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Hybrid quantum systems, combining the advantages of matter-based carriers of quantum
information with those of light, have potential applications across many domains of quan-
tum science and technology. In this thesis, we present a high-fidelity, high-rate interface
between trapped ions and polarisation-encoded photonic qubits, based on the sponta-
neous emission of 422 nm photons from 88Sr+, entangled in polarisation with the resulting
electronic state of the ion.

We show that photons can be efficiently collected perpendicular to the ambient mag-
netic field without loss of polarisation purity by exploiting the symmetry properties of
single-mode optical fibres, and analyse the impact of a number of common experimental
imperfections, including in the heralded entanglement swapping step used to probabilisti-
cally generate entanglement between remote ion qubits.

Our experimental platform consists of two 88Sr+–43Ca+ mixed-species quantum net-
work nodes, linked by 2×1.75m of single-mode optical fibre. We measure an ion–photon
entanglement fidelity of 97.7(1)%, generated at an attempt rate of 1MHz and up to 2.3%
overall collection/detection efficiency. Bell states between remote 88Sr+ ions are generated
at a fidelity of 96.0(1)% and rate of 100 s−1. This is the highest fidelity for optically medi-
ated entanglement between distant qubits reported across all matter qubit platforms, and
the highest rate among those with fidelities > 70%.

To compensate stray electric fields that would cause a periodic modulation of the ion
position, we introduce a versatile method which relies on the synchronous detection of
parametrically excited motion through time-stamped detection of photons scattered dur-
ing laser cooling. Crucially, only a single laser beam is required to resolve fields inmultiple
directions; we achieve a stray field sensitivity of 0.1Vm−1/√Hz.

Finally, we present the first experimental demonstration of device-independent quan-
tum key distribution, by which two distant parties can share an information-theoretically
secure private key even in the presence of an arbitrarily powerful eavesdropper without
placing any trust in the quantum behaviour of their devices. This is enabled by a record-
high detection-loophole-free chsh inequality violation of 2.677(6) and low quantum bit
error rate of 1.44(2)%, stable across millions of Bell pairs, and an improved security anal-
ysis and post-processing pipeline. We implement the complete end-to-end protocol in a
realistic setting, allowing Alice and Bob to obtain a 95 884-bit key across 8.5 hours that is
secure against the most general quantum attacks.

Our results establish trapped ions as a state-of-the-art platform for photonic entangle-
ment distribution at algorithmically relevant speeds and error rates. The link performance
nevertheless remains far from fundamental limits; further improvements are discussed
from the perspective of large-scale modular quantum computation as well as from that of
long-distance quantum networking applications.
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1 Introduction

Quantum information science and technology are the result of one of the most extraor-
dinary intellectual journeys over the last century. Its origins are in turn-of-the-century
Europe, where quantum mechanics had just been invented; back then firmly part of fun-
damental physics, to settle questions such as that of the nature of light and the rules that
govern nature on atomic scales, and bringing with it a number of new concepts, such as
superposition and entanglement. Onto this scientific revolution soon followed a techno-
logical one: the deepened understanding of chemistry and material science, most promi-
nently that of semiconductors, led to a number of breakthrough technological innovations
in the 1950s and 1960s, such as lasers and transistors, which would later form the bedrock
of the modern information age.

Now, in the twenty-first century, we find ourselves right in the middle of a second
quantum revolution [DM03]. No longer are we restricted to only observing the classical
shadows of the underlying quantum phenomena in the behaviour of bulk materials; we
can now actively manipulate single, isolated quantum systems. Together with a greatly
matured understanding of the structure of quantum theory and its ramifications for infor-
mation processing, this has given rise to a number of endeavours in various stages along
the path from conceptual proposal to real-world technology. The efficient simulation of
other quantum systems is one of the oldest proposals for the use of tailor-made, engineered
quantum systems, going back to a landmark speech by R. Feynman [Fey82], withmany po-
tential applications across the physical sciences wherever quantum effects would make the
modelling on classical computers intractable [GAN14]. Quantum computing as a form of
digital information processing fundamentally distinct from classical Turingmachines goes
back to D. Deutsch [Deu85]; few have doubted its potential utility ever since P. Shor’s dis-
covery of an efficient quantum algorithm for the factorisation of large numbers [Sho94].
Much attention across academia and industry is currently focussed on both the develop-
ment of useful quantum algorithms as well as the hardware to execute them on, in par-
ticular towards the development of fault-tolerant quantum computing, where error cor-
rection codes [Sho95; Ste96] mitigate decoherence and other hardware imperfections to
enable large-scale computations [Pre18]. Another prominent technological use of quan-
tum effects is to augment the precision of sensors [DRC17]. For geographically distributed
quantum networks, a long list of applications has been proposed too, ranging from secure
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Figure 1.1: Cartoon timeline of (some of the) developments in quantum physics in the 20th century, illus-
trating its progression from a study of the fundamental laws of nature, to an indirect substrate for technical
developments such as semiconductors, until finally isolated quantum systems themselves gain a role in
new kinds of information processing.

communication to enhanced metrology to fundamental physics research – somewhat as-
pirationally referred to as “the quantum internet” [Kim08; WEH18].

1.1 Trapped ions and photons

Just as the same classical information can be stored bit-by-bit in the magnetisation pattern
of a platter in a computer hard drive, held in working memory as charges on small ca-
pacitors, or transmitted across long distances as laser pulses in optical fibres, the abstract
concept of a bit of quantum information, a qubit, can similarly be realised in a number
of different physical forms. Large-scale quantum information processing has a diverse set
of requirements, and no single physical implementation of quantum information equally
excels across all of them.

Trapped atomic ions are a promising candidate platform for qubits in large-scale quan-
tum computing; their state can be accurately initialised and read out [Har+14; Chr+20],
they are impeccable memories [Sep+19; Wan+21], and can be readily made to interact
with microwave [Har+16; Sri+21] or laser fields [Bal+16; Gae+16; Cla+21] to implement
logic operations with record-high fidelity. Nevertheless, their dependence on an ultra-
high vacuum environment typically restricts them to a single, immobile vacuum chamber
(though they can be “shuttled” around with a trap apparatus without disturbing the stored
quantum state on account of their electric charge). Conversely, photons excel in communi-
cation applications; they naturally travel at the speed of light and can be guided in regular
optical fibres while maintaining a reasonable amount of quantum coherence over tens of
kilometres. However, they are – at the single-photon level – difficult to couple together
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deterministically to implement logic operations, difficult to generate “on demand”, diffi-
cult to store in place, and the measurement of their state is hampered by finite detector
quantum efficiencies.

Hybrid systems that combine the complementary strengths of trapped ions (or other
matter qubit systems) and photons are thus attractive in a number of scenarios. For this,
an interface to convert information between different qubit types is necessary that is swift
and generates highly coherent states, so as neither to stall a computation nor corrupt its
results. Photon-mediated entanglement of remote matter qubits has been studied theoret-
ically since around the year 2000 [Cir+97; Dua+01], and remote entanglement has been
demonstrated in a number of different qubit types since; neglecting pure quantum mem-
ories (where a photonic excitation is stored for later retrieval, but cannot directly manip-
ulated), these include trapped ions [Moe+07], neutral atoms [Rit+12], nitrogen-vacancy
centres in diamond [Ber+13], solid-state quantum dots [Del+16], and micro-mechanical
oscillators [Rie+18].

In the context of trapped-ion quantum information processing, one particularly inter-
esting use case for such hybrid systems is as one of several tools to address amajor challenge
in scaling up ion registers to large numbers of qubits: “spectral crowding”, the increasing
difficulty in controlling the spectrumof vibrationalmodes in a single linear chain of ions as
its length increases [MK13]. One strategy is to keepmultiple strings of ions in a single trap
with segmented electrodes [Win+98; KMW02]; splitting, moving and recombining chains
as necessary to facilitate the desired interactions through local Coulomb interactions. Op-
tical links could augment this by providing long-range connectivity, or by reducing the
technical complexity by allowing a large-scale processor to be constructed from multiple
separatemodules connected by a flexible fibre-optical fabric, each perhaps only containing
a relatively small number of ions [Mon+14; NFB14].

1.2 An elementary two-node quantum network

In this work, we take for granted the mature toolbox of experimental techniques for
trapped-ion quantum information processing and concentrate on the development of a
free-space photonic interconnect. The interface is based on the spontaneous emission
of, in this particular instance, 422 nm photons from 88Sr+, entangled in polarisation
with the resulting electronic state of the ion. We show that photons can be collected
in the (technologically favourable) direction perpendicular to the magnetic field using
high-numerical-aperture lenses while retaining unit fidelity of the resulting entangled
state; for this, we exploit the symmetry properties of single-mode optical fibres to filter out
contributions otherwise leading to deleterious polarisation mixing effects. As such, the
practically attainable performance is necessarily limited by technical imperfections. We
present a framework for the unified treatment of such sources of errors in the ion–photon
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entanglement generation process in each ion-trap network node, as well as the photonic
Bell-basis measurement on pairs of such photons that implements the heralded generation
of remote ion–ion entanglement between nodes through entanglement swapping. We
quantitatively catalogue a number of likely sources of error, finding that generation of Bell
states between remote ions with fidelities in excess of 99% should be feasible assuming
realistic amounts of imperfection.

We practically implement this remote entanglement generation scheme in an elemen-
tary network of two 43Ca+–88Sr+ quantum network nodes linked by 2 × 1.75m of optical
fibre; the ability to manipulate multiple strings of ions in the microfabricated surface elec-
trode traps employed and the availability of 43Ca+ as application qubits with long coher-
ence times will allow the demonstration of a number of few-qubit quantum networking
protocols. Here, we focus on experiments with a single 88Sr+ interface ion per node; char-
acterising the quantum correlations between ions and photon polarisation to qualitatively
validate the theoretical treatment, and observing ion–photon entanglement with a fidelity
of 97.7(1)%, generated at a rate of ≈ 23ms−1. We similarly analyse the remote ion–ion
entanglement using state tomography, observing a Bell-state fidelity of ℱ = 96.0(1)% at a
rate of 100 s−1 (up to 182 s−1). This vastly improves on the performance of previous remote
matter qubit entanglement experiments.

One requirement for achieving this was the minimisation of stray electric fields in the
trap that would cause a periodic modulation of the ion position through interaction with
the radio-frequency trap drive, and thus the wavepacket of the entangled photons emit-
ted. We present a precise method for this which relies on parametric modulation of the
trapping potential, while recording and de-modulating the arrival times of photons scat-
tered during laser cooling to recover the thusly excited motion. Only a single laser beam
is required to resolve fields in multiple directions, and we achieve a stray field sensitivity
of 0.1Vm−1/√Hz and uncertainty floor of 0.015Vm−1, which favourably compares with
other technically more complex or less robust methods.

Finally, we report on the first experimental demonstration of device-independent
quantum key distribution (diqkd): a method for two distant parties to share secret
encryption keys even in the presence of an arbitrarily powerful eavesdropper. This
information-theoretic level of security is fundamentally impossible using classical com-
munication; furthermore – and perhaps surprisingly – by relying on the properties of
quantum entanglement, it is possible to guarantee security even if the parties do not
trust their quantum devices to behave as intended. Though proposed already in 1991 by
A. Ekert [Eke91], a demonstration has thus far remained out of reach due to its stringent
requirements on the quantum hardware. Making use of our remote entanglement link,
we obtain a record-high detection-loophole-free Clauser–Horne–Shimony–Holt (chsh)
inequality violation of 𝑆 = 2.677(6) and low quantum bit error rate of 𝑄 = 1.44(2)%,
stable across millions of Bell pairs acquired at an overall average rate of 63 s−1 (reduced
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from the raw rate of 129 s−1 due to frequent ion reloading events due to vacuum issues).
Combining this with improvements to the theoretical security proof and post-processing
pipeline, we obtain a 95 884-bit key with fully device-independent security (soundness
error 𝜖snd = 10−10). Reaching this “ultimate limit to privacy” [ER14] not only represents
a milestone in quantum communication, but also unambiguously demonstrates that the
link is stable enough to be used as a component in more complex experiments.

1.3 Thesis layout

The remainder of this thesis is structured as follows:
Chapter 2 reviews the basic notions of the theoretical description of atomic ions in

radio-frequency traps, of photons, and of their interaction; particularly regarding the gen-
eration of entanglement through spontaneous emission.

Chapter 3 gives a brief overview of the experimental apparatus making up the elemen-
tary quantum network: two 88Sr+/43Ca+ ion-trap nodes and the photonic link connecting
them.

Chapter 4 considers in detail geometric aspects of the mechanism for entanglement
generation between a 88Sr+ ion and the polarisation of a spontaneous decay photon, and
the subsequent establishment of entanglement between two remote 88Sr+ ions through
heralded entanglement swapping. We argue that coupling of the emission into a single-
mode fibre avoids errors in the generated state for reasons of symmetry, and catalogue the
effect of a number of relevant experimental imperfections.

Chapter 5 introduces a versatile method for stray field compensation in Paul traps
through synchronous detection of parametrically excited motion. We provide an analyt-
ical description, showing that the ion response is linear in a possible stray field, which
we verify in the experiment, and discuss an algorithm for multi-dimensional stray field
compensation. A journal manuscript based on the contents of this chapter is in prepara-
tion [Nad+21].

Chapter 6 describes the characterisation of the entanglement generation primitives –
between a single ion and a single photon, and after entanglement swapping, between two
remote ions – in the experiment, and compares the achieved performance to a comprehen-
sive literature survey. The results of this analysis (though for an earlier set of experimental
data) were partially published in ref. [Ste+20].

Chapter 7 describes the use of this quantum network for the first demonstration of
device-independent quantum key distribution, covering both the theoretical background
and the details of the experimental implementation. This result builds on joint work with
colleagues in quantum information theory and classical coding theory, and has been pub-
lished in ref. [Nad+22] (though the description here is mine).
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Chapter 8 concludes this thesis with an outlook towards further improvements to the
remote entanglement generation performance, an increased distance between the ion trap
nodes, and the next steps towards more complex quantum networking applications.

Not described here is a recent demonstration using the same apparatus for the
entanglement-enhanced comparison of atomic clocks [Nic+22] (see the doctoral thesis
of B. Nichol [Nic22]), and neither are separate characterisations of 88Sr+–43Ca+ quantum
logic gates [Hug+20] and a 43Ca+ quantum memory [Sep+19] in different experimental
apparatus (see theses of K. Thirumalai [Thi19] and A. Hughes [Hug21]).



2 Background

2.1 Quantum formalism

The quantum-theoretical formalism used throughout this thesis is almost without excep-
tion1 the canonical one of states and density operators described in any number of contem-
porary textbooks (e.g. ref. [NC11]). We thus only give a brief summary here to establish
the notational choices and to give a few useful results.

A pure quantum state is an element |𝜓⟩ of a complex Hilbert space ℋ with norm
‖𝜓‖2 = ⟨𝜓|𝜓⟩ = 1. To be able to express statistical mixtures (ensembles) of multiple states,
we use density operators; elements of the space 𝒮=(ℋ) of bounded, self-adjoint operators
𝜌 ∈ End(ℋ) that are positive (𝜌 ≥ 0) and have unit trace (tr 𝜌 = 1). Pure states are equiva-
lent to projectors 𝜌 = |𝜓⟩⟨𝜓|. To conveniently capture the notion of a state of interest only
arising with a certain probability, we will also allow sub-normalised states 𝜌 ∈ 𝒮≤(ℋ), for
which the trace condition is modified to tr 𝜌 ≤ 1. Some authors prefer to adorn the sym-
bols for all operators with a hat (e.g. ̂𝜌); here, we do not follow this convention and instead
use ̂⋅ to refer to vectors of unit length.

A general quantum measurement is given by some alphabet 𝐼𝑀 labelling the outcomes
(events)𝑚 ∈ 𝐼𝑀, and an associated set of self-adjoint operators𝑀𝑚, which is complete in
the sense∑𝑚∈𝐼𝑀𝑀

†
𝑚𝑀𝑚 = 𝟙. For a given state 𝜌, the probability to observe each outcome

is 𝑃𝑚(𝜌) = tr (𝑀†𝑚𝑀𝑚𝜌). We will write 𝜌∧𝑚 ≔ 𝑀𝑚𝜌𝑀†𝑚 for the sub-normalised state
conditioned on the outcome𝑚 (tr 𝜌∧𝑚 = 𝑃𝑚(𝜌)), and 𝜌|𝑚 ≔ 𝜌∧𝑚/𝑃𝑚(𝜌) for the normalised
state after having observed the outcome 𝑚. If only the probabilities 𝑃𝑚(𝜌) are of interest,
but not the post-measurement state, it is enough to consider the positive operators 𝐸𝑚 ≔
𝑀†𝑚𝑀𝑚, as 𝑃𝑚(𝜌) = tr (𝐸𝑚𝜌). The entire set {𝐸𝑚}𝑚∈𝐼𝑚 is known as a positive operator-
valued measure, or povm, the individual operators 𝐸𝑚 as povm elements.

Two systems𝐴 and𝐵 are composed by taking the tensor product of theirHilbert spaces
ℋ𝐴 and ℋ𝐵, ℋ𝐴𝐵 = ℋ𝐴 ⊗ℋ𝐵. Where it aids clarity, we will write 𝜌𝐴𝐵 for the full, joint

1Theone exception are the string diagrams used to illustrate entanglement-based protocols (e.g. fig. 2.4),
which can be formalised using category theory (see e.g. [Coe10]). While this perspective is almost uniquely
well-suited for the intuitive understanding of protocols such as entanglement swapping, we do not develop
it further here due to space constraints. The interested reader is referred to a recent textbook by Kissinger
and Coecke [CK18].

7



8 background

⟨00∣ ⟨10∣ ⟨01∣ ⟨11∣

∣11⟩

∣01⟩

∣10⟩

∣00⟩

0.080 ⋅
ei1.500π

0.040 ⋅
ei0.000π

0.360 ⋅
ei0.500π

0.040 ⋅
ei0.500π

0.040 ⋅
ei0.000π

0.020 ⋅
ei1.500π

0.5

0.25

0.1

0.01

+−
i

−i

Figure 2.1: Graphical representation of two-qubit density matrices employed throughout this thesis, illus-
trated by example of the arbitrarily chosen state 𝜌 = 45 |𝜓⟩⟨𝜓| +

1
5 |𝜙⟩⟨𝜙|, with |𝜓⟩ = 1√2 (|00⟩ + i |11⟩) and

|𝜙⟩ = (|0⟩ − i |1⟩)/√2 ⊗ (2 |0⟩ + |1⟩)/√5. The area of each square in the upper-right half is proportional
to the magnitude of the corresponding matrix element; its colour represents the complex phase according
to the key shown (which is also indicated by small “clock hands” for monochrome viewing). The numbers
in the lower-left half indicate the same information in numerical form. These two forms are equivalent, as
physical density matrices are Hermitian (which applies also to the maximum-likelihood reconstructions in
later chapters of this thesis).

state of the systems, and e.g. 𝜌𝐴 = tr𝐵 𝜌𝐴𝐵 for the reduced state of subsystem 𝐴 on its own.
If {|𝑏⟩}𝑏∈𝐼𝐵 is an orthonormal basis for 𝐵, the partial trace tr𝐵 can be evaluated as

𝜌𝐴 = tr𝐵 𝜌𝐴𝐵 = ∑
𝑏∈𝐼𝐵
⟨𝑏|𝜌𝐴𝐵|𝑏⟩ . (2.1)

The von-Neumann entropy of a quantum state is

𝐻(𝜌) ≔ − tr(𝜌 log2 𝜌), (2.2)

which, for a two-dimensional classical state 𝜌 = 𝑝 |0⟩⟨0| + (1 − 𝑝) |1⟩⟨1| coincides with the
usual binary entropy function from classical information theory,

ℎ(𝑝) ≔ −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝). (2.3)

For a state 𝜌𝐴𝐵 on subsystems 𝐴 and 𝐵, an alternative notation is 𝐻(𝐴, 𝐵)𝜌 ≔ 𝐻(𝜌𝐴𝐵),
𝐻(𝐴)𝜌 ≔ 𝐻(𝜌𝐴), etc. The conditional entropy of 𝐴 given 𝐵 is

𝐻(𝐴|𝐵)𝜌 ≔ 𝐻(𝐴, 𝐵)𝜌 − 𝐻(𝐵)𝜌, (2.4)

and can be negative for entangled states.
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2.1.1 One and two qubits

In particular, for a qubit,ℋ = ℂ2, and

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ ∈ ℂ2, |𝛼|2 + |𝛽|2 = 1, (2.5)

where {|0⟩ , |1⟩} is any particular choice of orthonormal basis, referred to as the computa-
tional basis. The Pauli matrices

𝜎1 ≔ 𝑋 ≔ (
0 1
1 0) , 𝜎2 ≔ 𝑌 ≔ (

0 −i
i 0 ) , 𝜎3 ≔ 𝑍 ≔ (

1 0
0 −1) (2.6)

form a basis for all traceless Hermitian 2 × 2 matrices as a real vector space, and thus,
together with the identity matrix, all Hermitian 2×2matrices (so, in particular, the single-
qubit densitymatrices). Scaled by 1√2 , this basis is orthonormal under theHilbert–Schmidt
product ⟨𝐴, 𝐵⟩ = tr(𝐴†𝐵). For normalised states 𝜌, coefficients 𝑟𝑖 = tr(𝜎𝑖𝜌) in this basis
define a three-dimensional real vector 𝒓, known as the Bloch vector, which uniquely iden-
tifies single-qubit density matrices. |𝒓| ≤ 1 follows from tr 𝜌 = 1. The pure states, up to
a global phase in U(1) ∈ ℂ, saturate this bound and lie on the unit sphere, referred to as
the Bloch sphere. There is a surjective homomorphism between single-qubit operations
𝑈 ∈ U(2) and rotations of the Bloch sphere in SO(3), such that the Bloch sphere lends
itself to the intuitive understanding of one-qubit quantum operations2.

For two qubits, ℋ = ℂ2 ⊗ ℂ2, a prominent alternative to the computational basis
|00⟩ = |0⟩ ⊗ |0⟩, |01⟩ = |0⟩ ⊗ |1⟩ ,… is the Bell basis given by the four Bell states

|𝛷±⟩ = 1√2
(|00⟩ ± |11⟩) , |𝛹±⟩ = 1√2

(|01⟩ ± |10⟩) . (2.7)

The Bell states are maximally entangled (cf. §7.1.2); as such, they can be transformed into
each other using only local unitary operations, i.e. operations that act on only of the qubits.

2.1.2 Distance metrics

Given two density operators 𝜌, 𝜎 ∈ 𝒮(ℋ), there are several widely used ways of defining
a notion of distance between them. The trace distance 𝛿(𝜌, 𝜎) ∶ 𝒮(ℋ)2 → [0, 1] is a
metric on the space of density operators, and between two density operators 𝜌 and 𝜎 can
be defined in terms of the trace norm ‖𝑆‖1 = tr√𝑆†𝑆 as

𝛿(𝜌, 𝜎) ≔ 1
2
‖𝜌 − 𝜎‖1. (2.8)

2The homomorphism is in fact a double cover due to the possibility of a global phase, but otherwise
unique. I have previously given a concise, self-contained summary of the standard results concerning the
representation of unitary operations as Bloch sphere rotations in ref. [Nad16, appendix A].
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It generalises the classical notion of statistical distance, and has an alternative interpreta-
tion as

𝛿(𝜌, 𝜎) = max
𝛬∈End(ℋ)
0≤𝛬≤1

tr (𝛬(𝜌 − 𝜎)) , (2.9)

i.e. 12(1 + 𝛿(𝜌, 𝜎)) is the limit to the probability of correctly identifying a system prepared
in either 𝜌 or 𝜎 uniformly at random with a single measurement (saturated by the optimal
povm element 𝛬).

The fidelity 𝐹(𝜌, 𝜎) is a generalisation of the state overlap for pure states,

𝐹(|𝜓⟩⟨𝜓| , |𝜙⟩⟨𝜙|) = |⟨𝜓|𝜙⟩|2, (2.10)

and can be expressed as3

𝐹(𝜌, 𝜎) = (‖√𝜌√𝜎‖1)
2 . (2.11)

2.1.3 Quantifying entanglement

Maximally entangled states, such as the four Bell states, are an important resource in many
quantum information processing scenarios (such as the entanglement-based quantum key
distribution protocol discussed in chapter 7). The precise form of the generated state is typ-
ically not important, as the local unitary operations necessary to transform one maximally
entangled state into another are typically much easier to implement with low error rates
than the entangling operations (e.g. for trapped ions, single-qubit gates with an error rate
of ∼ 1 × 10−6 have been demonstrated [Har+16]). When evaluating remote entanglement
generation schemes – especially in the context of theoretical modelling4 – it is thus conve-
nient to find a metric that quantifies the “amount” of entanglement in the generated state
irrespective of the particular form of the state.

3Another convention exists where the fidelity is taken to be the square root of 𝐹 as defined here. There
does not seem to be a clear preference for either (cf. refs. [GLN05; NC11]), though most of the experimental
literature uses the “squared” definition that we also adopt.

4An entanglement measure that is independent of the specific form of any maximally entangled state
can be especially helpful when systematically studying the effect of experimental parameters or imperfec-
tions, as it allows one to cleanly separate benign effects that can be easily counteracted using local unitaries
from those that actually degrade the entangled state, without having to at every step explicitly take account
of this distinction. As a concrete illustration, consider the case of birefringence in the optical fibres used for
remote entanglement generation discussed in §4.5.2/fig. 4.24. There, the effect ranges from being completely
correctable to unavoidably detrimental based on a parameter of the system (the normalised qubit frequency
splitting), which is elegantly captured by the target-state-independent entanglement measure chosen. Note,
however, that to make use of the resulting entanglement in a wider circuit or protocol, the actual state gen-
erated must usually be known. Consequently, the generated state must in practice be stable enough to allow
for calibration of the necessary local corrections ahead of time, which can then be applied during protocol
execution.
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The most widely quoted quantity in experimental literature discussing the generation
of particular states is the fidelity 𝐹. We can define the fidelity to the closest maximally
entangled state as

ℱ(𝜌𝐴𝐵) ≔ max𝑈=𝑈𝐴⊗𝑈𝐵
𝑈𝐴,𝑈𝐵∈U(2)

𝐹(𝜌𝐴𝐵, 𝑈 |𝛷+⟩⟨𝛷+| 𝑈†). (2.12)

ℱ is also known as the fully entangled fraction (or, slightly vaguely, as Bell-state fidelity)
and can be explicitly expressed in the form of a singular value problem [Bad+00]. We also
define the Bell-state error as its complement,

ℰ(𝜌𝐴𝐵) ≔ 1 − ℱ(𝜌𝐴𝐵). (2.13)

In preparation for chapter 4, where we will study protocols generating the antisymmetric
Bell states |𝛹±⟩, consider a two-qubit density matrix 𝜌 close to these states,

𝜌 = 1
2
(

𝑡 + 𝑠 0 0 0
0 1 − 𝑡 + 𝑟 𝑎 0
0 𝑎 1 − 𝑡 − 𝑟 0
0 0 0 𝑡 − 𝑠

) , (2.14)

where 0 ≤ 𝑡 ≤ 12 and 𝑟, 𝑠 ∈ ℝ, 𝑎 ∈ ℂ are arbitrary (though constrained by 𝜌 being a
density matrix). The maximally entangled state that maximises the overlap with such a
state 𝜌 (such thatℱ(𝜌) = ⟨𝜓|𝜌|𝜓⟩) is |𝜓⟩ = 1√2 (|01⟩ + e

i arg 𝑎 |10⟩), and the fully entangled
fraction is

ℱ(𝜌) = 1
2
(1 − 𝑡 + |𝑎|) . (2.15)

Another state-agnostic quantity is the entanglement of formation𝐸𝐹 [Ben+96], defined
as

𝐸𝐹(𝜌) = min{∑
𝑘
𝑝𝑘𝐸(|𝜓𝑘⟩) | 𝜌 = ∑

𝑘
𝑝𝑘 |𝜓𝑘⟩⟨𝜓𝑘|} , (2.16)

where 𝐸(|𝜓⟩) = 𝐻(tr𝐴(|𝜓⟩⟨𝜓|)) = 𝐻(tr𝐵(|𝜓⟩⟨𝜓|)) is the entanglement entropy. Loosely
speaking, 𝐸𝐹 thus quantifies how much entanglement is on average necessary to generate
𝜌. For two-qubit states, a closed-form expression for 𝐸𝐹 is given in ref. [Woo98]. A further
entanglement measure of interest is the logarithmic negativity [VW02] defined as

𝒩(𝜌𝐴𝐵) = log2‖𝜌𝛤𝐴𝐵‖1, (2.17)

where ⋅𝛤 is the partial transpose. 𝒩 is non-increasing under local operations and classical
communication (locc), and upper-bounds the distillable entanglement [Hor+09] (which
is not efficiently computable).
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RF
GND
DC

RF
GND
DC

Figure 2.2: Examples of Paul traps for the confinement of electrically charged particles. Radio-frequency
(rf) voltages are applied to some electrodes, whereas others are held at ground (gnd) or static poten-
tials (dc), creating in the centre an effective potential that is confining in every directions. Left: A clas-
sic, macroscopic “blade” trap used in another experiment in our laboratory. The ion-electrode distance is
500 µm. Right: A surface electrode trap (Sandia HOA2), where the trap electrode structure has been “flat-
tened” into a plane, creating a pseudopotential minimum 70 µm above the trap surface. Complex electrode
designs can be produced through microfabrication techniques; the segmented dc electrodes allow for
many independent, movable potential wells to be created along the trap axis, and multiple linear regions
to be connected by junctions. A slot is also visible, which allows optical access from the back side (original
scanning electron microscope picture courtesy of Sandia National Laboratories; manually colorised).

