering river water levels as 3517 

groundwater boundary conditions. However, due to the significant flow velocity in 3518 

surface water and the complex shapes of riverbeds, the interaction interface 3519 

between surface water and groundwater is intricate. A reasonable consideration of 3520 
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the interface interaction between surface water and groundwater remains a feasible 3521 

avenue for future research. 3522 

4. This study introduces, for the first time, the utilization of analytical solutions as the 3523 

source dataset for predicting and regressing groundwater heads through transfer 3524 

learning methods. In Chapters 6 and 7, to simplify the validation process, a known 3525 

quantity for recharge is assumed. In practical research, determining the exact 3526 

amount of recharge is challenging, and the quantification of uncertainty stemming 3527 

from unknown recharge remains a critical area requiring further investigation. In 3528 

Chapters 6 and 7, proposed deep transfer learning framework involved fine-tuning 3529 

the model solely using observational data, without considering specific 3530 

characteristics of the actual study area, such as its shape and topography. Previous 3531 

studies have shown that transfer learning with deep operator networks can transfer 3532 

knowledge from simple-shaped source domains to complex-shaped target domain 3533 

data. However, such research has yet to be applied in the hydrological field. 3534 

5. In Chapter 7, the use of transfer learning to incorporate prior physical information 3535 

with observational data to predict groundwater heads in the study area is 3536 

demonstrated. This approach can also be extended to address water environment 3537 

problems, such as the migration of compounds, especially organic compounds, in 3538 

surface water or groundwater, which are influenced by processes such as 3539 

adsorption and dissolution, making their quantification challenging. Utilizing 3540 

convection-dispersion equations as prior physical knowledge and combining them 3541 

with observational data can significantly simplify this problem. 3542 

6. In recent years, Physics-Informed Neural Networks (PINN) have shown better 3543 

predictability, reliability, and generalizability. However, the extensive time required 3544 

to train PINNs has often been criticized. In Chapter 7, it is demonstrated that deep 3545 

transfer learning can effectively reduce the computational burden. Combining 3546 

transfer learning with PINNs may promote their application. Initially, it is 3547 

necessary to gather existing deep-learning models to build a basic database. 3548 
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Subsequently, using methods like Generative Adversarial Networks (GANs), 3549 

models that are more closely related to the target problem can be selected from the 3550 

basic database. Lastly, transfer learning methods can be employed to retrain the 3551 

selected models to address the target problem. 3552 

  3553 



174 

 

 Support Information 3554 

S1 Support Information for chapter4  3555 

S1.1. Prediction results for Muskegon River and Pearl River 3556 

  3557 

Figure S 1 Baseline model: Ridge regression based on rainfall data in Muskegon 3558 
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Figure S 2 Scenario 1: LSTM neural network based on rainfall data in Muskegon river 3560 

 3561 

 3562 

Figure S 3 Scenario 2: GRU neural network based on rainfall data in Muskegon river 3563 

 3564 

 3565 

Figure S 4 Scenario 3: LSTM neural network based on multiple meteorological data in 3566 

Muskegon river 3567 
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\  3569 

Figure S 5 Scenario 4: GRU neural network based on multiple meteorological data in 3570 

Muskegon river 3571 

 3572 

 3573 

Figure S 6 Scenario 5: LSTM neural network based on multiple meteorological data with 3574 

PCA method in Muskegon river 3575 
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 3577 

Figure S   Scenario 6: GRU neural network based on multiple meteorological data with 3578 

PCA method in Muskegon river 3579 

 3580 

Figure S 8 Baseline model: Ridge regression based on rainfall data in Pearl river 3581 
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Figure S 9 Scenario 1: LSTM neural network based on rainfall data in Pearl river 3583 
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Figure S 10 Scenario 2: GRU neural network based on rainfall data in Pearl river 3585 
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Figure S 11 Scenario 3: LSTM neural network based on multiple meteorological data in Pearl river 3587 

 3588 

0

10000

20000

30000

40000

50000

60000

70000

2016/1/31 2017/3/6 2018/4/10 2019/5/15

R
u

n
o

ff
 (

ft
^

3
/s

)

DATE

ob_value RAW-LSTM

NSE=0.163

RMSE=10410.34

MAE=625.14

R2=0.37



180 

 

Figure S 12 Scenario 4: GRU neural network based on multiple meteorological data in 3589 

Pearl river 3590 
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Figure S 13 Scenario 5: LSTM neural network based on multiple meteorological data with PCA 3591 

method in Pearl river 3592 

Figure S 14 Scenario 6: GRU neural network based on multiple meteorological data with 3593 

PCA method in Pearl river 3594 
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S1.2. Discussion on data cleanse and outlier value 3596 

Outliers are data objects that significantly differ from other data. In hydrological 3597 

data, outliers can occur due to extreme events, human intervention, and equipment 3598 

malfunction, among other reasons. Due to the complex nature of outlier occurrence, 3599 

outliers are typically removed during the machine learning process to ensure result 3600 

accuracy. According to Chebyshev's inequality, the u±6σ range contains 97% of the 3601 

data for any distribution shape. Therefore, this study uses a 6σ range to process the data. 3602 

Equation 4.1 is used for data standardization, and the statistical results are shown in the 3603 

table below. If the absolute values of the maximum and minimum values of each 3604 

indicator exceed 6, they are considered outliers. It is observed that indicators such as 3605 

MAXWIND and PRE have extreme values considered as outliers. Statistical analysis 3606 

of outliers reveals that only about 1% of the total number of outliers are found in the 3607 

MAXWIND indicator for the Muskegon River, while outliers in other indicators 3608 

account for less than 0.5% of the total. Therefore, the 6σ range is considered reasonable. 3609 

It should be noted that due to the presence of hydraulic facilities such as dams in 3610 

both study areas, it is difficult to determine whether outliers in the data are caused by 3611 

extreme events. Furthermore, in this study, outliers in runoff data account for 0.12% 3612 

and 0.03% of the total, and since the number of outlier samples is small, their impact 3613 

on results is likely minimal even if not removed. 3614 

Under climate change conditions, extreme hydrological events occur frequently, 3615 

making predictions of extreme hydrological events crucial. There is still significant 3616 

potential in using machine learning for extreme hydrological event forecasting. Frame 3617 

et al. (2022) found that data-driven models outperformed baseline models in predicting 3618 

peak flow under almost all conditions. Building upon this study, predicting extreme 3619 

hydrological events can involve extracting information on extreme events using 3620 

indicators such as return periods of peak annual flows. Compared to this study, 3621 

predicting extreme hydrological events would first require using indicators such as 3622 

return periods of peak annual flows to extract information on extreme events and then 3623 
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training the models used in this study. However, due to the scarcity of data on extreme 3624 

events, related research still faces significant challenges.  3625 

Table S 1 statistical results of outlier values in Muskegon River and Pearl River 3626 
 Muskegon River Pearl River 

