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(n = 190 paired samples). They find that
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for enhancers, is influenced by genotype,

and predominantly involves cancer

mutated genes.
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SUMMARY
To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity,
we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that mono-
cyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation
occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs
(imCpGs) that differ in genomic localization and transcription factor usage according to whether they repre-
sent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to
genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h
LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging
with innate immune activity. By integrating LPS-induced changes in DNAmwith genetic variation, we identify
234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm
responses and human disease traits highlights examples of disease-associated loci that modulate imCpG
formation.
INTRODUCTION

Persistent innate immune activity leads to chronic inflammation,

a characteristic of multiple non-communicable disease states,

includingmetabolic syndrome, cardiovascular disease, and can-

cer.1 Monocytes are key mediators of innate immune responses.

They make up 10% of circulating leukocytes in peripheral blood,

acting as a source of tissue macrophages and dendritic cells as

well as directly contributing to innate immune surveillance and

effector functions.2Monocyte-expressed receptors ligatemicro-

bial pathogen-associated molecular patterns (PAMPs) that, in

concert with cytokine signals, direct activation, trafficking, and

differentiation. We3 and others4,5 have previously demonstrated

that stimulation of monocytes with PAMPs (e.g., lipopolysaccha-

ride [LPS]), or cytokines (e.g., interferon g [IFNg]), induces large-

scale transcriptional changes, which vary between individuals

and are under genetic control.
Cell Genomics 4, 100541
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DNA methylation (DNAm), the formation of 5-methylcytosine

(5mC) at CpG dinucleotides, is a heritable epigenetic modifica-

tion with profound effects on transcription factor usage and

gene expression.6 Similar to gene expression, DNAm is influ-

enced by both local7 and trans-acting8 genetic variation, forming

methyl quantitative trait loci (mQTLs). Blood cell DNAm is addi-

tionally modulated by cellular differentiation, including memory

B cell formation9 and T cell diversification,10 as well as environ-

mental exposures, most notably smoking.11 Changes in DNAm

accrue with age, an observation that has led to the development

of epigenetic clocks, which accurately estimate chronological

age.12 Moreover, age acceleration, as defined by epigenetic ag-

ing in excess of chronological age, is associated with health out-

comes, including longevity,13 cognitive function,14 cancer,15 and

all-cause mortality.16 Infection and inflammatory stimuli interact

with DNAm, with Leishmania17 and mycobacterial18 infections

shown to induce DNAm changes. LPS stimulation of myeloid
, May 8, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Monocyte DNAm is influenced at distinct sites by divergent immune stimuli, with LPS-induced changes involving hydrox-

ymethylation formation

(A) Principal-component analysis of 2,371 differentially methylated CpGs across any treatment (FDR <0:05) shows that samples cluster according to treatment.

(B) Examples of CpGs showing significant differential methylation with divergent treatments, including cg01882871 6.2 kb upstream of CCL2 (PAM3CysK4-

specific demethylation), cg12762413 within the gene body of RHOU (IFNg-specific demethylation), cg15912732 within the gene body of AKT1 (PAM3CysK4 and

LPS methylation), and cg27409514 intronic to SBNO2 (pan-treatment demethylation).

(legend continued on next page)
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cells,19 monocyte-to-macrophage/dendritic cell differentia-

tion,20,21 and, to a lesser extent, macrophage polarization22

have similarly been shown to perturb DNAm. However, the con-

sistency of LPS-induced changes in monocyte DNAm across in-

dividuals and the influence of genome-wide genetic variation are

unexplored. Here, we have addressed how divergent innate im-

mune stimuli modulate DNAm in primary monocytes, assessing

variance between individuals and the effect of genetic variation.

In a pilot study we characterized the effect of innate immune

stimulation on monocyte DNAm with three key innate immune

stimuli: Pam3CysK4, LPS, and IFNg. Pam3CysK4 is a synthetic

agonist of Toll-like receptor (TLR)-1/2, which detects bacterial

lipoprotein.23 LPS forms a key component of gram-negative bac-

terial outer membranes and ligates TLR-4.23 IFNg is a type II IFN

thatupregulatesmonocyteantigenpresentation, inducescytokine

release, and promotes pro-inflammatory polarization.24We found

that Pam3CysK4, LPS, and IFNg have shared and distinct effects

onmonocyteDNAm,with LPS inducing themostmarked changes

in DNAm. We thus explored the effects of LPS stimulation on

DNAmat the population level in paired untreated and LPS-treated

monocytes from 190 healthy European adults. Using this large

cohort, we comprehensively define sites of LPS-induced differen-

tial methylation. We describe the kinetics of LPS-induced DNAm

changes and demonstrate that LPS-induced CpG demethylation

is an active process, mediated by ten-eleven translocation (TET)

methylcytosine dioxygenases. We show that LPS stimulation in-

duces changes in the epigenetic clock, with 24-h LPS stimulation

leading to age acceleration equivalent to 6 months. We describe

howLPS-induced changes inDNAmvarywith respect to genomic

location and function and how baseline DNAm predicts LPS

response. Finally, we map genetic determinants of LPS-induced

DNAm changes, identifying genetic variation that underlies inter-

individual differences in LPS-induced DNAm responses. These

genetic predictors of LPS-induced DNAm response colocalize

with a range of disease traits, identifying a role for inflammation-

induced DNAm changes in human health.

RESULTS

TLR agonists and IFNg trigger divergent changes in
DNAm
To characterize how different immune stimuli affect DNAm, pri-

mary monocytes were exposed to either the TLR ligands
(C) Differentially methylated CpGs seen for each treatment (n = 11 individuals) su

(D) Density plot of median UT beta of CpGs from pilot samples (n = 27) comparing

384) or demethylated (n = 1,987) across any condition.

(E) Variance of beta values for a CpG in UT samples according to the number of

change with treatment (n = 405,580) have reduced variance across the cohort com

rank-sum test), 1 vs. 2 (n = 570) conditions (p = 0:003), and 2 vs. 3 (n = 75) cond

(F and G) Boxplots of all CpGs (F) significantly methylated with either 6- or 24-h LP

***p<2:2310�16 (Wilcoxon signed-rank tests of either UT vs. 6 h LPS or 6 h LPS

(H) Baseline percentage 5hmC methylation at demethylated immune-modulat

CpGs (background), as assayed with paired bisulfite (BS) and oxidative BS (OxB

(I) Percentage total (left), 5mC (middle), and 5hmC (right) methylation at LPS-dem

LPS stimulation, as assayed with paired BS and OxBS sequencing. *p<0:05, ***p

In box-and-whisker plots, boxes depict the upper and lower quartiles of the data, a

as data points >1:53 the interquartile range from the upper or lower quartiles).
Pam3CysK4 or LPS or the type II IFNg. Pairwise comparison of

methylation was analyzed in limma25 alongside incubator controls

(24-h exposure; n = 27 LPS, n = 11 Pam3CysK4, n = 22 IFNg).

While most CpGs remained stable, 2,371 of 407,951 (0.6%)

CpGs demonstrated immune sensitivity in methylation to at least

one stimulus (Table S1). Principal-component analysis of these

immune-modulated CpGs (hereafter referred to as imCpGs)

demonstrated that treatments elicited shared and divergent ef-

fects (Figures 1A and 1B). Restricting analysis to samples with

stimuli across all conditions (n = 11) demonstrated that LPS eli-

cited themost detectable changes inmethylation,with substantial

overlap with PAM3CysK4 responses (Figure 1C).