2.2 Trapped ions

2.2.1 Charged particles in radio-frequency traps

For our purposes throughout this thesis, trapped ions might well be idealised as abstract
𝑛-level systems; coupled to the electromagnetic field, but otherwise suspended at a fixed
point in space5. The details of the trapmechanism are, in principle, of little interest, as long
as it allows us to “pin” an ion at a certain position in space. As the electric field is divergence-
free in a source-free region (i.e., the potential satisfies Laplace’s equation), it is not possible
to achieve this through electrostatic means. However, exploiting the non-zero mass of the
particle, it is possible to obtain an effective confining potential in all spatial directions as
the time average of a divergence-free quadrupolar “saddle” potential that oscillates quickly
between confining and anti-confining along two orthogonal directions.

This is the operating principle of the Paul trap, sometimes also known as radio-
frequency trap (referring to the range of oscillation frequencies typically chosen for
the confinement of atoms). Figure 2.2 shows two examples: An oscillating quadrupole
potential, generated by elongated electrodes to which rf voltages are applied relative to
the ground potential, confines the particles to one axis (radial confinement); additional
static electrodes generate a potential well also along that axis (axial confinement). Such
traps are widely used across different fields, including for the confinement of single

5Theonly situation inwhich this simple picture is not appropriate is going to be the treatment of position-
or velocity-dependent imperfections. Chapter 5 describes a technique aimed at reducing trap-induced mo-
tion to restore validity of this simple picture as far as possible.
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atoms [Lei+03], electrons [Mat+21], molecules [Loh+13], nanoparticles [Ald+16] and
microdiamonds [Del+20].

To describe the dynamics of a point-like particle of mass 𝑚 and charge 𝑍𝑒 in a Paul
trap with drive frequency 𝛺rf, it is convenient to expand both the static potential 𝛷dc and
the oscillating potential 𝛷rf cos(𝛺rf𝑡) around the equilibrium position, which we assume,
without loss of generality, to be in the coordinate origin. In the absence of stray fields, the
respective gradients 𝛻𝛷dc and 𝛻𝛷rf vanish at this point, and the equations of motion for
particle position 𝒙 = (𝑥𝑖)𝑖=1,2,3 are

�̈� = − 𝑍𝑒
2𝑚
(𝑯𝛷dc + 𝑯𝛷rf cos(𝛺rf𝑡)) 𝒙 + O(|𝒙|

2), (2.18)

where𝑯(⋅) denotes the Hessian of the respective potential in the origin. This can be recast
as a coupled system of Mathieu-type equations,

�̈� + (𝛺rf
2
)
2
(𝒜 + 2𝒬 cos(𝛺rf𝑡)) 𝒙 = 0, (2.19)

where the dimensionless matrices

𝒜 = 2𝑍𝑒
𝑚𝛺2rf
𝑯𝛷dc , 𝒬 = 𝑍𝑒

𝑚𝛺2rf
𝑯𝛷rf (2.20)

are generalisations of the usual scalar Mathieu parameters 𝑎 and 𝑞.
If𝒜 and𝒬 are simultaneously diagonalisable, the system is easily decoupled by a coor-

dinate transformation 𝑥𝑖 ↦ ̃𝑥𝑖 into the shared eigenbasis, resulting in individual Mathieu
equations

̈ ̃𝑥𝑖 + (
𝛺rf
2
)
2
( ̃𝑎𝑖 + 2 ̃𝑞𝑖 cos(𝛺rf𝑡)) ̃𝑥𝑖 = 0, 𝑖 = 1, 2, 3, (2.21)

with stability parameters ̃𝑎𝑖 = 2𝑍𝑒/(𝑚𝛺2rf) 𝜕2𝛷dc/𝜕 ̃𝑥2𝑖 and ̃𝑞𝑖 = 𝑍𝑒/(𝑚𝛺2rf) 𝜕2𝛷rf/𝜕 ̃𝑥2𝑖 .
Paul traps for quantum information processing are typically operated in the first stability
region, with |𝑎| ≪ |𝑞| ≪ 1.

The decoupled case is widely studied [Lei+03], perhaps in part as both𝛷dc and𝛷rf are
typically well-approximated by electrode-aligned quadrupole potentials in macroscopic
linear (“four-rod”) Paul traps. In contrast to this, symmetric surface trap designs are usu-
ally operated with a static potential 𝛷dc that has principal axes deliberately not aligned
with the trap plane (and as such not aligned with the principal axes6 of 𝛷rf) to ensure a
non-zero projection of all secular modes of motion onto the cooling laser beams. For sim-
plicity, we still focus on the scalar case here, as we will later combine the effects of dc

6Note that 𝒜 and 𝒬 being simultaneously diagonalisable, such that the equations of motion decouple
into scalar Mathieu equations, is a condition on the principal axes of the quickly-varying rf quadrupole
potential 𝛷rf, not those of the resulting pseudopotential that describes the resulting radial confinement. In
fact, for typical designswith (approximately) vanishing axial rf curvature, as exemplified by an infinitely long
linear trap, the rf-induced pseudopotential is necessarily symmetric as a consequence of Laplace’s equation;
only the effect of the dc electrode voltages lifts the degeneracy.
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and time-averaged rf potentials into a single, effective confining potential, thus obtain-
ing analytic results in what is known as the pseudopotential approximation. If necessary
for quantitative calculations, Floquet solutions to the general eq. (2.19) could similarly be
found using a technique of infinite-continued matrix inversions [Hou08; Lan+12].

To first order in ̃𝑎𝑖 and ̃𝑞𝑖, the solution to the (classical) equations of motion (2.21) can
be approximated as

̃𝑥𝑖(𝑡) ≈ �̃�𝑖(𝑡) (1 +
𝑞𝑖
2
cos(𝛺rf 𝑡)) , (2.22)

where �̃�𝑖(𝑡) describes the classical trajectory of a harmonic oscillator with some secular
mode frequency 𝜔𝑚,𝑖, and the cos(𝛺rf 𝑡) term describes micromotion at the faster time-
scale𝛺rf ≫ 𝜔𝑚,𝑖. Assuming the confinement in the radial direction is given entirely by the
time-averaged effect of𝛷rf, the Mathieu 𝑞 parameter and secular mode frequency 𝜔𝑚,𝑖 are
related by

̃𝑞𝑖 ≈ 2√2
𝜔𝑚,𝑖
𝛺rf
. (2.23)

This treatment is straightforwardly extended to the quantum case (see e.g. [Lei+03]),
though we do not attempt this here. A representative set of parameters for our experi-
ments is 𝜔𝑚,𝑖 ≈ 2𝜋 × 3MHz and 𝛺rf ≈ 2𝜋 × 50MHz, i.e. 𝑞𝑖 ≈ 0.17.

This intrinsic micromotion contribution from the modulation of the ion’s secular mo-
tion in eq. (2.22) is often neglected, as 𝑞𝑖 ≪ 1 and �̃�𝑖 is small for ions are cooled close
to their motional ground state. However, additional electric fields, caused for instance by
stray electric charges near the trapping region, can shift the equilibrium position of the
harmonic pseudopotential away from the symmetry axis of the rf potential. Such addi-
tional, constant offsets to �̃�𝑖 in practice readily exceed the amplitude of the secular motion
of laser-cooled ions. The concomitant increase in themicromotion amplitude as described
by eq. (2.22) is referred to as excess micromotion. In the harmonic region of the trap, the
shift 𝑥stray,𝑖 induced by a stray electric field component 𝐸stray,𝑖 in direction 𝑖 can be calcu-
lated simply from the restoring force of the harmonic oscillator as

𝑥stray,𝑖 =
𝑒𝐸stray,𝑖
𝑚𝜔𝑚,𝑖2

(2.24)

where 𝑒 is the (elementary) charge of the ion. This results in an additional modulation of
the ion position by a term of the form 12 𝑥stray,𝑖 𝑞𝑖 cos(𝛺rf 𝑡). This modulates all ion–laser
interactions and has geometric consequences for the collection of spontaneous emission
photons (as discussed in chapter 4), and is generally undesired. Chapter 5 introduces a
method to detect and subsequently compensate such fields.

2.2.2 Internal (electronic) state

Theprimarymechanism by which a single trapped atomic ion serves as a qubit is bymeans
of its internal electronic state: we simply designate two of the many possible eigenstates of
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the electronic Hamiltonian as |0⟩ and |1⟩ (typically, many such assignments are possible;
the ones used in this work are described in chapter 3). Typically, we work with species that
have only one valence electron, such as singly-ionised earth alkaline metals, as this gives
rise to a tidy level structure that is easy to dissipatively manipulate using laser radiation.
How this energy level structure comes about is, as far as its role as a qubit substrate is
concerned, mostly an irrelevant detail. The Hamiltonian describing the valence electron
(mass 𝑚𝑒, charge −𝑒, spin ℏ𝑺) in the atomic centre-of-mass frame could, for instance, be
understood in the central-field approximation as

𝐻 = 𝒑
2

2𝑚𝑒
+ 𝑉(𝒙) + 𝑔𝑆𝜇𝐵𝑺 ⋅ 𝑩(𝒙), (2.25)

where𝑉 is the effective radial potential. For our purposes, however, it is sufficient to regard
it in its spectral decomposition, that is, as a collection of its eigenstates |𝑖⟩, where 𝑖 is for
now a generic index7 from some countable set 𝐼𝐴:

𝐻atom = ℏ ∑
𝑖∈𝐼𝐴
𝜔𝐴𝑖 |𝑖⟩⟨𝑖| . (2.26)

Here, we have written (ℏ𝜔𝐴𝑖 )𝑖∈𝐼𝐴 for the energies of the respective levels, which we can also
take to result from some more complex description than the simple model in eq. (2.25),
for instance, involving spin-orbit coupling, relativistic corrections, or just derived from ex-
perimental measurements. In the experiment, a static magnetic field, homogeneous across
the trap region, is applied to lift the degeneracy in the electronic states through the Zee-
man effect. The most natural choice for the state labels 𝐼𝐴 is the set of quantum numbers
describing each atomic state. Their choice of course depends on whatever approximation
is most well-suited to describe the species in question; for 88Sr+ in the context of this thesis,
good quantum numbers are the principal quantum number 𝑛, the orbital angular momen-
tum 𝐿, the total angular momentum 𝐽, and its projection onto the magnetic field axis 𝑚𝐽
(often written, together with the single-electron orbital angular momentum 𝑙 and the total
spin magnitude 𝑆 = 1/2, in the traditional spectroscopic notation consisting of configu-
ration and term symbol). As we shall see in §2.4.3, transitions between the levels can be
excited using resonant electromagnetic radiation, where selectivity can be ensured by an
appropriate choice of frequency, polarisation, or a combination of the two.

2.2.3 Quantised motion

The electrical trap potentials are typically designed such that the time-averaged pseudopo-
tential resulting from averaging across the fast dynamics in eq. (2.21) is in good approx-
imation harmonic in all spatial directions. The centre-of-mass motion of a trapped ion

7Using this description, we have already restricted ourselves to discrete, bound states of the atom–which
is not an issue, as we are not concerned with processes such as photoionisation here.
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can thus be described as a combination of three quantum-harmonic oscillator modes; one
aligned with each of the principal axes of the confining pseudopotential. The ion position
operator can be decomposed in terms of the annihilation and creation operators 𝑎𝑖 and 𝑎†𝑖
of the individual modes as [Lei+03]

𝒙 = ∑
𝑖
𝑥0,𝑖 (𝑎𝑖 + 𝑎†𝑖 ) , 𝑥0,𝑖 = √

ℏ
2𝑚𝜔𝑚,𝑖
, (2.27)

where𝑥0,𝑖 is the r.m.s. extent (i.e., positional uncertainty) of the ground-statewave function
for mass𝑚 and secular frequency 𝜔𝑚,𝑖. To take a typical example, for a 88Sr+ ion in a trap
with secular frequency 𝜔𝑚 = 2𝜋 × 3MHz, 𝑥0 = 4 nm.

If 𝑁 ions are confined in the trap in the form of a linear crystal and the Coulomb
interaction is linearised around the equilibrium positions, there are 3𝑁 harmonic oscilla-
tor modes; multiple ions participate in each. This is of crucial importance for the use of
trapped ions in quantum computing, as the collective motion provides the “quantum bus”
across which multi-ion interactions can be engineered8.

In the context of the experiments with one ion per trap discussed in this thesis, the
secular motion, however, only has very peripheral relevance as a source of infidelity in
coherent optical operations. Laser cooling (Doppler cooling) leaves all motional modes in
good approximation in a thermal state corresponding to a temperature close to theDoppler
limit,

𝑇Doppler ≈
ℏ𝛤
2k𝐵
, (2.28)

where 𝛤 is the linewidth of the transition used for cooling. Parametrised by the average
occupation number

𝑛𝑖 =
1

e
ℏ𝜔𝑖
k𝐵𝑇 − 1
, (2.29)

the density matrix for the thermal state of the 𝑖-th mode is

𝜌th,𝑖 = (1 − e
− ℏ𝜔𝑖k𝐵𝑇)

∞
∑
𝑛=0
e−
ℏ𝜔𝑖
k𝐵𝑇
𝑛 |𝑛⟩⟨𝑛| = 1

1 + 𝑛𝑖

∞
∑
𝑛=0

1
(1 + 1𝑛𝑖)

𝑛 |𝑛⟩⟨𝑛| . (2.30)

The Doppler limit corresponds to a lower bound on the average thermal occupation num-
ber reachable using this simple cooling technique,

𝑛Doppler,𝑖 ≈
1

e2𝜔𝑖/𝛤 − 1
. (2.31)

8In typical trapping conditions, the spacing between the equilibrium positions of multiple ions is on the
order of a fewmicrometres. Thewave-function overlap of the ion is thus negligible, and they can be treated as
distinguishable particles withoutmaking reference to their quantum statistics. Direct dipole-dipole coupling
between the internal state of neighbouring ions in a trap is extremely weak; for instance, a coupling rate of
∼ 1mHz between the magnetic dipole moments of two 88Sr+ ions has been observed [Kot+14]. Electric
dipole coupling can be engineered to be appreciable by exciting the ions to Rydberg states; techniques for
high-fidelity logic gates using this approach are a current topic of research (see e.g. ref. [Zha+20]).
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In terms of the coherent harmonic oscillator states |𝛼⟩ = e𝛼𝑎†−𝛼𝑎 |0⟩ = e− |𝛼|
2
2 ∑∞𝑛=0

𝛼𝑛
√𝑛! |𝑛⟩,

thermal states can be decomposed as

𝜌th,𝑖 =
1
𝜋 𝑛𝑖
∫
ℂ
e−
|𝛼|2
𝑛𝑖 |𝛼⟩⟨𝛼| d2𝛼. (2.32)

2.3 Photons

In this context, we regard a photon as a single quantum of excitation in a well-defined
electromagnetic field mode. Both quantum mechanics and classical electrodynamics are
linear, and the Heisenberg-picture field operators in the quantum field theory of light obey
Maxwell’s equation. Thus, the propagation of photons through optical systems can be anal-
ysed using classical mode solutions [FT20]; in the linear optics case, the quantum nature
of light only plays a role when considering the detection statistics (and entanglement with
other subsystems, etc.). Concretely, the electric field operator can be expanded into a set
of monochromatic modes 𝒖𝒌𝛱(𝒓) as [Lou00; SZ97]

𝑬(𝒓, 𝑡) = i∑
𝒌𝛱
√ ℏ𝑘𝑐
2𝜀0𝒱
𝒖𝒌𝛱(𝒓) e−i𝑘𝑐𝑡 𝑎𝒌𝛱 + h. c., (2.33)

where 𝑎𝒌𝛱, 𝑎†𝒌𝛱 are the annihilation and creation operators obeying, for each mode, the
bosonic (harmonic oscillator) commutation relations

[𝑎𝒌𝛱, 𝑎𝒌′𝛱′] = [𝑎†𝒌𝛱, 𝑎†𝒌′𝛱′] = 0, [𝑎𝒌𝛱, 𝑎†𝒌′𝛱′] = δ𝒌𝒌′δ𝛱𝛱′ . (2.34)

For plane wave modes, 𝒖𝒌𝛱(𝒓) = ̂𝝐�̂�𝛱ei𝒌⋅𝒓, and the sum is over modes described by a three-
dimensional wavevector 𝒌 and two polarisations 𝛱, with ̂𝝐�̂�𝛱 ⟂ 𝒌 some choice of basis
for the polarisation. Here, we have considered the system to be embedded inside a finite
quantisation volume 𝒱 as often done in quantum optics to avoid normalisation issues.
Later, we will transition to continuum modes (𝒱 → ∞) by making the replacement
∑𝒌 ⋅ ↦ √

𝒱
(2𝜋)3 ∫ℝ3 ⋅ d

3𝒌.
Rather than such an expansion across many plane wave modes, a spatio-temporal

wavepacket would lend itself more naturally to describing the emission of a single photon
from a stationary emitter. It is indeed possible to define the equivalent of a wave function
for photons, though this is not without subtleties [SR07; TG66; MSZ05]. Concretely, if 𝜈𝒌𝛱
are the coefficients of an excitation decomposed into plane waves 𝒖𝒌𝛱(𝒓), the wave-packet
mode in the continuum limit can be defined as

𝒇(𝒓, 𝑡) = i√ ℏ𝑐
2𝜀0
∑
𝛱
∫
ℝ3
√ 𝑘
(2𝜋)3
𝜈𝒌𝛱 𝒖𝒌𝛱(𝒓) e−i𝑘𝑐𝑡d3𝒌, (2.35)

such that if { ̃𝑎†, ̃𝑎} are the creation and annihilation operators describing a photon in this
mode, the electric field operator becomes

𝑬(𝒓, 𝑡) = 𝒇(𝒓, 𝑡) ̃𝑎 + h. c. +… , (2.36)
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where the ellipsis denotes the further orthogonalmodes necessary to form a complete basis
for the field9.

2.3.1 Temporal wave-packet modes

For quantum information processing, where photons are typically confined in collimated
beams, optical fibres, orwaveguides, it is useful to focus on the longitudinal frequency/time
component along the propagation of the beams, and assume that the transverse parts are in
some spatial mode well-behaved enough not to be of any further interest (e.g. a Gaussian
beam). Assuming the beam with index 𝑛 propagates in the 𝑧 direction and taking the
continuum limit for the longitudinal modes, the electric field operator takes the form

𝑬𝑛(𝑧, 𝑡) = i∑
𝛱
̂𝝐𝛱
∞

∫
0

√ ℏ𝑘𝑐
4𝜋𝜀0𝒜
ei𝑘(𝑧−𝑐𝑡) 𝑏𝑛𝛱(𝑘) d𝑘 + h. c., (2.37)

where 𝒜 is the formal quantisation mode area for the transversal modes10, and we have
written 𝑏†𝑛𝛱(𝑘) for the creation operator for beam mode 𝑛, polarisation 𝛱, and angular
wavenumber 𝑘 for visual contrast with the plane-wave free-space operators 𝑎†𝒌𝛱. The
canonical commutation relations are

[𝑏𝑛𝛱(𝑘), 𝑏𝑛′𝛱′(𝑘′)] = [𝑏†𝑛𝛱(𝑘), 𝑏†𝑛′𝛱′(𝑘′)] = 0,
[𝑏𝑛𝛱(𝑘), 𝑏†𝑛′𝛱′(𝑘′)] = δ𝑛𝑛′ δ𝛱𝛱′ δ(𝑘 − 𝑘′).

(2.38)

A one-photon wavepacket can be created by a linear superposition

𝐵†𝑛𝛱 ≔
∞

∫
0

̃𝛽(𝑘) 𝑏†𝑛𝛱(𝑘) d𝑘, (2.39)

of these modes specified by an envelope function ̃𝛽(𝑘) ∈ ℂ with ‖ ̃𝛽‖2 = ∫∞0 | ̃𝛽(𝑘)|
2d𝑘 = 1.

Assuming that the radiation is narrow-band, we can extend the lower integration bound
to −∞ and directly introduce temporal modes given by the Fourier-transformed envelope
function

𝛽(𝑡) = 1√2𝜋𝑐

∞

∫
−∞

̃𝛽(𝑘)e−i𝑘𝑐𝑡d𝑘 (2.40)

9A subtle point here is that the mode functions 𝒇(𝒓, 𝑡) are non-orthogonal even for a unitary change of
basis via the coefficients 𝜈𝒌𝛱, due to the√𝑘 factor in eq. (2.35). This can be remedied through a redefinition
of the inner product in terms of appropriate dual modes [SR07], though in the present case we are concerned
only with narrow-band radiation where√𝑘 is approximately constant.

10In practice, the transversal modes are also unconfined free-space modes, and we could similarly take
the continuum limit – as we are only ever concerned with one transversal mode in the abstract here, however,
this would just be an unnecessary complication.
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Figure 2.3: Two of many ways to encode a qubit in a photonic mode. Left: Encoding in two spatial modes
|0⟩ and |1⟩. In our convention, a beamsplitter with reflectance (sin 𝜃)2 rotates the Bloch sphere around the
𝑦-axis. Right: Encoding in the polarisation of a photon. A wave plate of retardance 𝛼 with fast axis at angle
𝛽 to the horizontal direction rotates the Bloch sphere as shown. An alternative convention is frequently
used which assigns circular polarisation to the poles, matching the Poincaré sphere from classical optics.

such that the creation of the above wavepacket can equivalently be written as

𝐵†𝑛𝛱 =
∞

∫
−∞

𝛽(𝑡) 𝑏†𝑛𝛱(𝑡) d𝑡 (2.41)

with the Fourier-conjugate time-domain creation and annihilation operators 𝑏†𝑛𝛱(𝑡),
𝑏𝑛𝛱(𝑡), for which similarly

[𝑏𝑛𝛱(𝑡), 𝑏𝑛′𝛱′(𝑡′)] = [𝑏†𝑛𝛱(𝑡), 𝑏†𝑛′𝛱′(𝑡′)] = 0,
[𝑏𝑛𝛱(𝑡), 𝑏†𝑛′𝛱′(𝑡′)] = δ𝑛𝑛′ δ𝛱𝛱′ δ(𝑡 − 𝑡′).

(2.42)

Such temporal wave-packet modes are particularly useful in the context of analysing
the photonic Bell-basismeasurement apparatus here (§4.4) not only because they naturally
capture the case of a propagating beamwhere there is no interaction across different times 𝑡,
but also because the measurement operator for time-resolved detection of a single photon
in mode 𝑛𝛱 at time 𝑡 is simply given by 𝑏𝑛𝛱(𝑡).

2.3.2 Photonic qubits

By picking two field states, usually an excitation of the field in orthogonal modes, and
restricting our attention to states spanned by them, we can define an effective two-level
system, or qubit. Many such qubit encodings are possible, and indeed used in practice.
One important consideration is the ability tomanipulate the two states, e.g. to apply unitary
rotations, or to perform projective measurements in a particular basis. Several possible
qubit encodings are illustrated in fig. 2.3.

An obviously orthogonal choice for two qubit basis states are excitations in two differ-
ent spatial modes that have no overlap, such as two well-separated collimated beams; this
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is sometimes also referred to as dual-rail encoding. To implement 𝑥–𝑦-plane rotations,
the beam modes corresponding to the qubit basis need to be brought together at a beam-
splitter, where they interfere; 𝑧-axis rotations can be implemented by differential phase
shifts.

In the laboratory, we usually think of beamsplitters as being parametrised by their re-
flectance 𝑅 and transmittance 𝑇 (𝑅 + 𝑇 = 1, e.g. 𝑅 = 𝑇 = 12 for the ideal “half-silvered
mirror”). Without further information, it is not clear what the phase of the output relative
to the input beams should be (apart from constraints due to unitarity). For our narrow-
band use case the difference is trivial11, and in either case would not be relevant, as the
optical part of our apparatus only consists of a diverging network of beamsplitters and we
do not have any absolute phase reference for the output beams. Here, we choose a phase
convention such that the unitary matrix for a beamsplitter is

𝑈𝐵𝑆(𝜃) = (
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃) , (2.43)

where (cos 𝜃)2 = 𝑇 and (sin 𝜃)2 = 𝑅. This is a rotation around the 𝑦 axis of the Bloch
sphere.

One particularly straightforward choice is to encode the qubit in the polarisation of the
photon, which is naturally a two-level system. Unitary rotations are easy to implement by
inserting birefringent materials into the beam path (e.g. wave plate retarders in a rotation
mount transversal to the beam). Most photodetectors are (approximately) polarisation-
insensitive, but polarisation-basis measurements are easily realised by placing the detector
behind e.g. a polarising beamsplitter cube (pbs, which effectively converts between polar-
isation and spatial mode12 encodings).

Here, we define the linear polarisation states |𝐻⟩ and |𝑉⟩ as the computational basis
states on the 𝑧 axis of the Bloch sphere, as it is natural in the context of beams manipu-
lated using pbs cubes (though it differs from the classical optics convention of drawing
the Poincaré sphere with circular polarisation on the north and south poles). The unitary
action of a general birefringent element with retardance 𝛼, the fast axis of which is at angle
𝛽 to the horizontal direction, is

𝑈wp(𝛼, 𝛽) = (
(cos 𝛽)2 + e−i𝛼(sin 𝛽)2 (1 − e−i𝛼) cos 𝛽 sin 𝛽
(1 − e−i𝛼) cos 𝛽 sin 𝛽 e−i𝛼(cos 𝛽)2 + (sin 𝛽)2) ; (2.44)

the common half- and quarter-wave plates correspond to 𝛼 = 𝜋 and 𝛼 = 𝜋2 , respectively.
11In more general cases, such as a white-light interferometer, the phase imparted by the beamsplitter is

not necessarily irrelevant; see ref. [Ham00] for a summary.
12One could argue that the two output modes of a pbs cube do not strictly correspond to dual-rail encod-

ing as themodes have orthogonal polarisations. If desired, however, the polarisations can easily be equalised
by inserting a half-wave plate into one of the output arms.
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While polarisation encoding makes photonic qubits easy to manipulate, such states
are also sensitive to unintended birefringence in the optical path. For most optical ele-
ments, residual birefringence will be relatively stationary and thus easily corrected. Opti-
cal fibres are a notable exception, however; they exhibit considerable changes in stress-
induced birefringence when subjected to temperature and humidity changes or to me-
chanical disturbances. Polarisation-maintaining fibres, where the fibre core is under con-
siderable anisotropic stress by design, suppress coupling of linear input polarisation be-
tween a pair of orthogonal design axes (e.g. horizontal and vertical). Empirically, however,
their action on other input states is considerably more sensitive to disturbances (causing
for instance drifts between diagonal and circular polarisation). To transmit polarisation-
encoded qubits in fibre, regular single-mode fibre is thus preferred, augmented by active
polarisation stabilisation as necessary to cover longer distances (which is routinely imple-
mented across many kilometres of deployed fibre in the context of quantum key distribu-
tion in metropolitan-area networks, see e.g. ref. [Tre+09]).

The photon frequency is yet another possible qubit encoding, which has also been
used in context of atom-photon entanglement – if the frequency difference between two
wavepacket modes is much larger than their bandwidth, they are approximately orthogo-
nal. Frequency encoding has the potential advantage that a splitting on the ∼GHz scale
is very small compared to ∼ 500 THz optical frequencies, so most interactions with prop-
agation media, etc., will be very similar for the two states, leading to robust transmission.
However, this alsomeans that frequency-encoded qubits are hard tomanipulate efficiently,
requiring narrow-band filters (e.g. based on optical cavities) for the analysis of the photon
state or efficient Bell-basis measurements.

Many other photonic qubit/qudit encodings exist beyond those mentioned here, for
instance in different time bins, in the transversal beam modes, including orbital angular
momentum beams [Mai+01], in different temporal photon envelopes [Bre+15], etc. For
ion–photon entanglement, it will also be quite common for photons to be entangled with
the atom in more than one degree of freedom, for instance both in polarisation (due to
selection rules) and frequency (e.g. due to differing Zeeman shifts). As long as there is at
least one modality in which the states are orthogonal, they are also orthogonal overall, so
this appearance of multiple degrees of freedom is benign.

Generally, photonic systems will often exhibit non-negligible transmission loss, and
the efficiency of single-photon detectors is limited. This can be straightforwardly expressed
in the full second-quantisation picture as an admixture of the vacuum state. In experi-
ments post-selected on the presence of a given number of photons, e.g. when discussing
ion–photon entanglement, it is often preferable to stay in the encoded-qubit picture, how-
ever, and track the overall probability of observing a photon in that subspace separately or
through the use of sub-normalised density operators.
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2.4 Atom-field interactions

We now consider the interaction that underpins all the techniques related to the internal
electronic state of trapped ions used in this work, that between the internal state and an
external electromagnetic field. This encompasses both coherent manipulation, incoherent
scattering, and the generation of ion–photon entanglement through spontaneous emission.
We will first treat the generic Hamiltonian of the system in a fully quantum-mechanical
fashion to elucidate the different modes of interaction, and only then discuss the special
cases of interest here.