 max min 

The 

proportion 

of outlier 

values to 

the total 

number 

 max min 

The 

proportion 

of outlier 

values to 

the total 

number 

MAXTEM 3.56  -2.89  0.00% MAXTEM 1.97  -3.39  0.00% 

MEANTEM 2.16  -3.02  0.00% MEANTEM 1.72  -3.25  0.00% 

MINTEM 2.22  -3.46  0.00% MINTEM 2.03  -3.47  0.00% 

MAXDEW 2.09  -3.05  0.00% MAXDEW 1.49  -3.61  0.00% 

MEANDEW 1.94  -3.12  0.00% MEANDEW 1.42  -3.24  0.00% 

MINDEW 2.20  -3.21  0.00% MINDEW 1.32  -2.27  0.00% 

MAXHUM 1.17  -9.45  0.02% MAXHUM 1.07  -8.58  0.07% 

MEANHUM 2.49  -6.46  0.02% MEANHYM 2.32  -4.26  0.00% 

MINHUM 3.19  -3.73  0.00% MINHUM 3.12  -2.92  0.00% 

MAXSEA 6.40  -5.49  0.01% MAXWIND 9.31  -2.69  0.01% 

MEANSEA 3.76  -5.52  0.00% MEANWIND 5.00  -1.91  0.00% 

MINSEA 3.47  -5.74  0.00% MAXSEA 4.41  -3.74  0.00% 

MAXWIND 7.45  -14.63  1.04% MEANSEA 3.78  -34.67  0.08% 

MEANWIND 3.08  -3.54  0.00% MINSEA 0.60  -25.52  0.15% 

MINVIS 2.51  -1.37  0.00% PRE 15.08  -0.29  0.50% 

MAXVIS 5.05  -2.06  0.00% RUNOFF 10.13  -0.73  0.03% 

MEANVIS 6.07  -2.01  0.01%     

PRE 16.38  -0.38  0.36%     

RUNOFF 11.37  -1.19  0.12%     

 3627 

3628 
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S1.3. Discussion on hyperparameters in neural network 3629 

This section discusses the determination methods and existing issues of two 3630 

hyperparameters, the number of hidden layers and Past-history, in RNNs models. 3631 

Determining the number of hidden layers in neural networks is an important yet 3632 

sometimes challenging task due to the black-box nature of neural networks, which 3633 

makes the interpretation of hyperparameters difficult. It is generally believed that for 3634 

simple problems, fewer hidden layers may be sufficient, while for complex problems, 3635 

multiple hidden layers may be needed. Experimental observations have also revealed 3636 

the problem of degradation in neural networks as the network depth increases. Due to 3637 

the difficulty in obtaining hydrological data at the watershed scale, RNN models 3638 

applied in hydrology often have a limited number of hidden layers. For example, Jeong 3639 

and Park (2019) utilized data from 10 years of groundwater levels at the Pohang Gibuk 3640 

monitoring well to establish LSTM and GRU neural networks with two hidden layers. 3641 

Hao et al. (2024) employed a LSTM neural network with three hidden layers to describe 3642 

the glacio-hydrological process in the Urumqi Glacier. The study most closely related 3643 

to this is that of Frame et al. (2022), who developed rainfall-runoff models for 241 3644 

watersheds using LSTM, which included two LSTM hidden layers. Following this 3645 

paper, our study also sets the number of hidden layers in the neural network to two. It 3646 

is worth noting that, since our study was conducted earlier, it did not incorporate 3647 

emerging technologies. For instance, the advent of residual neural networks (He et al., 3648 

2016) allows related research to use as many hidden layers as possible without worrying 3649 

about the degradation problem in neural networks. 3650 

In the context of RNNs, "Past-history" refers to the input sequence preceding the 3651 

current time step. In the early studies applying RNNs in hydrology, Past-history was 3652 

considered as a hyperparameter (Jeong and Park, 2019). In recent years, some scholars 3653 

have regarded this parameter as reflecting the travel time from rainfall to the 3654 

observation point of runoff (Hao et al., 2024). In this study, it is treated as a 3655 

hyperparameter and calibrated using a trial-and-error method, setting it to 30. Taking 3656 
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multiple meteorological data in the Pearl River as an example, Figure S 15 demonstrates 3657 

the prediction accuracy of the model using different Past-history values (measured by 3658 

R2). It can be observed that when Past-history is less than 20, the prediction accuracy 3659 

of the model significantly increases with an increase in Past-history. When Past-history 3660 

ranges from 20 to 40, the prediction accuracy of the model stabilizes, with some 3661 

fluctuations. The appropriate Past-history for this study is considered to be between 20 3662 

and 40, with the average value of 30 being chosen as the model parameter. The 3663 

parameters for the Muskegon River are also determined using this method. It is 3664 

important to note that the focus of this study is to investigate the impact of different 3665 

inputs on runoff prediction. From a controlled variables perspective, the comparison of 3666 

results corresponding to different inputs is made under the same model parameters. 3667 

Although the aforementioned parameter calibration method is relatively crude, it does 3668 

not affect the main conclusions of this study. 3669 

 3670 

Figure S 15 Relationship between Past-history and prediction accuracy  3671 

  3672 
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S2 Support Information for chapter 5 3673 

S2.1. Dimensionless transform 3674 

For the purpose of mathematical convenience, the following dimensionless 3675 

variables are defined: 3676 

 ℎ1𝐷 =
ℎ1

ℎ0
 , ℎ2𝐷 =

ℎ2

ℎ0
 , 𝑥𝐷 =

𝑥

𝐿
 ,  𝑧𝐷 =

𝑧

𝐿
 , 𝑡𝐷 =

𝐾𝑥𝑡

𝑆𝑠𝐿2 , 𝑅𝐾 =
𝐾𝑥2

𝐾𝑥1
 , 𝑅𝑆 = √

𝑆𝑠2

𝑆𝑠1
 , 𝐾𝑥 =3677 

√𝐾𝑥1𝐾𝑥2 , 𝑆𝑆 = √𝑆𝑠1𝑆𝑆2 , 𝐾1𝐷 =
𝐾𝑧1

𝐾𝑥1
 , 𝐾2𝐷 =

𝐾𝑧2

𝐾𝑥2
 ,  ℎ𝑏𝐷 =

ℎ𝑏

ℎ0
 , 𝑊𝐷 =

𝑊𝐿

𝐾𝑥𝐻0
 , 𝑆𝑦𝐷 =

𝑆𝑦

𝑆𝑠𝐿
 , 3678 

𝑅𝑣 =
𝐾1𝐷

𝐾2𝐷𝑅𝐾
 3679 

where the subscript D denotes the dimensionless terms hereinafter. Substituting 3680 

the above dimensionless variables into Equation S 1-Equation S 9, one obtains the 3681 

following dimensionless forms of the governing equations for the hyporheic zone: 3682 

 
√𝑅𝐾

𝑅𝑆

𝜕ℎ1𝐷

𝜕𝑡𝐷
= 𝐾1𝐷

𝜕2ℎ1𝐷

𝜕𝑧𝐷
2 +

𝜕2ℎ1𝐷

𝜕𝑥𝐷
2 , 0 ≤ 𝑧𝐷 ≤ 𝐵1𝐷 , 0 ≤ 𝑥𝐷 ≤ 1 Equation S 1 3683 

 
𝑅𝑆

√𝑅𝐾

𝜕ℎ2𝐷

𝜕𝑡𝐷
= 𝐾2𝐷

𝜕2ℎ2𝐷

𝜕𝑧𝐷
2 +

𝜕2ℎ2𝐷

𝜕𝑥𝐷
2 , −𝐵2𝐷 ≤ 𝑧𝐷 ≤ 0, 0 ≤ 𝑥𝐷 ≤ 1 Equation S 2 3684 

Initial and boundary condition: 3685 

 ℎ1D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = ℎ2D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = 1, 𝑡𝐷 = 0 Equation S 3 3686 