Similar to CpGs that vary between cell types,26 imCpGs had

comparatively more intermediate methylation compared to sta-

ble CpGs in the untreated state (p<2:23 10�16, Kolmogorov-

Smirnov test; Figure 1D) and demonstrated elevated baseline

variance in methylation between individuals. This increased

with the number of conditions to which the CpG was sensitive

(Figure 1E) and suggests that a subset of monocyte CpGs are

primed to innate immune stimuli. We hypothesize that this may

reflect that CpGs responsive to LPS are already variable at base-

line due to heterogeneity in activation or differentiation state

among circulating monocytes, sites that are thus more likely to

exhibit changes in DNAm with ex vivo stimulation. There are

manymore stable CpGs (n = 405,580) than there are CpGsmeth-

ylated/demethylated (n = 384, n = 1,987 respectively) following

innate immune stimulation. To confirm that the association be-

tween baseline methylation and imCpGs is not an artifact of

discrepant sample size, we repeated our analysis, down-sam-

pling stable CpG numbers to those of the methylated/demethy-

lated comparator group. The differences in baseline methylation

distribution are robust to differences in sample size, with methyl-

ated and demethylated CpGs havingmore intermediate baseline

methylation values than their stable counterparts across 1,000

permutations (demethylation maximum Kolmogorov-Smirnov

test, p<2:23 10�16; methylation maximum Kolmogorov-

Smirnov test, p = 3:13 10�11; Figure S1).

To explore the effect of time on LPS-modulated DNAm, we

treated monocytes with LPS for 6 or 24 h (n = 18). We found

LPS-induced gain in methylation was an early phenomenon,

with 126 and 135 imCpGs showing an increased methylation

signal at 6 h and 24 h, respectively (Table S2). On average,

CpGs with an increased methylation signal at 24 h showed
mmarized in Venn diagrams.

CpGs that are stable (n = 405,580) versus those that are either methylated (n =

treatments under which it is observed to be modulated. CpGs not observed to

pared to thosemodulated in one condition (n = 1,726, p<2:23 10�16, Wilcoxon

itions (p = 0:006).

S or (G) significantly demethylated at either 6 or 24 h of LPS. **p = 4:43 10�4,

versus 24 h LPS).

ed CpGs, methylated immune-modulated CpGs, and across all sequenced

S) sequencing. ***p<2:23 10�16; ns, not significant (Wilcoxon rank-sum tests).

ethylated immune-modulated CpGs in the UT state and following 6 and 24 h of

<2:2310�16 (Wilcoxon signed-rank tests).

nd whiskers depict the range of the data excluding outliers (outliers are defined

Cell Genomics 4, 100541, May 8, 2024 3



Figure 2. Characterization of pan-cohort LPS-induced changes inmonocyte DNAmdenotes genomic enrichment, disease associations, and

epigenetic age-acceleration

(A) Manhattan plots of differentially methylated CpGs in response to LPS stimulation; shown are all CpGs (top), demethylated CpGs (blue, middle), and CpGswith

gains of methylation (red, bottom). The p values represent moderated t tests of pairwise linear models.

(B) Enrichment of significantly demethylated imCpGs (blue, top) and CpGs with significant gains of methylation in response to LPS stimulation (red, bottom) with

ENCODE chromatin state segmentations.

(C) Enrichment of demethylated imCpGs within promoter-captured enhancer DNA regions across 17 cell types.

(D) Enrichment of imCpGs within TFBSs in K562 cells.

(legend continued on next page)
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more marked methylation induction at 6 h, indicating that

maximal gain inmethylation occurs early with subsequent deme-

thylation at these sites (Figures 1F and S2). Notably, 11 imCpGs

showed increased beta values at 6 h, with a net loss in beta

values detected by 24 h (Figure S2). Conversely, 99.4% (1,281

of 1,289) demethylated imCpGs at 6 h demonstrated further de-

methylation by 24 h, indicating that demethylation is more

continuous and prolonged (Figures 1G and S2; Table S2).

LPS-induced demethylation involves the formation of
5hmC
Cell division could lead to passive loss of DNAm through DNA

replication. To test whether LPS stimulation induced monocyte

cell division in our experimental systemwe used carboxyfluores-

cein succinimidyl ester (CFSE) cell proliferation assays to

monitor monocyte proliferation over the time-course of the

experiment. These assays demonstrated that LPS stimulation

does not induce cell division in monocytes in our system (data

not shown), indicating that the observed LPS induced DNA de-

methylation is independent of cell division. Active demethylation

involves TET enzymes that catalyze the oxidation of 5mC to form

5-hydroxymethylcytosine (5hmC),27,28 with successive oxidation

culminating in base excision repair and replacement with non-

methylated cytosine. To ascertain whether LPS-induced deme-

thylation involved 5hmC formation in monocytes, we used pair-

wise bisulfite (BS) and oxidative BS (OxBS) sequencing29 of

target-captured methylome DNA from 4 individual monocyte

samples at baseline and 6 and 24 h of LPS treatment. Across

pooled reads from all samples, we identified 107 imCpGs identi-

fied in the array time course experiment, where we had sufficient

coverage to monitor methylation in the sequencing data.

ImCpGs have significantly higher baseline 5hmC levels

compared with background CpGs similarly covered in arrays

(demethylated ImCpGs, 6%; methylated ImCpGs, 8%; vs.

0.5%background, p<0:001) (Figure 1H).We note a fall in both to-

tal and 5mC signals at array-determined LPS-demethylated

imCpGs at 6 and 24 h (Figure 1I), whereas the 5hmC signal at

these sites increases at both 6 and 24 h, demonstrating that

LPS-induced demethylation involves the formation of this inter-

mediary (Figure 1I).

Differential methylation in response to LPS across a
population
To explore variation in observed changes in methylation across a

population of individuals, we focused on the 24-h LPS response.

We increased the total sample size to 192 healthy adults of Euro-

pean ancestry (Figure S3), aged 31–66 years (median 50 years),

125 female (65%), with a body mass index 17.4–43.0 kg/m2 (me-
(E and F) Reactome Immune System (E) and Disease Ontology (F) pathway analys

depicted pathways are significantly enriched (adjusted p<0:05), with the most si

System, 15 of 57; Disease Ontology, 15 of 67. nOverlap, number of overlapping

(G) Correlation of methylation age vs. chronological age for monocytes (UT) fro

product moment correlation.

(H) Effect of LPS stimulation on methylation age (left). Shown are the relationship

omized as methylation increased or reduced with respect to chronological age

calculated with Wilcoxon signed-rank tests.

In box-and-whisker plots, boxes depict the upper and lower quartiles of the data, a

as data points >1:53 the interquartile range from the upper or lower quartiles). V
dian, 24.2 kg/m2). After quality control, we generated paired un-

treated vs. LPS methylation data for a total of 190 individuals. In-

spection of methylation array quality control SNPs did not

identify sample mismatches. LPS stimulation modulated DNAm

at 46,891 imCpGs (11.6% of tested, false discovery rate

ðFDRÞ<0:05), with 28,298 (7.0%) showing gain in methylation

and 18,593 (4.6%) demethylation (Table S3). There was high

concordance in responses from the original 27 samples and the

further 163 samples (p<2:23 10�16; Figure S4). The LPS-induced

methylation changes that we observe are pronounced. Given the

large size of our cohort and the pairwise design of the experiment

and analysis, it is unlikely that these findings represent unassayed

confounding variations or experimental artifacts. In keeping with

this, pairwise analysis of untreated and metformin-treated mono-

cytes (n=6) in the sameexperimental system results in nodiscern-

ible experiment-wide inflation of test statistics, in contrast to LPS-

treated samples (FigureS5), strongly suggesting that the observed

association between LPS treatment and DNAm is specific and is

likely to represent the true scale of the effect of LPS exposure on

DNAm in monocytes. Nevertheless, we further sought to identify

a set of high-confidence LPS imCpGs for use in downstreamanal-

ysis. To do so, we used the R package BACON30 to define an

empirical null distribution of LPS-induced differential DNAm in

our experiment and to further correct for any identified inflation

or bias (Figure S6). BACON estimates inflation in our uncorrected

test statistics to be 1.47 and bias to be 0.27. Following correction,

LPS stimulation modulated (FDR<0:05) DNAm at 7,359 imCpGS

(1.8%), with 1,471 (0.4%) imCpGs demonstrating gain in DNAm

and 5,887 (1.5%) showing demethylation (Figure 2A; Table S4).