2.4.1 Interaction of a bound electron with the multipolar e.m. field

We are interested in the non-relativistic Hamiltonian that describes a single electron (mass
𝑚𝑒, charge −𝑒, spin ℏ𝑺), the electromagnetic field, and their interaction. The precise form
of this interaction has historically been a remarkably persistent source of disagreement and
confusion (see e.g. refs. [Lam52, sec. 60], [AM84], [RF17], [And+18], [FLM19]). Here, we
start from13 the canonical Hamiltonian obtained by transforming the minimal-coupling
Lagrangian for the electron, the field and the Lorentz force,

𝐻 = (𝒑 + 𝑒𝑨(𝒙))
2

2𝑚𝑒
+ 𝑉(𝒙) + 1

2
∫
ℝ3
(𝜀0𝑬⟂(𝒓)2 +

1
𝜇0
𝑩(𝒓)2) d3𝒓 + 𝑔𝑆𝜇𝐵𝑺 ⋅ 𝑩(𝒙), (2.45)

where𝒙 is the electron position,𝒑 its canonicalmomentum (𝒑 = 𝒑kin−𝑒𝑨(𝒙),𝒑kin ≔ 𝑚𝑒 ̇𝒓),
and we have added an additional term describing the interaction between the electron
spin and magnetic field as quantified by the Bohr magneton 𝜇𝐵 and the electron 𝑔-factor
𝑔𝑆 ≈ 2. 𝑬⟂ is the transversal (divergence-, i.e. source-free) part of the electric field14;
we have eliminated the longitudinal (curl-free) part by choosing to work in the Coulomb
gauge (𝜵 ⋅ 𝑨 = 0) and writing the interaction with the rest of the atom as an effective
potential 𝑉(𝒙). This is a rather simplified model of the interactions internal to the atom,
but should do just fine for purposes of exposition. For now, we have also assumed the
nucleus to be infinitely heavy and in the origin.

Equation (2.45) is sometimes referred to as the “𝒑⋅𝑨Hamiltonian”, after the expansion
(𝒑 + 𝑒𝑨(𝒙))2 = 𝒑2 + 2𝑒𝒑 ⋅ 𝑨(𝒙) + 𝑒2𝑨(𝒙)2 (in the Coulomb gauge, [𝒑, 𝑨] = 0). The key
ingredient in its analysis is what has become known as the Power–Zienau–Woolley (PZW)
transformation [PZ59; Woo71], a unitary change of frame for Hamiltonian and states that
will allow us to shift the electron-field interaction from the 𝒑 ⋅ 𝑨 term evaluated at the

13The treatment here mostly follows ref. [BPT74] and [Lou00, ch. 4], though I have chosen to add the
electron spin term for clarity, asmagnetic dipole transitions between Zeeman states are ubiquitous in trapped
ions.

14As in the rest of this thesis, no typographic distinction is drawn between quantities that are operators
and those that are not, and in the later semi-classical approximation, various quantities such as the electric
and magnetic fields will assume an explicit time dependence.



2.4 atom-field interactions 23

electron position to under a field integral, such that we can conveniently take its multipole
expansion (see e.g. refs. [And+20; Woo20] for a modern perspective). To start with, we
define a quantity

𝑷(𝒓) ≔ −𝑒𝒙
1

∫
0

δ(𝒓 − 𝑠𝒙) d𝑠, (2.46)

which could be interpreted as a polarisation density (or, at least, its longitudinal component
[And+18]), as 𝜵 ⋅ 𝑷(𝒓) = −𝜌(𝒓) for the charge density 𝜌. Here, however, we can be content
with its role as part of a generator 𝒮

𝒮 ≔ ∫
ℝ3
𝑷(𝒓) ⋅ 𝑨(𝒓) d3𝒓, (2.47)

which we use to define the unitary transformation 𝐻 ↦ 𝐻′ ≔ e iℏ𝒮𝐻e− iℏ𝒮 (such that,
for states, |𝜓⟩ ↦ e iℏ𝒮 |𝜓⟩). By expanding the conjugation by exponentials as a series of
commutators, we obtain the result, the multipolar or PZW Hamiltonian, as

𝐻′ = 𝒑
2

2𝑚𝑒
+ 𝑉(𝒙)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐻atom

+ 1
2
∫
ℝ3
(𝜀0𝑬⟂(𝒓)2 +

1
𝜇0
𝑩(𝒓)2) d3𝒓

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐻field

+𝐻cpl, (2.48)

where we can recognise the usual terms of the free atom and field, 𝐻atom and 𝐻field, and
the new terms𝐻cpl are [BPT74]

𝐻cpl ≔ − ∫
ℝ3
𝑷⟂(𝒓) ⋅ 𝑬⟂(𝒓) d3𝒓 +

1
2𝜀0
∫
ℝ3
𝑷⟂(𝒓)2 d3𝒓

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐻cpl,el

− ∫
ℝ3
𝑴(𝒓) ⋅ 𝑩(𝒓) d3𝒓 + 𝑒

2

2𝑚𝑒
(𝒙 × ∫

1

0
𝑠𝑩(𝑠𝒙)d𝑠)

2
+ 𝑔𝑆𝜇𝐵𝑺 ⋅ 𝑩(𝒙)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝐻cpl,mag

,
(2.49)

where we have also introduced a formal magnetisation density15 analogous to 𝑷(𝒓),

𝑴(𝒓) ≔ − 𝑒
𝑚𝑒
(𝒙 × 𝒑)∫

1

0
𝑠δ(𝒓 − 𝑠𝒙) d𝑠. (2.50)

The𝐻cpl,el part describes electric effects; the first term being the atom-field interaction we
are seeking, the second a field-independent correction to the atomic self-energy, which

15There are some subtleties here regarding the ordering of operators, as well as the fact that the canonical
momentum 𝒑 is not quite the usual kinetic momentum𝑚𝑒 ̇𝒓 – which we shall unceremoniously ignore here,
as magnetic interactions are not the focus of this work. If the interaction of ions with structured magnetic
fields is of interest, these issues should be critically reviewed (see e.g. ref. [CDG97, chapter IV.C, p. 280ff.] for
a discussion of this, where the transformations are applied to the Lagrangian before canonical quantisation
instead).
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contributes to the Lamb shift [Mil76], but which we will merge into the atomic part here.
The 𝐻cpl,mag part describes the magnetic effects, where the second summand is a gener-
alised diamagnetic energy, quadratic in 𝑩.

2.4.2 Multipole expansion

Armed with eq. (2.49), which makes the dependence on the gauge-invariant transversal
fields 𝑬⟂ and 𝑩 explicit, we can now consider the atom-field interaction in multipole ex-
pansion. Consider the electric term

− ∫
ℝ3
𝑷⟂(𝒓) ⋅ 𝑬⟂(𝒓) d3𝒓 = 𝑒𝒙 ⋅ ∫

1

0
𝑬⟂(𝑠𝒙) d𝑠

= 𝑒𝒙 ⋅ ∫
1

0
(𝑬⟂(0) + 𝑠𝜵𝑬⟂(0) 𝒙 +

𝑠2
2!
…)d𝑠

= 𝑒𝒙 ⋅ (𝑬⟂(0) +
1
2!
𝜵𝑬⟂(0) 𝒙 +

1
3!
…) ,

(2.51)

where the dots elide the higher-order terms in the Taylor expansion16 of 𝑬⟂(𝒓) at 𝒓 = 0.
The lowest-order term gives the electric dipole (E1) interaction Hamiltonian,

𝐻E1 = 𝑒𝒙 ⋅ 𝑬⟂(0), (2.52)

and the second-order term is the electric quadrupole (E2) interaction,

𝐻E2 =
1
2
𝑒𝒙 ⋅ 𝜵𝑬⟂(𝟎)𝒙. (2.53)

We can similarly expand 𝑩(𝒓) around 𝒓 = 0 in the magnetic term𝐻cpl,mag, and obtain, to
lowest order in the electron position, the familiar magnetic dipole (M1) interaction

𝐻M1 = (
𝑒
2𝑚𝑒
(𝒙 × 𝒑)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝜇𝐵𝑳

+𝑔𝑆𝜇𝐵𝑺) ⋅ 𝑩(0), (2.54)

in addition to a diamagnetic shift 𝑒
2

8𝑚𝑒
(𝒙 × 𝑩(0))2, which is quadratic in 𝑩, and negligible

for relevant field strengths.
These low-order truncations are in general good approximations for optical transi-

tions17 (and excellent for radio-frequency magnetic transitions), as each additional order
in the expansion is scaled by an extra factor on the order of 𝑟/𝜆 ≪ 1, where 𝜆 is the wave-
length, and 𝑟 a typical value for |𝒙|. Considering the coupling to the same radiation field

16The contraction with higher-rank tensors of partial derivatives occurring in these termsmeans they are
more conveniently written in component form.

17Next-order electric octupole (E3) transitions are sometimes interrogated in trapped-ion optical atomic
clocks, for instance in 171Yb+[Hun+12; Kin+12].
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(|𝑩| = |𝑬|/𝑐), the M1 coupling is typically much weaker than the E1 coupling due to the
extra 𝑝/(𝑚𝑒𝑐) factor (where 𝑝 is a typical value for |𝒑|), such that we can often – certainly
in the scope of this thesis – consider optical transitions as mediated by the electric field
only.

2.4.3 Coupling between atomic levels

Note that the Hamiltonian describing the interaction (𝐻cpl), commutes neither with the
atomic (𝐻atom) nor field (𝐻field) parts – none of the low-order multipole terms𝐻E1,𝐻E2,
𝐻M1 do. In the quantum picture, we would of course expect no less, as e.g. spontaneous
emission couples even to the vacuum field. Thankfully, in our case, the radiation fields
are typically small, so the interactions can be successfully described as acting on the bare
atomic states using perturbation theory (with the high-field regime, where this approach
breaks down, typically starting around ∼ 1017W/m2 [And+20]).

Writing the undisturbed atomicHamiltonian in its spectral decomposition (eq. (2.26)),
and inserting the decomposition of the identity18 𝟙 = ∑𝑖∈𝐼𝐴 |𝑖⟩⟨𝑖| on either side, we can
write, say, the dipole coupling Hamiltonian as

𝐻E1 = ∑
𝑖,𝑗∈𝐼𝐴
𝑒 ⟨𝑖|𝒙|𝑗⟩ ⋅ 𝑬⟂(0) |𝑖⟩⟨𝑗| . (2.55)

This is a useful sleight, as we can now inject any knowledge about the structure of the
eigenstates |𝑖⟩ and |𝑗⟩. In particular, in the atomic species of interest here the spin-orbit
interaction leads to an atomic structure captured well by the 𝐿𝑆 coupling model, where
the eigenvalue 𝐽 of the total angular momentum operator 𝑱2 and 𝑚𝐽 of its 𝑧-projection
𝐽𝑧 are “good” quantum numbers. In such a case, where the states can be labelled |𝛼 𝐽𝑚𝐽⟩
(where 𝛼 represents other, non-angular-momentum quantum numbers), we can bring the
Wigner–Eckert theorem to bear [BS68]. For this, we expand 𝒙 in terms of the irreducible
spherical tensor operators of rank 1, {𝑇(1)𝑞 }𝑞=−1,0,1, such that 𝒙 = ∑1𝑞=−1 𝑇(1)𝑞 ̂𝒆𝑞, where { ̂𝒆𝑞}𝑞
are the spherical basis vectors

̂𝒆1 = −(�̂� + i ̂𝒚)/√2,
̂𝒆0 = ̂𝒛,

̂𝒆−1 = (�̂� − i ̂𝒚)/√2.
(2.56)

18Implicit throughout is that atomic projectors |𝑖⟩⟨𝑖| act as the identity on the photonic part of the overall
tensor product Hilbert space𝐻 = 𝐻atom ⊗ 𝐻photon.
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We can then evaluate the matrix element from eq. (2.55) for two states |𝑖⟩ = |𝛼𝑖 𝐽𝑖𝑚𝐽𝑖⟩,
|𝑗⟩ = |𝛼𝑗 𝐽𝑗𝑚𝐽𝑗⟩ as19

⟨𝑖|𝒙|𝑗⟩ =
1
∑
𝑞=−1
⟨𝛼𝑖 𝐽𝑖𝑚𝐽𝑖|𝑇(1)𝑞 |𝛼𝑗 𝐽𝑗𝑚𝐽𝑗⟩ ̂𝒆𝑞

= ⟨𝛼𝑖 𝐽𝑖‖𝑇(1)‖𝛼𝑗 𝐽𝑗⟩
1
∑
𝑞=−1
⟨𝐽𝑖, 𝑚𝐽𝑖, 1, 𝑞|𝐽𝑗, 𝑚𝐽𝑗⟩ ̂𝒆𝑞

= −(−1)𝐽𝑖−𝑚𝐽𝑗√2𝐽𝑗 + 1 ⟨𝛼𝑖 𝐽𝑖‖𝑇(1)‖𝛼𝑗 𝐽𝑗⟩
1
∑
𝑞=−1
( 𝐽𝑖 1 𝐽𝑗𝑚𝐽𝑖 𝑞 −𝑚𝐽𝑗

) ̂𝒆𝑞

(2.57)

where ⟨𝛼𝑖 𝐽𝑖‖𝑇(1)‖𝛼𝑗 𝐽𝑗⟩ denotes the reduced matrix element, ⟨𝐽𝑖, 𝑚𝐽𝑖, 1, 𝑞|𝐽𝑗, 𝑚𝐽𝑗⟩ the
Clebsch–Gordan coefficient, and the 2 × 3 terms in parentheses the Wigner 3–j sym-
bol20. The latter produces the dipole selection rules: The coupling is non-zero only if
𝛥𝑚𝐽 ≔ 𝑚𝐽𝑗 − 𝑚𝐽𝑖 ∈ {−1, 0, 1}, corresponding to 𝜎+ (𝑞 = 1), 𝜋 (𝑞 = 0) and 𝜎− (𝑞 = −1)
transitions.

2.4.4 Classical radiation: coherent gates, scattering

Consider now the interaction of two atomic levels, which we will identify as |0⟩ and |1⟩,
with a monochromatic classical radiation field 𝑬⟂(0) = 𝐸0 cos (𝜔𝑙𝑡 + 𝜙) ̂𝝐, for instance as
produced by a laser. In the interaction picture w.r.t. the atomic levels, the relevant term in
𝐻E1 from (2.55) becomes

𝐻𝐼 = −ℏ
𝛺
2
|1⟩⟨0| ei(𝛥 𝑡+𝜙) + h. c., (2.58)

where we have introduce the Rabi frequency 𝛺 ≔ − 𝑒𝐸0ℏ ⟨1|𝒙|0⟩ ⋅ ̂𝝐 and the detuning 𝛥 ≔
𝜔10 − 𝜔𝑙 as the difference between atomic transition and laser frequencies. On resonance
(𝛥 = 0), the interaction drives rotations around an axis in the 𝑥𝑦 plane of the Bloch sphere,
generating after time 𝑡 the unitary evolution

𝑅𝑥𝑦(𝜗, 𝜙) = exp (−i
𝜗
2
((cos 𝜙)𝑋 + (sin 𝜙)𝑌)) , (2.59)

where 𝜗 = 𝛺 𝑡. All elementary quantum gates used in this work are of this type, though
mostly through the equivalent interaction mediated by𝐻E2, where𝛺 ≔ − 𝑒𝐸02ℏ ⟨1|(𝒙 ⋅ 𝒌)( ̂𝝐 ⋅
𝒙)|0⟩ now explicitly depends on the wavevector 𝒌 of what we have assumed is a plane-wave
classical field.

19Recall that in the convention use throughout this thesis, hats indicate unit vectors, not quantum oper-
ators!

20Various sign- and normalisation conventions exist here; I follow that of ref. [BS68].
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By treating the electric field as fully classical, we have assumed that the natural
linewidth 𝛤 of the excited state |1⟩, as set by spontaneous emission (eq. (2.74)), is negligi-
ble compared to the Rabi frequency 𝛺. For weak excitation, where 𝛤 dominates, the ion
scatters photons at a rate 𝑅 = 𝛤𝜌11(𝛥), and the steady-state excited state population 𝜌11
follows a Lorentzian frequency response

𝜌11(𝛥) =
𝑠/2

1 + 𝑠 + (2𝛥𝛤 )
2 , (2.60)

broadened according to the saturation parameter 𝑠 ≔ 2𝛺2/𝛤2 [Lei+03]. This is the in-
teraction used for ion state detection through resonance fluorescence and, after taking the
frequency shift due to the ion centre-of-mass motion into account, for Doppler cooling.

2.4.5 Spontaneous emission

We return to a fully quantised treatment of the electric field. Even though spontaneous
emission is a ubiquitous phenomenon, its proper, full treatment is surprisingly complex.
This complexity is in large part due to the involvement of a continuum of vacuum modes,
with the usual associated challenges such as the renormalisation of state energies. Here, the
emission bandwidth is very narrow compared to the transition frequency (the state lifetime
is very long compared to an optical period), which allows us to obtain an analytic approx-
imation following what has become the standard treatment in the tradition of a seminal
paper by Weisskopf and Wigner [WW27], as for example presented in ref. [SZ97, ch. 6.3,
10.A], although it should be noted that less heuristic methods, e.g. using a resolvent for-
malism [CDG97, p. 189ff.], are also possible. We furthermore carry over the assumption
of an immobile (infinitely heavy) nucleus in the coordinate origin from §2.4.

We consider the general case of an atom in an excited state |𝑒⟩ and a number of possible
target states |𝑖⟩ ∈ 𝐼𝐿 to which it can decay under spontaneous emission of a photon. In par-
ticular, we will assume the states to be connected through an electrical dipole interaction
given by the Hamiltonian (2.55).21 From the form of the coupling term for each transition,
that of one atomic dipole in a fixed orientation coupling to the field in the origin, it should
not come as a surprise that the pattern of radiation observed during spontaneous decay is
the same as for an equivalent classical dipole (see fig. 4.2). One can make this analogy to
a classical oscillating dipole more explicit by transforming the system Hamiltonian in an
appropriate fashion and considering the generic propagator for the e.m. vector potential
(cf. [KM76], [Mil94, p. 125ff.]). Here, however, we will just consider the interaction with a
generic electric radiation field𝑬⟂, fromwhich the correct angular dependence will emerge
naturally.

21This treatment could be applied just the same to higher-order multipole interactions; the results would
be identical in everything but the spatial dependence of the emission patterns.
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We expand the electric field operator into a number of plane-wave modes,

𝑬⟂(𝒓) = i∑
𝒌𝛱
√ ℏ𝑘𝑐
2𝜀0𝒱
̂𝝐�̂�𝛱ei𝒌⋅𝒓𝑎𝒌𝛱 + h. c., (2.61)

where the sum is over modes described by a three-dimensional wavevector 𝒌, with 𝑘 ≔ |𝒌|,
𝒌 = 𝑘�̂�, and one of two polarisations𝛱, the basis vectors ̂𝝐�̂�𝛱 ⟂ 𝒌 we will leave generic for
now, and𝒱 is a large quantisation volume (we will presently consider the limit𝒱 →∞).
In the rotating wave approximation, the dipole interaction Hamiltonian from eq. (2.55)
becomes

𝐻int = iℏ ∑
𝑖∈𝐼𝐿
∑
𝒌𝛱
̃𝑔(𝒱)𝑘 (𝑔𝑖,�̂�𝛱 |𝑖⟩⟨𝑒| 𝑎

†
𝒌𝛱 − h. c.) , (2.62)

where we have introduced a shorthand for the field strength prefactor corresponding to
the mode,

̃𝑔(𝒱)𝑘 ≔ √
𝑘𝑐
2ℏ𝜀0𝒱
, (2.63)

and the coupling strengths 𝑔𝑖,�̂�𝛱 arise from the dipole matrix element 𝒅𝑖𝑒 ≔ −𝑒 ⟨𝑖|𝒙|𝑒⟩ =
−𝑒 ⟨𝛼𝑖 𝐽𝑖‖𝑇(1)‖𝛼𝑒 𝐽𝑒⟩ 𝐶𝑖 ̂𝒆𝑞𝑖 from eq. (2.57) (where ̂𝒆𝑞𝑖 is the one spherical basis vector for
which the Clebsch–Gordan coefficient 𝐶𝑖 ≔ ⟨𝐽𝑖, 𝑚𝐽𝑖, 1, 𝑞𝑖|𝐽𝑒, 𝑚𝐽𝑒⟩ does not vanish) as

𝑔𝑖,�̂�𝛱 ≔ 𝒅𝑖𝑒 ⋅ ̂𝝐�̂�𝛱 = 𝑑𝑖𝑒⏟
scalar dipole

strength

̂𝒅𝑖𝑒 ⋅ ̂𝝐�̂�𝛱⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
geometric

part

. (2.64)

In the Schrödinger picture, the initial state |𝜓(𝑡 = 0)⟩ = |𝑒⟩ ⊗ |0⟩, where |0⟩ is the
photonic vacuum state, evolves according to dd𝑡 |𝜓(𝑡)⟩ = −

𝑖
ℏ𝐻|𝜓(𝑡)⟩,𝐻 = 𝐻atom +𝐻field +

𝐻int. Writing ̃𝑐𝑒(𝑡), ̃𝑐𝑖,𝒌𝛱(𝑡) ∈ ℂ for the coefficients of the interaction-picture state

|�̃�(𝑡)⟩ ≔ e iℏ (𝐻atom+𝐻field)𝑡 |𝜓(𝑡)⟩ = ̃𝑐𝑒(𝑡) |𝑒⟩ ⊗ |0⟩ + ∑
𝑖∈𝐼𝐿
∑
𝒌𝛱
̃𝑐𝑖,𝒌𝛱(𝑡) |𝑖⟩ ⊗ 𝑎†𝒌𝛱 |0⟩ , (2.65)

we have

|𝜓(𝑡)⟩ = ̃𝑐𝑒(𝑡) e−i𝜔𝑒𝑡 |𝑒⟩ ⊗ |0⟩ + ∑
𝑖∈𝐼𝐿
∑
𝒌𝛱
̃𝑐𝑖,𝒌𝛱(𝑡) e−i(𝜔𝑖+𝑘𝑐)𝑡 |𝑖⟩ ⊗ 𝑎†𝒌𝛱 |0⟩ , (2.66)

and can describe the time evolution of the system in terms of the slowly varying coefficients

d
d𝑡
̃𝑐𝑒(𝑡) = − ∑

𝑖∈𝐼𝐿
∑
𝒌𝛱
̃𝑔(𝒱)𝑘 𝑔𝑖,�̂�𝛱 ei(𝜔𝑒𝑖−𝑘𝑐)𝑡 ̃𝑐𝑖,𝒌𝛱(𝑡), (2.67)

d
d𝑡
̃𝑐𝑖,𝒌𝛱(𝑡) = ̃𝑔

(𝒱)
𝑘 𝑔𝑖,�̂�𝛱 e−i(𝜔𝑒𝑖−𝑘𝑐)𝑡 ̃𝑐𝑒(𝑡), (2.68)

where we have introduced the difference frequency of the atomic eigenstates 𝜔𝑒𝑖 ≔ 𝜔𝑒 −𝜔𝑖.
From the initial conditions ̃𝑐𝑒(0) = 1 and ̃𝑐𝑖,𝒌𝛱(0) = 0 (∀𝑖, 𝒌,𝛱), we can formally solve
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eq. (2.68) by integration and insert it into eq. (2.67), giving a single integro-differential
equation for the excited state amplitude ̃𝑐𝑒(𝑡):

d
d𝑡
̃𝑐𝑒(𝑡) = − ∑

𝑖∈𝐼𝐿
∑
𝒌𝛱
( ̃𝑔(𝒱)𝑘 )2|𝑔𝑖,�̂�𝛱|2

𝑡

∫
0

̃𝑐𝑒(𝑡′)ei(𝜔𝑒𝑖−𝑘𝑐)(𝑡−𝑡
′)d𝑡′. (2.69)

Transitioning to continuum modes we have, with ̃𝑔𝑘 ≔ √ 𝒱
(2𝜋)3 ̃𝑔

(𝒱)
𝑘 = √

𝑘𝑐
2(2𝜋)3ℏ𝜀0

,

d
d𝑡
̃𝑐𝑒(𝑡) = − ∑

𝑖∈𝐼𝐿
∑
𝛱
∫
ℝ3
̃𝑔2𝑘|𝑔𝑖,�̂�𝛱|2

𝑡

∫
0

̃𝑐𝑒(𝑡′)ei(𝜔𝑒𝑖−𝑘𝑐)(𝑡−𝑡
′)d𝑡′d3𝒌. (2.70)

As the terms that depend on the magnitude 𝑘 and those that depend on the geometric
aspects (�̂�, 𝛱) neatly separate, it is convenient to employ spherical coordinates:

d
d𝑡
̃𝑐𝑒(𝑡) = − ∑

𝑖∈𝐼𝐿
(∑
𝛱
∫
𝒮2
|𝑔𝑖,�̂�𝛱|2d2�̂�)

∞

∫
0

𝑘2 ̃𝑔2𝑘

𝑡

∫
0

̃𝑐𝑒(𝑡′)ei(𝜔𝑒𝑖−𝑘𝑐)(𝑡−𝑡
′)d𝑡′d3𝑘. (2.71)

Independent of the concrete choice of polarisation basis, the integral over unit sphere sur-
face elements d2�̂� is

∑
𝛱
∫
𝒮2
|𝑔𝑖,�̂�𝛱|2d2�̂� = 𝑑𝑖𝑒

2 ∫
𝒮2
∑
𝛱
| ̂𝒅𝑖𝑒 ⋅ ̂𝝐�̂�𝛱|2 d2�̂� =

8𝜋
3
𝑑𝑖𝑒2. (2.72)

This leaves the terms in 𝑘 and the integration over d𝑡′, for which we make a Markov-type
approximation [Mil76] by replacing ̃𝑐𝑒(𝑡′) ≈ ̃𝑐𝑒(𝑡) in the integrand, such that for times 𝑡
long compared to the optical timescale 𝜔𝑒𝑖−1

d
d𝑡
̃𝑐𝑒(𝑡) ≈ − ∑

𝑖∈𝐼𝐿

8𝜋
3
𝑑𝑖𝑒2
∞

∫
0

𝑘2 ̃𝑔2𝑘

𝑡

∫
0

ei(𝜔𝑒𝑖−𝑘𝑐)(𝑡−𝑡′) d𝑡′

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≈𝜋𝛿(𝜔𝑒𝑖−𝑘𝑐)−i𝒫( 1𝜔𝑒𝑖−𝑘𝑐 )

d𝑘 ̃𝑐𝑒(𝑡)

≈22 − ∑
𝑖∈𝐼𝐿

2(2𝜋)2
3𝑐
𝑑𝑖𝑒2 𝑘𝑒𝑖2 ̃𝑔 2𝑘𝑒𝑖 ̃𝑐𝑒(𝑡),

(2.73)

where we have written 𝑘𝑒𝑖 ≔ 𝜔𝑒𝑖/𝑐 for the angular wavenumber exactly corresponding to
the energy difference between the atomic levels. Hence, the excited state decays exponen-
tially:

̃𝑐𝑒(𝑡) = e−
𝛤
2 𝑡, 𝛤 ≔ ∑

𝑖∈𝐼𝐿
𝐴𝑒𝑖, 𝐴𝑒𝑖 ≔

𝑘𝑒𝑖3𝑑𝑖𝑒2

3𝜋ℏ𝜀0
. (2.74)

22𝒫 in the second term of the approximation to the d𝑡′ integral denotes the Cauchy principal value. As
the term is purely imaginary, it leads to a divergent level shift. It can be recognised as part of the Lamb shift
after renormalisation [Mil76], but we simply drop it here, considering any level shifts to be already included
in the atomic energy levels ℏ𝜔𝑖.
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This is the well-known expression for the decay constant 𝛤 of the excited state population
| ̃𝑐𝑒(𝑡)|2 as the sum of all Einstein coefficients for the individual transitions 𝐴𝑒𝑖, where we
can trace back the 𝑘3𝑒𝑖 dependence to the density of e.m. modes in vacuum.