 ℎ1D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = ℎ2D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = ℎ𝑏𝐷(𝑡𝐷), 𝑥𝐷 = 0  Equation S 4 3687 

 
𝜕ℎ1D

𝜕𝑥𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) =

𝜕ℎ1D

𝜕𝑥𝐷
(𝑥𝐷, 𝑧𝐷, 𝑡𝐷) = 0, 𝑥𝐷 = 1   Equation S 5 3688 

 
𝐾1𝐷

√𝑅𝐾

𝜕ℎ1𝐷

𝜕𝑧𝐷

= −𝑆𝑦𝐷

𝜕ℎ1𝐷

𝜕𝑡𝐷

+ 𝑊𝐷(𝑡𝐷), 𝑧𝐷 = 𝐵1𝐷  Equation S 6 3689 

 
𝜕ℎ2D

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = 0, 𝑧𝐷 = −𝐵2𝐷  Equation S 7 3690 

and at the interface: 3691 

 ℎ1D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = ℎ2D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷), 𝑧𝐷 = 0  Equation S 8 3692 

 𝑅𝑣
𝜕ℎ1𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) =

𝜕ℎ2𝐷

𝜕𝑧𝐷
(𝑥𝐷, 𝑧𝐷, 𝑡𝐷), 𝑧𝐷 = 0  Equation S 9 3693 

  3694 
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S2.2 Homogenization  3695 

For the purpose of homogenization of initial conditions, it is assumed that 𝑠1𝐷 =3696 

ℎ1𝐷 − 1 , 𝑠2𝐷 = ℎ2𝐷 − 1  and 𝑠𝑏𝐷(𝑡𝐷) = ℎ𝑏𝐷(𝑡𝐷) − 1 . One can obtain the following 3697 

governing equations: 3698 

 
√𝑅𝐾

𝑅𝑆

𝜕𝑠1𝐷

𝜕𝑡𝐷
= 𝐾1𝐷

𝜕2𝑠1𝐷

𝜕𝑧𝐷
2 +

𝜕2𝑠1𝐷

𝜕𝑥𝐷
2 , 0 ≤ 𝑧𝐷 ≤ 𝐵1𝐷 , 0 ≤ 𝑥𝐷 ≤ 1 Equation S 10 3699 

 
𝑅𝑆

√𝑅𝐾

𝜕𝑠2𝐷

𝜕𝑡𝐷
= 𝐾2𝐷

𝜕2𝑠2𝐷

𝜕𝑧𝐷
2 +

𝜕2𝑠2𝐷

𝜕𝑥𝐷
2 , −𝐵2𝐷 ≤ 𝑧𝐷 ≤ 0, 0 ≤ 𝑥𝐷 ≤ 1 Equation S 11 3700 

Initial and boundary condition: 3701 

 𝑠1𝐷(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = 𝑠2𝐷(𝑥𝐷, 𝑧𝐷, 𝑡𝐷) = 0, 𝑡𝐷 = 0,  Equation S 12 3702 

 𝑠1𝐷(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = 𝑠2𝐷(𝑥𝐷, 𝑧𝐷, 𝑡𝐷) = 𝑠𝑏𝐷(𝑡𝐷), 𝑥𝐷 = 0  Equation S 13 3703 

 
𝜕𝑠1𝐷

𝜕𝑥𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) =

𝜕𝑠1𝐷

𝜕𝑥𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = 0, 𝑥𝐷 = 1  Equation S 14 3704 

 
𝐾1𝐷

√𝑅𝐾

𝜕𝑠1𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = −𝑆𝑦𝐷

𝜕𝑠1𝐷

𝜕𝑡𝐷
+ 𝑊𝐷(𝑡𝐷), 𝑧𝐷 = 𝐵1𝐷  Equation S 15 3705 

 
𝜕𝑠2𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = 0, 𝑧𝐷 = −𝐵2𝐷  Equation S 16 3706 

and the interface condition: 3707 

 𝑠1D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) = 𝑠2D(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷), 𝑧𝐷 = 0 Equation S 17 3708 

 𝑅𝑣
𝜕𝑠1𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑡𝐷) =

𝜕𝑠2𝐷

𝜕𝑧𝐷
(𝑥𝐷, 𝑧𝐷, 𝑡𝐷), 𝑧𝐷 = 0 Equation S 18 3709 

  3710 
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S2.3. Laplace domain solution of the saturated zone 3711 

The Laplace transformation of Equation S 10 and Equation S 11 are written as: 3712 

 
√𝑅𝐾

𝑅𝑆
𝑝�̅�1𝐷 = 𝐾1𝐷

𝜕2𝑠̅1𝐷

𝜕𝑧𝐷
2 +

𝜕2𝑠1̅𝐷

𝜕𝑥𝐷
2 , 0 ≤ 𝑧𝐷 ≤ 𝐵1𝐷 , 0 ≤ 𝑥𝐷 ≤ 1 Equation S 19 3713 

 
𝑅𝑆

√𝑅𝐾
𝑝�̅�2𝐷 = 𝐾2𝐷

𝜕2𝑠̅2𝐷

𝜕𝑧𝐷
2 +

𝜕2𝑠2̅𝐷

𝜕𝑥𝐷
2 , −𝐵2𝐷 ≤ 𝑧𝐷 ≤ 0, 0 ≤ 𝑥𝐷 ≤ 1 Equation S 20 3714 

with boundary conditions: 3715 

 �̅�1𝐷(𝑥𝐷 , 𝑧𝐷, 𝑝) = �̅�2𝐷(𝑥𝐷, 𝑧𝐷, 𝑝) = �̅�𝑏𝐷(𝑝), 𝑥𝐷 = 0 Equation S 21 3716 

 
𝜕𝑠̅1𝐷

𝜕𝑥𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) =

𝜕𝑠̅2𝐷

𝜕𝑥𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) = 0, 𝑥𝐷 = 1 Equation S 22  3717 

 
𝐾1𝐷

√𝑅𝐾

𝜕𝑠̅1𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) = −𝑆𝑦𝐷𝑝�̅�1𝐷 + �̅�𝐷(𝑝), 𝑧𝐷 = 𝐵1𝐷  Equation S 23 3718 

 
𝜕𝑠̅2𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) = 0, 𝑧𝐷 = −𝐵2𝐷  Equation S 24 3719 