We further identified differentially methylated regions (DMRs)

induced by LPSwith DMRcate,31 observing 6,473 regions where

two or more contiguous CpGs showed differential methylation

(50.8% demethylated, median length 5 CpGs, range 2–94

CpGs; 49.2% methylated, median length 4 CpGs, range 2–82

CpGs; Kolmogorov-Smirnov test, p = 0:0003; Table S5). Highly

demethylated regions were observed across the genes DAXX,

CUX1, and ARID5B, with the most significant DMR in DAXX,

while the most demethylated CpGs were observed in the eighth

intron of the gene CUX1 (maximally at cg15755348), encoding a

protein with transcriptional repressor and activator properties

(CUX1 [cut-like homeobox 1])32 frequently haploinsufficient or

mutated across hematological malignancies and solid tu-

mors.33,34 Notably, this region was the most demethylated using

BS and OxBS sequencing (Figure S7). We also noted demethy-

lation across multiple interleukin-encoding genes and receptors,

including IL36RG, IL1RN, IL1A, and IL7R, which we have previ-

ously shown to be strongly induced in monocytes by LPS.35 Ex-

amples of regions gaining methylation signal include CHID1,
es of genes proximal (within 5 kb) to LPS-demethylated CpGs in monocytes. All

gnficantly enriched pathways from each ontology plotted. Reactome Immune

genes from a pathway. Enrichment is calculated using Fisher’s exact tests.

m 92 individuals (male, red; female, blue). The p value represents Pearson’s

between baseline methylation age vs. chronological age (individuals dichot-

) and change in methylation age on LPS stimulation (right). The p values are

nd whiskers depict the range of the data excluding outliers (outliers are defined

iolin plots are trimmed to the range of the data.
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AKT1, and ITGAE, with the largest induction being noted at

cg15912732 in the third intron ofAKT1.AKT1 encodes protein ki-

nase B, which is a sentinel for cell growth and division. Interest-

ingly, deletion of CUX1, which is antagonistic to the phosphati-

dylinositol 3-kinase 1 pathway, results in hyperactivation of

AKT1,34 suggesting synergistic effects in the changes observed.

Given that the number of DMRs defined over the cohort varies

according to the parameters provided to themodel, and the rela-

tive sparsity in coverage from the array, we focused downstream

analysis on single CpGs.

Genomic organization of differential methylation
We assessed the distribution of imCpGs among chromatin state

annotations in primary monocytes36 (Figure 2B). We found that

imCpGs show enrichment across divergent genomic locations

according to their behavior, with profound enrichment for deme-

thylated imCpGs in enhancer (p<13 10�300), transcription

start site flanking (p = 1:63 10�73), genic enhancer (p = 7:13

10�53), and transcription flanking (p = 1:73 10�23)

regions. The majority of other regions were depleted for deme-

thylated imCpGs, most notably repressed polycomb regions

(p = 1:93 10�198) and heterochromatin (p = 1:33 10�46). While

imCpGs showing gain in methylation were also enriched for en-

hancers (p = 3:83 10�31) and genic enhancers (p = 33 10�10),

the fold change of that enrichment was markedly reduced

compared to demethylated imCpGs (Figure 2B). ImCpGs with

gain in methylation were also significantly enriched for hetero-

chromatin (p = 1:43 10�3), in contrast to the pattern observed

for demethylated imCpGs. To ascertain whether imCpGs

involved genomic regions with evidence of physical interaction

with promoters consistent with enhancer activity, we interro-

gated promoter capture HiC data for 17 different cell types. 37

This demonstrated that demethylated imCpGs are highly en-

richedwithin promoter-captured enhancer DNA frommonocytes

(2.4-fold change; FDR = 4:23 10�109; Figure 2C). We found no

enrichment with methylated imCpGs. In keeping with enhancer

usage being influenced by cell type, the degree of enrichment

of demethylated imCpGs to promoter-captured DNA across

monocytes was markedly greater than the other 16 cell types

(Figure 2C). Finally, we explored the relationship between

imCpGs and CpGs that are differentially methylated during

monocyte-to-macrophage differentiation. Using post-quality-

control probe data for 5,503 of 5,780 CpGs previously associ-

ated with macrophage differentiation,22 we observed that

1,301 of 7,359 imCpGs are additionally implicated in differentia-

tion, demonstrating strong enrichment for these CpGs and indi-

cating shared genomic regions between these processes (odds

ratio [OR] = 20.3; Fisher’s exact test, p<2:23 10�16). However,

examination of the direction of effect of LPS versus differentia-

tion on the methylation state of these overlapping CpGs demon-

strated that LPS was more likely to have opposing effects on

methylation state to those observed with macrophage differenti-

ation (830 of 1,301 discordant direction of effect of LPS and

differentiation, 471 of 1,301 concordant direction). This is in

keeping with a shared subset of CpGs within monocytes

that demonstrate distinct and frequently divergent responses

to both innate immune activation as well as mediators of

differentiation.
6 Cell Genomics 4, 100541, May 8, 2024
Transcription factor usage
Among transcription factor binding sites (TFBSs) in K562cells, de-

methylated imCpGs were highly enriched in TFBSs of 88 different

transcription factors (Figure 2D; Table S6), with AP-1 subunits

showing the most prominent enrichment (FOSL1: 8.13 increase,

p = 1:03 10�255; JUND: 2.53 increase, p = 7:93 10�139).

Conversely, there was comparatively limited enrichment for meth-

ylated imCpGs overlapping TFBSs (Table S7), with subtle enrich-

ment noted forC/EBP,EGR-1, andPU.1, in keepingwithpreferen-

tial heterochromatin location of methylated imCpGs. The K562

chromatin immunoprecipitation sequencing data do not contain

information regarding a number of transcription factors, notably

nuclear factor kB (NF-kB), which is a key mediator of the LPS

response. We therefore also looked at data from the lymphoblas-

toid cell lineGM12878 andobservedmarkedenrichment of deme-

thylated imCpGs (Tables S8 and S9; Figure S8) for JUN (JUND:

11.63enrichment,p = 8:1310�45),ATF (BATF:5.73enrichment,

p = 7:63 10�214), andNF-kB (2.43 enrichment, p = 7:03 10�72).

Consistent with our findings, AP-1 TFBSs have been shown previ-

ously to be preferentially demethylated during monocyte-to-

macrophage differentiation, with C/EBP and PU.1 binding sites

shown to gain methylation.22 This commonality of transcription

factor (TF) usage indicates a continuum between early LPS-

induced monocyte activation and subsequent monocyte-to-

macrophage differentiation.

LPS-modulated CpGs are informative of human disease
To understand the biological significance of imCpGs, we per-

formed enrichment analysis of the most proximal gene (within

a 5-kb window) to an imCpG, using Reactome Immune System38

(R-HSA-168256) and Disease Ontology39 gene annotations in

XGR.40 Among methylated imCpGs, of which 790 were within

5 kb of a gene, there was no evidence for biological pathway

or human disease enrichment. By contrast, among genes prox-

imal to demethylated imCpGs (n = 3,174), we observed striking

enrichment (Figure 2E; Table S10) for immune-related biological

pathways (n = 57, FDR<0:05), including phagocytosis (n = 2

pathways), TLR signaling (n = 15), and cytokine signaling (n =

16). We further observed marked enrichment of genes proximal

to demethylated imCpGs (Figure 2F; Table S11) among path-

ways implicated in the pathogenesis of cancer (n = 34 pathways),

in particular hematological malignancy (n = 7), autoimmune

disease (n = 9), and viral infection (n = 4).