Photon wavepackets entangled with lower ion states. Inserting eq. (2.74) back into the
mode-continuum equivalent of eq. (2.68) and integrating, we obtain

̃𝑐𝑖,𝒌𝛱(𝑡) = ̃𝑔𝑘 𝑔𝑖,�̂�𝛱
1 − e−(

𝛤
2 +i(𝜔𝑒𝑖−𝑘𝑐))𝑡

𝛤
2 + i(𝜔𝑒𝑖 − 𝑘𝑐)

(2.75)

for the individual mode components, and we can write (leaving the interaction picture)
the joint ion–photon state as

|𝜓(𝑡)⟩ = e− 𝛤2 𝑡e−i𝜔𝑒𝑡 |𝑒⟩ ⊗ |0⟩

+ ∑
𝑖∈𝐼𝐿
e−i𝜔𝑖𝑡 |𝑖⟩ ⊗ (∑

𝛱
∫
ℝ3
̃𝑔𝑘 𝑔𝑖,�̂�𝛱
1 − e−(

𝛤
2 +i(𝜔𝑒𝑖−𝑘𝑐))𝑡

𝛤
2 + i(𝜔𝑒𝑖 − 𝑘𝑐)

e−𝑖𝑘𝑐𝑡𝑎†𝒌𝛱 d3𝒌) |0⟩ .
(2.76)

The bracketed expression defines a wavepacket corresponding to each decay channel in
terms of its plane-wave expansion. In the photon wavefunction formalism, we can rep-
resent the wavepacket corresponding to an 𝑒 ↦ 𝑖 decay by an explicit mode function
(cf. eq. (2.35))

𝒇𝑖(𝒓, 𝑡) = i√
ℏ𝑐
2𝜀0
𝑁−1𝑖 ∑
𝛱
∫
ℝ3

√𝑘 ̃𝑔𝑘 𝑔𝑖,�̂�𝛱
1 − e−(

𝛤
2 +i(𝜔𝑒𝑖−𝑘𝑐))𝑡

𝛤
2 + i(𝜔𝑒𝑖 − 𝑘𝑐)

̂𝝐�̂�𝛱ei𝑘(�̂�⋅𝒓−𝑐𝑡)d3𝒌, (2.77)

where 0 < 𝑁𝑖 < 1 is a yet to be determined, dimensionless normalisation constant such
that𝒇𝑖(𝒓, 𝑡) contains exactly one photon23. This way, we can for each decay channel define
new creation and annihilation operators { ̃𝑎†𝑖 , ̃𝑎𝑖} such that the state and the electric field
operator become

|𝜓(𝑡)⟩ = e−(
𝛤
2 +i𝜔𝑒)𝑡 |𝑒⟩ ⊗ |0⟩ + ∑

𝑖∈𝐼𝐿
𝑁𝑖 e−i𝜔𝑖𝑡 |𝑖⟩ ⊗ ̃𝑎†𝑖 |0⟩ ,

𝑬⟂(𝒓, 𝑡) = ∑
𝑖∈𝐼𝐿
𝒇𝑖(𝒓, 𝑡) ̃𝑎𝑖 + h. c..

(2.78)

Note that the modes associated with different decay channels will not in general be orthog-
onal.

23Some care is needed as the coefficients explicitly depend on 𝑡 in the numerator, not only on 𝑘. This
contribution decays exponentially for 𝑡 ≫ 𝛤−1, though, and only serves a formal role in suppressing an
incoming-wave contribution in eq. (2.81).
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To explicitly compute themode functions, we again split up the integral into radial and
angular parts,

𝒇𝑖(𝒓, 𝑡) = i√
ℏ𝑐
2𝜀0
𝑁−1𝑖 ∑
𝛱
∫
ℝ3
𝑘√ 𝑐
2(2𝜋)3ℏ𝜀0

𝑑𝑖𝑒 ̂𝒅𝑖𝑒 ⋅ ̂𝝐�̂�𝛱
1 − e−(

𝛤
2 +i(𝜔𝑒𝑖−𝑘𝑐))𝑡

𝛤
2 + i(𝜔𝑒𝑖 − 𝑘𝑐)

̂𝝐�̂�𝛱ei𝑘(�̂�⋅𝒓−𝑐𝑡)d3𝒌

= i 𝑑𝑖𝑒 𝑐
2𝜀0(2𝜋)3/2

∞

∫
0

𝑘31 − e
−( 𝛤2 +i(𝜔𝑒𝑖−𝑘𝑐))𝑡

𝛤
2 + i(𝜔𝑒𝑖 − 𝑘𝑐)

e−i𝑘𝑐𝑡 ∫
𝒮2
ei𝑘(�̂�⋅𝒓) ∑

𝛱
( ̂𝒅𝑖𝑒 ⋅ ̂𝝐�̂�𝛱) ̂𝝐�̂�𝛱
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= ̂𝒅𝑖𝑒−( ̂𝒅𝑖𝑒⋅�̂�)�̂�

d2�̂�d𝑘.

(2.79)
The angular integral can be straightforwardly evaluated by choosing spherical coordinates
with the polar axis aligned with ̂𝒓 (the normalised position coordinate, 𝒓 = 𝑟 ̂𝒓):

∫
𝒮2
ei𝑘(�̂�⋅𝒓) ( ̂𝒅𝑖𝑒 − ( ̂𝒅𝑖𝑒 ⋅ �̂�)�̂�) d2�̂� = 2𝜋 ̂𝒅𝑖𝑒 ⋅

𝜋

∫
0

ei𝑘𝑟 cos 𝜃 (1 − (sin 𝜃)2𝟙 − ̂𝒓 ̂𝒓
2
+ (cos 𝜃)2 ̂𝒓 ̂𝒓) sin 𝜃 d𝜃

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= ei𝑘𝑟𝑘𝑟 ((−i+

1
𝑘𝑟+
i
(𝑘𝑟)2 )(𝟙− ̂𝒓 ̂𝒓)+(−

1
𝑘𝑟−
i
(𝑘𝑟)2 ) ̂𝒓 ̂𝒓)+c. c.

= −2𝜋i (e
i𝑘𝑟

𝑘𝑟
− e
−i𝑘𝑟

𝑘𝑟
) ( ̂𝒅𝑖𝑒 − ( ̂𝒅𝑖𝑒 ⋅ ̂𝒓) ̂𝒓) + O(

1
(𝑘𝑟)2
)

(2.80)
This exactly mirrors the form of classical dipole radiation; neglecting the terms in higher
powers of (𝑘𝑟)−1 corresponds to considering the far-field limit 𝑘𝑟 ≫ 1. To evaluate the
remaining integral over 𝑘, we again assume that the emission is narrow-band (𝛤 ≪ 𝜔𝑒𝑖)
such that we can approximate the 𝑘2 factor by (𝜔𝑒𝑖/𝑐)2 and in excellent approximation
extend the lower integration bound to −∞. Analytically continuing the integrand into the
complex plane and integrating along a semicircular contour then gives

∞

∫
0

𝑘21 − e
−( 𝛤2 +i(𝜔𝑒𝑖−𝑘𝑐))𝑡

𝛤
2 + i(𝜔𝑒𝑖 − 𝑘𝑐)

(ei𝑘𝑟 − e−i𝑘𝑟)e−i𝑘𝑐𝑡d𝑘 ≈ 2𝜋𝜔
2
𝑒𝑖
𝑐3
e−( 𝛤2 +i𝜔𝑒𝑖)(𝑡− 𝑟𝑐 )Θ(𝑡 − 𝑟

𝑐
) , (2.81)

where Θ is the Heaviside unit step function (with Θ(𝑥) = 1 for 𝑥 > 0 and 0 otherwise).
We have thus obtained an explicit expression for the mode functions from eq. (2.78);

a spontaneous decay from |𝑒⟩ to |𝑖⟩ is associated with a photon wavepacket

𝒇𝑖(𝒓, 𝑡) = 𝑁−1𝑖
𝑑𝑖𝑒 𝜔2𝑒𝑖
2√2𝜋 𝜀0 𝑐2

e−i𝜔𝑒𝑖(𝑡− 𝑟𝑐 )
𝑟
( ̂𝒅𝑖𝑒 − ( ̂𝒅𝑖𝑒 ⋅ ̂𝒓) ̂𝒓) e−

𝛤
2 (𝑡−
𝑟
𝑐 )Θ(𝑡 − 𝑟

𝑐
) , (2.82)

describing a radial wave front e−i𝜔𝑒𝑖𝑡′/𝑟 emanating from the atom in the origin of the co-
ordinate system with a temporal envelope e−𝛤𝑡′/2 for retarded times 𝑡′ ≔ 𝑡 − 𝑟/𝑐 > 0. Its
angular amplitude and polarisation pattern is given by the classical dipole radiation pat-
tern ̂𝒅𝑖𝑒 − ( ̂𝒅𝑖𝑒 ⋅ ̂𝒓) ̂𝒓 = − ̂𝒓 × ( ̂𝒓 × ̂𝒅𝑖𝑒).
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Finally, we can choose the normalisation factor 𝑁𝑖 such that each mode con-
tains, for long times 𝑡 → ∞, exactly one photon24, i.e. the overall electrical energy
∫ℝ3
𝜀0
2 |𝒇𝑖(𝒓, 𝑡)|

2d3𝒓 is exactly ℏ𝜔𝑒𝑖2 . This gives𝑁𝑖2 = 𝐴𝑒𝑖/𝛤, and

|𝜓(𝑡)⟩ 𝑡≫𝛤
−1

≈ ∑
𝑖∈𝐼𝐿

√𝐴𝑒𝑖
𝛤
e−i𝜔𝑖𝑡 |𝑖⟩ ⊗ ̃𝑎†𝑖 |0⟩ . (2.83)

The probability to find the ion in each of the lower states at long times is given by the
fractional contribution of the respective Einstein 𝐴 coefficient to the total linewidth 𝛤.

2.5 Heralded remote entanglement generation

Per eq. (2.55), the interaction between the atomic dipole moment25 and the electric field
is unitary, even in free space. Consequently, the simplest way to photonically mediate an
entangling interaction between two ions might appear to be for one ion to spontaneously
emit a photon entangled with its internal state, and for the other to absorb it, leaving the
ions in an entangled state. Such a direct transmission scheme is in theory indeed conceiv-
able, but would be exceedingly challenging to achieve in practice, as any non-idealities
would affect the state transfer (and hence the quality of the generated entanglement).

Two issues are immediately apparent: First, as dipole emission covers the full 4π of
solid angle, reaching the “strong coupling” regime in free space would require extremely
high-numerical-aperture optics that can collect all this emission and re-focus it at the lo-
cation of the receiver ion. Secondly, as the absorption process would be the time inverse
of the emission process, for it to occur with unit probability, the temporal shape of the
photon would also need to be flipped. Of course, this is trivial to ensure if the photon
time envelope is symmetrical, but far from that for the exponentially decaying amplitude
associated with spontaneous decay (and consequently, the exponentially rising amplitude
necessary for efficient free-space absorption). This has indeed been verified in experiments
with attenuated laser pulses [Alj+13; Leo+16], but losslessly inverting the temporal shape
of narrow-band photons is challenging, requiring e.g. the use of specifically tailored optical
cavities [Sri+14].

24This can be viewed as an explicit step to assume the perspective outlined at the beginning of this chapter,
where we separate the photon generation process from the further operations. In this setting, it is convenient
to include the exponential envelope in𝒇𝑖(𝒓, 𝑡) rather than explicitly in the time-dependent state vector. Coin-
cidentally, in our experiment the optical path to the single-photon detectors is not long enough for emission
and detection processes actually to be well-separated in time, but as we do not interact with the ions before
𝑡 ≫ 𝛤−1, we cannot observe anything outside the ground-state subspace. If, hypothetically, we were able
to rapidly measure the ion state, the exponentially decaying amplitude from eq. (2.74) would not be a good
approximation; a photon detection projects the ion into one of the ground states with certainty.

25Other types of transitions could in theory also be employed for remote entanglement generation,
though electric dipole (E1) transitions are the most obvious candidates, as their coupling strength tends
to be the largest.
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Figure 2.4: Heralded entanglement generation between remote qubits across a photonic link. Creating
two ion–photon maximally entangled states and performing a Bell-basis measurement on the photons 𝑃1
and 𝑃2 leaves the ions 𝐼1 and 𝐼2 in a maximally entangled state. This is visually evident in the graphical
formalism of Coecke et al. [Coe10] employed here, where maximally entangled states are represented by
cups (⋃), Bell-basis measurements by caps (⋂, with a unitary correction 𝑈𝑘 depending on the outcome 𝑘
of the measurement), and “yanking” lines straight results in valid mathematical equations.

Placing the atomic emitters and absorbers in optical cavities can in principle help ad-
dress both of these challenges. The modified mode structure of the electromagnetic vac-
uum between the cavity mirrors can greatly enhance the coupling to the well-defined cav-
ity mode compared to isotropic free space, and by using the cavity-enhanced emission as
one leg of a 𝛬-system Raman process, where the other leg is driven by an laser pulse, the
coupling can be modulated in time to ensure efficient reabsorption. In this framework of
cavity quantum electrodynamics, quantum teleportation and remote qubit entanglement
via direct photon transmission have indeed been demonstrated [Kim08; RR15], but do-
ing so at a high level of performance (transmission/entanglement fidelity) is still far from
trivial. For trapped ions in particular, the interaction between the dielectric cavity mirrors
and the ion charge makes them technically harder to implement yet (cf. §§6.4 and 8.1.3).

Even if all this could theoretically be achieved, practical realisations will always suffer
from imperfections. In particular, for long-distance quantum networking application, a
considerable amount of link loss is unavoidable. Fortunately, strong coupling and deter-
ministic interaction turn out not to actually be necessary, though. The key observation is
that a process that only succeeds a fraction of the time26 is perfectly serviceable as long
as there is some signal to indicate whether it in fact did, such that repeated entanglement
attempts can be made until a success is eventually observed. Such procedures are known
as “heralded” entanglement generation, or “event-ready”, schemes.

One such heralded entanglement generation scheme, which is in ubiquitous use across
virtually all qubit platforms, is depicted in fig. 2.4. By bringing together one photon from

26Or, in the unitary picture: […] a process where the state component corresponding to successful gen-
eration of entanglement only has a small amplitude […]
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each node on a central beamsplitter and placing detectors in its output, a probabilistic Bell-
basis measurement can be applied to the photons. Such a projective measurement, the
success of which is heralded by two simultaneous clicks in the photon detectors, applied
to a pair of ion–photon Bell states, itself leaves the ions in a maximally entangled, pure
state – a process known as “entanglement swapping” [Żuk+93]. It is remarkable that no
information travels directly from one node to the other in this entanglement generation
process (only the heralding success signal from the central station to each node).

The realisation of a Bell state measurement in linear optics relies solely on the indis-
tinguishability of the photons; in the simplest case of a 50 ∶ 50 beamsplitter directly fol-
lowed by two detectors, the Hong–Ou–Mandel effect [HOM87] ensures that coincident
clicks project the photons into the one antisymmetric Bell state |𝛹−⟩. Thus, the chosen
photon basis states do not necessarily need to be amenable to direct manipulation as a
qubit, as long as maximally entangled ion–photon states are quick to prepare with high
fidelity, easy to collect with good efficiency, and identical across time and different nodes.
In the experiments described here, however, we will employ photons entangled with the
ion in their polarisation, which is readily manipulated. Not only does this allow us to
analyse the behaviour of individual nodes in isolation, but with the addition of two polar-
ising beamsplitters and two (for a total of four) single-photon detectors, two out of four
Bell states (doubling the heralding probability over a simple two-detector measurement).
As the successful projection onto a Bell state requires the detection of two photons, the
success probability is quadratic in the individual collection/detection probabilities for a
photon from each node (up to an asymptotic limit of 12 in the case of linear optics, where
only two out of four Bell states can be distinguished). A practically very useful property of
such schemes is also that the path length stability requirements for the optical link are not
given by the optical wavelength, but only the photon overlap condition and any frequency
splitting between the qubit states, and thus significantly more lenient (as discussed further
in chapter 4).

Finally, it should be noted that heralded remote entanglement of this nature can also
be realised in schemes similarly exploiting the interference on a beamsplitter, but heralded
through the detection of only a single photon (where the entanglement mechanism can
be though of as stemming from the ambiguity about which node the detected photon
originated from) [Cab+99]. Such schemes, which can equivalently be considered to use
the number-state basis as the photon qubit encoding, require the optical path linking the
nodes to be interferometrically stable, and (for the production of single Bell pairs [CB08]),
have an intrinsic rate–fidelity trade-off. While they have the advantage of only depending
linearly on the one-node photon collection probability in their success rate, the sensitiv-
ity to wavelength-scale path fluctuations is an additional challenge in trapped ions. Such
schemes have attracted attention in some other qubit technologies, but have received little
attention in trapped ions (with the exception of ref. [Slo+13]); we will not consider them
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here any further.
In chapter 4, we will analyse a two-photon heralded remote entanglement scheme in

great detail. First, however, we turn our attention to the concrete experimental platform
used for our remote entanglement demonstrations.





3 Alice and Bob: Twin ion-trap apparatus

A key component of the state-of-the-art, stable remote entanglement results to be dis-
cussed in chapters 6 and 7 was the construction of two trapped-ion quantum network
nodes. Compared to the traditional way of constructing experiments in atomic andmolec-
ular physics (centred around flexible optical breadboards, etc.), many of the subsystems
were designed and engineered intentionally with the requirements of few-qubit remote en-
tanglement experiments in mind, with a particular focus on robustness and maintainabil-
ity. While the design and construction of this system has taken up significant effort over
the span of this project, due to space constraints I will only give a very brief summary of
the apparatus here to provide some context for the rest of this thesis. The interested reader
is referred to L. Stephenson’s recent DPhil thesis for a more complete description [Ste19].

3.1 The ions: 43Ca+ and 88Sr+

In typical trapped-ion quantum information experiments, one or more positively charged
atomic ions are confined in radio-frequency Paul traps under ultra-high vacuum vacuum
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(ideally well below 10−9 Pa to avoid ion loss from background gas collisions). A compre-
hensive toolbox of techniques using lasers and radio-frequency radiation to manipulate
the system exists, including isotope-selective photoionisation, multiple forms of laser cool-
ing, dissipative preparation of the internal electronic state, and coherent single- and multi-
qubit operations. These are well explored theoretically and have been implemented in a
number of atomic species [Win+98; Lei+03].

A main focus of our group in recent years was the development of techniques for the
manipulation of 43Ca+ (see fig. 3.1). Its nuclear spin of 72 somewhat complicates laser cool-
ing, but qubits stored in the hyperfine ground state manifold (splitting ≈ 3.2GHz) are
among the best-performing in any technology. High-fidelity state preparation and mea-
surement (error 𝜖 = 7 × 10−4), single-qubit gates (𝜖 = 1 × 10−6), and long coherence times
(𝑇∗2 > 50 s) have been demonstrated [Har+14], as well as high-fidelity laser-driven single-
qubit (𝜖 = 7 × 10−5) and two-qubit gates (𝜖 = 1 × 10−3) [Bal+16]. At the same time, the
required laser wavelengths are all near the visible regime, where commercial diode lasers
and off-the-shelf optical components and fibres are readily available.

Including a second ion species with different transition wavelengths provides an in-
trinsic means to target only a subset of ions in a trap, for example to cool the motion
of an ion string while keeping information stored on another species (sympathetic cool-
ing). For these experiments, we have chosen 88Sr+ as a companion species to 43Ca+ (see
fig. 3.2). It has no hyperfine structure, which simplifies cooling and is beneficial for achiev-
ing a high rate of ion–photon entanglement. The transitionwavelengths are well-separated
from 43Ca+, yet close enough to make common optical systems for both species straight-
forward to design. The mass ratio of 𝑚Sr/𝑚Ca ≈ 2 is also moderate enough not to pose
any challenges for trap stability, although the coupling of the radial modes between the
species is already weak enough to only realistically1 leave the axial modes as an attractive
choice for multi-qubit gates [Hom13]. We have recently demonstrated such a 43Ca+–88Sr+

mixed-species gate in a different apparatus (not described here, see ref. [Thi19]), achieving
a Bell-state fidelity of ℱ = 99.8(1)% [Hug+20]. The experiments described in this thesis
involve only a single 88Sr+ ion; we will only mention the accommodations for 43Ca+ in
passing here2.

1The secular oscillation frequency of a single ion in the rotating pseudopotential of a Paul trap is in-
versely proportional to the ion mass. As a consequence, calculations for e.g. the simplest 43Ca+–88Sr+ crystal
in a trap with single-43Ca+ frequencies {2.0MHz, 8.5MHz, 9.5MHz} give the amplitude contribution of one
species to the eigenvector of the radial mode dominated by the other to only 2% (in terms of mass-weighted
positions, i. e. as it enters the effective Lamb–Dicke parameter describing the strength of laser-motion cou-
pling).

2The complete system has been constructed, however, and at the time of writing, 43Ca+–43Ca+, 88Sr+–
43Ca+ and 88Sr+–88Sr+ two-qubit gates have been achieved.
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Figure 3.3: The Sandia High Optical Access 2 (HOA2) microfabricated surface-electrode trap. Left: The trap
consists of a linear central region with two Y-shaped junctions on either end. A slot through the substrate
provides optical access from the back side; the bow-tie shape provides a large free solid angle for beams
skimming the trap. Right: Detail of the electrode arrangement in the middle of the central isthmus, close
to the design ion position marked by a white dot (design null 70 µm above the surface). The oblong elec-
trodes Q39 and Q40 are used for stray field compensation, the four highlighted DC electrode segments
Q15, Q16, Q23, Q24 for link disconnection in chapter 7. (Photograph and original drawing courtesy of
Sandia National Laboratories.)

3.2 Apparatus overview

The experiment consists of two trapped-ion nodes that are (mirror-symmetric) copies of
each other, and almost completely independent except for a shared set of laser sources. A
high-level block diagram of the involved subsystems is shown in fig. 3.4, some of which
are briefly described in the following; the reader is once again referred to the thesis of
L. Stephenson [Ste19] for details.

3.2.1 Ion traps

The ion trap nodes are built around the “High Optical Access 2.1” (HOA2) microfabri-
cated surface-electrode trap manufactured by Sandia National Laboratories [Mau16] (see
fig. 3.3). It was chosen as a proven design, and its 94 independent control voltages provide
more than sufficient flexibility to establish multiple independent trap zones for the demon-
stration of more complex algorithms (see outlook in §8.2). The design ion height is 68 µm
above the surface, with segmented dc control electrodes allowing the independent control
of several ion strings (see fig. 3.3). The RF electrodes are resonantly matched3 to 50Ω at
51MHzwith a quality factor𝑄∼50, resulting in a zero-peak RF amplitude of∼ 170V. The

3In Alice, a single-stage lumped-element 𝐿𝐶 matching network is used, in Bob, a toroidal transformer.
The exact step-up factor depends on parasitic losses and the tuning on various parasitic reactances; a higher
voltage somewhat closer to the rated trap voltage limit of 300V, at a slightly increased rf drive frequency,
would be desirable to reach lower motional heating rates.
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Figure 3.5: Block diagram of the rf generation circuit (part numbers for suitable components by Mini-
Circuits, Inc.). A dds channel at 𝛺rf supplies the unmodulated trapping potential (optionally through a
limiting amplifier for further passive amplitude stabilisation). To provide a small, tunable amount of am-
plitude modulation without affecting the mode stability in regular operation, the signal is split into two
paths using a passive power splitter, one of which is modulated using a double-balanced diode-ring mixer,
whose IF port is driven from the second Urukul channel set to 𝜔𝐴𝑀. The signals are then recombined us-
ing a directional coupler and amplified before the trap resonator. In this configuration, the phase of both
the 𝛺𝑅𝐹 and 𝜔𝐴𝑀 tones is stable and known in absolute terms with respect to the fpga timeline, enabling
simple demodulation of the pmt photon arrival times in the digital domain for micromotion compensa-
tion.

dc electrodes are driven by a multi-channel 16-bit, ±10V digital-to-analogue converter4

(dac), with voltages chosen to result in typical mode frequencies of 1.85MHz, 2.28MHz,
and 2.90MHz for the axial and two radial modes (when combined with the rf pseudopo-
tential). A static quadrupole term is added such that the radial mode vectors are rotated
by 28° about the trap axis, resulting in overall angles of 70° and 51° between the cooling
beams and the low- and high-frequency radial modes, respectively.

For the stray field compensation method described in chapter 5, rf amplitude modu-
lation is applied using a mixer circuit (fig. 3.5) driven by a direct digital synthesis source
(dds) with phase referenced to the same clock used for input timestamping (fluorescence
photon timestamping). The sensitivity of the electric field at the ion position to the voltages
applied to the global compensation electrodes in the in-plane and out-of-plane directions
is 0.5Vm−1/mV and 0.6Vm−1/mV, respectively, such that the DAC resolution limits the
stray field compensation precision to 0.2Vm−1.

3.2.2 Non-coherent/dissipative operations

All ion state manipulation is performed through laser beams which propagate parallel to
the trap plane and are focussed at the trap centre (fig. 3.6).

For 88Sr+, atoms are loaded from a thermal source [Bal+18] through a two-stage res-
onant photoionisation process [Luc+04] using laser beams at 461 nm and 378 nm. The
5𝑠 𝑆1/2 ↔ 5𝑝𝑃1/2 ↔ 4𝑑𝐷3/2 Doppler cooling cycle is addressed by 422 nm and 1092 nm

4The Zotinomodule from the ARTIQ/Sinara open-source hardware ecosystem; later replaced by Fastino
modules for faster update rates.
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beams (of approximately 𝜋 and 𝜎± polarisations) perpendicular to the 0.5mT magnetic
field, each oriented at 45° to the trap axis. To prepare the ion in |5𝑠 2𝑆1/2, 𝑚𝐽 = −12⟩ though
optical pumping, a 𝜎−-polarised 422 nm beam is applied (together with the 1092 nm beam
to avoid population trapped in the metastable states). State detection also uses the 422 nm
and 1092 nm cooling beams; if the ion has been coherently transferred to the 𝐷5/2 level
using 674 nm laser pulses (see §3.2.3), it remains dark, while it fluoresces bright otherwise.
A 1033 nm laser dissipatively returns𝐷5/2 population to the cooling cycle.

Ionfluorescence is collected through a 60 µm slot in the trap centre (numerical aperture
0.25) and imaged onto a photomultiplier tube (pmt), resulting in an overall collection
efficiency of 𝜂 ≈ 0.4% with very low background from laser scatter. Typical signal count
rates for a single bright ion are 160 kHz vs. < 100Hz background, leading to negligible
statistical state discrimination error for typical readout times of 200 µs.

43Ca+ is similarly loaded from a thermal source, ionised using 423 nm and 378 nm
lasers, and cooled and initialised by addressing the 4𝑠 2𝑆1/2 ↔ 4𝑝 2𝑃1/2 and 4𝑝 2𝑃1/2 ↔
3𝑑 2𝐷3/2 transitions using 397 nm and 866 nm lasers. In 43Ca+, we opt to avoid the require-
ment for a narrow-linewidth laser by state-selectively shelving the ion to the𝐷5/2 level via
the 393 nm and 850 nm excitation [Mye+08]; the 854 nm laser returns shelved population
to the cooling cycle.

Most laser sources are external cavity diode lasers5, stabilised to piezo-actuated refer-
ence cavities using the Pound–Drever–Hall locking scheme [Dre+83] for 393 nm, 397 nm,
422 nm, 866 nm and 1092 nm, and digitally stabilised with a low feedback bandwidth to a
Fizeau-interferometer-based wavemeter6 for 423 nm, 461 nm, 854 nm and 1033 nm. The
378 nm laser is a free-running diode laser7. The beams are frequency-shifted and switched
as required using acousto-optical modulators (aoms). After delivery to the trap nodes
through optical fibres, the beams are filtered in polarisation and stabilised in power by
sampling a small portion of the beam onto a photodiode and feeding back onto the rf
amplitude driving a respective aom. The exception to this are the photoionisation lasers,
which are controlled via mechanical shutters.

3.2.3 Coherent qubit operations

The currents through three copper wire coils surrounding the trap vacuum system are
set such that the static magnetic field at the position of the ion is 𝐵 = 0.5000mT. The
precise value is an arbitrary choice, but a field of roughly this magnitude is large enough
to give appreciable (∼ 10MHz) Zeeman splittings, but still small enough to retain a low

5Toptica DL Pro with DLC Pro controllers.
6HighFinesse WS-7.
7Toptica iBeam smart.
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magnetic field sensitivity of the |𝐹 = 4,𝑚𝐹 = 0⟩ ↔ |𝐹 = 3,𝑚𝐹 = 0⟩ zero-field clock qubit
in the 4𝑠 2𝑆1/2 43Ca+ ground state8.

At this magnetic field flux density, the splitting between the |𝑆1/2, 𝑚𝐽 = ±1/2⟩ ground
state Zeeman qubit levels in 88Sr+, where the ion–photon entanglement is naturally cre-
ated, is 14.01MHz. Instead of directly manipulating the qubit state with an rf magnetic
field, we choose to manipulate it indirectly using a narrow-linewidth 674 nm laser to ad-
dress various electric quadrupole (E2) transitions to the meta-stable 𝐷5/2 states in antic-
ipation of future multi-ion experiments (and as we already rely on that 674 nm laser for
state-selective readout). Hence, access to both a |𝛥𝑚| = 1 and |𝛥𝑚| ∈ {0, 2} transition is
required, preferably with a single laser beam for simplicity. Considering the E2 geometry
factor while minimising the magnetic field sensitivity, we usually use |𝐷5/2, 𝑚𝐽 = −3/2⟩
as the shared upper state, addressing transitions from the ground state to it using a laser
beam angled perpendicular to the magnetic field and linearly polarised. A 𝜋 pulse on
the |𝑆1/2, 𝑚𝐽 = 1/2⟩ → |𝐷5/2, 𝑚𝐽 = −3/2⟩ transition maps the Zeeman qubit state onto
the less magnetically-sensitive |𝑆1/2, 𝑚𝐽 = −1/2⟩ ↔ |𝐷5/2, 𝑚𝐽 = −3/2⟩ qubit, where it can
then be further manipulated. The angle of polarisation tunes the relative strength of the
two transition classes (and is usually set to favour |𝛥𝑚| = 1 transitions for multi-qubit
gates).