Interface: 3720 

 �̅�1𝐷(𝑥𝐷 , 𝑧𝐷, 𝑝) = �̅�2𝐷(𝑥𝐷, 𝑧𝐷, 𝑝), 𝑧𝐷 = 0 Equation S 25 3721 

 𝑅𝑣
𝜕𝑠̅1𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) =

𝜕𝑠̅2𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝), 𝑧𝐷 = 0 Equation S 26 3722 

where 𝑝 is the Laplace transform parameter; and the overbar indicates a variable 3723 

in the Laplace domain hereinafter. In order to solve Equation S 19 and Equation S 20 3724 

using the integral transform method, the boundary condition Equation S 21 is 3725 

homogenized by adopting the following variable substitution: 3726 

 �̅�1𝐷(𝑥𝐷 , 𝑧𝐷, 𝑝) = ℋ1(𝑥𝐷, 𝑧𝐷, 𝑝) + �̅�𝑏𝐷(𝑝) Equation S 27 3727 

 �̅�2𝐷(𝑥𝐷, 𝑧𝐷, 𝑝) = ℋ2(𝑥𝐷, 𝑧𝐷, 𝑝) + �̅�𝑏𝐷(𝑝) Equation S 28 3728 

Then, Equation S 19-Equation S 26 can be transformed as: 3729 

  𝐾1𝐷
𝜕2ℋ1

𝜕𝑧𝐷
2 +

𝜕2ℋ1

𝜕𝑥𝐷
2 −

√𝑅𝐾

𝑅𝑆
𝑝(ℋ1 + �̅�𝑏𝐷) = 0, 0 ≤ 𝑧𝐷 ≤ 𝐵1𝐷 , Equation S 29 3730 

 𝐾2𝐷
𝜕2ℋ2

𝜕𝑧𝐷
2 +

𝜕2ℋ2

𝜕𝑥𝐷
2 −

𝑅𝑆𝑝(ℋ2+𝑠�̅�𝐷(𝑝))

√𝑅𝐾
= 0, −𝐵2𝐷 ≤ 𝑧𝐷 ≤ 0, Equation S 30 3731 

With boundary conditions: 3732 

 ℋ1(𝑥𝐷, 𝑧𝐷, 𝑝) = ℋ2(𝑥𝐷 , 𝑧𝐷, 𝑝) = 0, 𝑥𝐷 = 0  Equation S 31 3733 

 
𝜕ℋ1

𝜕𝑥𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) =

𝜕ℋ2

𝜕𝑥𝐷
(𝑥𝐷, 𝑧𝐷, 𝑝) = 0, 𝑥𝐷 = 1 Equation S 32 3734 

 
𝐾1𝐷

√𝑅𝐾

𝜕ℋ1

𝜕𝑧𝐷
(𝑥𝐷, 𝑧𝐷, 𝑝) = −𝑆𝑦𝐷𝑝(ℋ1 + �̅�𝑏𝐷) + 𝑊𝐷(𝑝), 𝑧𝐷 = 𝐵1𝐷 Equation S 33 3735 

 
𝜕ℋ2

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) = 0, 𝑧𝐷 = −𝐵2𝐷 Equation S 34 3736 

Interface boundaries:  3737 
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 ℋ1(𝑥𝐷, 𝑧𝐷, 𝑝) = ℋ2(𝑥𝐷 , 𝑧𝐷, 𝑝), 𝑧𝐷 = 0 Equation S 35 3738 

 𝑅𝑣
𝜕ℋ1

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝) =

𝜕ℋ2

𝜕𝑧𝐷
(𝑥𝐷 , 𝑧𝐷, 𝑝), 𝑧𝐷 = 0 Equation S 36 3739 

The partial different Equation S 29 and Equation S 30 can be transformed into 3740 

the order ordinary differential equation by eliminating the 𝑥𝐷  terms using the 3741 

integral transform method (Özisik, 1968). The integral transform of ℋ(𝑥𝐷 , 𝑧𝐷, 𝑝) 3742 

is defined as:  3743 

 ℋ1̃(𝑧𝐷, 𝑝) = ∫ ℋ1(𝑥𝐷 , 𝑧𝐷, 𝑝) 𝜓(𝜔𝑛, 𝑥𝐷)𝑑𝑥𝐷
1

0
 Equation S 37 3744 

 ℋ̃2(𝑧𝐷, 𝑝) = ∫ ℋ2(𝑥𝐷 , 𝑧𝐷, 𝑝) 𝜓(𝜔𝑛, 𝑥𝐷)𝑑𝑥𝐷
1

0
 Equation S 38 3745 

The corresponding inversion formula is defined as: 3746 

 ℋ1(𝑥𝐷, 𝑧𝐷, 𝑝) = ∑ ℋ̃1(𝑧𝐷, 𝑝)𝜓(𝜔𝑛, 𝑥𝐷)∞
𝑛=0  Equation S 39 3747 

 ℋ2(𝑥𝐷 , 𝑧𝐷, 𝑝) = ∑ ℋ̃2(𝑧𝐷, 𝑝)𝜓(𝜔𝑛, 𝑥𝐷)∞
𝑛=0  Equation S 40 3748 

where 𝜓(𝜔𝑛, 𝑥𝐷) and 𝜔𝑛 are transform kernel and eigenvalue, respectively. 3749 

On the basis of the boundary conditions Equation S 31 and Equation S 32, the 3750 

kernel and eigenvalue are given as (Özisik, 1968): 3751 

 𝜓(𝜔𝑛, 𝑥𝐷) = √2sin (𝜔𝑛𝑥𝐷)  Equation S 41 3752 

and: 3753 

 𝜔𝑛 =
(2𝑛+1)𝜋

2
 Equation S 42 3754 

respectively. Taking the integral transform Equation S 37 and Equation S 38 3755 

for Equation S 29 and Equation S 30 subject to boundary conditions Equation S 31 3756 

and Equation S 32 leads to:  3757 

 𝐾1𝐷
𝜕2ℋ̃1

𝜕𝑧𝐷
2 − (𝜔𝑛

2 +
√𝑅𝐾

𝑅𝑆
𝑝) ℋ̃1 −

√2
√𝑅𝐾

𝑅𝑆
𝑝𝑠̅𝑏𝐷

𝜔𝑛
= 0 , 0 ≤ 𝑧𝐷 ≤ 𝐵1𝐷 , Equation S 43 3758 

 𝐾2𝐷
𝜕2ℋ̃2

𝜕𝑧𝐷
2 − (𝜔𝑛

2 +
𝑅𝑆𝑝

√𝑅𝐾
) ℋ̃2 −

√2𝑝𝑠̅𝑏𝐷

𝜔𝑛
√𝑅𝐾

𝑅𝑆

= 0 , −𝐵2𝐷 ≤ 𝑧𝐷 ≤ 0, Equation S 44 3759 

with: 3760 
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𝐾1𝐷

𝑅𝐾

𝜕ℋ̃1

𝜕𝑧𝐷
(𝑧𝐷, 𝑝) = −𝑆𝑦𝐷𝑝ℋ̃1 −

√2𝑆𝑦𝐷𝑝𝑠̅𝑏𝐷

𝜔𝑛
+

√2𝑊𝐷(𝑝)