Treatment with LPS causes epigenetic age acceleration
We examined the relationship between LPS-induced differential

DNAmandage, sex, andsmoking statusby testing for interactions

with LPS treatment but did not observe anyCpGwhere the degree

of differential methylation significantly interacted with these vari-

ables, suggesting that the effect of LPS was independent of key

demographic factors. While the association between DNAm and

chronological age is well characterized,41–43 and disease states

havebeenassociatedwithepigeneticage,13–16 theextent towhich

age-associated CpGmethylation is plastic in the short term is un-

clear. Interestingly, while CpGs associated with age acceleration

are implicated in TLR and IFN responses,44 the majority of epige-

netic clocks are derived fromwhole-blood DNAmmeasurements,

andLPS-activatedmonocytesassayedhereare likelydistinct from



Figure 3. Identification of correlates of differential CpG methylation in response to LPS

(A) Relationship between baseline methylation and change in methylation induced by LPS for all imCpGs. ImCpGs are colored according to evidence of cor-

relation between baseline methylation and LPS-induced methylation change: baseline-correlated (BC) imCpGs, blue; baseline-independent (BI) imCpGs, red.

(B) Examples of BC and BI imCpGs for LPS-methylated and LPS-demethylated loci.

(C) BC and BI imCpGS have distinct baseline methylation distributions (left) and distinct methylation responses to LPS stimulation (right). Distributions are

compared with Kolmogorov-Smirnov tests.

(legend continued on next page)

Cell Genomics 4, 100541, May 8, 2024 7

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
cells circulating in the periphery in healthy donors. To explore

whether treatment with LPS influenced the epigenetic age of sam-

ples, we used the epigenetic clock as described by Horvath, a

multi-tissue estimator of epigenetic age, to determine whether

exposure to LPS caused age acceleration in monocytes.45 We

explored age-related changes in methylation across untreated

(UT) and LPS-treated samples, observing 29,134 (Table S12)

and 24,389 (Table S13) CpGs associated with age, respectively.

There was a high concordance between significant results (r =

0:99, p<2:23 10�16; Figure S9). Similar to others,46 we observed

the clock to significantly underestimate the age of older individuals

(Wilcoxon rank-sum test, p = 1:73 10�6; median difference, 3.1

years; n = 92; Figure 2G). Irrespective, this observation should

not impact a pairwise comparison of UT and LPS-treated mono-

cytes. This demonstrated that LPS exposure elicited a small but

significant increase in epigenetic age across the group (median

difference, +0.6 years; Wilcoxon rank-sum test, p = 0:014; Fig-

ure 2H). Further analysis of this LPS-induced age acceleration

showed that the effect was confined to those without baseline

epigenetic age acceleration, with the effect of LPS on these indi-

viduals leading to a pronounced age acceleration (median differ-

ence = +1.1, p = 1:53 10� 4; Figure 2H). Younger individuals

are more likely to have baseline epigenetic age acceleration, and

we therefore tested whether this result could be confounded by

age. This is not the case, with LPS-induced epigenetic age accel-

eration being restricted to individualswith reducedbaseline epige-

netic age inbothyounger andolder individuals (FigureS10). To test

whether these observations were robust to the choice of epige-

netic clock, we recapitulated this analysis using the Hannum,47

PhenoAge,44 and PCGrimAge48 clocks (Figure S11). In keeping

with our findings using the Horvath clock, LPS stimulation signifi-

cantly increased epigenetic age in the Hannum (p = 0:008),

PhenoAge (p = 1:13 10�9), and PCGrimAge clocks (p = 2:53

10�25).Again, consistentwithourfindingsusing theHorvathclock,

we observed that the effect of LPS on epigenetic agewas greatest

among individuals with lower baseline age acceleration in all

clocks tested (Figure S11). Epigenetic age estimated in whole

blood is associated with variation in the circulating proportions of

naive and activated T and natural killer cells.49 Our data extend

and expand these observations, demonstrating, for the first time,

rapid plasticity of theDNAmepigenetic clock,with short-termacti-

vation of the TLR4pathway inducing age acceleration. The restric-

tion of this effect to thosewithout baseline epigenetic age acceler-

ation rules out non-specific sequelae of LPS,whichwould apply to

all, and suggests that individuals with epigenetic age equal to or

greater than chronological age have already accrued modifica-

tions at these LPS-sensitive sites through life events.

Baseline determinants of change in methylation
In our pilot experiment, we demonstrated that imCpGs have a

distinct pattern of baseline methylation compared to CpGs not

responsive to innate immune stimulation (Figures 1D and 1E).
(D) Enrichment for overlap with TFBSs in K562 cells at BC and BI methylated and

according to enrichment p-value (two-tailed binomial test). TFs not significantly as

each imCpG group are labeled.

(E) Enrichment for overlap with ENCODE chromatin state segmentations for BI

Significantly enriched (FDR<0:05) chromatin states for each imCpG group are co
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We sought to expand on these findings within the population-

scale LPS experiment, exploring the relationship between LPS-

induced methylation change at a given imCpG and baseline

methylation. For the majority of LPS-modulated imCpGs (6,685

of 7,359, 91%) we find magnitude of response to be correlated

with baseline methylation (Figures 3A and 3B). That is, LPS

responsiveness at an imCpG in an individual is dependent on

the degree of CpG methylation in that individual at baseline.

For most baseline-correlated (BC) methylated imCpGs, baseline

methylation is inversely correlated with the magnitude of methyl-

ation change in response to LPS (n = 6,614 of 6,685). Thus, for

demethylated BC imCpGs, high baseline methylation was

associated with greater demethylation, while for methylated

BC imCpGs, low baseline methylation was associated with

increased gain in methylation.

For 568 of 5,585 (10.2%) demethylated imCpGs and 97 of

1,465 (6.6%) methylated imCpGs, we observe no correlation

(p>0:05) between baseline methylation and response to LPS

(Figures 3A and 3B). Baseline-independent (BI) imCpGs demon-

strated a significant difference (demethylated imCpGs, p<2:23

10�16; methylated imCpGs, p = 1:43 10�4) in the distribution

of UT DNAm beta values, with more intermediate baseline

methylation values, indicating heterogeneity at these positions

among cells (Figure 3C) and suggesting that these represent a

different subset of LPS-responsive CpGs. We find that BI deme-

thylated imCpGs tend to bemore responsive to LPS than BC de-

methylated imCpGs (p<2:23 10�16), whereas the effect of LPS

on BI methylated imCpGs is less than at BCmethylated imCpGs

(p = 0:01; Figure 3C). BI and BC imCpGs diverge in their TF us-

age (Figure 3D; Table S14). As for demethylated imCpGs overall,

BI and BC demethylated imCpGs are both highly enriched for

AP-1 subunits, whereas BC methylated imCpGs are enriched

for a distinct set of TFBSs, including EGR1, a pattern not

observed for BI methylated imCpGs (Figure 3D). EGR1 has

been shown to recruit the TET enzyme TET1.50 This is comple-

mentary to our observation that imCpgs are enriched for 5hmC

at baseline (Figure 1H), suggesting a model in which BC imCpGs

are primed for LPS-induced methylation changes, in part

through EGR1-mediated TET enzyme recruitment and formation

of 5hmC. In keeping with the absence of enrichment for TFBSs

among BI methylated imCpGs, these imCpGs are specifically

enriched for transcriptionally inactive DNA: heterochromatin

and polycomb repressed regions (Figure 3E).

Genetic determinants of LPS-induced methylation
changes
Genetic variation is a significant determinant of CpG methyl-

ation.7,8 In keeping with this, we were able to identify

(FDR<0:05) 69,370 and 69,503 mQTLs in UT monocytes and

LPS-stimulated monocytes, respectively (Tables S15 and S16).

Given the marked alterations in DNAm observed following LPS

stimulation, however, we were interested to define whether
demethylated imCpGs. Significantly enriched TFBSs (FDR<0:05) are colored

sociated with an imCpG group are colored gray. The top three enriched TFs for

and BC imCpGs. The p values are calculated by two-tailed binomial tests.

lored: BI, red; BC, blue.