The 674 nm laser source is a DPSS-pumped Ti:Sapphire laser9, stabilised to an “ultra-
low expansion” (ule) glass cavity10 using the Pound–Drever–Hall technique augmented
by an additional frequency offset tone, with feedback applied via an external aom (for
fast actuation) and to piezoelectric actuators controlling the laser cavity length. The fre-
quency of the offset tone, and hence the frequency shift between locked laser and cavity
resonance, is slowly ramped to compensate a slowing frequency drift of the reference cav-
ity presumably from relaxation of manufacturing stress (0.199mHz/s in September 2017,
0.055mHz/s in December 2021). The low-bandwidth feedback to the laser cavity length
is implemented using a custom digital feedback controller11 that also monitors the high-
finesse cavity transmission to remedy occasional loss-of-lock events (likely in part caused

8There also happens to be a 729 nm (𝑆1/2 ↔ 𝐷5/2) clock transition in 43Ca+ close to this field [Ben+07];
in a future expansion, the field could be re-tuned to the exact point of vanishing first-order field sensitivity
at 0.496mT with minimal changes.

9Supplied by a Scottish manufacturer who shall remain nameless, as I would otherwise feel obliged to
comment on the abysmal reliability record of this laser system.

10Cavity and system integration provided by Stable Laser Systems, Boulder, CO, United States.
11The controller is based on the Stabilizer microcontroller card from the Sinara open-hardware ecosys-

tem, extended with isolated digital outputs and executing custom firmware. The digital outputs are used
to control a fast analog controller for the main aom-based lock and provide lock status signals to the ion
trap nodes. Automatic lock re-acquisition is coordinated by a state machine executed on a desktop pc, as
selecting the correct target mode relies on wavemeter measurements and can require digital adjustments to
the Ti:Sapphire laser mode selection etalon.
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Lower qubit state Transition magnetic
field sensitivity

Coherence time Error per Clifford gate

Alice Bob Alice Bob

𝑆1/2, 𝑚𝐽 = −1/2 −11.2MHz/mT 7.5ms 4.2ms 5.9 × 10−4 4.9 × 10−4
𝑆1/2, 𝑚𝐽 = +1/2 −39.2MHz/mT 1.7ms 1.0ms 7.5 × 10−4 10 × 10−4

Table 3.1: Measured qubit performance on 674 nm transitions with𝐷5/2, 𝑚𝐽 = −3/2 as the upper qubit
state. The 1/𝑒 coherence times were extracted from a Gaussian fit to the contrast decay in a Ramsey exper-
iment with varying wait duration, without any dynamical decoupling pulses. The gate errors are obtained
via randomised benchmarking [Kni+08]; in the chosen decomposition of the single-qubit Clifford group,
the mean physical pulse area across all elements is 0.58𝜋.

by acoustic disturbances12); a real-time signal notifies the ion-trap nodes of this so that
data acquisition can be momentarily paused.

To stabilise the magnetic fields at the ion location, we use high-precision feedback con-
trollers acting onto the quantisation coil currents (including active feed-forward to com-
pensate for ambient fields generated by 50Hz power mains)13.

For manipulation of the 43Ca+ qubit state, including 43Ca+–88Sr+ mixed-species entan-
gling gates, two beams at ≈ 402 nm and spaced by 3.2GHz are generated from a single
external-cavity diode laser at ≈ 804 nm (separately amplified and frequency-doubled after
applying the frequency splitting) to drive Raman transitions and induce spin-dependent
light shifts; their use is not discussed further here.

3.2.4 Single-photon generation and analysis

Ion-photon entanglement generation (see chapter 4) starts with preparation of the ion
in |5𝑠 2𝑆1/2, 𝑚𝐽 = −12⟩ the excitation of the 88Sr+ ion to the short-lived |5𝑝 2𝑃1/2, 𝑚𝐽 = 12⟩
state. This is achieved via a ∼ 5 ps, 𝜎+-polarised laser pulse resonant with the 422 nm tran-
sition, generated using a mode-locked Ti:Sapphire laser with a custom pulse-picking and
frequency doubling system [Nad16]. Non-linear effects (self-phase modulation) in the
regular step-index fused-silica single-mode fibres used to deliver the beams to the trap
complicate the ion dynamics; we typically work with excitation probability well in excess
of 95%.

Photons emitted into free space during spontaneous decay, entangled in polarisation
with the resulting 𝑆1/2 Zeeman state according to the dipole selection rules, are collected by
custom-designed lens objectives14 (numerical aperture 0.6) perpendicular to themagnetic

12As supplied by Stable Laser Systems, only the reference cavity is contained in an acoustically shielded
enclosure, but not the laser head. Measurements with noise played back from a loudspeaker revealed a region
of high acoustic susceptibility, including several resonances, around 1–5 kHz.

13The controllers are similar to that described in ref. [Mer+19], but implemented as an add-on circuit
board to the Sinara Stabilizer open-hardware controller platform. To apply the power-line harmonics com-
pensation, we digitally modulate the controller set point.

14Designed and manufactured by Photon Gear Inc., Ontario, NY, United States.
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(in the diagram plane), detectors apd1 and apd2
vertically polarised photons. (Figure adapted from
ref. [Ste19].)
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Figure 3.8: In-situ measurement of the retardances
of the input wave plates, given in units of 2𝜋, as
relevant for ion–photon state tomography [Ste19].
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Figure 3.9: Measured transmittance and reflectivity
of the non-polarising plate beamsplitter [Ste19].
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Figure 3.10: Measured extinction ratios of the polar-
ising beam-splitter cubes [Ste19].

field. They provide near-diffraction-limited performance at an input-side numerical aper-
ture of 0.6 (specified: ≤ 0.08waves rms at 403.1 nm). The image-side numerical aperture is
0.09, designed to match the ion emission into standard, commercially available step-index
fused-silica fibres.

The objective lens is mounted on a five-axis stage for fine control over translational and
rotational alignment. After fitting the observed point spread function with a low-order
Zernike polynomial model similar to ref. [Won+16], a cylindrical lens is inserted near the
image plane to correct for residual aberrations likely caused by varying thickness across
the vacuum viewport (see refs. [Ste19; Nic22] for a detailed description).

The tip of the collection fibre is mounted on a three-axis positioning stage, which can
be adjusted using open-loop piezoelectric actuators to correct for mechanical relaxation
and slow, thermal drifts. Automated calibration experiments that periodically track the
optimum in fluorescence coupled to the Bell-state analyser detectors allows us to retain
good fibre-coupling efficiency over many days without manual intervention.

The trap nodes are connected to a central heralding station (or: “Bell-state analyser”,
“entangler”) using 2 × 1.75m fused silica single-mode fibres. There, a 50 ∶ 50 beamsplitter
and two polarising beamsplitters implement a partial Bell-basis measurement (see fig. 3.7).
Real optical components are slightly (some significantly) non-ideal; measurements of the
used wave plates and beamsplitters are given in figs. 3.8 to 3.10. At the output, the four
beams are coupled into short single-mode fibres before being focussed onto four avalanche
photodiode (apd) single-photon detectors connected to heralding logic implemented in
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the node-local fpga control systems. This significantly attenuates the impact of any mode
mismatch at the central 50 ∶ 50 beamsplitter on the remote entanglement fidelity (at the
cost of a ∼ 10% decrease in single-photon efficiency through re-coupling losses). A pair
of quarter- and half-wave plates compensates stress birefringence in the input fibres (and
is used to select a photon measurement basis for experiments probing the ion–photon
entanglement); their orientation is calibrated daily to track slowmechanical/thermal drifts.

The peak overall single-photon efficiencies observed (from picosecond-pulse excita-
tion to detecting a click on one of the apds) were ≈ 2.4% in either system. Known contri-
butions to this are state preparation and excitation (≈ 97%), decays to𝐷3/2 instead of 𝑆1/2
(95%), overlap of the ion dipole image with the Gaussian fibre mode (73%), bulk trans-
mission through the anti-reflection-coated single-mode fibres (≈ 98.7%), transmission
and re-coupling of the heralding station (≈ 90%), and quantum efficiency of the used apd
detectors (≈ 69%). A factor ≈ 58% between experiment and theory remains, presumably
mostly due to imperfect alignment and residual aberration in the high-na optics reducing
the ion-to-fibre coupling efficiency. Most of the data presented in this thesis was acquired
at significantly lower efficiencies, however, due to miscellaneous alignment drifts across
several months since the last careful alignment; in particular, the collection optics in Bob
had accidentally been misaligned quite substantially.

3.2.5 Real-time control

The experimental hardware is controlled by a customised version of the ARTIQ (“Ad-
vanced Real-Time Infrastructure for Quantum Physics”) open-source control system.
High-level management and scheduling functions are performed by a pc, which also con-
trols a large number of peripherals across the local network; the real-time infrastructure
is based on several field-programmable gate array (fpga) controller boards connected by
fibre-optic links, which also contain an embedded processor that executes experiment-
specific programs (just-in-time-compiled from a custom dialect of Python) close in
latency to the fpga event distribution network and hardware interface blocks. Most hard-
ware is openly designed, engineered and documented as part of the ARTIQ/Sinara open
hardware ecosystem, and was developed in collaboration with the Warsaw University of
Technology and other institutions (in part during this project).

At 1MHz entanglement generation attempt rate, latencies in aoms, optical fibres, ca-
bling, but also the digital control layer are no longer negligible. During the excitation
cycle (see e.g. fig. 6.2), a custom sequencer core in the main node control fpgas directly
takes over the relevant logic signals (aom rf switches, apd inputs) from the ARTIQ event
distribution layer to execute a hard-coded state machine with minimal branching latency
overhead. Furthermore, the 80MHz cycle of the mode-locked 422 nm laser is not directly
synchronised with the control system for technical simplicity, leading to an effective jit-
ter of 12.5 ns in the timing of the excitation pulse relative to the other real-time hardware
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(which is synchronised to≪ 1ns). The custom fpga core thus references all coincidence
detection windows to an auxiliary photodiode signal giving the timing of the excitation
pulse. The sequencer cores on each node establish real-time synchronisation with each
other across a few digital signal lines15.

A classical network link (Ethernet) between Alice’s and Bob’s master PCs is used for
high-level coordination, as well as to exchange the messages required for the diqkd post-
processing steps in chapter 7. We have developed custom coordination and scheduling
logic to, for instance, handle interruptions due to ion-loss events or periodic recalibra-
tions (some of which need access to shared resources, e.g. the heralding station for fibre
alignment) when running two-node experiments. Except for rare failures, the system is
capable of autonomous operation for days at a time16; a suite of automated calibrations
and diagnostics tests is executed twice every night.

15Were the nodes to be deployed in distant locations, all real-time signalling would sensibly (and easily)
be multiplexed onto a single optical fibre link connecting the nodes.

16The capability for stand-alone operation has thus far been hard to rigorously quantify, as various parts
of the system are actively being worked on still, which tends to introduce new issues.



4 Theory of remote ion–ion entanglement
through spontaneous emission

In this chapter, we discuss the generation of entanglement between the state of an atom and
the polarisation of a photon emitted during spontaneous decay on a transition between
two levels with total angular momentum quantum number 1/2 – here, the 422 nm 𝑃1/2 →
𝑆1/2 transition in 88Sr+ –, and the establishment of entanglement between two such atoms
through subsequent measurement of the photons (entanglement swapping).

In particular, we will consider the case where the atomic emission is collected by
a lens from a cone perpendicular to the ambient magnetic field. In prior work, it had
already been known that coupling the emission into a single-mode optical fibre sup-
presses unwanted contributions for spontaneous emission from atoms with nuclear spin
1/2 [Luo+09; KMK11]. Somewhat unexpectedly, the same mechanism, based on the
radial symmetry of the optical fibre modes, also suppresses errors from polarisation
mixing and imbalance amplitude imbalances in our case; we show that collection from an
arbitrarily large solid angle incurs, in principle, no loss in entanglement fidelity (§4.2).

As any limitations in fidelity are thus predicted to be technical in origin, we are moti-
vated to consider quantitatively the effect of an extensive list of experimental imperfections
(§4.3). In this high-fidelity regime, it is also no longer useful to consider the Bell-basis
measurement on the photon polarisations which converts the ion–photon entanglement
to entanglement between the remote ions to be perfect. We introduce a generic formal-
ism for the treatment of the heralding station (§4.4), and similarly catalogue the effects
of a number of component imperfections or residual distinguishability between the input
photons (§4.5).

We will analyse the system as a concatenation of independent steps: spontaneous emis-
sion into vacuum, the collection of a fraction of the emission into an optical single-mode
fibre, and then the interference of such wavepackets from two network nodes, entangled
with the ion in each trap, in the linear-optics partial Bell-basis measurement apparatus.
Such an approach is possible in this case as the photonic mode structure at the ion posi-
tion is not appreciably modified by the presence of the non-reflective collection optics (as
compared to, for instance, an ion in an optical cavity), and there is no driven action or fast
back-action on the atomic systemduring the emission of the photonwavepacket. There are
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Figure 4.1: Diagram of the low-lying energy levels
in 88Sr+, as relevant to ion–photon entanglement
generation.
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Figure 4.2: Illustration of the ion–photon entangle-
ment mechanism: The intensity of 𝜋 electric dipole
transitions is twice that of 𝜎 transitions perpendic-
ular to the magnetic field axis (compensating the
difference in Clebsch–Gordan coefficients), and the
polarisations are orthogonal.

two main advantages to this: First, this approach is conceptually and notationally simple;
the spatial aspect is treated solely when discussing the ion–photon fibre coupling, the tem-
poral complexity when later describing the measurements. Secondly, this also allows us to
easily “plug in” experimental data, that is, model the action of the photonic measurement
setup on particular ion–photon states described by densitymatrices obtained through state
tomography. For extensions beyond these assumptions, the photon mode (overlap) con-
siderations described here could still form the basis of a more tightly integrated analysis,
e.g. using a quantum jump1 approach (see e.g. refs. [PK98; WWM02; MB08]).

4.1 Spontaneous emission of 422 nm photons in 88Sr+

We consider the particular case relevant for our experiment, that of fig. 4.1, where a
88Sr+ ion is excited to the state |𝑒⟩ = |5𝑝 2𝑃1/2, 𝑚𝐽 = 12⟩. There is a strong electric
dipole (E1) coupling connecting |𝑒⟩ and the two Zeeman-split ground qubit states
|0⟩ = |5𝑠 2𝑆1/2, 𝑚𝐽 = −12⟩ and |1⟩ = |5𝑠

2𝑆1/2, 𝑚𝐽 = 12⟩, so the ion will decay to the ground
state a short time later under the emission of a 422 nm photon.

The E1 coupling of |𝑒⟩ to states in the 𝐷3/2 level is non-negligible as well, but as these
states are metastable and the 1092 nm transition wavelength is vastly different from the
dominant 𝑆1/2 decay channel (to where such photons will not be collected and detected in
our apparatus at all), we focus entirely on the 422 nm decays here. Defining the branching

1The technique of deriving the dynamics of open quantum systems explicitly from unitary dynamics
interrupted by quantum jumps is variously also known as the “Monte–Carlo wave function” or “quantum
trajectories” approach.
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fraction 𝜂422 ≔ ∑𝑖∈𝑆1/2 𝐴𝑒𝑖/𝛤 (in obvious notation for the sum over final states), the 1 −
𝜂422 = 5% of decays to one of the𝐷3/2 states only contribute a small additional loss to the
overall efficiency of protocols heralded on the detection of a 422 nm photon2.

In the chosen naming convention, |0⟩ corresponds to the decay on the 𝜎+ transition,
|1⟩ on the 𝜋 transition. The atomic dipoles from eq. (2.64) are

𝒅𝝈+ ≔ 𝒅0𝑒 = 𝑒⟨5𝑠 2𝑆1/2‖𝑇(1)‖4𝑝 2𝑃1/2⟩𝐶0 ̂𝒆+1, 𝐶0 = −√
2
3
,

𝒅𝝅 ≔ 𝒅1𝑒 = 𝑒⟨5𝑠 2𝑆1/2‖𝑇(1)‖4𝑝 2𝑃1/2⟩𝐶1 ̂𝒆0, 𝐶1 = √
1
3
.

(4.1)

From the ratio of (squared) Clebsch–Gordan coefficients, |𝐶0/𝐶1|2 = 2, 𝜎+ decays are
twice as likely as𝜋 decays. Considering long times 𝑡 ≫ 𝛤−1 such that the remaining excited
state population is negligible, and tracing out the photon modes, the ion state is thus

𝜌𝐼 ≈ 𝜂422 (
2
3
|0⟩⟨0| + 1

3
|1⟩⟨1|) + (1 − 𝜂422) 𝜌1092,𝐼, (4.2)

where we have elided the result of the 𝐷3/2 decays as 𝜌1092,𝐼. As we shall see in detail in
§4.2, the difference in the Clebsch–Gordan coefficient magnitude will be exactly balanced
out by the dipole emission patterns for observation perpendicular to the magnetic field,
though.

The notation for the overall state, in particular the photonic modes, can be refined to
more clearly elucidate some key aspects. First, we will – for the entire rest of the chapter
–, switch into an interaction picture with respect to the internal ion state by eliding the
phase factors from eq. (2.78). This is equivalent to applying all later operations on the
Zeeman qubit in a rotating frame anchored to the laboratory frame at the time of the exci-
tation pulse3, 𝑡 = 0. Furthermore, as the frequency difference |𝜔𝑒0 − 𝜔𝑒1| = |𝜔0 − 𝜔1|
between the two 422 nm decays (given by the Zeeman splitting) is very small compared to
the absolute optical frequency, we will factor out a common reference frequency 𝜔𝑛 (and
corresponding angular wavenumber 𝑘𝑛), which for later convenience we take to be the
transition frequency at zero static magnetic field 𝐵, such that 𝜔𝑒𝑖 = 𝜔𝑛 + 𝛿𝑖 = 𝜔𝑛 + 𝜈𝑒𝑖𝐵,

2In “single-photon herald” remote entanglement schemes, where only one 422 nm photon would be
collected from two ion trap nodes, it might be advantageous to exclude such 1092 nm decays through an
extra protocol success verification step, where undesired decays cause the protocol to start again in the same
way as when no herald occurs. This could be achieved through shelving of both qubit states to the 𝐷5/2
manifold followed by 𝑆1/2 ↔ 𝑃1/2 ↔ 𝐷3/2 fluorescence detection.

3As we will see, the excitation pulse is not actually a particular meaningful timing reference in practice,
as the ion–photon state phase will turn out to depend on the photon detection time, and the ion–ion remote
entangled state will have no phase evolution at all for matched qubit frequencies. It is nevertheless important
not to lose track of this for conceptual clarity.
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where 𝜈𝑒𝑖 is the overall magnetic field sensitivity of the respective transition. We then split
up the mode functions from eq. (2.82) according to

𝒇𝑖(𝒓, 𝑡) ≈ √𝜋√
ℏ𝜔𝑛
𝜀0𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ℰ

𝜙𝑖 (𝑡 −
𝑟
𝑐
) 𝜺𝑖(𝒓)e−i𝜔𝑛𝑡

𝜺𝑖(𝒓) ≔ √
3
8𝜋
( ̂𝒅𝑖𝑒 − ( ̂𝒅𝑖𝑒 ⋅ ̂𝒓) ̂𝒓)

ei𝑘𝑛𝑟
𝑟

𝜙𝑖(𝑡) ≔ √𝛤e−i𝛿𝑖𝑡 e−
𝛤
2 𝑡Θ(𝑡),

(4.3)

where we have chosen the normalisation of the time-independent spatial mode 𝜺𝑖(𝒓) such
that the “flux” |𝜺𝑖|2 integrated over spherical shells is 1, that of the temporal envelope 𝜙𝑖(𝑡)
such that ‖𝜙𝑖‖

2 = ⟨𝜙𝑖|𝜙𝑖⟩ = ∫
∞
−∞|𝜙𝑖(𝑡)|

2d𝑡 = 1, and have made the approximation 𝜔𝑒𝑖 ≈ 𝜔𝑛
again for the prefactor for purely æsthetic reasons: to highlight that the only appreciable
contribution of the small difference in transition frequencies is a modulation of the phase
of the temporal envelope. Because the modes are normalised, the absolute dipole strength
of the dipole moment for the particular transition does not enter the expression (except
through its contribution to the total excited state linewidth 𝛤).

Considering only the two decay channels to the 𝑆1/2 ground state, we can write a nor-
malised state4

|𝜓422⟩ = √2
3
|0⟩ ⊗ ( ̃𝑎†0 |0⟩) + √

1
3
|1⟩ ⊗ ( ̃𝑎†1 |0⟩), (4.4)

such that, neglecting the coherences between the 𝑆1/2 and𝐷3/2 states5, the overall state is

𝜌𝐼𝑃 = 𝜂422 |𝜓422⟩⟨𝜓422| + (1 − 𝜂422) 𝜌1092𝐼𝑃 , (4.5)

where we again shall not concern ourselves any further with the population 𝜌1092𝐼𝑃 in the
𝐷3/2 states.

To discuss the state of the system in an intuitive, yet formally precise fashion, we briefly
transition to the photon wavefunction formalism, where the value of the photonic wave-
function is given by 𝑬 + i𝑐𝑩. We can write the electric part |𝜓𝐸(𝒓, 𝑡)⟩ of the state (4.4)
as

|𝜓422𝐸 (𝒓, 𝑡)⟩ = ℰe−i𝜔𝑛𝑡 (√
2
3
𝜙0(𝑡 − 𝑟/𝑐) |0⟩ ⊗ 𝜺𝜎+(𝒓) + √

1
3
𝜙1(𝑡 − 𝑟/𝑐) |1⟩ ⊗ 𝜺𝜋(𝒓)) , (4.6)

such that, restoring the magnetic part, |𝜓422(𝒓, 𝑡)⟩ = |𝜓422𝐸 (𝒓, 𝑡)⟩ + i ̂𝒓 × |𝜓422𝐸 (𝒓, 𝑡)⟩. If
we take the static magnetic field to be oriented along ̂𝒛 as per the usual atomic physics

4Recall that we have switched into the interaction picture regarding the internal state of the ion.
5Not only do we ignore the 𝐷3/2 states in what follows anyway; observing the phase between the levels

would require absolute phase stability between the 687 nm laser that would presumably be used to address
the 𝑆1/2 ↔ 𝐷3/2 transition and the 422 nm picosecond pulsed laser, whichwould be amajor technical hurdle.
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convention, and consider the wave function along a line ̂𝒓 = 𝑦 ̂𝒚 perpendicular to the
magnetic field, we have 𝜺𝜎+(𝑦 ̂𝒚) = −√ 316𝜋

ei𝑘𝑛𝑦
𝑦 �̂� and 𝜺𝜋(𝑦 ̂𝒚) = √

3
8𝜋
ei𝑘𝑛𝑦
𝑦 ̂𝒛, and

|𝜓422𝐸 (𝑦 ̂𝒚, 𝑡)⟩ =
ℰ
√8𝜋
ei(𝑘𝑛𝑦−𝜔𝑛𝑡)
𝑦
(−𝜙0 (𝑡 −

𝑦
𝑐
) |0⟩ ⊗ �̂� + 𝜙1 (𝑡 −

𝑦
𝑐
) |1⟩ ⊗ ̂𝒛) . (4.7)

In other words, perpendicular to the magnetic field, the two decay channels map to or-
thogonal polarisations, and as 𝜙1(𝑡) = ei(𝛿0−𝛿1)𝑡𝜙0(𝑡), occur equally often. Thus, we might
consider the ion state to be maximally entangled with the photon polarisation, and sugges-
tively write an “ion–photon state” like

|𝛹422⟩𝒓|| ̂𝒚 ∼√1
2
(|0⟩ |𝐻⟩ + |1⟩ |𝑉⟩) . (4.8)

This does provide a good heuristic picture of the entanglement generation mechanism,
but is only accurate in a very approximate sense. First, the relation only holds exactly
orthogonal to the magnetic field, which is an infinitesimally small solid angle. Secondly,
note that we already transitioned into the rotating frame of the internal ion states; the
term ei(𝛿0−𝛿1)(𝑡−𝑟/𝑐) is an additional amount of differential phase accumulation that we need
to actively correct if we want to avoid the state to dephase across different detection times
𝑡 – or, equivalently, reference the rotating frame used for manipulations on the {|0⟩ , |1⟩}
qubit to the laboratory rest frame6.

4.1.1 Limitations of this treatment

At the very beginning of the derivation in §2.4.5, we assumed that the ion states out in the
pure state |𝑒⟩, that is, neglected the excitation dynamics. The lifetime 1/𝛤 of the excited
state is necessarily short (here, 7.39 ns for the 𝑃1/2 level in 88Sr+) as we wish to quickly ex-
tract spontaneous emission photons. As our excitation pulses are yet shorter, on the order
of 5 ps in duration, neglecting the excitation dynamics like this is an excellent assumption.
This is not necessarily the case for experiments that use nanosecond-scale pulses from a
gated continuous-wave laser; in that case, the dynamics are more complex, but still rela-
tively straightforward to analyse [Wan+11; Mül+17].

By writing |𝑒⟩ as the initial state without a phase prefactor, we have also chosen a phase
reference for the emitted photon wavepackets (as the dynamics generated by eq. (2.66) are
unitary, an additional phase would just carry through to the absolute phase of the emit-
ted photon wavepackets). As we cannot observe an offset to the absolute optical phase

6Without the further manipulation and detection of the photon in the picture, this is necessarily a some-
what perfunctory description. It does turn out to be precise in the sense that after post-selecting experiments
on the measurement of a photon of a given polarisation, the ion qubit state, in the rotating frame given by
the photon detection time, is exactly as would have resulted from a maximally entangled state between the
ion Zeeman qubit and an abstract, stationary polarisation qubit.
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at 422 nm in our experiment (see §4.5.1), we are free to make this identification. In cases
where the absolute phase does set the phase of the generated entangled state (e.g. for single-
photon herald schemes), this means that the entangled state phase is referenced to the opti-
cal phase of the picosecond laser pulse at the ion which coherently excites the dissipatively
prepared state |0⟩ to |𝑒⟩.

Finally, note that we have neglected the centre-of-mass motion of the ion in this treat-
ment. As mentioned in §2.4, if quantisation is carried out in a self-consistent fashion for
the combined system, extra Röntgen-type terms coupling the atomic dipole to the mag-
netic field appear in the Hamiltonian even in the dipole approximation, but they are typ-
ically weak. The main addition to the picture is a momentum kick to the atom entangled
with the photon propagation direction, but this can be incorporated without many addi-
tional complications (cf. [Bab84; RZ92; Lem+93; BBL93; Wil94; Fed+05], but note that
these references discuss the situation for a free atom, while the position and momentum
operators would here decompose into that of the quantised secular modes of motion).

4.2 Fibre-coupling of ion dipole emission

To calculate the focussed radiation fields corresponding to atomic dipole emission modes
is a surprisingly rich problem. Many of the approaches that are widely used to describe op-
tical systems apply only to the source-free case – that is, the homogeneous Maxwell equa-
tions –, and then provide approximate solutions by making additional assumptions, such
as those of scalar fields and small-angle paraxial optics. In the present case, these clearly
do not apply: The central region does contain a source (the atom), and we are interested
in collecting as large a fraction of the approximately isotropic emission as is technically
practical. As our aim is to study high-fidelity entanglement between atom and photon
polarisation, we also do not want to neglect any polarisation effects.

In the following, we derive the fields close to the image of a lens in the full, vectorial
picture. For this, we start from the spatial part of the atomic emission modes 𝝐 (eq. (4.3)),
which coincide with the far-field radiation of a classical dipole emitter in vacuum. We then
derive the action of an ideal optical system from geometric considerations. A brief look
at the resulting fields in a collimated plane wave picture will already allow us to illustrate
most effects of interest here. Finally, the same geometric considerations will allow us to
propagate the field through a finite-conjugates imaging system in the complete vectorial
formalism, including diffraction at the exit pupil of the system.

The resulting solution describes the field close to the focus under only mild assump-
tions (mostly the aperture size and the distance of object and image points to the optical
system both being much larger than the wavelength), which we can then use to calculate
the system performance over a large range of parameters, including after coupling into a
single-mode optical fibre.
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Figure 4.3: Two models for a geometrical optics treatment of point-source radiation collimated by an ideal
lens. Left: An ideal thin lens. Right: An ideal lens following the Abbe sine criterion. Shown are also the
unit vectors of the spherical/polar coordinate systems used in the text.

4.2.1 Ideal lenses

An ideal lens of focal length 𝑓, positioned at distance 𝑓 from the ion, will collimate radia-
tion emitted into the solid angle it subtends. The size of this collection cone is customarily
specified in terms of the numerical aperture (na), 𝑛 sin 𝜗0, where 𝜗0 is the cone half-angle
and 𝑛 is the index of refraction of the medium (here, 𝑛 = 1 throughout).