𝜔𝑛
, 𝑧𝐷 = 𝐵1𝐷 Equation S 45 3761 

 
𝜕ℋ̃2

𝜕𝑧𝐷
(𝑧𝐷, 𝑝) = 0, 𝑧𝐷 = −𝐵2𝐷 Equation S 46 3762 

 ℋ̃1(𝑧𝐷, 𝑝) = ℋ̃2(𝑧𝐷, 𝑝), 𝑧𝐷 = 0 Equation S 47 3763 

 𝑅𝑣
𝜕ℋ̃1

𝜕𝑧𝐷
(𝑧𝐷, 𝑝) =

𝜕ℋ̃2

𝜕𝑧𝐷
(𝑧𝐷, 𝑝), 𝑧𝐷 = 0 Equation S 48 3764 

The ordinary differential Equation S 43 and Equation S 44 can be solved 3765 

straightforwardly. The general solution of Equation S 43 and Equation S 44 can be 3766 

written as: 3767 

 ℋ̃1 = 𝐶1𝑎 𝑒𝑥𝑝(−𝛺1𝑛𝑧𝐷) + 𝐶1𝑏 𝑒𝑥𝑝(𝛺1𝑛𝑧𝐷) − 𝜆1, 0 ≤ 𝑧𝐷 ≤ 𝐵1𝐷 , Equation S 49 3768 

 ℋ̃2 = 𝐶2𝑎 𝑒𝑥𝑝(−𝛺2𝑛𝑧𝐷) + 𝐶2𝑏 𝑒𝑥𝑝(𝛺2𝑛𝑧𝐷) − 𝜆2, −𝐵2𝐷 ≤ 𝑧𝐷 ≤ 0, Equation S 50 3769 

where 3770 

  𝛺1𝑛 = √
𝜔𝑛

2 +
√𝑅𝐾

𝑅𝑆
𝑝

𝐾1𝐷

, 𝛺2𝑛 = √
𝜔𝑛

2 +
𝑅𝑆

√𝑅𝐾
𝑝

𝐾2𝐷

, 𝜆1 =
√2√𝑅𝐾𝑝𝑠̅𝑏𝐷

𝐾1𝐷𝛺1𝑛
2 𝜔𝑛𝑅𝑆

, 𝜆2 =
√2𝑝𝑠̅𝑏𝐷𝑅𝑆

𝐾2𝐷𝛺2𝑛
2 𝜔𝑛√𝑅𝐾

 Equation S 51 3771 

and 𝐶1𝑎, 𝐶1𝑏, 𝐶2𝑎, and 𝐶2𝑏 are z-independent parameters. Substituting Equation 3772 

S 49 and Equation S 50 into Equation S 45-Equation S 48, yields, 3773 

 𝐶1𝑎 =
(𝜆1−𝜆2)𝒟(ℬ−𝒜)−2ℰ𝒜

2𝒜𝒞+2ℬ𝒟
 Equation S 52 3774 

 𝐶1𝑏 =
(𝜆1−𝜆2)𝒞(𝒜−ℬ)−2ℰℬ

2𝒜𝒞+2ℬ𝒟
 Equation S 53 3775 

 𝐶2𝑎 = −
(𝜆1−𝜆2)(𝒟+𝒞)+2ℰ

2𝒜𝒞+2ℬ𝒟
exp(−2𝐵2𝐷𝛺2𝑛) Equation S 54 3776 

 𝐶2𝑏 = −
(𝜆1−𝜆2)(𝒟+𝒞)+2ℰ

2𝒜𝒞+2ℬ𝒟
 Equation S 55 3777 

where  3778 

 𝒜 =
(𝑅𝑣𝛺1𝑛+𝛺2𝑛) exp(−2𝐵2𝐷𝛺2𝑛)+𝑅𝑣𝛺1𝑛−𝛺2𝑛

2𝑅𝑣𝛺1𝑛
 Equation S 56 3779 

 ℬ =
(𝑅𝑣𝛺1𝑛−𝛺2𝑛) exp(−2𝐵2𝐷𝛺2𝑛)+𝑅𝑣𝛺1𝑛+𝛺2𝑛

2𝑅𝑣𝛺1𝑛
 Equation S 57 3780 

 𝒞 = 𝑆𝑦𝐷𝑝 −
𝐾1𝐷

𝑅𝐾
𝛺1𝑛 Equation S 58 3781 

 𝒟 = exp(2𝛺1𝑛𝐵1𝐷) (
𝐾1𝐷

𝑅𝐾
𝛺1𝑛 + 𝑆𝑦𝐷𝑝) Equation S 59 3782 

 ℰ = √2 exp(𝛺1𝑛𝐵1𝐷) [
𝑆𝑦𝐷𝑝𝑠̅𝑏𝐷

𝜔𝑛
−

𝑊𝐷

𝜔𝑛
−

√𝑅𝐾𝑠̅𝑏𝐷𝑆𝑦𝐷𝑝2

(𝑅𝑆𝜔𝑛
2 +√𝑅𝐾𝑝)𝜔𝑛

] Equation S 60  3783 

Taking inverse integral transform for Equation S 49 and Equation S 50 and 3784 

combing Equation S 27 and Equation S 28, yields:  3785 
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�̅�1𝐷(𝑥𝐷 , 𝑧𝐷, 𝑝) = ∑ [𝐶1𝑎𝑒−𝛺1𝑛𝑧𝐷 + 𝐶1𝑏𝑒𝛺1𝑛𝑧𝐷 − 𝜆1]∞
𝑛=0 √2 sin(𝜔𝑛𝑥𝐷) + �̅�𝑏𝐷Equation S 

3786 

61 3787 

�̅�2𝐷(𝑥𝐷, 𝑧𝐷, 𝑝) = ∑ [𝐶2𝑎𝑒−𝛺2𝑛𝑧𝐷 + 𝐶2𝑏𝑒𝛺2𝑛𝑧𝐷 − 𝜆2]∞
𝑛=0 √2 sin(𝜔𝑛𝑥𝐷) + �̅�𝑏𝐷Equation S 

3788 

62 3789 

And the solution for hydraulic head can be written as: 3790 

ℎ̅1𝐷(𝑥𝐷, 𝑧𝐷, 𝑝) = ∑ [𝐶1𝑎𝑒−𝛺1𝑛𝑧𝐷 + 𝐶1𝑏𝑒𝛺1𝑛𝑧𝐷 − 𝜆1]∞
𝑛=0 √2 sin(𝜔𝑛𝑥𝐷) + ℎ̅𝑏𝐷Equation S 

3791 

63 3792 

ℎ̅2𝐷(𝑥𝐷 , 𝑧𝐷, 𝑝) = ∑ [𝐶2𝑎𝑒−𝛺2𝑛𝑧𝐷 + 𝐶2𝑏𝑒𝛺2𝑛𝑧𝐷 − 𝜆2]∞
𝑛=0 √2 sin(𝜔𝑛𝑥𝐷) + ℎ̅𝑏𝐷Equation S 

3793 

64 3794 

  3795 
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S2.4. Testing on validity of linearized boundary condition (Equation 5.10) 3796 

To test the validity of the linearized boundary condition (Equation 5.10), the 3797 

coupled Equation 5.1- Equation 5.8 with the boundary conditions (Equation 5.9) and 3798 

(Equation 5.10) are numerically solved using COMSOL Multiphysics (COMSOL Inc., 3799 

Burlington, MA, U.S.A.), a Galerkin finite-element software package. Figure S 1 3800 

presents the hydraulic heads predicted by the model with the nonlinear boundary 3801 

(Equation 5.9) (solid curves) and that of the model with the linearized boundary 3802 

(Equation 5.10) (circle symbols) at two observation points for the different ratio of 3803 