(legend on next page)
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genetic variation influenced the effect of LPS on DNAm and

associated imCpG formation. In a paired analysis (n = 188 indi-

viduals), we correlated the magnitude of change in methylation

on LPS stimulation (delta: methylation beta LPS-treated mono-

cytes minus methylation beta UT monocytes) at the 7,359

imCpGs with genotype at common, well-imputed SNPs within

100 kb of the CpG. Mapping immune-modulated mQTLs (im-

mQTLs) in this way reveals 234 CpGs (3.2%) for which changes

in methylation in response to LPS stimulation are influenced by

germline genetic variation (Figure 4A; Table S17). We find that

im-mQTL are more frequent among demethylated imCpGs as

compared to methylated imCpGs (217 vs. 17, p = 6:93 10�8,

OR = 3:27, Fisher’s exact test). To better define how identified

im-mQTLs relate to genetic determinants of CpG methylation

at baseline, we used Coloc to compare LPS-induced im-mQTL

signals with mQTL signals in unstimulated monocytes. We

defined an im-mQTL as de novo where Coloc best supports a

model in which the im-mQTL signal was unique or distinct to

that seen in the unstimulated state. Of 234 im-mQTL, 96 are de

novo (Table S18), an example of which is an im-mQTL for

cg02724909 methylation (Figures 4B and 4C), where genetic

variation at rs869191 controls the degree of LPS-induced deme-

thylation despite having no effect on methylation at baseline. For

the remaining 138 im-mQTLs, Coloc best supports a model in

which shared genetic variation affects both baseline DNAm

and DNAm changes in response to LPS. In these cases, LPS

stimulation may augment the effect of a baseline mQTL

on DNAm; i.e., a baseline enhanced im-mQTL (n = 108), an

example of which is an im-mQTL for cg17462560 methylation

(Figures 4D and 4E). Alternatively, LPS stimulation can reduce

the effect of a baseline mQTL on DNAm; i.e., a baseline dimin-

ished im-mQTL (n = 30). We further assessed whether detection

of an im-mQTL at a CpG simply reflects absent or lower methyl-

ation at that CpG in the state in which we do not observe a ge-

netic effect. In fact, the converse appears to be the case, with

217 of 234 im-mQTLs demonstrating decreased methylation in

the state in which the im-mQTL is present or enhanced

(Table S18).

We explored the relationship between im-mQTL and genetic

determinants of human phenotypic variation, observing 24 of

234 im-mQTL to colocalize with a genetic determinant of at least

one genome-wide association study (GWAS) trait (Table S19). An

illustrative example of a baseline enhanced im-mQTL informative
Figure 4. Integration of genetic variation reveals local regulatory deter

(A) Manhattan plot of immune-modulated methylation quantitative trait loci (im-m

Shown is QTL mapping of normalized differential methylation following LPS stimu

UT monocytes) in cis (within 100 kb of the CpG) at 7,359 imCpGs. im-mQTLs are

217, blue; increased methylation, n = 17, red).

(B) De novo im-mQTL at cg02724909; correlation of rs869191 genotype with un

(delta, purple) methylation at cg02724909.

(C) Regional association plot of cg02724909 im-mQTL. Protein-coding genes are

(D) Baseline enhanced im-mQTL at cg17462560; correlation of rs6875879 geno

(delta, purple) methylation at cg17462560.

(E) Regional association plot of cg17462560 im-mQTL. The p values are calculate

are colored according to strength of linkage disequilibrium (LD) (Utah residents wit

mQTL SNP.

In box-and-whisker plots, boxes depict the upper and lower quartiles of the data, a

as data points >1:53 the interquartile range from the upper or lower quartiles). T
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of human phenotypic variation is rs6446553 at cg19906672.

Cg19906672 is demethylated in response to LPS, themagnitude

of which is influenced by allelic variation at rs6446553, 24 kb

downstream of the CpG (p = 1:313 10�7; Figures 5A and 5B),

with carriers of the T allele showing increased LPS-induced de-

methylation. This polymorphism colocalizes with genetic loci

determining several hematological parameters (Figures 5C and

5D), including white cell count (posterior probability of colocali-

zation [PP4] = 0.97), neutrophil count (PP4 = 0.97), neutrophil

percentage (PP4 = 0.97), lymphocyte percentage (PP4 = 0.98),

mean corpuscular volume (PP4 = 0.93), and mean sphered

corpuscular volume (PP4 = 0.96).

Given the variable effects of DNAm on gene expression,51 we

sought to identify examples of colocalization between im-

mQTLs and expression quantitative trait loci (eQTL) in LPS-stim-

ulated monocytes in previously published data.3 We extracted

cis-eQTL mapping data for genes within 1 Mb of each im-

mQTL in unstimulated monocytes and in monocytes following

24 h of LPS stimulation. We then used Moloc52 to assess evi-

dence for shared causal loci between each im-mQTL and local

eQTL in naive and stimulatedmonocytes. That analysis supports

sharing (PP>0:8) of a causal locus between 61 im-mQTL (26%)

and at least one cis eQTL in monocytes, with evidence of coloc-

alization at 87 im-mQTL:genic eQTL pairs (Table S20). We iden-

tified 12 instances where the genetic determinants of differential

methylation on LPS stimulation are shared with regulatory varia-

tion controlling gene expression in the UT state alone and 45 in-

stances where sharing is only evident following LPS stimulation

(Table S20). The im-mQTL at cg19906672 (rs6446553), as

described above, is an example of the latter, with the im-mQTL

colocalizing with a cis-eQTL for TBC1D14 expression only after

24 h of LPS stimulation. We find that, in addition to being asso-

ciated with increased demethylation, the rs6446553:T allele is

associated with increased TBC1D14 expression post LPS (Fig-

ure 5E). TBC1D14 encodes a TBC (Tre-Bub-CDC16) domain-

containing GTPase-activating protein that functions as a

negative regulator of autophagy.53 Autophagy is critical to the

maintenance of hematopoietic stem cell function, and in keeping

with a role for TBC1D14 expression in myeloid and lymphoid he-

matological parameters, changes in autophagy are associated

with perturbed myeloid:lymphoid ratios.54

A further example of an im-mQTL informative of humandisease

is the regulation of cg16885113 LPS-induced methylation by
minants of LPS-induced imCpGs

QTLs) in LPS-stimulated monocytes (n = 234).

lation (delta, methylation beta LPS-treated monocytes minus methylation beta

colored according to the effect of LPS on CpG methylation (demethylation, n =

treated (UT, green), LPS-stimulated (LPS, red), and LPS-induced differential

highlighted (blue). Bottom: recombination rate.

type with UT (green), LPS-stimulated (LPS, red), and LPS-induced differential

d by linear regression. For regional association and colocalization plots, SNPs

h ancestry from northern and western Europe [CEU] population) to the peak im-

ndwhiskers depict the range of the data excluding outliers (outliers are defined

he p values are calculated by linear regression.



Figure 5. LPS-induced im-mQTLs colocalize with hematological trait-associated loci

(A) Baseline enhanced im-mQTL at cg19906672; correlation of rs6446553 genotype with UT (green) and LPS-stimulated (LPS, red) and LPS-induced differential

(delta, purple) cg19906672 methylation.

(B) Regional association plot of cg19906672 im-mQTL. Protein-coding genes are highlighted (blue). Bottom: recombination rate.

(C) Colocalization plots of the cg19906672 im-mQTL with white blood cell count (WBCC), neutrophil count (Neut), neutrophil percentage (Neut%), lymphocyte

percentage (Lymph%), mean corpuscular volume (MCV), and mean sphered corpuscular volume (MSCV) GWAS. PP4, posterior probability of a shared causal

locus as calculated with Coloc.

(D) Forest plot depicting effect estimates and 95% confidence intervals of rs6446553:G carriage WBCC, neutrophil count and Neut%, Lymph%, MCV, and

MSCV.

(E) Correlation of rs6446553 genotype with TBC1D14 expression in unstimulated monocytes (UT, green) and 24 h of LPS stimulation (LPS, 24 h, red).

The p values are calculated by linear regression.