There are two possible ways of modelling such an ideal element, as shown in fig. 4.3:
In both cases, the lens collimates all rays originating from the ion’s position and exactly
flattens out the spherical wavefronts. To describe this action, it is convenient to describe
the fields in spherical coordinates (𝑟, 𝜗, 𝜙), where 𝜗 = 0 is aligned in the direction of the
optical axis ̂𝒛, and the field 𝝐𝐵 immediately after the lens is described in polar coordinates
(𝜌, 𝜑), as shown in fig. 4.3. The spherical wavefront ei𝑘𝑟 is then taken to a phase uniform
across the cross-section of the beam, which we can set to zero by choosing an appropriate
reference plane.

Where the models differ is in the precise mapping of the coordinates. On the left of
fig. 4.3, the result of ray tracing across an ideal, infinitely thin lens is shown, where the
coordinates are transformed as

𝜌 = 𝑓 tan(𝜗) 𝜑 = 𝜙. (4.9)

On the right, a lens following theAbbe sine criterion is shown, which corresponds to refrac-
tion on a reference sphere around the focal point, and gives another possible coordinate
transformation as

𝜌 = 𝑓 sin(𝜗) 𝜑 = 𝜙. (4.10)

The coordinate vectors then simply transform as ̂𝒆𝝑 ↦ ̂𝒆𝝆, ̂𝒆𝝓 ↦ ̂𝒆𝝋 in both cases.
Todetermine how the fieldmagnitudes are transformed, consider the flux |𝝐|2 𝑟2 sin 𝜗 d𝜗d𝜙

through an infinitesimal region on a spherical shell of radius 𝑟 in the ion emission, which
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– by energy conservation – must be equal to the flux through the corresponding cross-
section of the collimated beam, |𝝐𝐵|2 𝜌 d𝜌 d𝜑. Hence, for eq. (4.9)

|𝑟 𝝐(𝑟, 𝜗, 𝜙)|2

|𝝐𝐵(𝜌, 𝜑)|
2 =
𝜌
sin 𝜗
d𝜌
d𝜗
= 𝑓

2

cos3 𝜗
, (4.11)

while for the sine condition from eq. (4.10),

|𝑟 𝝐(𝑟, 𝜗, 𝜙)|2

|𝝐𝐵(𝜌, 𝜑)|
2 =
𝜌
sin 𝜗
d𝜌
d𝜗
= 𝑓 2 cos 𝜗. (4.12)

The respective scaling factors for the amplitudes are taken to be real and positive by con-
vention, (cos 𝜗)3/2 and√1/ cos 𝜗, and are sometimes referred to as apodisation factors.

Both approaches have been used to model imaging of point-like sources (cf. [SG93]).
While the sine criterion can be derived from the requirement of stigmatic imaging of off-
axis points, here only a single point-like source is relevant, and the two models coincide in
the limit of small collection angles. In the absence of a particular physical imaging system
to model, either is a sensible choice.

While the fields 𝝐𝐵 are only defined in the plane where the lens acts, it is nevertheless
instructive to compute them and inspect the results. Note that eq. (4.9) maps the field to
the whole plane 𝜌 ∈ [0,∞), whereas eq. (4.10) only maps into the disc 𝜌 ∈ [0, 𝑟], in ac-
cordance to the geometrical construction from fig. 4.3. Correspondingly, the apodisation
factor for the latter diverges at the boundary 𝜗 = 𝜋2 . Because of this, and the slightly more
straightforward geometrical interpretation of the former, we will assume the tangent con-
dition for now, before switching to the sine condition for the complete imaging treatment
in the next section.

By expressing the atomic dipoles ̂𝒅𝜎+ and ̂𝒅𝜋 from eq. (2.15) using the coordinate vec-
tors

̂𝒆𝝑 = (
cos 𝜗 cos 𝜙
cos 𝜗 sin 𝜙
− sin 𝜗

) , ̂𝒆𝝓 = (
− sin 𝜙
cos 𝜙
0
) , (4.13)

and further substituting for dimensionless units 𝜌 = 𝑓𝜒, the collimated fields are obtained
as7

𝝐𝐵,𝜎+(𝜒, 𝜑) = √
3
16𝜋

1

√1 + 𝜒2
3
2
(cos 𝜑 − i𝜒
√1 + 𝜒2

̂𝒆𝝌 − sin 𝜑 ̂𝒆𝝋 ) (4.14a)

𝝐𝐵,𝜋(𝜒, 𝜑) = √
3
8𝜋
1

√1 + 𝜒2
3
2
( sin 𝜑
√1 + 𝜒2

̂𝒆𝝌 + cos 𝜑 ̂𝒆𝝋 ) . (4.14b)

7Strictly speaking, the coordinate vectors in eq. (4.14) are well-defined only for 𝜒 > 0, but the fields can
be trivially continued to the origin.
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Figure 4.4: Ion emission pattern for 𝜎+ (left) and 𝜋 (right) dipole transitions, after collimation by an ideal
thin lens of focal length 𝑓 (grey circles correspond to na 0.6). The symbol shapes represent the electric
field polarisation at each point in the plane, and their size and transparency are proportional to the ampli-
tude. Outside the coordinate origin, the two modes are no longer perfectly orthogonal, but the unwanted
components are symmetrical.

The resulting fields are shown in fig. 4.4. While the polarisations are indeed orthogonal
in the origin, they now vary across the spatial mode. If the polarisation degree of freedom
is later manipulated in free space without any spatial filtering, the ion–photon state can be
described as an ensemble average over the collimated beam. If photons are collected from
a cone of half-angle 𝜗0 > 0, the (unnormalised) density matrix 𝜌𝐼𝑃 is

𝜌𝐼𝑃 =
tan 𝜗0

∫
0

2𝜋

∫
0

|𝜓(𝜒, 𝜑)⟩⟨𝜓(𝜒, 𝜑)| d𝜑 𝜒 d𝜒, where (4.15a)

|𝜓(𝜒, 𝜑)⟩ = |0⟩𝐼 |𝝐𝐵,𝜎+(𝜒, 𝜑)⟩𝑃 + |1⟩𝐼 |𝝐𝐵,𝜋(𝜒, 𝜑)⟩𝑃 . (4.15b)

The result is a non-maximally-entangled, mixed state; an example density matrix for nu-
merical aperture sin 𝜗0 = 0.6 is shown in figure 4.5. The overall collection efficiency
increases with 𝜗0, but so does the imbalance between decay channels and, crucially, the
mixing of polarisations corresponding to each. This significantly decreases the resulting
fidelities, shown quantitatively in fig. 4.6.

Note, however, that the unwanted components are highly symmetric, which is e.g. vis-
ible in fig. 4.4. In the next section, we will show that this observation carries through to
the focus of an imaging system.

4.2.2 Derivation of general dipole image fields

Consider now the complete imaging system fromfig. 4.7. We have again chosen the optical
axis to be along ̂𝒛. The dipole is imaged by an aplanatic optical system of focal length ratio



58 remote ion–ion entanglement theory

⟨0H∣ ⟨1H∣ ⟨0V ∣ ⟨1V ∣

∣1V⟩

∣0V⟩

∣1H⟩

∣0H⟩

0.000⋅
ei0.000π

0.000⋅
ei0.000π

0.451⋅
ei0.000π

0.001⋅
ei0.000π

0.000⋅
ei0.000π

0.000⋅
ei0.000π

0.5 0.25 0.1 0.01
+−

i

−i

Figure 4.5: Density matrix 𝜌𝐼𝑃 for the ion–photon
state in free space after an ideal na 0.6 lens per-
pendicular to the magnetic field, conditional on
the presence of a photon in the mode captured by
the detector. There is a ∼ 10% imbalance in decay
channels, and the polarisation states corresponding
to either decay channel are mixed (for 𝜎+ more so
than for 𝜋).
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Figure 4.6: Fidelity to closest maximally entangled
state (blue, left) and collection efficiency (red, right)
when collecting ion emission in free space. The
dashed line denotes na 0.6, where the error has
reached 6.5%.

𝑓′/𝑓, now assumed to fulfil Abbe’s sine condition8, and to be free of aberrations.
To calculate the field in a point near the geometric image of the atomic dipole, we

will follow the formalism developed by E. Wolf [Wol59], which he had applied (together
with B. Richards [RW59]) to calculate the high-na focus of a linearly polarised laser beam
already in 1959. It has remained in wide-spread use for calculations involving high-na
imaging since; a modern overview can be found in chapters 3 and 4 of ref. [NH06]. In par-
ticular, Sheppard andWilson [SW82] and later Enderlein [End00] have applied it to dipole
emitters in calculations similar to the following, albeit mostly from a microscopy point of
view, assuming in the first case uniform polarisation, and centering the discussion on the
volumetric focussing properties for fluorescence correlation microscopy in the second.

The basic strategy is to propagate the object-space field to the image-side reference
surface by tracing rays according to geometric optics, and then calculate the corresponding
far field diffraction integral to calculate the field in the chosen image-space point.

We thus start as before with the dipole ̂𝒅 in the centre of the object-space reference
sphere with spherical coordinates (𝑟, 𝜗, 𝜙), 𝜗 ∈ [0, 𝜋/2), 𝜙 ∈ [0, 2𝜋), along the optical axis

8We treat a system conforming to the sine condition here, as conventional designs derived from micro-
scope objectives tend to be optimised in this way [GKG97]. Only the quantitative details of the image-plane
intensity profile would be affected by a different choice, not its symmetries, so the differences are fairly in-
consequential for the present discussion anyway.
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Figure 4.7: A source at object-space coordinates (0, 0, 0)𝑇 is imaged by an aberration-free (i.e., aplanatic)
system, defining the coordinate origin of the image space. The field amplitude at a point (𝑥′, 𝑦′, 𝑧′)𝑇 in
the image space can be calculated by geometrically propagating the spherical wave incident at the input
reference sphere A to the output reference sphere C, and then evaluating a diffraction integral (see text).

̂𝒛. Evaluating eq. (4.3) gives the field just before the first reference sphere as

𝝐A(𝜗, 𝜙) = −√
3
8𝜋
ei𝑘𝑓
𝑓
(( ̂𝒆𝝑 ⋅ ̂𝒅) ̂𝒆𝝑 + ( ̂𝒆𝝓 ⋅ ̂𝒅) ̂𝒆𝝓) , (4.16)

where ̂𝒆𝝑 = ̂𝒆𝝑(𝜗, 𝜙) and ̂𝒆𝝓 = ̂𝒆𝝓(𝜗, 𝜙) are the respective coordinate vectors.
To derive the field just after the second reference sphere, we conceptually split the op-

tical system into two parts, where the field is refracted at a reference sphere twice as de-
scribed in the last section (in reverse the second time). Assuming now that the Abbe sine
condition holds (with accordingly different apodisation), the field right after refraction at
the surface is then

𝝐B(𝜌, 𝜑) = −√
3
8𝜋
ei𝑘𝑓
𝑓
√ 1
cos 𝜗
(( ̂𝒆𝝑 ⋅ ̂𝒅) ̂𝒆𝝑 + ( ̂𝒆𝝓 ⋅ ̂𝒅) ̂𝒆𝝋) , (4.17)

where (𝜌, 𝜑) are now the new polar coordinates (see fig. 4.7), with 𝜌 = 𝑓 sin 𝜗 and 𝜑 = 𝜙
and the old coordinate vectors ̂𝒆𝝑, ̂𝒆𝝓 understood as functions of the new variables. We
have again neglected any polarisation effects at the interface, which in practice assumes
that Fresnel losses are minimised by good anti-reflection coatings.

Applying the same argument in reverse, the field right after the second reference sur-
face is then

𝝐C(𝜗′, 𝜙′) = −√
3
8𝜋
ei𝑘𝑓
𝑓
√cos 𝜗

′

cos 𝜗
(( ̂𝒆𝝑 ⋅ ̂𝒅) ̂𝒆𝝑′ + ( ̂𝒆𝝓 ⋅ ̂𝒅) ̂𝒆𝝓′) , (4.18)

now given in spherical coordinates (𝑟′, 𝜗′, 𝜙′), with 𝜙′ = 𝜑 = 𝜙 and sin 𝜗
′

sin 𝜗 =
𝑓
𝑓′ . In stating

this, we have assumed the system to be aplanatic, that is, free from extra terms due to
aberrations, and have omitted any common phase acquired due to the spatial (𝑧) extent
of the imaging system. It should be stressed that the two-step process 𝝐A ↦ 𝝐B ↦ 𝝐C is



60 remote ion–ion entanglement theory

merely a model to motivate the transformation resulting from an ideal aplanatic optical
system. In practice, the optical systemwill likely consist of a larger number of surfaces, the
total effect of which is to approximate this ideal mapping between reference spheres.

Let 𝒓′ = (𝑥′, 𝑦′, 𝑧′)𝑇 be a point in the image space. According to Wolf ’s formal-
ism [Wol59], we can express the electric field amplitude 𝝐′ in that point as

𝝐D(𝑥′, 𝑦′, 𝑧′) =
i𝑘e−i𝑘𝑟′

2𝜋
∬

𝑘𝑥2+𝑘𝑦2≤𝑘2

𝝐C(𝑘𝑥, 𝑘𝑦)
𝑘𝑧
ei(𝑘𝑥𝑥′+𝑘𝑦𝑦′+𝑘𝑧𝑧′) d𝑘𝑥 d𝑘𝑦 (4.19)

as long as 𝒓′ is far from the reference surface (which is the case if 𝒓′ is close to the focus,
the case we are interested here).

To evaluate this, it is convenient to use cylindrical coordinates 𝒓′ = (𝜌′ cos 𝜑′, 𝜌′ sin 𝜑′, 𝑧′)𝑇
in the image space. After substituting the field from eq. (4.18), the expression becomes

𝝐D(𝜌′, 𝜑′, 𝑧′) = −√
3
8𝜋
𝑖𝑘𝑓′
2𝜋𝑓
ei𝑘(𝑓−𝑓′)

𝜗′0

∫
0

ei𝑘𝑧′ cos 𝜗′ sin 𝜗′
2𝜋

∫
0

√cos 𝜗
′

cos 𝜗
(( ̂𝒆𝝑 ⋅ ̂𝒅) ̂𝒆𝝑′ + ( ̂𝒆𝝓 ⋅ ̂𝒅) ̂𝒆𝝓′)

ei𝑘𝜌′ sin 𝜗′ cos(𝜙′−𝜑′)d𝜙′d𝜗′,
(4.20)

where the integration bound 𝜗′0 corresponds to the circular aperture of the system. This
is the final expression for the field at the given image space coordinates (𝜌′, 𝜑′, 𝑧′), which
ultimately needs to be evaluated numerically.

To explicitly give the field in Cartesian coordinates, we expand the coordinate vectors
as in eq. (4.13), and analogously for the primed coordinates. After substituting 𝜙′ = 𝜙,
sin 𝜗′ = sin 𝜗/𝑚 (and similarly cos 𝜗′ = √1 − (sin 𝜗/𝑚)2), where we have defined the
transversal magnification 𝑚 ≔ 𝑓′ / 𝑓, and expressing the integration over 𝜙 using Bessel
functions of the first kind, we are left with an integral over 𝜗 ∈ [0, 𝜗0], where 𝜗0 is the
boundary given by the object-side numerical aperture sin 𝜗0.

Finally, note that the constant phase factor has no clear interpretation here, as we have
arbitrarily assumed that the common phase through the imaging system is zero. We thus
drop it, that is, define

𝝐′ ≔ −i ei𝑘(𝑓′−𝑓)𝝐D, (4.21)

and are left with the field of a dipole ̂𝒅 in a point 𝒓′ = (𝜌′ cos 𝜑′, 𝜌′ sin 𝜑′, 𝑧′)𝑇 near the
focus

𝝐′(𝒓′) = √ 3
8𝜋
𝑘
2𝑚
(
𝐼0 + 𝐼2 cos(2𝜑′) 𝐼2 sin(2𝜑′) −i 𝐼1 cos 𝜑′
𝐼2 sin(2𝜑′) 𝐼0 − 𝐼2 cos(2𝜑′) −i 𝐼1 sin 𝜑′
−i 𝐼𝑧1 cos 𝜑′ −i 𝐼𝑧1 sin 𝜑′ −𝐼𝑧0

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝑃

̂𝒅, (4.22)
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where the azimuthal angle integrals (real-valued and positive for 𝑧′ = 0) have been abbre-
viated as

𝐼0(𝜌′, 𝑧′) ≔ 𝐼 [(1 + cos 𝜗 cos 𝜗′) 𝐽0 (
𝑘𝜌′
𝑚
sin 𝜗)], (4.23a)

𝐼1(𝜌′, 𝑧′) ≔ 2 𝐼 [sin 𝜗 cos 𝜗′ 𝐽1 (
𝑘𝜌′
𝑚
sin 𝜗)], (4.23b)

𝐼2(𝜌′, 𝑧′) ≔ 𝐼 [(1 − cos 𝜗 cos 𝜗′) 𝐽2 (
𝑘𝜌′
𝑚
sin 𝜗)], (4.23c)

𝐼𝑧0(𝜌′, 𝑧′) ≔
2
𝑚2
𝐼 [(sin 𝜗)2 𝐽0 (

𝑘𝜌′
𝑚
sin 𝜗)], (4.23d)

𝐼𝑧1(𝜌′, 𝑧′) ≔
2
𝑚2
𝐼 [sin 𝜗 cos 𝜗 𝐽1 (

𝑘𝜌′
𝑚
sin 𝜗)], with (4.23e)

𝐼[𝑔] ≔
𝜗0

∫
0

√ cos 𝜗
cos 𝜗′
𝑔(𝜗) ei𝑘𝑧′ cos 𝜗′ sin 𝜗 d𝜗, cos 𝜗′ ≔ √1 − (sin 𝜗)

2

𝑚2
. (4.23f)

For later notational convenience, we have defined 𝑃 as the “propagator” matrix
𝑃(𝜌′, 𝜑′, 𝑧′) that describes the transformation from dipole ̂𝒅 to image field 𝝐′(𝒓′).

Note that the image-space field does not directly depend on 𝑓′ and 𝑓, only on their
ratio, the magnification𝑚. This is expected, as we assume that the focal lengths are much
larger than the wavelength, and as such the boundary conditions on the aperture stop can
be neglected.

Also note that the 𝑧 component of eq. (4.22), that is, the longitudinal field, does not
quite vanish. This is to be expected, as 𝝐′(𝒓′) is a rigorous solution of the source-free
Maxwell equations, i.e. 𝜵 ⋅ 𝝐′ = 0, so only plane waves are strictly transversal. The longi-
tudinal field amplitudes scale like the inverse square of the magnification, though, so for
large𝑚, the longitudinal contribution can be safely neglected.

4.2.3 Atomic dipole images

We can now calculate the electric fields generated by the atomic dipole in the focal plane
of the imaging system by inserting the appropriate dipole moments into eq. (4.22). For all
the figures shown in this section, we will use dipole moments rescaled according to the
Clebsch–Gordan coefficients,

̃𝒅𝜎+ = (1, 0, −i)𝑇/√3, ̃𝒅𝜋 = (0, 1, 0)𝑇/√3, (4.24)

for ease of visual interpretation. For maximal entanglement, the two fields should then
have the same absolute value. The fractional collection efficiency, that is, the probability
of collecting a photon after excitation, corresponds directly to the (integral of) the sum of
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Figure 4.8: Electric field intensity distribution for 𝜋 and√2𝜎+ dipoles in the image plane of a numerical
aperture sin 𝜗0 = 0.6 objective with magnification 6.7× (𝑓′/𝑓 = 1/0.15). The same colour scale is used for
all plots, with the suppressed polarisations multiplied by the given factors for visual clarity.

their squared absolute values. Again in terms of the quantities from eq. (4.23), the fields
then read

̃𝝐′𝜎+ = √
1
8𝜋
𝑘
2𝑚
(
𝐼0 − 𝐼1 cos 𝜑′ + 𝐼2 cos(2𝜑′)
−𝐼1 sin 𝜑′ + 𝐼2 sin(2𝜑′)
i 𝐼𝑧0 − i 𝐼𝑧1 cos 𝜑′

), ̃𝝐′𝜋 = √
1
8𝜋
𝑘
2𝑚
(
𝐼2 sin(2𝜑′)
𝐼0 − 𝐼2 cos(2𝜑′)
−i 𝐼𝑧1 sin 𝜑′

).

(4.25)
In the limit of small collection apertures, that is, 𝜗0 ≪ 𝜋/2, the terms integrating over
Bessel functions 𝐽1 and 𝐽2 are negligible, and 𝐼𝑧0 is also suppressed due to the (sin 𝜗)2
factor. For the 𝜎+ transition, only the �̂� portion of the dipole moment perpendicular to
the collection axis contributes, and we have recovered the on-axis case, where 𝜎+ and 𝜋
give rise to orthogonal photon polarisations of equal amplitude.

For large numerical apertures on the collection side, this is only still true exactly on
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Figure 4.9: Electric field distribution for 𝜋 and√2𝜎+ dipoles in the image plane of a numerical aperture
sin 𝜗0 = 0.6 objective with magnification 6.7× (𝑓′/𝑓 = 1/0.15). Colours represent the phase of the field,
which (in the chosen convention) is real-valued here in the focal plane, brightness the (inverse) amplitude.
The same colour scale is used for all plots, with the suppressed polarisations multiplied by the given factors
for visual clarity.

the optical axis; the two polarisations are indeed no longer orthogonal off it. The case for
numerical aperture sin 𝜗0 = 0.6 and magnification𝑚 = 1/0.15 is shown in figs. 4.8 and 4.9.

The longitudinal field components (𝜖′𝑧) still contribute less than 5 × 10−5 to the total
intensity (a corresponding figure is thus omitted); this would also be true for even larger
collection angles if the image-side numerical apertures is kept at the fairly limited value for
mode-matching typical single-mode fibres (here sin 𝜗0/𝑚 = 0.09) – the paraxial approxi-
mation is still fairly good on the image side.

The other transversal terms are now no longer negligible, though, in particular the 𝐼1
term from the ̂𝒛 dipole moment component of the 𝜎+ transition parallel to the collection
axis. Note, however, that all these contributions are periodic in 𝜑′ (i.e. symmetric about
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Figure 4.10: Non-zero electric field components along the coordinate axes through the focus of �̂� and
√2 ̂𝝈+ dipoles, in the image plane of a numerical aperture sin 𝜗0 = 0.6 objective with magnification 6.7×
(𝑓′/𝑓 = 1/0.15). Left: Slice perpendicular to the magnetic field direction. Here, both polarisations are or-
thogonal, but the ̂𝝈+ emission maximum is shifted due to photon orbital angular momentum effects. The
dashed line shows the 𝛿𝑥 = 379 nm low-na prediction for the 𝜎+ image centroid from ref. [Ara+18]. Right:
Slice parallel to the magnetic field direction. Off the 𝑥′ = 0 plane, the fields are no longer orthogonal, but
the 𝝐′𝑦 component generated by 𝜎 emission is odd in 𝑥′. The black dashed line shows a Gaussian mode
with 1𝑒2 -radius 1.67 µm for comparison (see §4.2.4).

the optical axis) in such a way that the average across circles 𝜑′ ∈ [0, 2𝜋) is zero. This is
particularly evident in fig. 4.9; we shall make use of this in the next section.

Shift in apparent dipole position for 𝜎± emission. Figures 4.8 and 4.9 reveal another in-
teresting feature of the dipole emission geometry: The 𝜎+ peak appears to be shifted with
respect to the coordinate origin in the optical axis! This is readily visible in fig. 4.10, which
shows one-dimensional slices through the field amplitudes along the coordinate axes (with
the convention chosen here, the transversal fields are real in the image plane, cf. eq. (4.21)).
This phenomenon is not related to defocus; the shift appears even in the focal plane 𝑧′ = 0,
such as for the fields shown here.

Mathematically, this can be seen as a consequence of the longitudinally-oriented ̂𝒛 com-
ponent of the 𝜎+ dipole to 𝜖′𝑥, the 𝐼1 cos 𝜑′-contribution of which overlaps destructively
with the 𝐼0 term from the �̂� dipole component for 𝑥′ > 0, and constructively for 𝑥′ < 0
(with opposite signs for a 𝜎− transition).

Physically, this can be interpreted as a consequence of the conservation of angular mo-
mentum: In the plane perpendicular to themagnetic field, 𝜎+ emission is linearly polarised.
As such, the angular momentum is carried away not in the form of photon helicity, but
must rather be encoded as orbital angular momentum of the photon mode geometry. The
resulting spiralling wavefronts give rise to a phase ramp across the aperture of the collec-
tion objective, or a positional shift in the image plane. This has been discussed for the case
of a classical dipole scatterer in ref. [SD06], and more recently in ref. [Ara+18]. In the
latter work, the quantum case is examined explicitly, where imaging through an aperture
can be interpreted as a weak measurement of the photon momentum. In the limit of low
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numerical aperture, the shift in image centroid expected for a 𝜎± transition is shown to be

𝛿𝑥 ≈ ∓𝑚
𝑘
1

1 + (sin 𝜗0)22
, (4.26)

which is only slightly exceeded for the imaging parameters considered here, as shown in
fig. 4.10.

Larger collection angles. While only the na 0.6 case was shown in the diagrams here, all
the above symmetry considerations still apply even in the limit of large numerical aper-
tures, i.e. as the collection cone half-angle approaches 𝜋/2. The relative strength of the 𝐼2
second-order Bessel function integral terms, which only contribute on the ≈ 2×10−3 level
for na 0.6, will increase, though. In particular, this will cause appreciable polarisation per-
pendicular to the magnetic field to be observed also for 𝜋 transitions, and the ̂𝒚-polarised
image for 𝜋 transitions to take on an elongated shape. The latter effect is the dual of what
one observes when strongly focussing a linearly polarised laser beam, which, in the plane
wave limit as well as considering a Gaussian profile, has been known for considerable time
[RW59; NH06].

4.2.4 Single-mode fibre coupling

We now turn our attention to the case where the electric fields are not directly observed,
but an optical fibre is placed in the image plane instead. For an appropriate choice of pa-
rameters, a cylindrically symmetric optical fibre with a single step in refractive index along
its radial profile supports only a single propagating mode of either polarisation. Assum-
ing that it is long enough for evanescently coupled light to have decayed away, it thus acts
as a spatial mode filter, with the allowed mode being well-approximated by a transversal
Gaussian profile. For the sake of convenience, we choose a normalisation similar to that
we chose for the atomic modes, ∬ℝ2 | ̂𝝐𝑭(𝑥, 𝑦)|

2d𝑥 d𝑦 = 1. The modes of a fibre aligned
with the ̂𝒛 axis are then given by

𝝐𝑭,𝒌(𝜌′, 𝜑′) = √
2
𝜋 𝑠2
e−(𝜌′/𝑠)2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝑢(𝜌′)

�̂�, (4.27)

where the parameter 𝑠 describes themode-field radius (giving the 1𝑒2 -intensity radius of the
Gaussian beam), and where �̂� enumerates some arbitrary orthonormal basis of the plane
perpendicular to the fibre axis. The coordinate axes �̂� and ̂𝒚 are an expedient choice for the
polarisation modes here, and we note that the following considerations would be equally
valid for different radial mode profiles 𝑢(𝜌′).
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In the quantum setting, this can be viewed as a projection of the spatial degrees of
freedom of the photon field onto a two-dimensional system describing the photon polari-
sation. The joint (unnormalised) ion–photon state at the output of the single-mode fibre
is thus simply

|𝜓⟩𝐼𝑃 = ̃𝜖𝜎,𝑥 |0⟩𝐼 |𝐻⟩𝑃 + ̃𝜖𝜎,𝑦 |0⟩𝐼 |𝑉⟩𝑃 + ̃𝜖𝜋,𝑥 |1⟩𝐼 |𝐻⟩𝑃 + ̃𝜖𝜋,𝑦 |1⟩𝐼 |𝑉⟩𝑃 , (4.28)

where the amplitudes are given by the usual inner product of dipole and fibre spatial modes
as complex functions on ℝ2, i.e. the overlap integrals

̃𝜖𝑑,𝑘 = ∬
ℝ2
𝝐𝑭,𝒌(𝒓) ⋅ 𝝐′ ̃𝒅(𝒓) d

2𝑟. (4.29)

In general, these integrals will have to be evaluated numerically. However, for the case
where the fibre is aligned with the optical axis, i.e. the coordinate systems in eqs. (4.22)
and (4.27) coincide, the structure greatly simplifies due to symmetry: Writing

̃𝜖𝑑,𝑘 =
∞

∫
0

2𝜋

∫
0

𝝐𝑭,𝒌(𝜌′, 𝜑′) ⋅ 𝝐′ ̃𝒅(𝜌
′, 𝜑′, 𝑧′) d𝜑′ 𝜌′ d𝜌′ =

∞

∫
0

𝑢(𝜌′)
2𝜋

∫
0

(𝜖′ ̃𝒅)𝑘(𝜌
′, 𝜑′, 𝑧′) d𝜑′ 𝜌′ d𝜌′,

(4.30)
all the non-𝐼0 terms in eq. (4.22) cancel on evaluating the 𝜑′ integral as the fibre mode
profile 𝑢 has no angular dependence, and we can write the resulting amplitudes more com-
pactly, introducing the centrally symmetric part of the propagator �̃�, as

̃𝜖𝑑 = √
3
8𝜋
𝑘
2𝑚
(∫
∞
0 𝑢(𝜌

′) 𝐼0(𝜌′, 𝑧′) 𝜌′ d𝜌′ 0 0
0 ∫∞0 𝑢(𝜌

′) 𝐼0(𝜌′, 𝑧′) 𝜌′ d𝜌′ 0
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕�̃�

̂𝒅. (4.31)

If 𝑢(𝜌′) is the profile of a Gaussian mode as defined in eq. (4.27), we can also analytically
evaluate the integral over 𝜌′, giving

�̃� = (
√3 ̃𝐼0 0 0
0 √3 ̃𝐼0 0

) (4.32)

with

̃𝐼0 ≔
𝑠 𝑘
2𝑚

𝜗0

∫
0

√ cos 𝜗
cos 𝜗′
(1 + cos 𝜗 cos 𝜗′) e−( 𝑠 𝑘2𝑚 )2(sin 𝜗)2 ei𝑘𝑧′ cos 𝜗′ sin 𝜗 d𝜗, (4.33)

where cos 𝜗′ = √1 − (sin 𝜗/𝑚)2 as before. The (unnormalised) ion–photon state from
eq. (4.28) is thus simply

|𝜓⟩𝐼𝑃 = ̃𝐼0 (|0⟩𝐼 |𝐻⟩𝑃 + |1⟩𝐼 |𝑉⟩𝑃) . (4.34)

After post-selection on the presence of a photon, this is a maximally entangled state! This
is a consequence of the radial symmetry, and as such valid independently of the numerical
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Figure 4.11: Collection efficiencies into single-mode fibre. Left: Overall collection efficiency from atom
into single-mode fibre at 422 nm, as a function of the fibre-side numerical aperture. Colours represent four
different ion-side collection angles as per the legend. In each case, the coupling efficiencies are shown for
51 different fibre mode field radii from 1 µm to 2 µm, with heavy lines marking steps of 0.1 µm. For each
mode field radius, the maximum in collection efficiency is attained at an approximately constant image-
space numerical aperture, regardless of the collection-side angle. Right: For mode-field radii across the
same range, the image-space numerical apertures at which maximum fibre-coupling is obtained (given as a
fraction of the respective value in the limit of zero ion emission collection angle) is nearly constant.

aperture, or the radial mode profile of the fibre; as these parameters are varied, only the
common ̃𝐼0 prefactor changes. Note again that we have assumed that the fibre mode is
centred on the collection axis; the consequences arising from misalignment are discussed
in the next section.