𝑊(𝑡) and 𝐾𝑧1. It shows that when the ratio of 𝑊(𝑡) and 𝐾𝑧1 is smaller than 0.1, the 3804 

hydraulic heads for the linearized boundary agree that for the nonlinear boundary very 3805 

well during the entire modelling period. It implies that the linearized boundary 3806 

(Equation 5.10) is an appropriate approximation to the moving water table boundary 3807 

when the recharge rate is less than one tenth of the vertically hydraulic conductivity. 3808 

 3809 

Figure S 16 Changes of hydraulic head in observation point (x=50m, y=5m) (a) and 3810 

(x=50m, y=10m) (b) with different ratio of 𝑊(𝑡) and 𝐾𝑧1 plotted against t. The solid 3811 

curves represent the solution with the nonlinear water table boundary (Equation 5.9) and 3812 

the circle symbols represent the solution with the linearized water table boundary 3813 

(Equation 5.10). Parameters fixed in the calculation are 𝐾𝑧1 = 𝐾𝑥1 = 𝐾𝑧2 = 𝐾𝑥2 =3814 

10𝑚/𝑑, 𝑆𝑠1 = 𝑆𝑠2 = 0.001 1/𝑚, 𝑆𝑦 = 0.2, 𝐿 = 250 𝑚 and 𝐵1 = 𝐵2 = 10 𝑚. 3815 

  3816 
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S2.5. Discussion of analytical solutions and numerical result 3817 

In this chapter, Equations S 1 to Equation S 9 are directly solved using COMSOL, 3818 

and analytical solutions are obtained from the same set of equations. Thus, the 3819 

consistency between the analytical and numerical solutions confirms the accuracy of 3820 

the analytical solutions. Such comparisons are common in the groundwater field (see 3821 

references). Due to the convenience of analytical solutions, verified analytical solutions 3822 

can rapidly process site data, which is much more cost-effective and convenient when 3823 

dealing with large volumes of site data compared to numerical solutions. 3824 

Additionally, although the analytical and numerical solutions are not entirely 3825 

identical, there are still some discrepancies when magnified. We believe this is due to 3826 

inherent errors in numerical solutions, such as grid partitioning. This, in turn, indirectly 3827 

demonstrates the efficiency of analytical solutions 3828 

 3829 
Figure S 17 analytical solutions and numerical result 3830 

  3831 
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S2.6. Mesh used in COMSOL 3832 

In Section 5.3, it is mentioned, '...they are compared with the numerical solutions 3833 

of the dimensionless governing Equation S 1- Equation S 9.' In the process of defining 3834 

dimensionless parameters, the dimensionless lengths in the x and z directions are 3835 

defined as 𝑥𝐷 =
𝑥

𝐿
, 𝑧𝐷 =

𝑧

𝐿
, respectively. Similarly, the mesh size can be regarded as the 3836 

ratio of the actual grid size to the length L, thus having no units. The mesh generated in 3837 

Comsol is shown in the figure. The advantage of this approach is its convenience in 3838 

calculation and application. If we determine the actual size of the study site, it can be 3839 

easily converted into dimensional form. For example, in the research case 𝐵1𝐷 =3840 

𝐵2𝐷 = 0.04, assuming the thickness 𝐵1  = 𝐵2 = 10𝑚, then 𝐿 = 250𝑚, and the mesh 3841 

size ranges from 0.4m to 2m. 3842 

 3843 

Figure S 18 Mesh used in COMSOL 3844 

 3845 

  3846 
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S2. . Effects of thickness of layer on hydraulic heads 3847 

The dimensionless thickness of layer also affects the responses of the hydraulic 3848 

heads in the two layers structure on the infiltration event and flood event. Effect of 3849 

different values of 𝐵2𝐷  (0.02, 0.04, 0.06 and 0.08) on hydraulic heads is shown in 3850 

Figure S 19, where 𝑅𝑥  is 0.1 and other parameters are same as parameters used in 3851 

Figure 5.4. For the infiltration event, the hydraulic heads of both upper layer and down 3852 

layer and the influence of 𝐵2𝐷  decrease as 𝐵2𝐷  increasing. When the thickness of 3853 

down layer gets larger, the flow section becomes bigger which would accelerate the 3854 

discharge process and reduce hydraulic head. At the same time, the recharge from the 3855 

upper layer is constant. Consequently, the influence of 𝐵2𝐷  decrease as 𝐵2𝐷 3856 

increasing. For the flood event, the hydraulic heads of both upper layer and down layer 3857 

are positively correlated to 𝐵2𝐷 while the influence of 𝐵2𝐷 is negatively. The upper 3858 

layer has damping effect on the bottom layer and when the bottom layer is thicker, the 3859 

damping effect becomes weaker in the lower part of the bottom layer, leading to higher 3860 

hydraulic head in it and hydraulic head in the upper layer would rise too because of the 3861 

vertical flow. 3862 

 3863 

xD=0.2 zD=0.02

xD=0.2 zD=-0.02

xD=0.04 zD=0.02

xD=0.04 zD=-0.02

tD=0.75

tD=2

tD=0.075

tD=0.3
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Figure S 19 Response of hydraulic heads on the scenarios of infiltration events (left 3864 

column figures) and flood events (right column figures) for different values of the 3865 

dimensionless thickness of the bottom 𝐵2𝐷.(a) Response of hydraulic heads (𝐻𝐷) on a 3866 

infiltration events in a certain position in upper layer (𝑥𝐷=0.04, 𝑧𝐷=0.02); (b) Response 3867 

of hydraulic heads (𝐻𝐷) on a flood events in a certain position in upper layer (𝑥𝐷=0.04, 3868 

𝑧𝐷 =0.028); (c) Response of hydraulic heads (𝐻𝐷 ) on a infiltration events in a certain 3869 

position bottom layer (𝑥𝐷=0.04, 𝑧𝐷=-0.02); (d) Response of hydraulic heads (𝐻𝐷) on a 3870 

flood events in a certain position bottom layer (𝑥𝐷=0.04, 𝑧𝐷=-0.02); 3871 

  3872 
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S2.8 Tailing phenomenon observed in Figure 5.12a. 3873 

In hydrology, the tailing phenomenon of base flow refers to the continuous 3874 

increase of base flow in a river for a period of time after rainfall stops. Typically, surface 3875 

runoff decreases rapidly after rainfall ceases, while base flow may continue to increase. 3876 

This is because the groundwater supplied by rainfall needs time to be absorbed and 3877 

released into the river by the groundwater system. 3878 

The occurrence of the tailing phenomenon depends on various factors, including 3879 

the hydrogeological characteristics of the groundwater system, groundwater flow rate, 3880 

soil type, and river topography. In this study, the tailing phenomenon observed in Figure 3881 

4.11a is attributed to the presence of low-permeability aquifers, which slows down 3882 

groundwater flow rates and consequently delays the process of groundwater recharge 3883 

into the river, resulting in tailing 3884 

  3885 
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 3886 

S3 Support Information for chapter 6 3887 

S3.1. Laplace domain solution of unsaturated zone 3888 

The governing equations for the unsaturated zone (Equation 7.6-Equation 7.8) in 3889 