For regional association and colocalization plots, SNPs are colored according to strength of LD (CEU population) to the peak im-mQTL SNP. In box-and-whisker

plots, boxes depict the upper and lower quartiles of the data, and whiskers depict the range of the data excluding outliers (outliers are defined as data points >

1:53 the interquartile range from the upper or lower quartiles).
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rs3129058 (Figures 6A and 6B), which colocalizes with a GWAS

risk locus for lung cancer55 (PP4=0.94; Figure 6C). This im-mQTL

also colocalizeswith an eQTL for expression ofZFP57, but only at

baseline; i.e., in UT monocytes (Figure 6D). We have previously

identified an eQTL for ZFP57 RNA expression in peripheral
bloodmononuclear cells at rs375984, and eQTLmapping of reg-

ulatory determinants of ZFP57 RNA expression in naive mono-

cytes (Figure 6E) demonstrates that rs375984, rs3129058 (the

lead im-mQTL variant) and rs417764 (the lead ZFP57 eSNP in

monocytes) are all highly associated with ZFP57 expression
Cell Genomics 4, 100541, May 8, 2024 11



Figure 6. Identification of trans influences on LPS-induced imCpGs putatively mediated by expression of the insulator protein ZFP57

(A) Baseline enhanced im-mQTL at cg16885113; correlation of rs3129058 genotype with UT (green) and LPS-stimulated (LPS, red) and LPS-induced differential

(delta, purple) cg16885113 methylation.

(B) Regional association plot of cg16885113 im-mQTL. Protein-coding genes are highlighted (blue). Bottom: recombination rate.

(C) Colocalization plot of the cg16885113 im-mQTL with lung cancer.

(D) Correlation of rs6446553 genotype with ZFP57 expression in unstimulated monocytes (UT, green) and following 24 h of LPS stimulation (LPS, 24 h, red).

(E) Regional association plot of ZFP57 eQTL in UT monocytes (n = 414). Protein-coding genes are highlighted (blue). Bottom: recombination rate.

(F) Circos plot depicting CpGs with methylation levels significantly modified by ZFP57 eQTL genotype. Known imprinted regions are highlighted (orange).

(G) Correlation of baseline CpG methylation levels and the effect of ZFP57 eQTL genotype (rs417764) on methylation at CpGs significantly affected by rs417764

genotype (Pearson’s product moment correlation, n = 151, r = � 0:33, p = 3:03 10�5).

(H) Distribution of methylation levels in UT monocytes at ZFP57 eQTL-associated CpGs according to genotype at rs417764 (n = 151).

(I) Correlation of ZFP57 eQTL genotype (rs417764) with change in methylation at significantly rs417764-associated CpGs (n = 7).

The p values are calculated by linear regression.

For regional association and colocalization plots, SNPs are colored according to strength of LD (CEU population) to the peak im-mQTL/eQTL SNP. In box-and-

whisker plots, boxes depict the upper and lower quartiles of the data, and whiskers depict the range of the data excluding outliers (outliers are defined as data

points >1:53 the inter quartile range from the upper or lower quartiles).
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and are in linkage dysequilibrium (r2R0:9, 1000 Genomes Proj-

ect, British in EnglandandScotlandpopulation)with one another.

ZFP57encodesaKruppel-associatedbox-containingzinc-finger

protein that is required tomaintain DNAmat imprinting control re-

gions.56–58 We therefore hypothesized that rs417764, as a regu-

lator of ZFP57 expression, could have genome-wide effects on

CpGmethylation inmonocytes.Of 407,951CpGs tested,methyl-

ation at 151, clustered in 20 genomic regions, is significantly

associated (FDR<0:05) with the rs417764 genotype (Table

S21). In keeping with the established biology of ZFP57, these

CpGs are highly enriched (p = 4:53 10�49, OR 75.75) for known

imprinted regions59–63 (Table S22), which cluster in two genomic

regions: chr6:29,648,344–29,649,133 and chr20:57,426,997–

57,427,972 (Figure 6F). Average levels of methylation at

each CpG significantly modulated by rs417764 genotype are
12 Cell Genomics 4, 100541, May 8, 2024
negatively correlated with the effect of rs417764:A allele carriage

on CpG methylation (r =� 0:33, p = 3:03 10�5; Figure 6G). This

effect is largely driven by genotype-dependent demethylation of

highly methylated CpGs, which is associated with increased

ZFP57 expression (Figures 6G and 6H). Given that the baseline

methylation state is an important predictor of differential methyl-

ation in response to LPS stimulation, and that imCpGs are more

likely to have intermediate methylation levels at baseline, we

further hypothesized that the ZFP57 eQTL would modify the

LPS responsiveness at CpGs where rs417764 was a predictor

of baseline methylation. Of 151 ZFP57-modified CpGs, 7 have

a significant effect (FDR<0:05) of rs417764 genotype on differen-

tial methylation in response to LPS stimulation (Figure 6I;

Table S23). In keeping with the effect of rs417764 genotype on

baseline methylation, where the rs417764:A allele is associated
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with more intermediate methylation levels at baseline, at 6 of

these 7 CpGs, the effect of rs417764:A allele carriage is to in-

crease the magnitude of change in methylation in response to

LPS stimulation (Figure 6I).

DISCUSSION

In this study, we explored the dynamics of DNAm in primary hu-

man monocytes following innate immune stimulation. Of the

innate immune stimuli we tested, LPS induced the most marked

changes in DNAm. This is in contrast to the effects of LPS and

IFNg on gene expression, where either stimulus induces

changes of equivalent magnitude in the monocyte transcrip-

tome.3 We explored the DNAm response to LPS in a large cohort

of healthy European-ancestry adults, finding that imCpGs were

both methylated and demethylated in response to LPS and

that LPS-induced demethylation was an active process,

involving the formation of 5hmC. The sites at which LPS-induced

methylation and demethylation occurred were distinct; deme-

thylated imCpGs demonstrating striking enrichment for en-

hancers and transcriptionally active DNA, whereas methylated

imCpGs were found largely in transcriptionally silent regions.

This observation lends itself to a hypothesis whereby LPS-

induced demethylation in monocytes acts to further upregulate

inflammatory pathways already active at baseline, whereas

LPS-induced methylation further represses quiescent transcrip-

tional programs. In keeping with this, demethylated imCpGs are

highly enriched for AP-1 subunit binding sites in myeloid cells

and are proximal to genes directing innate immune activity,

including TLR signaling. By contrast, TF usage at methylated

imCpGs is modest and is dominated by under-representation

at TFBSs, and consistent with this, genes proximal to these sites

are not enriched for immunological signaling pathways. That is,

transcriptional programs modified by LPS-induced demethyla-

tion are specific, whereas those modified by LPS-induced

methylation are more diverse and not representative of a cohe-

sive set of biological processes.

We found that epigenetic age, as estimated by the Horvath

DNAm clock,45 is accelerated by LPS stimulation in monocytes,

and that this effect is only seen among individuals without base-

line epigenetic age acceleration. This demonstrates that the

epigenetic age of cells can be rapidly modified by short-term

exposure to innate immune stimuli and suggests a model in

which infectious and inflammatory exposures across the life

course contribute to epigenetic aging. Importantly, epigenetic

age acceleration is associated with a variety of health outcomes,

including cancer.15 Complementary to this, LPS-demethylated

imCpGs were found to be proximal to genes involved in human

disease pathogenesis, in particular carcinogenesis. Moreover,

the most markedly LPS-demethylated region is at CUX1, a

gene recurrently mutated in leukemias.33,34 The association be-

tween LPS stimulation, accelerated epigenetic age, and human

disease speaks to the established association of chronic inflam-

mation and age-related disease traits.1 Cellular senescence con-

tributes to the accumulation of systemic chronic inflammation

with age,64 but chronic antigenic stimulation, in particular

chronic viral infection, is also a key driver of immunosenes-

cence65 as well as acceleration of epigenetic age.66,67 However,
the specific enrichment we observed for cancer risk suggests

the possibility that LPS-induced demethylation plays a direct

role in carcinogenesis. CpG dinucleotides accumulate mutation

at rates greater than non-CpG DNA,68 and this interacts with

methylation status.69 It is plausible, therefore, that inflamma-

tion-induced methylation changes affect cancer risk through

modified transcriptional programs and cellular differentiation

but may also be directly mutagenic, potentially through occa-

sional fallibility of demethylation-associated base excision

repair.