To maximise the collection efficiency 𝜂 ≔ 2 | ̃𝐼0|2 for a given set of parameters, one
would typically choose a certain numerical aperture sin 𝜗0 for the collection optics based
on engineering constraints, and the mode radius 𝑠 would be given by that of typical silica
single-mode fibres at the target wavelength. The optimal magnification 𝑚 of the imaging
system would then be chosen numerically to maximise eq. (4.33).

To good approximation, maximal coupling will be attained at the point where the
image-side numerical aperture 𝑚 sin 𝜗0 best matches the divergence angle of the fibre
mode. There will be some numerical constant relating this value to the “core na” often
catalogued by fibremanufacturers due to the difference inmode profiles. This holds across
different fibre mode-field radii; the residual dependence on the collection angle 𝜗0 is small,
the optimum reducing by 2.5% in the limit of collecting whole half-space, as shown in
fig. 4.11.

For numerical apertures sin 𝜗0 = 0.6 and sin 𝜗′0 = 0.09, the optimal mode-field radius
at 422 nm is 𝑠 = 1.67 µm. The corresponding mode amplitude was depicted in the earlier
fig. 4.10. Clearly, the overlap is not perfect, owing to the difference between the Gaussian
fibre profile and the Airy-like ion emission mode.
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Figure 4.12: Achievable efficiencies when coupling ion radiation into a Gaussian single-mode fibre.
Dashed lines show na 0.6, where the free-space collection efficiency is 0.1, and the absolute fibre-coupled
collection efficiency is 0.074. This is 74% of the free-space fraction, and 81% of the radially symmetric
part.

Themaximumachievable collection efficiencies for various collection angles are shown
in fig. 4.12. The emission from 𝐽 = 1/2 ↔ 𝐽′ = 1/2 transitions is spherically symmetric, so
the fraction of ion emission collected in free space is simply the solid angle 𝜂fs ≔ sin(𝜗0/2)2
(which of course can easily be verified by integrating over the expression from eq. (4.3)).
As only the 𝐼0 terms are coupled into the fibre, the relative fibre-coupling efficiency 𝜂/𝜂fs
falls towards wider collection angles, as shown in fig. 4.12.

By itself, this is neither surprising, nor undesired: as the numerical aperture increases
and the collection cone includes radiation from closer to the magnetic field axis, 𝜎± radi-
ation will gain in (relative) strength. If all this radiation was coupled into the fibre, the
balance between 𝜎+ and 𝜋 would be upset, shifting the resulting state away from being
maximally entangled. The more salient comparison to quantify the mode-matching qual-
ity is thus against the “useful” components, given by the 𝐼0 terms in eq. (4.22), which are
of equal strength for 𝜎+ and 𝜋. Since this excludes any contribution from the ̂𝒛-oriented
component of the 𝜎+ emission, the fraction 𝜂𝐼0/𝜂fs similarly falls off heavily towards larger
collection angles.

The remaining loss in coupling due to mismatch of the Gaussian fibre mode with the
symmetric part of the ion emission can then be quantified by 𝜂/𝜂𝐼0 , also shown on the right
side of fig. 4.12. Formoderate collection angles, the image-plane fields do not deviatemuch
from the low-na limit (and from what would be the point-spread function of the imaging
system), and the fractional coupling efficiency remains almost constantly at the 81.8%
for low numerical apertures, only falling below 80% at na 0.96, and reaching 77.6% as
𝜗0 approaches 𝜋/2. For realistic collection angles, an ≈ 19% improvement in collection
efficiency could thus be realised by tailoring the shape of the fibre mode to match the
perpendicular dipole image.
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4.3 Ion–photon entanglement imperfections

To arrive at the simple form from eq. (4.31) for the fibre-coupled emission amplitudes,
a number of assumptions were made regarding the system geometry: Ion and fibre tip
being exactly in the respective foci of the imaging system, the optical axis being exactly
perpendicular to the magnetic field and the fibre being aligned along the same, the ion
being a stationary dipole emitter, etc. While the theoretical prediction of unit ion–photon
entanglement fidelity is encouraging, it will no longer hold if any of these conditions are
violated. For the design and operation of an experiment making use of this scheme, it is
crucial to have an estimate for the sensitivity of expected fidelity and collection efficiency
to the various error sources.

In this section, we will quantitatively consider the effect of a number of imperfections.
While the ion–photon state can still easily be calculated numerically from the full expres-
sions for field amplitude and fibre overlap integrals, it is not straightforward to obtain ana-
lytical results outside the low-na limit for most calculations. Throughout this section, we
will thus consider the particular case of 422 nm radiation imaged by a na 0.6 objective with
magnification 𝑓′/𝑓 = 1/0.15, and the corresponding optimal Gaussian fibre mode of 1𝑒2 -
radius 𝑠 = 1.67 µm. These are the parameters most relevant to the experiments discussed
in the rest of this thesis, but should also be fairly typical for other atom-photon interface
experiments of this kind.

To provide a simple benchmark regarding the relative sensitivity towards the discussed
effects, I will also state the amount of imperfection at which the fidelity (fully entangled
fraction) of the generated state has dropped by an additional error ℰ = 0.5% over the
theoretical perfect Bell state, and also where the collection efficiency has dropped by 5%.
These thresholds are chosen fairly arbitrarily, but any experiment aiming to reach state-
of-the-art atom-light entanglement fidelities should be constructed to restrict most error
sources to comfortably below the given figures.

4.3.1 Positional misalignment

Given that the most straightforward way to focus ion emission into a fibre in the exper-
iment is to use a macroscopic lens objective outside the vacuum system holding the ion
trap, which will thus not be directly registered to the ion position mechanically and in-
volve focal lengths on the order of many centimetres, the sensitivity to small positional
misalignments is experimentally very relevant.

We can readily model a change 𝜟𝒓 in the fibre position by modifying the coordinate
origin of the fibremode, that is, making the replacement 𝝐𝑭,𝒌(𝒓) ↦ 𝝐𝑭,𝒌(𝒓−𝜟𝒓) in eq. (4.29).
This is most naturally discussed in two distinct cases, that of transversal displacements
(i.e. perpendicular to the optical axis), and that of longitudinal displacements along the
optical axis (i.e. defocus).
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Figure 4.13: Fibre-coupled performance under transversal misalignment of the collection fibre. Left: For
small offsets, both directions affect the fully entangled fraction of the state almost equally; the dashed line
shows the numerically obtained approximation 7.23 × 10−3 µm−2 𝛿𝑟2. Right: The sensitivity of the overall
fraction of collected photons is similar in both directions, but perpendicular to the magnetic field, the
maximum is offset due to the orbital angular momentum shift in the 𝜎+ image pattern.

The effect of shifts in position on the object, that is, ion trap side can then be inferred
using the geometrical imaging relations of the optical system, as discussed below.

Transversal misalignment. If the fibre tip is moved off the optical axis, the coupling of
the 𝐼1 and 𝐼2 terms in eq. (4.25) to the fibre mode no longer vanishes. As ‖𝐼1‖ ≫ ‖𝐼2‖,
the ion–photon state fidelity will predominantly be affected by the former, corresponding
to the contribution of the ̂𝒛-oriented part of the 𝜎+ dipole. For shifts along �̂�, that is,
perpendicular to themagnetic field, the extra contribution from the−𝐼1 cos 𝜑′ term in 𝜖′𝜎+,𝑥
will upset the balance between the 𝜋 and 𝜎+ components of the entangled state, whereas
for shifts along the ̂𝒚 direction of the magnetic field, the −𝐼1 sin 𝜑′ term in 𝜖′𝜎+,𝑦 will lead
to a non-zero amplitude for detecting a |𝑉⟩ photon from a 𝜎 decay.

The result of the numerical calculations for displacements along the coordinate axes is
shown in fig. 4.13. For small shifts, the resulting loss in fidelity is almost equal for both
directions, and for the given parameters can be approximated as

ℱshifted(𝛿𝑟) ≈ 1 − 7.23 × 10−3 µm−2 𝛿𝑟2.

The fidelity thus reaches 99.5% at 832 nm image-side displacement, where the collection
efficiency (in the parallel case) will have fallen to 78% of the peak value. To not lose more
than 5% in collection efficiency, a shift of at most ≈ 380 nm can be tolerated.

Note that the total collection efficiency actually increases for small shifts towards the
orbital-angular-momentum-displaced 𝜎+ emission peak (see last section). When the fibre
position is adjusted in the experiment to maximise the amount of fluorescence collected
from the ion, it is thus preferable to either consider only the |𝑉⟩ photons corresponding
to the 𝜋 transition where the coupling maximum actually coincides with the fibre axis, or
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Figure 4.14: Fibre-coupling efficiencies under defocus (fidelity is not affected). Left: Coupling efficiencies
as a function of the image-space displacement from the focus. As the object-side numerical apertures
varies between 0.1 and 0.9 (while keeping the image-side na constant), the predicted coupling efficiencies
agree to within the less than width of the displayed line. Inset shows a close-up of the maximum on the
same axes. Right: A series of transversal slices along the �̂� axis of the image field. Curves shown are for 𝑧′
values from 0 to 200 µm, in steps of 20 µm, as marked by the colour gradient.

to use steady-state cooling fluorescence where 𝜎+ and 𝜎− are emitted in equal amounts
(although the loss in fidelity from this would be fairly small, at 4 × 10−4).

In the treatment covered here, we have consistently assumed the ion to be located ex-
actly at the centre of the object-side reference sphere. For small displacements, however,
we can make use of the geometric relations of the imaging system – the fact that 𝑚 gives
the transversal magnification – to obtain the image-side field after a small displacement
of the dipole emitter to a point (𝑥, 𝑦, 0)𝑇 a small distance from the coordinate origin as
𝝐′(𝑥′ + 𝑚𝑥, 𝑦′ + 𝑚𝑦, 𝑧′). This is of course only true if the imaging system used is also
well-corrected for points off the axis, and the shift does not yet lead to significant asymmet-
ric clipping of the effective collection cone.9 The𝐹shifted = 0.995 and 𝜂𝑟𝑒𝑙 = 95% thresholds
for shifts on the ion side are then 𝛿𝑟 = 125 nm and 𝛿𝑟 = 57 nm, respectively.

Defocus. The behaviour under translation along the ̂𝒛 direction is qualitatively different
to the transversal directions, as it keeps the angular symmetries of the system intact. As
such, the fidelity of the resulting ion–photon state is unaffected. The overall collection
efficiency suffers, however, as the mode optimised for matching a small single-mode fibre
will be quite divergent. The behaviour for the above model system parameters is shown
in fig. 4.14; to be within 5% of optimal coupling, a shift of at most 𝛿𝑧′ = 14 µm can be
tolerated.

For a shift in the ion position from the origin of the reference sphere to (0, 0, 𝑧)𝑇, the
image fields now shift according to the longitudinal magnification 𝑚2, that is, are given
by 𝝐′(𝑥′, 𝑦′, 𝑧′ − 𝑚2 𝑧). The corresponding 95% efficiency threshold for shifts in the ion

9The limits of this approximation heavily depend on the lens design; for the na 0.6 objective used here,
the largely unaberrated field of view is some 100 µm.
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Figure 4.15: Ion-photon interface performance for angular misalignments of the single-mode fibre with
the collection axis. Left: Tilts around the ̂𝒚 axis parallel to the field do not introduce appreciable errors,
while tilts around the �̂� axis perpendicular to the field do. The dashed line shows a quadratic approxima-
tion for small angles (3.1 ⋅ (𝛼𝑥 / rad)2). Right: Tilts in either direction equally reduce the overall coupling
of photons into the single-mode fibre.

position is at 𝑧 = ±318 nm. While this is less stringent than the transversal position in
absolute terms, the change occurs over the potentially significant front focal length 𝑓 of
the imaging system.

By way of example, 𝑓 = 20.9mm for the objective lenses used in the experimental
section of this thesis, giving a fractional stability requirement of 15 × 10−6. Typically, non-
magnetic steel alloys are used in the construction of atom optics experiments, which tend
to have quite a large coefficient of linear thermal expansion; 𝛼 = 16 × 10−6 K−1 for grade
316 austenitic stainless steel [CW86]. This implies that the temperature of a typical appa-
ratus should be kept stable to better than 1K, even if the parts that define the transversal
alignment were matched in thermal expansion behaviour.

4.3.2 Fibre tilt

Angularmisalignment of the collection fibre, that is, tilts away from the optical axis, can be
modelled in much the same way as positional misalignment by appropriately modifying
the coordinate definitions in eq. (4.29). Rotations of the fibre along its axis are inconse-
quential in terms of the fully entangled fraction, so we choose to represent arbitrary tilts as
a succession of rotations 𝑅𝑥(𝛼𝑥) ∘ 𝑅𝑦(𝛼𝑦), where 𝑅𝑥 and 𝑅𝑦 can be expressed by the usual
SO(3) rotation matrices

𝑅𝑥(𝜑) ≔ (
1 0 0
0 cos 𝜑 − sin 𝜑
0 sin 𝜑 cos 𝜑

) , 𝑅𝑦(𝜑) ≔ (
cos 𝜑 0 sin 𝜑
0 1 0
− sin 𝜑 0 cos 𝜑

) . (4.35)
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Figure 4.16: Loss in ion–photon fidelity introduced by tilts of the static magnetic field out of the plane
perpendicular to the collection axis. The fraction of coupled photons remains unaffected.

Defining the rotated unit vectors corresponding to the direction of the fibre polarisation
modes (which also span the plane defining the fibre face) as

̂𝒆𝐻 = 𝑅𝑥(𝛼𝑥) 𝑅𝑦(𝛼𝑦) �̂�, ̂𝒆𝑉 = 𝑅𝑥(𝛼𝑥) 𝑅𝑦(𝛼𝑦) ̂𝒚, (4.36)

the integration over the fibre face then reads

̃𝜖𝑑,𝑗 = √
2
𝜋 𝑠2

∞

∫
−∞

∞

∫
−∞

e−(ℎ2+𝑣2)/𝑠2𝝐′ ̃𝑑(ℎ ̂𝒆𝐻 + 𝑣 ̂𝒆𝑉) ⋅ ̂𝒆𝒋 dℎ d𝑣, 𝑗 ∈ {𝐻,𝑉}. (4.37)

The resulting performance characteristics are shown in fig. 4.15. A strong asymmetry is
visible in the behaviour: Tilting the fibre around the axis parallel to the field to very good
approximation now just uniformly degrades coupling to the fibre due to what in the parax-
ial approximation is a phase ramp across the fibre phase. Before the loss in fidelity exceeds
1 × 10−5, the total collection efficiency has already dropped to < 0.1% of the aligned case.
Tilts around the axis perpendicular to the field decrease the overall collection efficiency in
the same way. Now, however, the phase ramp breaks the symmetry which prevents the 𝜎
radiation to coupling to 𝑉 polarisation, leading to a large polarisation mixing error. For
small angles (given in radian),

ℱtilt(𝛼𝑥) = 1 − 3.1 ⋅ 𝛼𝑥2 − 𝛺(𝛼𝑥4). (4.38)

𝐹tilt > 0.995 is reached for tilt angles 𝛼𝑥 < 2.3°; the 𝜂𝑟𝑒𝑙 = 0.95 threshold is at 𝛼𝑗 = 1.0°
(𝑗 = 𝑥, 𝑦).

4.3.3 Magnetic field misalignment

Another case of angular misalignment is given when the direction of the magnetic field
defining the atomic quantisation axis (through the Zeeman effect) differs from the in-
tended orientation. If the magnetic field is rotated in the plane perpendicular to the collec-
tion axis, only the basis in which the state is generated changes; the state is still maximally
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entangled. Rotations around the �̂� axis, which leave the collection axis no longer orthogo-
nal to the field, lead to an error, however.

Assuming the fibre is still well-aligned with the collection axis, the resulting state can
be analytically computed: Applying a rotation 𝑅𝑥(𝛽) to the atomic dipoles gives

𝑅𝑥(𝛽) ̃𝒅𝜎+ =
1
√3
(
1
i sin 𝛽
−i cos 𝛽
) , 𝑅𝑥(𝛽) ̃𝒅𝜋 =

1
√3
(
0
cos 𝛽
sin 𝛽
) , (4.39)

and evaluating the corresponding fibre-coupled amplitudes from eq. (4.31) yields the ion–
photon state as

|𝜓(𝛽)⟩𝐼𝑃 = ̃𝐼0 (|0𝐼𝐻𝑃⟩ + i sin 𝛽 |0𝐼𝑉𝑃⟩ + cos 𝛽 |1𝐼𝑉𝑃⟩) . (4.40)

As the magnetic field direction is rotated into the collection axis, the amount of po-
larisation mixing increases, and the fraction of 𝜋 emission coupled diminishes. A short
calculation [HH99] shows the fully entangled fraction of |𝜓(𝛽)⟩𝐼𝑃 to be

ℱ𝑩rot(𝛽) =
1
2
(1 + |cos 𝛽|) , (4.41)

as shown in fig. 4.16, while the fraction of collected photons is constant. 𝐹𝑩rot(𝛽) > 0.995
for |𝛽| < 8.11°.

4.3.4 Ion-induced imperfections

Up to now, we have regarded the ion to be a point-like source located at a perfectly known
point in space, and the above considerations would apply equally to any other quantum
dipole emitter. This is, of course, a rather crude approximation. Among other things, the
motional wave function of the ion confined in the three-dimensional harmonic potential
would have a non-zero extent even at zero temperature, there is additional motion due
to the radio-frequency trapping potential, and the internal electronic state of the ion is
also subject to decoherence. We will briefly discuss the effect of these non-idealities in the
following.

Secular motion. During the earlier description of the coupling between ion and electro-
magnetic radiation mode, we have completely neglected atomic motion. This is a good
approximation for describing the quantum dynamics of spontaneous emission into vac-
uum, at least as long as the mode density near the ion position is not made appreciably
anisotropic (such as e.g. using an optical cavity). Even if we regard internal state and (clas-
sical) motion as completely separate (and still ignore the effect of the photon’s momentum,
etc.), transforming the resulting field from the atomic frame to the laboratory rest frame
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Figure 4.17: Effect of secular ion motion on the fibre-coupled performance, assuming a 2𝜋 × 2MHz har-
monic mode of motion aligned with the given direction perpendicular to the collection axis. Both direc-
tions of motion yield the same amount of loss in fidelity; the collection efficiency remains slightly higher
for motion perpendicular to the magnetic field as the peak shifted by the ̂𝒛 dipole component is sampled.

will, for translations along the optical axis, still modulate the phase envelope of the emitted
photons, and in either case smear out the apparent source position.

The first effect, phasemodulation of the emitted photons, can be highly relevant to two-
photon interference under common experimental conditions and is discussed in more de-
tail in §4.5.1. Since the differential effect on the two photon polarisation modes is entirely
negligible to the similar wavelength, though, we do not consider it in detail here.

To estimate the strength of effects of the second kind, that is, due to modulation of
the ion position, we approximate the positional probability density by a Gaussian, and
then consider the ensemble average across the ion–photon states corresponding to the
respective emitter positions (the effects of which were discussed earlier). The variance in
position of a thermal state (see eq. (2.30)) is

(𝜎𝑥)2 ≔ tr(𝑥2𝜌) − (tr(𝑥 𝜌)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0
)2 = 𝑥02

1
1 + 𝑛

∞
∑
𝑛=0
( 1
1 + 1𝑛
)
𝑛
⟨𝑛|(𝑎 + 𝑎†)2|𝑛⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=2𝑛+1

= 𝑥02(2𝑛 + 1),

(4.42)
giving

𝜎𝑥 = √𝑥0 (2𝑛 + 1). (4.43)

We have neglected any intrinsic micromotion here, as the secular trap frequencies are typ-
ically chosen to be much lower than the Paul trap radio-frequency drive (see next section).
A typical trap frequency in ion-trap experiments such as ours might be 𝜔𝑚 = 2𝜋 × 2MHz,
and themass of an 88Sr+ ion is𝑚 = 1.46×10−25 kg, yielding the ground-state wave function
spread as 𝑥0 = 5.4 nm (or 36 nm in the magnified image).

Motion in direction of the axis will only slightly reduce the collection efficiency, as
discussed in §4.3.1. The expected performance figures for a normal distribution in ion
position across one coordinate axis with a given standard deviation is shown in fig. 4.17.
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Figure 4.18: Fibre-coupled performance under in-plane micromotion, assuming a 3MHz radial mode
of motion aligned with the given direction perpendicular to the collection axis and 50MHz trap RF, and
𝑛 = 10 for the secular motion.

The reduction in state fidelity is very similar for both transversal directions, as discussed
in fig. 4.13. The fidelity remains above 99.5% for root-mean-square extents below 154 nm,
corresponding to 𝑛 ≈ 410 for the above motional mode parameters. The 95% collection
efficiency threshold is reached at 64 nm, corresponding to 𝑛 ≈ 71.

Average state occupation numbers of 𝑛 ≈ 10 are easily reached in typical experiments
by Doppler cooling alone, where the expected error is on the 10−4-level. Thus, thermal
motion does not appear a significant limitation for ion–photon experiments at present.

Excess micromotion. Radio-frequency Paul traps provide only an approximation to a
three-dimensional harmonic potential for charged particles; the effect of the oscillating
quadrupole trap fields at frequency 𝜔𝑅𝐹 can be reduced to a two-dimensionally confin-
ing pseudopotential only in approximation. As discussed in §2.2.1, stray electric fields
that shift the ion’s equilibrium position off the null of the rf quadrupole potential, lead to
modulation of the ion trajectories at the trap drive frequency 𝛺rf.

The effect of this additional modulation in position on the average fibre-coupling ef-
ficiency is shown in fig. 4.18 for micromotion perpendicular to the optical axis, and in
fig. 4.19 for micromotion along the optical axis. For in-plane micromotion, the 99.5%
fidelity threshold is only reached at a stray field of 687Vm−1, where the modulation am-
plitude is already 180 nm. Similarly, the coupling only degrades to 95% at 331Vm−1 for
in-plane and 100Vm−1 for out-of-plane micromotion. In a typical ion-trap experiment,
the stray fields will be compensated to a much better degree than this to avoid unwanted
modulation of the laser beams used to manipulate the ion state (that is, keep the micro-
motion amplitude negligible compared to the ≈ 400 nm wavelength of the laser beams).
As such, this positional contribution to ion–photon entanglement errors will usually be
negligible.
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Figure 4.19: Fibre-coupled performance under out-
of-plane micromotion, assuming a 3MHz radial
mode of motion parallel to the collection axis with
𝑛 = 10, and 50MHz trap rf.
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Figure 4.20: Fibre-coupled performance under
both defocus and out-of-plane micromotion intro-
duced by a stray electric field of the given strength,
assuming a 3MHz radial mode of motion parallel
to the collection axis with 𝑛 = 10 for the secular
motion, and 50MHz trap rf.

Note that we assumed that the imaging system was adjusted to compensate for the
static shift 𝑟stray in the ion position so that just the modulation remains. If this is not the
case, e.g. if the stray field varies appreciably over the duration of a given experiment, the po-
sitional misalignment introduced by the stray field will affect fidelity and rate as discussed
in §4.3.1; shown for the ̂𝒛 direction in fig. 4.20.

Multiple excitation. When deriving the ion–photon state following spontaneous decay in
section 2.5, we assumed that the ion starts in the excited state with unit probability. For a
state with finite lifetime (and a short lifetime is of course necessary to efficiently generate
photons through spontaneous emission!) this is only possible to some approximation; the
driving field to excite it to that state will need to be applied for some finite duration.

If, during that excitation step, the ion already decays from the excited state, and is ex-
cited again, two photons are emitted. If the first photon is detected (which will be most
likely), no coherent relationship to the ion state will be observed. This can be modelled
exactly, but we can obtain a conservative estimate by considering the admixture of an in-
coherent mixture of final ion states (according to branching probabilities), with the total
weight given by the double-excitation probability.

This is a significant consideration for some experiments where a weak drive is em-
ployed [Bli+04], and also for some cavity-assisted schemes [Mer+20; Wal+20]. If a single
pulse from a mode-locked laser is used, however, its duration can still be significantly
shorter than the excited state lifetime (≈ 5 ps in our experiment, compared to the 7.39 ns
𝑃1/2 state lifetime in 88Sr+). As a result, the intrinsic double excitation probability is negli-
gible, as long as it is not exacerbated due to unintended leakage of laser radiation resonant
with the relevant ion transitions after the excitation step (e.g. 422 nm, 1092 nm for 88Sr+).
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4.3.5 Other error sources

We briefly mention some other imperfections that will likely be relevant to experimental
realisations, but were not explicitly discussed in the above.

Thus far, we have assumed the imaging system to be free of optical aberrations. This
is not necessarily a good assumption in practice, as the technical tolerances required to
obtain diffraction-limited performance become increasingly challenging tomeet for larger
numerical apertures. If a parameterisation of the aberrations is known for a particular lens
design, it could easily be integrated into the above calculations by multiplying the field in
eq. (4.19) by the corresponding pupil function before evaluating the diffraction integral.10

Therewill also be some loss in observed fidelity associatedwith how the entangled state
is used. The ion qubit state will typically be stored for some duration after the emitted pho-
ton is observed, leading to decoherence. Limited timing resolution or jitter in the photon
detection chain will similarly cause errors in the phase reference for the ion, leading to
decoherence as well. The motional state of the ion will typically also induce errors in the
coherent operations used to make use of the created state (e.g. tomography for analysis),
and qubit state readout will not be perfect.

On the photonic side, we have also neglected any depolarising effects in the collection
optics. Given that manipulation of the qubit state would typically happen in fibres or well-
collimated free-space beams (where birefringent elements and polarising beamsplitters are
available in high quality), the main concern here is potentially non-uniform birefringence
across the high-na collection optics. Slow birefringence drifts in the collection fibres due
to changes in mechanical stress or temperature will also limit the ultimate performance of
the system, but can be actively corrected if necessary.

4.4 Heralded ion–ion entanglement

Thus far, we have seen that the internal state of the ion after excitation and spontaneous
decay is entangledwith the polarisation of photons filtered through a single-mode fibre in a
way that ismaximally entangled conditional on the presence of a photon. We now consider
two such nodes, excited at the same time11, the photons from which are brought together
at a central heralding station with the aim of creating a maximally entangled ion–ion state.