Laplace domain is written as: 3890 

 𝐾𝑧
𝜕

𝜕𝑧
(𝑒−𝜅𝑧 𝜕�̅�

𝜕𝑧
) = 𝑆𝑦𝜅𝑒−𝜅𝑧𝑝�̅�,     0 ≤ 𝑧 ≤ 𝐵𝑢 Equation S 65 3891 

 𝐾𝑧𝑒−𝜅𝑧 𝜕�̅�

𝜕𝑧
= 𝐼(̅𝑝),        𝑧 = 𝐵𝑢 Equation S 66 3892 

The general solution of Equation S 65 can be written as 3893 

 �̅� =  ℂ1𝑒𝕄𝑧 +  ℂ2𝑒ℕ𝑧 Equation S 67 3894 

Where 𝕄 =
𝜅+√𝜅2+4

𝑆𝑦𝜅𝑝

𝐾𝑧

2
, ℕ =

𝜅−√𝜅2+4
𝑆𝑦𝜅𝑝

𝐾𝑧

2
 3895 

  3896 
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S3.2. Laplace domain solution of the saturated zone 3897 

The governing equations for the saturated zone (Equation 7.1-Equation 7.5) in 3898 

Laplace domain: 3899 

 𝐾𝑥
𝜕2ℎ̅

𝜕𝑥2 + 𝐾𝑧
𝜕2ℎ̅

𝜕𝑧2 = 𝑆𝑠𝑝ℎ̅,    −𝐵𝑠 < 𝑧 ≤ 0 Equation S 68 3900 

 
𝜕ℎ̅

𝜕𝑧
= 0,        𝑧 = −𝐵𝑠  Equation S 69 3901 

 ℎ̅(𝑥, 𝑧, 𝑡) = �̅�(𝑝),      𝑥 = 𝐿 Equation S 70 3902 

 
𝜕ℎ̅

𝜕𝑥
= 0,      𝑥 = 0 Equation S 71 3903 

The governing equations (Equation 7.11 and Equation 7.12) for interface in 3904 

Laplace domain: 3905 

 ℎ̅ − �̅� = 0,       𝑧 = 0 Equation S 72 3906 

 
𝜕ℎ̅

𝜕𝑧
−

𝜕�̅�

𝜕𝑧
= 0,      𝑧 = 0 Equation S 73 3907 

For the purpose of homogenization of the boundary condition, Equation S 70 is 3908 

homogenized by adopting the following variable substitution: 3909 

 ℎ̅(𝑥, 𝑧, 𝑝) = ℋ(𝑥, 𝑧, 𝑝) + �̅�(𝑝), Equation S 74 3910 

Then the governing equations for the saturated zone in Laplace domain are: 3911 

 𝐾𝑥
𝜕2ℋ

𝜕𝑥2 + 𝐾𝑧
𝜕2ℋ

𝜕𝑧2 = 𝑆𝑠𝑝(ℋ + �̅�(𝑝)),    −𝐵𝑠 < 𝑧 ≤ 0 Equation S 75 3912 

 
𝜕ℋ

𝜕𝑧
= 0,        𝑧 = −𝐵𝑠  Equation S 76 3913 

 ℋ(𝑥, 𝑧, 𝑝) = 0,      𝑥 = 𝐿 Equation S 77 3914 

 
𝜕ℋ

𝜕𝑥
= 0,      𝑥 = 0 Equation S 78 3915 

The governing equations for interface in Laplace domain: 3916 

 ℋ + ℎ𝑏
̅̅ ̅(𝑝) = �̅�,       𝑧 = 0 Equation S 79 3917 

 
𝜕ℋ

𝜕𝑧
=

𝜕�̅�

𝜕𝑧
,      𝑧 = 0 Equation S 80 3918 

The solution satisfying boundary conditions (Equation S 77 and Equation S 78) 3919 

can be written Fourier series forms as follow [Dougherty and Babu, 1984; Zhan and 3920 

Zlotnik, 2002] 3921 
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 ℋ(𝑥, 𝑧, 𝑝) = ∑ ℋ̃(𝑧)𝜓(𝜔𝑛, 𝑥)∞
𝑛=0  Equation S 81 3922 

 ℋ̃(𝑧, 𝑝) = ∫ ℋ(𝑥, 𝑧, 𝑝)𝜓(𝜔𝑛, 𝑥)𝑑𝑥
𝐿

0
 Equation S 82 3923 

where 𝜓(𝜔𝑛, 𝑥) and 𝜔𝑛 are transform kernels and eigenvalues. On the basis 3924 

of the boundary conditions Equation S 76 and Equation S 77, the kernels and 3925 

eigenvalues are given as  3926 

 𝜓(𝜔𝑛, 𝑥) = √
2

L
cos (𝜔𝑛𝑥) Equation S 83 3927 

and 3928 

 𝜔𝑛 =
(2𝑛+1)𝜋

2L
, Equation S 84 3929 

Taking the Cosine transform on Equation S 75-Equation S 80 using the formula 3930 

Equation S 82 leads to 3931 

 
𝜕2ℋ̃

𝜕𝑧2 −
[𝜔𝑛

2 𝐾𝑥+𝑆𝑠𝑝]

𝐾𝑧
ℋ̃ =

𝑆𝑠𝑝�̃�(𝑝)

𝐾𝑧
,    −𝐵𝑠 < 𝑧 ≤ 0 Equation S 85 3932 

 
𝜕ℋ̃

𝜕𝑧
= 0,        𝑧 = −𝐵𝑠  Equation S 86 3933 

Where 3934 

 �̃�(𝑝) = √
2

L

sin(𝜔𝑛𝐿)

𝜔𝑛
�̅�(𝑝) Equation S 87 3935 

The general solution of Equation S 85 can be written as 3936 

 ℋ̃ = ℂ3 𝑒𝑥𝑝(−𝛺𝑛𝑧) + ℂ4 𝑒𝑥𝑝(𝛺𝑛𝑧) − 𝜁, −𝐵𝑠 < 𝑧 ≤ 0 Equation S 88 3937 

where 3938 

  Φ𝑛 = √
𝜔𝑛

2 𝐾𝑥+𝑆𝑠𝑝

𝐾𝑧

, 𝜁 =
𝑆𝑠𝑝�̂�(𝑝)

𝐾𝑧Φ𝑛
2   Equation S 89 3939 

The governing equations for interface in Laplace domain: 3940 

 ℋ̃ + �̃�(𝑝) = �̃�,       𝑧 = 0 Equation S 90 3941 

 
𝜕ℋ̃

𝜕𝑧
=

𝜕�̃�

𝜕𝑧
,      𝑧 = 0 Equation S 91 3942 

 �̃�(𝑝) = ∫ (ℂ1𝑒𝑀𝑧 +  ℂ2𝑒𝑁𝑧)𝜓(𝜔𝑛, 𝑥)𝑑𝑥
𝐿

0
 Equation S 92 3943 

The model couples a 1D unsaturated zone with 2D saturated zone, so ℂ1 and ℂ2 3944 

may be dependent on x. It can be assumed that ℂ1
′  and ℂ2

′  are Cosine transformation 3945 

of ℂ1 and ℂ2 3946 

 �̃�(𝑝) = ℂ1
′ 𝑒𝕄𝑧 + ℂ2

′ 𝑒𝕄𝑧 Equation S 93 3947 

Taking the Cosine transform on Equation S 75-Equation S 80 using the formula 3948 