Finally, we usedeQTLmapping to define local genetic variation

determining LPS-induced changes in DNAm at imCpGs. We

were able to identify 234 instances of cis-im-mQTLs. In keeping

with the observed enrichment of disease-relevant genes among

genes proximal to imCpGs, im-mQTLs colocalize with genetic

determinants of human phenotypic variation and disease traits,

again including cancer-associated loci. We further identified an

im-mQTL that is also a determinant of ZFP57 RNA expression

in UT monocytes. ZFP57 controls bistability at imprinted

loci,56–58 and in keepingwith this,wewere able to observe effects

of the ZFP57 eQTL on baseline methylation at 151 CpG dinucle-

otides genome-wide, which were highly enriched for known

imprinted loci. Consistent with the importance of baseline

methylation in determining the DNAm LPS response, the ZFP57

eQTL also predicts DNAm LPS response at a subset of these

loci, demonstrating the intricate genome-wide relationship be-

tween genotype, gene expression, DNAm, and environment.

Limitations of the study
Our study has potential limitations. We used positive selection to

isolate monocytes, and while positive selection strategies opti-

mize cellular purity,70 there remains the potential for phenotypic

alterations of isolated monocytes; e.g., reduced CD14 expres-

sion,71 which are dependent on the selection strategy employed.

These concerns are not obviated by the use of negative selection

strategies, which result in increased contamination of isolated

monocytes but also more marked transcriptional changes than

are seenwith positive selection.70 Overall, while there is no single

optimal approach to the isolation of purified cell populations, the

strategy we adopt here optimized cellular purity against some

potential for CD14-mediated pre-activation. Importantly, this al-

lows the integration of these results with previously published

population-scale assessments of monocyte transcriptional re-

sponses to innate immune stimulation,3,4 which also employed

positive selection for monocyte isolation. In complementary ex-

periments using small numbers of donors (maximum n = 4), both

monocyte-to-macrophage differentiation20,21 and subsequent

macrophage polarization22 with LPS stimulations have been

demonstrated to result in DNAm changes, with changes being

most pronounced for monocyte-to-macrophage differentiation.

Our experiments expand on these studies, leveraging a large

donor cohort to allow exploration of inter-individual variation in

DNAm response to LPS treatment, including exploring the role

of genetics in that variation. While the DNAm changes that we

observe in our study are a direct consequence of LPS stimula-

tion, we note partial overlap with changes common to mono-

cyte-to-macrophage differentiation. These are only a small sub-

set of imCpGs, however, and, given that the direction of the
Cell Genomics 4, 100541, May 8, 2024 13
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effect of LPS on methylation at these sites is typically divergent

from that seen in macrophage differentiation, is in keeping with a

conserved set of monocyte CpGs being highly responsive to

extrinsic environmental cues, including innate immune stimuli

and triggers for differentiation, with the process induced by

LPS stimulation at these sites being distinct from monocyte-to-

macrophage differentiation changes.

In summary, we have described how the landscape of DNAm

in primary human monocytes is acutely modified by innate im-

mune stimulation, demonstrating for the first time that these re-

sponses are in part genetically determined. In so doing, we have

highlighted that monocyte DNAm and associated epigenetic age

are modifiable in the short term by acute inflammation, with

changes being informative to the pathogenesis of a range of hu-

man disease states, most notably cancer.
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index.html#!
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Materials availability
This study did not generate new unique reagents.

Data and code availability
Individual level genotype, methylation and demographic/anthropometric data are available at European Genome-Phenome Archive

(EGA) with accession ID EGAS00001007111. Scripts and source data used to reproduce figures and analysis are available at https://

zenodo.org/records/10775177.

METHOD DETAILS

Cell purification & stimulation
Peripheral blood mononuclear cells (PBMCs) were separated from freshly drawn blood using Ficoll gradient purification, with mono-

cytes subsequently positively selected usingmagnetic CD14+ isolation kits (miltenyi) according tomanufacturer’s protocols. Purity of

the monocytes was assessed frommethylation values using the Houseman79 method within the minfi80 R package and was found to

be at a median of >99% for all treatments (Figure S12). In a subset of randomly chosen samples (n = 13), we also assessed purity of

isolated monocytes with flow cytometry, staining paired PBMC samples from the same isolation treated in an identical manner with

AF700-conjugated CD3 (clone UCHT1, BioLegend) and PE-conjugated CD14 (clone TUK4, Miltenyi), with acquisition on a BD For-

tessa and analyzed using FlowJo (Treestar). We used the gates from the PBMC sample to define the proportional contamination of

CD14 samples with CD3 cells (by far the largest population in PBMC and themost frequently contaminating according tomethylation

analysis; Figure S13A). We found the percentage monocyte purity inferred by DNA methylation was highly anti-correlated with

measured CD3 contamination (Pearson analysis: r = �0.79, p = 0.0014; Figure S13B), whereas inferred CD3 count was significantly

correlated with measured count (Pearson analysis: r = 0.81, p = 0.000084; Figure S13C). Monocytes were cultured at 500,000 cells

per mL in 400mL RPMI supplemented with L-Glutamine, Penicillin/Streptomycin and 20% FCS in BD Falcon 5mL polypropylene cul-

ture tubes, with each sample typically being purified from 800,000 cells. Post purification samples were rested overnight at 37C, 5%

CO2 prior to stimulation under the same conditions with the following reagents and concentrations - 20 ng/ml Pam3Csk4 (Invivogen),

20 ng/ml LPS (Ultrapure LPS, Invivogen) and 20 ng/ml IFNg (R&DSystems). To determinewhether stimulation elicited cell division, we

used the CFSE cell proliferation assays (CellTrace kit, Thermofisher) and subsequent flow cytometry according to manufacturer’s

instructions in cells from four individuals.

Array methylation analysis
DNA was purified frommonocytes using Gentra Puregene Blood Kits (Qiagen kit) according to manufacturers instructions. DNA was

bisulfite convertedwith EZDNAMethylation-Lightning Kits (ZymoResearch) according tomanufacturers instructions, prior to hybrid-

ization to Illumina 450K arrayswhich carries 485,000 probes. For the LPS analysis, all but 6 treated sampleswere hybridizedwith their

untreated control to an array on the same beadchip, thusmitigating chip and batch effects as far as possible. The Illumina 450K array

carries a subset of SNPs and these were used to detect sample mix-ups. Samples were normalized using quantile normalization us-

ing the EWAS pipeline described by Lehne, Drong et al.. 81 CpGs with detection p>1310�16 in any sample were excluded from anal-

ysis, as were samples with a call-rate <98%. In addition, we excluded probes previously found to blat to more than one genomic

location or overlapping SNPs with minor allele frequencies (MAF) >1%82. This resulted in 407,951 probes, which were taken forward

for differential methylation analysis. To identify individual CpGs differentially methylated by innate immune stimulation, in both the

pilot experiments and the large-scale LPS experiment, we fitted pairwise linear models and calculated moderated t-tests on normal-

ized data using the lmFit and eBayes function in limma.25 Following correction of p-values for multiple testing (Benjamini-Hochberg),

we considered FDR<0:05 to be significant. We further identified differentially methylated regions using DMRcate31 using default set-

tings. In the large-scale LPS experiment, in which sought to assess the effect of 24 h of LPS stimulation on DNAmethylation across a

population, following differential methylation analysis using limma as above, we sought to identify a set of high-confidence LPS

imCpGs, using BACON30 to correct for any residual confounding or bias in our experiment.

Epigenetic age calculations & analysis
We calculated epigenetic age in untreated and LPS-treated monocytes using the Horvath,45 Hannum,47 PhenoAge44 and

PCGrimAge48 clocks with the dnaMethyAge76 package in R. Age acceleration was calculated as the difference between epigenetic

and chronological age for each model. Age and DNAm estimates of epigenetic age were not normally distibuted. We therefore

correlated age acceleration with chronological age using Spearman’s rank correlation, and compared estimates of epigenetic age

between untreated and LPS-treated samples using Wilcoxon signed rank tests. For the stratfied analyses, we dichotomised individ-

uals according to chronological age (dichotomising those above or below the median age of the cohort) and by age acceleration. In

the case of the Horvath epigenetic age estimates, we dichotomised individuals according towhether their epigenetic agewas greater

or less than their chronological age (e.g., epigenetic age acceleration or deceleration). For the other epigenetic age estimators, most

notably Hannum and PhenoAge, this resulted in small numbers with epigenetic age deceleration (Hannum, n = 9; PhenoAge, n = 4),

and we instead dichotomised individuals with age acceleration greater or less than the cohort median.
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Bisulfite sequencing and hydroxymethylation analysis
For four individuals, monocytes were treated for 0,6 or 24h of LPS prior to DNA purification (1 mg per sample) with subsequent paired

bisulfite and oxidative bisulfite conversion using the TrueMethyl oxBS-Seq kits (Cambridge Epigenetix). Converted DNA was then

subjected to capture enrichment for 80.5Mb across regions known to be informative as to methylation status (SeqCap Epi Enrich-

ment, Nimblegen). Multiplexed samples were subsequently sequenced at 100bp paired end reads using the Illumina HiSeq2500 plat-

form using the rapid mode.

Genotyping and imputation
Genome-wide genotypes were generated at in study participants using the UK Biobank Axiom array (Affymetrix). Samples were

excluded from downstream analysis if participants were related (relatedness coefficient >0:05) or with outlying heterozygosity and

call rate. SNPs with low call rates (<0:98), evidence for departure from Hardy-Weinberg equilibrium (p<0:00001) and MAF < 0:01

were excluded from further processing. Following sample and SNP quality control (QC), genotypes at 623,652 autosomal SNPs in

188 individuals were taken forward for genome-wide imputation. Imputation was performed using minimac4,83 following phasing

with Eagle2,84 as implemented by theMichigan Imputation Server,75 using the Haplotype Reference Consortium r1.172 as a reference

panel. Genome-wide imputation resulted in high confidence (r2>0:7, HWE p>13 10�10) genotypes at 5,411,481 common (MAF >

0:04), autosomal SNPs, which were used in downstream association analysis.

QTL mapping
We usedQTLtools77 tomap genetic determinants of methylation. Wemapped correlation between CpGmethylation and genotype in

an additive linear model, including genetic variants in cis (within 100kb) to each CpG tested. QTLtools controls FDR at the level of

each phenotype (CpG) by approximating a permutation test, and we used 10,000 permutations in our cis QTL mapping. We applied

a second level of FDR control across all phenotypes tested with qvalue in R.We considered FDR<0:05 to be significant. We sought to

map genetic determinants of changes in methylation on LPS stimulation, which we term immune-modulatedmethylation quantitative

trait loci (im-mQTL), correlating genotype with normalised change in CpG methylation, i.e., delta beta methylation, at each CpG for

which there was evidence of differential methylation on LPS stimulation (n = 7,359). In addition, we mapped the cis genetic determi-

nants of CpG methylation in untreated and LPS-stimulated monocytes separately, mapping QTL at 407,951 CpGs passing QC

across all samples. To minimise the effect of confounding variation, we included principal components (PC) of the phenotype matrix

as covariates in the linearmodel, with the number of PC used in each analysis chosen tomaximise QTL discovery. Inclusion of 29 PCs

optimised im-mQTL discovery (Figure S14), while 23 and 28 PCs optimised mQTL discovery in untreated and LPS-stimulated mono-

cytes respectively (Figure S15). PC analysis of genotyping data was not suggestive of confounding population structure, and com-

parison of study sample genetic PCs with those of 1000G project reference samples confirmed European ancestry (Figure S16). We

did not therefore include genetic PCs as covariates for eQTL mapping.

Enrichment analyses
To assess the distribution of imCpGs with respect to genomic features of interest, we used Roadmap Epigenomics Consortium36

chromatin state annotations in primary moncytes defined by the ChromHMM85 15 state model, ENCODE Chip-seq data74 defining

transcription factor binding sites in myeloid lineage cells (K562) and lymphoblastoid cell lines (LCLs - GM12878), and promoter cap-

ture HiC data across 17 cell types37 defining enhancer activity.We assessed enrichment of imCpGs against a background of all CpGs

tested (passing QC) for each feature of interest in XGR,40 using a two-tailed binomial test. Following QTL mapping, we tested for

enrichment of im-mQTL in K562 transcription factor binding sites using a permutation-based approach implemented in QTLtools,77

calculating the frequency of observed overlap between a given transcription factor binding site and an im-mQTL peak SNP,

comparing this to the the number of overlaps expected by chance (permuting phenotypes across all imCpGs tested).

We assessed enrichment of genes proximal to imCpGs (< 5kb, taking the single most proximal protein-coding gene) and genes

correlated with principal components of LPS-induced differential methylation at imCpGs within biological pathways using the

following ontologies; Reactome Immune System, Disease Ontology and GeneOntology Biological Processes. We tested enrichment

in XGR40 using Fisher’s exact tests.

Correlation of baseline methylation with LPS responsiveness
To compare imCpGs whose LPS-induced methylation/demethylation was correlated with baseline methylation (BC) or independent

of baseline methylation state (BI), we calculated Pearson’s correlations between LPS-induced change in methylation and baseline

methylation (beta), and dichotomised imCpGs according to evidence of correlation (BC, p<0:05; BI, p>0:05). As above, we assessed

for evidence of enrichment for K562 transcription factor binding sites and ENCODE chromatin state annotations among imCpG

groups using two-tailed binomial tests in XGR,40 using all CpGs tested (n = 407,951) as background. We compared distributions

of baseline methylation (beta) and LPS-induced methylation change (t statistics) with Kolmogorov-Smirnov tests.

Colocalisation analysis
To test if im-mQTL are associated with phenotypic traits or risk of human disease we used a Bayesian approach implemented in Co-

loc v5.1.0.178 to assess the probability of a shared causal variant between the im-mQTL and trait-associated variation identified by
e3 Cell Genomics 4, 100541, May 8, 2024



Article
ll

OPEN ACCESS
GWAS.We downloaded case-control GWAS summary statistics (n = 45, Table S24) from theMRC IEUOpenGWAS project73 and UK

Biobank GWAS summary statistics (http://www.nealelab.is/uk-biobank/) of peripheral blood traits (n = 27, Table S24). We tested for

evidence of colocalisation between each identified im-mQTL (n = 234) and each GWAS trait within a 250kb window centered on the

peak im-mQTL eSNP. To test for evidence of sharing between baseline determinants of methylation (mQTL in untreated monocytes)

and im-mQTL, we used Coloc. In cases where sharing of the baseline mQTL and the im-mQTL represented the most likely model, we

designated those im-mQTL as ‘‘baseline modified’’. If the best supported a model in which the im-mQTL is distinct from the baseline

mQTL, we designated that a ‘‘de novo’’ im-mQTL. To assess evidence for shared causal loci between im-mQTL and regulatory de-

terminants of gene expression in untreated and LPS-stimulated monocytes, we used the multi-trait extension of Coloc, moloc

v0.1.0.52 We used previously-published summary statistics describing eQTL mapping of RNA expression in untreated monocytes

(n = 414) and in monocytes following 24 h of LPS stimulation (n = 322).3 We tested for evidence of colocalisation between each iden-

tified im-mQTL and the twomonocyte eQTL datasets within a 250kb window centered on the peak im-mQTL eSNP. We used default

priors in all colocalisation analyses, andwe considered a posterior probability supporting a shared causal locus >0:8 to be significant.
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