Equation S 66 leads to 3949 
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 𝐾𝑧𝑒−𝜅𝑧 𝜕�̃�

𝜕𝑧
= 𝐼(𝑝),        𝑧 = 𝐵𝑢 Equation S 94 3950 

Where  3951 

 𝐼(𝑝) = √
2

L

sin(𝜔𝑛𝐿)

𝜔𝑛
𝐼(̅𝑝) Equation S 95 3952 

Substituting the boundary conditions (Equation S 66 and Equation S 86), and the 3953 

interface conditions Equation S 90 and Equation S 91 into Equation S 88 and Equation 3954 

S 93, respectively, leads to 3955 

 ℂ1
′ =

𝔸𝕄(𝔹ℕ−𝔹′Φ𝑛)+𝔹′Φ𝑛𝔹𝑒𝐵𝑢(ℕ−𝕄)(�̃�(𝑝)−𝜁)

(𝔻′𝔹−𝔻𝔹′Φ𝑛)𝕄
 Equation S 96 3956 

 ℂ2
′ =

𝔹′Φ𝑛(𝔸+𝜁−�̃�(𝑝))−𝔸𝕄𝔹

𝔻′𝔹−𝔻𝔹′Φ𝑛
 Equation S 97 3957 

 ℂ3 =
𝒞′(𝔸+𝜁−�̃�(𝑝))−𝔸𝕄𝔻

𝔻′𝔹−𝔻𝔹′Φ𝑛
 Equation S 98 3958 

 ℂ4 =
𝔻′(𝔸+𝜁−�̃�(𝑝))−𝔸𝕄𝔻

𝔻′𝔹−𝔻𝔹′Φ𝑛
𝑒𝑥𝑝(2Φ𝑛𝐻𝑠) Equation S 99 3959 

Where 𝔸 =
𝐼(𝑝)

𝕄𝐾𝑧𝑒𝕄𝐵𝑢−𝜅𝐵𝑢
 , 𝔹 = 1 + 𝑒𝑥𝑝(2Φ𝑛𝐵𝑠) , 𝔹′ = 𝑒𝑥𝑝(2Φ𝑛𝐵𝑠) − 1 , 𝔻 =3960 

(1 −
𝑁

𝑀
𝑒𝐵𝑢(ℕ−𝕄)), 𝔻′ = (ℕ − ℕ𝑒𝐵𝑢(ℕ−𝕄)). 3961 

Taking inverse Cosine transforms for Equation S 88 and Equation S 93, then 3962 

substituting them into Equation S 74, respectively, yields the Laplace domain solution 3963 

for the saturated zone 3964 

 ℎ̅(𝑥, 𝑧, 𝑝) = ∑ (ℂ2 𝑒𝑥𝑝(−Φ𝑛𝑧) + ℂ3 𝑒𝑥𝑝(Φ𝑛𝑧) − 𝜆)𝜓(𝜔𝑛, 𝑥)∞
𝑛=0 + �̅�(𝑝),Equation S 3965 

100 3966 

 �̅�(𝑧, 𝑝) = ∑ (ℂ1
′ 𝑒𝕄𝑧 + ℂ2

′ 𝑒ℕ𝑧)𝜓(𝜔𝑛, 𝑥)∞
𝑛=0  Equation S 101 3967 

  3968 
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S3.3 Laplace domain solution of the average head in the saturated zone 3969 

The average water head ℎ𝑎 in saturated zone can be defined as follows: 3970 

 ℎ𝑎 =
1

𝐵𝑠
∫ ℎ

0

−𝐵𝑠
𝑑𝑧 Equation S 102 3971 

In Laplace domain, Equation S 102 can be written as follows: 3972 

 ℎ𝑎
̅̅ ̅ =

1

𝐵𝑠
∫ ℎ̅

0

−𝐵𝑠
𝑑𝑧 Equation S 103 3973 

Substituting Equation S 100 into Equation S 103 yields the Laplace domain 3974 

solution for average water head in saturated zone: 3975 

 ℎ𝑎
̅̅ ̅ = ∑ [

ℂ4(1−𝑒𝑥𝑝(−𝐵𝑠Φ𝑛))+ℂ3(𝑒𝑥𝑝(𝐵𝑠Φ𝑛)−1)

𝛺𝑛𝐵𝑠
− 𝜆] 𝜓(𝜔𝑛, 𝑥)∞

𝑛=0 + �̅�(𝑝) Equation S 104 3976 

  3977 
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S3.4 Selection of random field 3978 

In groundwater risk analysis and other types of probability assessment problems, 3979 

spatial variability of hydraulic conductivity is often described using probability 3980 

distributions.(Benson and Daniel, 1994; Bogardi et al., 1990) The stationary lognormal 3981 

distribution is simple to use and it can effectively fit hydraulic conductivity data and is 3982 

therefore widely applied (Freeze, 1975; Kohlbecker et al., 2006; Zhai and Benson, 3983 

2006). 3984 

Hydraulic conductivity random fields are typically characterized and generated 3985 

using a covariance model to construct the semi-variogram. Covariance models such as 3986 

the exponential, Gaussian, and cubic covariance models can all be used to generate 3987 

random fields. However, the exponential covariance model can better fit observed 3988 

hydraulic conductivity data and is thus widely employed in generating hydraulic 3989 

conductivity random fields(Bailey and Baù, 2010; El Idrysy and De Smedt, 2007; Gó3990 

mez‐Hernández and Gorelick, 1989).  3991 

  3992 
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S3.5 Discussion for sensitive layers in neural network 3993 

Data with different hydraulic conductivity values is generated through analytical 3994 

solutions, used this data to train neural networks, and compared the changes in neural 3995 

network parameters to confirm that differences in hydraulic conductivity lead to 3996 

significant changes in the shallow layers (layers 2, 3, and 4) of the neural network. 3997 

Therefore, we designated the shallow layers as retrainable for transfer learning. 3998 

Subsequent numerical experiments revealed that the results of transfer learning with 3999 

only retraining the shallow layers were essentially the same as those of transfer learning 4000 

with retraining all neural network parameters, which indirectly confirms this conclusion. 4001 

However, it must be acknowledged that neural networks are black-box models, 4002 

making it difficult to seek their physical explanations, and transfer learning exhibits 4003 

similar characteristics. It is generally experimental to determine which layers should be 4004 

frozen during the transfer learning process, and there are no general conclusions (Jang 4005 

et al., 2019; Rozantsev et al., 2018; Yosinski et al., 2014). I speculate that the shallow 4006 

layers of the neural network in this chapter are more sensitive to hydraulic conductivity 4007 

because hydraulic conductivity is a significant factor influencing groundwater flow 4008 

fields, and heterogeneous hydraulic conductivity greatly affects the fundamental data 4009 

characteristics of groundwater heads in the study area. Additionally, since recharge is 4010 

considered known, the short-term fluctuation characteristics of groundwater levels 4011 

should be consistent. If we consider the neural network as a feature extractor, the 4012 

shallow layers of the neural network should be responsible for extracting basic features, 4013 

while the deep layers are responsible for extracting specific features. Therefore, the 4014 

deep layers (layers 5 and 6) in this chapter are less sensitive. 4015 

 4016 

 4017 
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