Any heralded entanglement generation procedure of this kind is necessarily probabilis-
tic, at least for low photon collection and transmission efficiencies: without knowledge of

10Theperformance of high-na objectives being heavily dependent on their precise alignment,meaningful
results are somewhat hard to obtain in practice, however. While it is possible to experimentally fit lower-
order models to camera images (see e.g. [Won+16]), a relay imaging system with extra magnification will
be necessary for useful results due to the small size of the target fibre mode, which will have to be carefully
designed to minimise additional aberrations.

11As we shall see, what is actually relevant is that the photon wavepackets arrive at the central station at
the same time.
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the state of the spontaneous emission photons, the ion states are, with overwhelming proba-
bility, just an incoherent mixture of the qubit states, and entanglement is monotonic under
local operations and classical control12.

It is well-known (§2.5) that such a probabilistic entanglement swapping operation,
which in theory yields perfect Bell states when a herald signal is asserted, can be imple-
mented in linear optics. This is achieved with a partial Bell basis measurement apparatus
based on beamsplitters, where the detection of photons in certain combinations of two out-
put ports heralds the successful (but destructive) projection of the photons onto a Bell state.
If the ion–photon input states were maximally entangled, the resulting ion–ion state will
thus bemaximally entangled too. Of course, this is only exactly true assuming ideal optical
components and detectors, as well as photon wavepackets that are perfectly indistinguish-
able. Aiming to implement such a procedure in practice, especially if the ion–photon input
states are close to ideal (as in this work), it is important to understand how sensitive the
results are to different practical imperfections.

This is precisely the goal for this section: to derive the ion–ion states corresponding to
post-selection on a particular combination of clicks in the single-photon detectors placed
at the outputs of a linear-optics Bell basismeasurement apparatus, and to do so in a fashion
where both non-ideal input states and non-ideal optical devices and components are easily
incorporated.

4.4.1 Problem statement

A reduced, schematic representation of the Bell-basis measurement apparatus from fig. 3.7
is shown in fig. 4.21. The inputs are the two photon wavepackets guided by single-mode
optical fibres (and the vacuum on the two unused ports of the polarising beamsplitters),
the outputs are connected to single-photon detectors with some quantum efficiency 𝜂det ∈
[0, 1], and the components of the apparatus transform the state by interacting with modes
in a pairwise fashion. We describe the photonic states using temporal wave-packet modes
(see §2.3.1), and do not explicitly consider the geometry or propagation through the appa-
ratus, but just label the modes by a spatial mode (“beam”) index 𝑠 ∈ {𝐴, 𝐵, 𝐶,𝐷} and their
polarisation𝛱 (for which we will here explicitly use the horizontal and vertical directions
relative to the optical breadboard to which all the components are mounted,𝛱 ∈ {𝐻,𝑉}).
Let 𝜌𝑠𝐼𝑠𝑃 be the ideal ion–photon state13 at each input of the heralding station,

𝜌𝑠𝐼𝑠𝑃 = 𝜂422𝜂𝑠fibre |𝜓𝑠⟩⟨𝜓𝑠| + (1 − 𝜂422𝜂𝑠fibre) 𝜌𝑠dark,𝐼𝑠 ⊗ |0⟩⟨0| , (4.44)
12A note in passing: The Bell-state fidelity or fully entangled fraction ℱ is not itself a locc monotone;

cf. [Bad+00]. For the present discussion, where the aim is not to e.g. demonstrate the abstract (in)feasibility
of a certain scheme, but to analyse the performance of a particular implementation, this is not of concern;
readily computed locc monotones such as the logarithmic negativity [Ple05] exist, however.

13In 𝜌𝑠𝐼𝑠𝑃 and throughout, the subscript 𝑠 is not an exponent but labels the system that the state or pa-
rameter describes. 𝐼𝐴 denotes the ion in node Alice, 𝐼𝐵 that in Bob, and 𝑃 the general multi-mode photonic
system.
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Figure 4.21: Schematic representation of the partial Bell-basis measurement apparatus, with mode labels
as used throughout this section. The inputs are single-mode fibres from the ion trap nodes Alice and Bob,
the output modes 𝐴 to𝐷 are again coupled into single-mode fibres to single-photon detectors (see fig. 3.7
for a sketch of the actual experimental implementation). The colouring suggests the spatial mode naming
convention used throughout this section: rather than labelling e.g. the input and output modes of a beam-
splitter with different letters, we consider each component to cause pairs of modes to interact (as expressed
by a unitary transformation on the associated creation operators). The modes retain the names they would
have had if the component were not present. Modes 𝐴 and 𝐵 perfectly overlap on the 50 ∶ 50 beamsplitter,
that is, the spatial modes for photons from Alice and from Bob are indistinguishable.

where 𝜂422 is the fraction of 𝑃1/2 decays on the desired 422 nm transition (see §4.1) and
𝜂fibre is the efficiency of collection into and transmission through the fibre. 𝜌𝑠dark,𝐼𝑠 is the
ion state when the photon has not been transmitted by the fibre and has been traced out;
for efficient excitation14 it is

𝜌𝑠dark,𝐼𝑠 =
1

1 − 𝜂422𝜂𝑠fibre
((1 − 𝜂422) 𝜌1092,𝐼𝑠 +

𝜂422 ((
2
3
− 𝜂
𝑠
fibre
2
) |0⟩⟨0| + (1

3
− 𝜂
𝑠
fibre
2
) |1⟩⟨1|)),

(4.45)

but as the protocol considered here is based on the detection of one photon from each ion,
its form is not relevant for the present discussion. |𝜓𝑠⟩ is the maximally entangled state
between ion state and photon wavepackets,

|𝜓𝑠⟩ = 1√2
(|0⟩ ⊗

∞

∫
−∞

𝜙0(𝑡 − 𝛥𝑡𝑠) 𝑏†𝑠𝐻(𝑡) d𝑡 + |1⟩ ⊗
∞

∫
−∞

𝜙1(𝑡 − 𝛥𝑡𝑠) 𝑏†𝑠𝑉(𝑡) d𝑡) |0⟩ , (4.46)

where we have taken 𝛥𝑡𝑠 to be the propagation delay from ion to the entangler input (𝛥𝑡 ≔
𝐿/𝑐 for a free-space distance𝐿, appropriatelyweighted by the refractive index in fibres). We
have assumed that the polarisations corresponding to 𝜎+ and 𝜋 decays are exactly aligned
with the 𝐻 and 𝑉 axes for clarity of notation; we will consider the effect of residual fibre
birefringence in §4.5.2.

For this analysis, however, we do not wish to assume the ion–photon state to be ideal,
but want to be able to propagate any number of imperfections, such as those discussed

14If the picosecond laser excitation from |0⟩ = |5𝑠 2𝑆1/2, 𝑚𝐽 = − 12⟩ to |𝑒⟩ = |5𝑝
2𝑃1/2, 𝑚𝐽 = 12⟩ is not

perfectly efficient, the ratio of 2 ∶ 1 in the lower state populations would be biased further towards |0⟩.
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in §4.3, though the Bell-state measurement apparatus to model their effect on the final
states. We thus consider the input from each system, Alice (𝑠 = 𝐴) or Bob (𝑠 = 𝐵), to
be given by a density operator. To keep the notation concise in the rest of the chapter, we
anticipate the fact thatwewill only consider events heralded by the presence of twophotons
and disregard the 𝜌𝑠dark,𝐼𝑠 parts, instead working with sub-normalised density operators
𝜌𝑠𝐼𝑠𝑃 which only have support on the one-photon subspace, their trace given by the total
system collection efficiency 𝜂𝑠. 𝜂𝑠 is a product of 𝜂422, 𝜂𝑠fibre, and the efficiencies of any other
imperfect state preparation, excitation or transmission processes; that is, the probability to
actually find a photon at the output of the fibre from 𝑠 following the initial excitation stage.
We can express such a state generically “in components” as

𝜌𝑠𝐼𝑠𝑃 = 𝜂𝑠 ∑
𝑖,𝑗∈{0,1}
|𝑖⟩⟨𝑗| ⊗ 𝜏𝑠𝑖𝑗, 𝜏𝑠𝑖𝑗 ≔ ∑

𝑜,𝑝∈{𝐻,𝑉}

∞

∫
−∞

∞

∫
−∞

𝜌𝑠𝑖𝑗𝑜𝑝(𝑙, 𝑟) 𝑏†𝑛𝑜(𝑙) |0⟩⟨0| 𝑏𝑛𝑝(𝑟) d𝑟 d𝑙. (4.47)

where the 𝜌𝑠𝑖𝑗𝑜𝑝(𝑙, 𝑟) ∈ ℂ give the coefficients in this basis, with discrete ion state indices
𝑖, 𝑗, polarisation indices 𝑜, 𝑝, and the continuous time parameters 𝑙, 𝑟. The “photonic part”
𝜏𝑠𝑖𝑗 of the tensor product depends on the ion state indices 𝑖, 𝑗 unless ion and photon are
in a product state. For the ideal input state from eq. (4.46), 𝜌𝑠𝑖𝑗𝑜𝑝(𝑙, 𝑟) = 12δ𝜋(𝑖)𝑜δ𝜋(𝑗)𝑝𝜙𝑖(𝑙 −
𝛥𝑡𝑠)𝜙𝑗(𝑟 − 𝛥𝑡𝑠), where 𝜋 specifies the ion state/polarisation mapping 𝜋(0) = 𝐻, 𝜋(1) = 𝑉.

We are interested in the density operator describing the joint state of the two ions after
a herald signal given by, in this case, two clicks in the single-photon detectors on the output
of the Bell-state measurement apparatus. The beamsplitter network is usefully15 described
by a unitary operator 𝑈𝑃 acting on the photonic part of the system, such that the state at
the output of the network is given by 𝜌out ≔ (𝟙𝐼𝐴𝐼𝐵 ⊗ 𝑈𝑃)(𝜌𝐴𝐼𝐴𝑃 ⊗ 𝜌𝐵𝐼𝐵𝑃)(𝟙𝐼𝐴𝐼𝐵 ⊗ 𝑈

†
𝑃).

As discussed in §2.3.1, the detection of two photons in modes 𝑠𝛱 and 𝑠′𝛱′
at times 𝑡 and 𝑡′ is a projective measurement given by a measurement operator
𝑀 ≔ ⟨0| 𝑏𝑠𝛱(𝑡) 𝑏𝑠′𝛱′(𝑡′) and projector 𝑀†𝑀, or for detectors with a finite efficiency16

𝜂det, the povm element (𝜂det)
2𝑀†𝑀. Detection of photons in a given time window is

expressed by an appropriate integration over the time variables. Given a povm element 𝐹,
the sub-normalised ion–ion state following this measurement is

(𝜌∧𝐹)𝐼𝐴𝐼𝐵 = tr𝑃 ((𝟙𝐼𝐴𝐼𝐵 ⊗ 𝐹) 𝜌out)
= tr𝑃 ((𝟙𝐼𝐴𝐼𝐵 ⊗ 𝐹) (𝟙𝐼𝐴𝐼𝐵 ⊗ 𝑈𝑃)(𝜌𝐴𝐼𝐴𝑃 ⊗ 𝜌𝐵𝐼𝐵𝑃)(𝟙𝐼𝐴𝐼𝐵 ⊗ 𝑈

†
𝑃))

= 𝜂𝐴𝜂𝐵∑
𝑖𝐴𝑗𝐴𝑖𝐵𝑗𝐵
|𝑖𝐴⟩⟨𝑗𝐴| ⊗ |𝑖𝐵⟩⟨𝑗𝐵| ⊗ tr (𝐹𝑈𝑃 (𝜏𝐴𝑖𝐴𝑗𝐴 ⊗ 𝜏𝐵𝑖𝐵𝑗𝐵)𝑈

†
𝑃) .

(4.48)

15Theunitarity of the beamsplitter network is technically only an approximation; it consists only of linear
optics, but is not photon-number preserving due to small amounts of loss. However, as this loss is approxi-
mately uniform and we are only interested in the case post-selected on the presence of a pair of photons here,
it can be easily accounted for in 𝜂𝑠 or 𝜂det. If necessary, the conjugation by 𝑈𝑃 could easily be replaced by
the application of an arbitrary map either way.

16For conciseness, we assume the detection efficiency to be the same across all detectors here, as it merely
results in a prefactor to the overall probability-weighted density matrix. Individual detector efficiencies can
easily be reinstated by replacing the prefactor by an appropriate product of efficiencies.
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The trace of (𝜌∧𝐹)𝐼𝐴𝐼𝐵 gives the probability of observing two photons as specified by 𝐹; if
𝐹 consists directly of temporal mode operators 𝑏𝑠𝛱(𝑡) rather than their integral, it has the
meaning of a probability density for the detection of a photon at 𝑡.

4.4.2 Evolution and post-selected states in the ideal case

To describe the unitary evolution, we will consider the apparatus in a “lumped-element”
model, concatenating the effect of the various optical elements while neglecting the free-
space paths between them (which are inconsequential here17). Each element couples exci-
tations in two modes in a way that can be described by transforming their creation opera-
tors 𝑏†𝑠𝛱 and 𝑏†𝑠′𝛱′ into a new pair of creation operators �̃�†𝑠𝛱 and �̃�†𝑠′𝛱′ describing excitations
in the output modes according to the corresponding two-level unitary matrix 𝑈 ∈ U(2).
We will write 𝒱𝑥↔𝑦(𝑈) for this action of 𝑈 on the modes 𝑥 and 𝑦. This could be evaluated
by symbolically applying the respective transformations to the input state in eq. (4.48),
though this is cumbersome in the general case; appendix A describes a way to, taking ad-
vantage of the fact that the system never contains more than a few (here, two) excitations
at the same time, evaluate these expressions through matrix multiplication in a truncated
multi-mode Fock space.

In the absence of any birefringence or other imperfections, the total evolution operator
is simply given by a series of beamsplitters:

𝑈𝑃 = 𝒱𝐵𝑉↔𝐷𝑉 (𝑈BS(𝜃PBS B
𝑉 )) ⋅ 𝒱𝐵𝐻↔𝐷𝐻 (𝑈BS(𝜃PBS B

𝐻 )) ⋅
𝒱𝐴𝑉↔𝐶𝑉 (𝑈BS(𝜃PBS A

𝑉 )) ⋅ 𝒱𝐴𝐻↔𝐶𝐻 (𝑈BS(𝜃PBS A
𝐻 )) ⋅

𝒱𝐴𝑉↔𝐵𝑉 (𝑈BS(𝜃50∶50𝑉 )) ⋅ 𝒱𝐴𝐻↔𝐵𝐻 (𝑈BS(𝜃50∶50𝐻 )) .
(4.49)

𝑈BS(𝜃) is the unitary matrix for a beamsplitter with reflectance (sin 𝜃)2, as discussed in
§2.3.2. In the ideal case, the non-polarising beamsplitter has a 50 ∶ 50 splitting ratio inde-
pendent of polarisation, 𝜃50∶50𝐻 = 𝜃50∶50𝑉 = 𝜋4 , and the polarising beamsplitters are perfectly
transmissive for𝐻 polarisation, perfectly reflective for𝑉 polarisation: 𝜃PBS A

𝐻 = 𝜃PBS B
𝐻 = 0,

𝜃PBS A
𝑉 = 𝜃PBS B

𝑉 = 𝜋2 . We will write 𝑈ideal𝑃 for eq. (4.49) with these parameters.
At the output, each mode is coupled into a polarisation-insensitive detector18. We

hence label the detection events using the spatial mode names (see table 4.1 for the corre-
spondence to the detector indices used in the experimental chapters), for which the cor-
responding povms are sums over the individual polarisations. With perfect pbses, the

17As long as the photon wavepackets are timing-aligned on the non-polarising 50 ∶ 50 beamsplitter
(fig. 4.21), the exact amount of time delay in the various paths before or after the beamsplitter only contributes
an uninteresting phase shift – we do not use a scheme such as homodyne detection that would be sensitive
to the absolute optical phase. If the apparatus contained paths that split and recombine, as e.g. in a Mach–
Zehnder interferometer, we would need to track the temporal evolution even without time/phase resolution
on the detectors to capture the differential phase shift resulting from path length differences.

18Just as noted regarding any differences in efficiency between the detectors earlier, a dependence on po-
larisation would be easy to insert – as we only consider the state post-selected on the presence of the photons
in the experiment, this would only modify the probability of observing the various heralds accordingly.
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Spatial mode notation 𝐴 𝐵 𝐶 𝐷

Experimental apparatus apd3 apd0 apd2 apd1

Table 4.1: Mapping between spatial mode names used here and photodetector names used in the experi-
mental chapters.

output modes 𝐴𝑉, 𝐵𝑉, 𝐶𝐻, 𝐷𝐻 will of course not be populated; in fact, we could have
directly assigned the modes 𝐴𝐻, 𝐴𝑉, 𝐵𝐻, 𝐵𝑉 after the 50 ∶ 50 beamsplitter to the four
detectors. Introducing the extra modes will allow us to easily introduce imperfections in
the next section, though.

Now, we can finally compute the ion–ion density matrices 𝜌∧𝑥∧𝑦(𝑡, 𝑡′) corresponding
to the detection of photons inmodes𝑥 and𝑦 at times 𝑡 and 𝑡′, respectively (wewill drop the
ion system subscript 𝐼𝐴𝐼𝐵 from here on out). By convention, we will arrange the modes
𝑥 and 𝑦 in lexicographic order and match them up with the time variables accordingly.
The matrices are sub-normalised; their trace gives the joint probability density for detect-
ing two photons at the given times. For the four combinations of detectors of opposite
polarisations, we obtain (for 𝑈𝑃 = 𝑈ideal𝑃 )

𝜌∧𝐴∧𝐶(𝑡, 𝑡′) = 𝜌∧𝐵∧𝐷(𝑡, 𝑡′) =
𝜂𝐴𝜂𝐵(𝜂det)2
8
𝛤2e−𝛤𝑡e−𝛤𝑡′ |𝛹+⟩⟨𝛹+| ,

𝜌∧𝐴∧𝐷(𝑡, 𝑡′) = 𝜌∧𝐵∧𝐶(𝑡, 𝑡′) =
𝜂𝐴𝜂𝐵(𝜂det)2
8
𝛤2e−𝛤𝑡e−𝛤𝑡′ |𝛹−⟩⟨𝛹−| .

(4.50)

In the ideal case, we thus obtain a maximally entangled state on detection of a two-photon
coincidence, independent of the photon detection time. Integrating over the entire expo-
nential tail, each click pattern occurs with probability 18𝜂

𝐴𝜂𝐵(𝜂det)2, for an overall proba-
bility of 12𝜂

𝐴𝜂𝐵(𝜂det)2 of a successful herald.
The same-polarisation coincidences 𝐴 ∧ 𝐵 and 𝐶 ∧ 𝐷 do not occur at all in the per-

fect case; this is the Hong–Ou–Mandel effect [HOM87]. Both these and the cases of two
photons in the same mode, which we cannot detect in our experiment, would just lead
to non-entangled states |00⟩⟨00| or |11⟩⟨11| – if two photons of the same polarisation are
detected, there can be no “which-path” ambiguity about which ion is in what state.

4.5 Ion–ion entanglement imperfections

One obvious source of deviations of the post-herald ion–ion state from the ideal
maximally-entangled state are those issues also affecting the ion–photon-entangled
states it resulted from; we have already discussed those in §4.3. Here, we will catalogue a
number of additional effects affecting the ion–ion entanglement beyond those, discussing
their effect on the remote entanglement quality in isolation to provide guidelines for the
selection of optical components, alignment tolerances, etc. (though the model could of
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course equally be used to predict the outcome from any number of these issues present at
the same time).

4.5.1 Ideal entangler, non-identical photon wavepackets

For the first set of imperfections, we will consider those where the entanglement swapping
apparatus is perfect, but the temporal inputmodes are not perfectly identical. Nowwriting
𝜙𝐴0 , 𝜙𝐴1 for the amplitudes from Alice and 𝜙𝐵0 , 𝜙𝐵1 for those from Bob, we can calculate the
densitymatrices for the four heralding patterns in the sameway as for eq. (4.50), and obtain

𝜌∧𝐴∧𝐶(𝑡, 𝑡′) = 𝜌∧𝐵∧𝐷(𝑡, 𝑡′) =

𝜂𝐴𝜂𝐵(𝜂det)2
16
(

0 0 0 0
0 |𝜙𝐴0 (𝑡)|2|𝜙𝐵1 (𝑡′)|2 𝜙𝐴0 (𝑡)𝜙𝐵1 (𝑡′)𝜙𝐴1 (𝑡′)𝜙𝐵0 (𝑡) 0
0 𝜙𝐴1 (𝑡′)𝜙𝐵0 (𝑡)𝜙𝐴0 (𝑡)𝜙𝐵1 (𝑡′) |𝜙𝐴1 (𝑡′)|2|𝜙𝐵0 (𝑡)|2 0
0 0 0 0

),

𝜌∧𝐴∧𝐷(𝑡, 𝑡′) = 𝜌∧𝐵∧𝐶(𝑡, 𝑡′) =

𝜂𝐴𝜂𝐵(𝜂det)2
16
(

0 0 0 0
0 |𝜙𝐴0 (𝑡)|2|𝜙𝐵1 (𝑡′)|2 −𝜙𝐴0 (𝑡)𝜙𝐵1 (𝑡′)𝜙𝐴1 (𝑡′)𝜙𝐵0 (𝑡) 0
0 −𝜙𝐴1 (𝑡′)𝜙𝐵0 (𝑡)𝜙𝐴0 (𝑡)𝜙𝐵1 (𝑡′) |𝜙𝐴1 (𝑡′)|2|𝜙𝐵0 (𝑡)|2 0
0 0 0 0

).

(4.51)

For non-identical envelopes, the Hong–Ou–Mandel-suppressed same-polarisation pat-
terns are no longer entirely forbidden. The density matrices are

𝜌∧𝐴∧𝐵(𝑡, 𝑡′) =
𝜂𝐴𝜂𝐵(𝜂det)2
16
|𝜙𝐴0 (𝑡)𝜙𝐵0 (𝑡′) − 𝜙𝐴0 (𝑡′)𝜙𝐵0 (𝑡)|2 |0⟩⟨0| ,

𝜌∧𝐶∧𝐷(𝑡, 𝑡′) =
𝜂𝐴𝜂𝐵(𝜂det)2
16
|𝜙𝐴1 (𝑡)𝜙𝐵1 (𝑡′) − 𝜙𝐴1 (𝑡′)𝜙𝐵1 (𝑡)|2 |1⟩⟨1| .

(4.52)

This shows that equal-time coincidences remain entirely forbidden, tr 𝜌∧𝐴∧𝐵(𝑡, 𝑡) =
tr 𝜌∧𝐶∧𝐷(𝑡, 𝑡) = 0 for all 𝑡, but coincidences at different times 𝑡 ≠ 𝑡′ can be allowed if the
wavepackets for the respective polarisation are not identical. This matches earlier results
on time-resolved Hong–Ou–Mandel interference in a purely photonic context [Leg+03;
Leg+06]. We will see a concrete example for the case of a difference in magnetic fields
later.

From eq. (4.50), we saw that in the ideal case, the ion–ion state does not depend on
the detection times. Furthermore, to optimise the heralding probability, clicks at all detec-
tion times should be allowed. This is indeed the mode we typically operate the experiment
in, where we only use the photon detector timestamps to define a broad coincidence win-
dow to exclude counts before the excitation pulse, and after ∼ 4 decay time constants have
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elapsed as a fairly arbitrary cut-off to reduce the influence of dark counts. In this case, the
states are (in the limit where the exponential tail is not cut off at all) given by

𝜌∧𝐴∧𝐶 = 𝜌∧𝐵∧𝐷 ≔
∞

∫
−∞

∞

∫
−∞

𝜌∧𝐴∧𝐶(𝑡, 𝑡′) d𝑡′d𝑡 =

𝜂𝐴𝜂𝐵(𝜂det)2
16
(

0 0 0 0
0 ‖𝜙𝐴0 ‖

2 ‖𝜙𝐵1 ‖
2 ⟨𝜙𝐵0 , 𝜙𝐴0 ⟩ ⟨𝜙𝐴1 , 𝜙𝐵1⟩ 0

0 ⟨𝜙𝐴0 , 𝜙𝐵0⟩ ⟨𝜙𝐵1 , 𝜙𝐴1 ⟩ ‖𝜙𝐴1 ‖
2 ‖𝜙𝐵0 ‖

2 0
0 0 0 0

)

𝜌∧𝐴∧𝐷 = 𝜌∧𝐵∧𝐶 ≔
∞

∫
−∞

∞

∫
−∞

𝜌∧𝐴∧𝐷(𝑡, 𝑡′) d𝑡′d𝑡 =

𝜂𝐴𝜂𝐵(𝜂det)2
16
(

0 0 0 0
0 ‖𝜙𝐴0 ‖

2 ‖𝜙𝐵1 ‖
2 − ⟨𝜙𝐵0 , 𝜙𝐴0 ⟩ ⟨𝜙𝐴1 , 𝜙𝐵1⟩ 0

0 − ⟨𝜙𝐴0 , 𝜙𝐵0⟩ ⟨𝜙𝐵1 , 𝜙𝐴1 ⟩ ‖𝜙𝐴1 ‖
2 ‖𝜙𝐵0 ‖

2 0
0 0 0 0

),

(4.53)

where the diagonal elements are 1 as the envelope functions are normalised as ‖𝜙𝐴0 ‖ =
‖𝜙𝐵0 ‖ = ‖𝜙𝐴1 ‖ = ‖𝜙𝐵1 ‖ = 1, and for the Hong–Ou–Mandel-forbidden patterns

𝜌∧𝐴∧𝐵 ≔
∞

∫
−∞

∞

∫
−∞

𝜌∧𝐴∧𝐵(𝑡, 𝑡′) d𝑡′d𝑡 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
(1 − |⟨𝜙𝐵0 , 𝜙𝐴0 ⟩|2) |0⟩⟨0| ,

𝜌∧𝐶∧𝐷 ≔
∞

∫
−∞

∞

∫
−∞

𝜌∧𝐶∧𝐷(𝑡, 𝑡′) d𝑡′d𝑡 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
(1 − |⟨𝜙𝐵1 , 𝜙𝐴1 ⟩|2) |1⟩⟨1| .

(4.54)

For the valid patterns, 𝜌 ∈ {𝜌∧𝐴∧𝐶, 𝜌∧𝐴∧𝐷, 𝜌∧𝐵∧𝐶, 𝜌∧𝐵∧𝐷}, tr 𝜌 = 𝜂𝐴𝜂𝐵(𝜂det)2/8, and, as 𝜌 is
of the form (2.14),

ℱ ( 𝜌
tr 𝜌
) = 1
2
(1 + |⟨𝜙𝐵0 , 𝜙𝐴0 ⟩ ⟨𝜙𝐴1 , 𝜙𝐵1⟩|) . (4.55)

If we define the probability of observing the Hong–Ou–Mandel-suppressed patterns rel-
ative to the allowed patterns according to eq. (4.54) as 𝜀𝐻 ≔ 1 − |⟨𝜙𝐵0 , 𝜙𝐴0 ⟩|2, 𝜀𝑉 ≔ 1 −
|⟨𝜙𝐵1 , 𝜙𝐴1 ⟩|2, then

ℱ ( 𝜌
tr 𝜌
) = 1
2
(1 + √(1 − 𝜀𝐻)(1 − 𝜀𝑉)) , (4.56)

or, in terms of the Bell-state error,

ℰ ( 𝜌
tr 𝜌
) = 1
2
(1 − √(1 − 𝜀𝐻)(1 − 𝜀𝑉)) ≈

𝜀𝐻 + 𝜀𝑉
4
. (4.57)

In other words, if (but only if) the Bell-state measurement apparatus is perfect, then the
amount of infidelity resulting from non-identical wavepackets can easily be diagnosed
through the probability for Hong–Ou–Mandel-forbidden coincidences to occur.
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Temporal misalignment. If the arrival times of the photons from Alice and Bob at the
central beamsplitter do not match, the wave-packet overlap decreases accordingly: With-
out loss of generality, assume that Bob’s photons are shifted back by 𝛥𝜏 ≥ 0, such that
𝜙𝐵𝑖 (𝑡) = 𝜙𝐴𝑖 (𝑡 − 𝛥𝜏). Then,

|⟨𝜙𝐵0 , 𝜙𝐴0 ⟩| = |⟨𝜙𝐴1 , 𝜙𝐵1⟩| = 𝛤
∞

∫
𝛥𝜏

e−𝛤(𝑡−
𝛥𝜏
2 )d𝑡 = e− 𝛤2𝛥𝜏, (4.58)

so the Bell-state error from a temporal misalignment is

ℰ𝛥𝜏 =
1 − e−𝛤|𝛥𝜏|
2
≈ 𝛤|𝛥𝜏|
2
+ O ((𝛤𝛥𝜏)2) , (4.59)

where the absolute value restores validity for general 𝛥𝜏 (as can be seen from the same
consideration with the roles of Alice and Bob swapped). For ℰ𝛥𝜏 < 1% in 88Sr+, 𝛥𝜏 <
0.15 ns, i.e. up to 4.5 cm in free-space path mismatch can be tolerated.

Note, however, that all the error comes from heralds where one of the photons is de-
tected at 𝑡 ∈ [0, 𝛥𝜏). For all later times, the exponential decay envelope is self-similar and
eq. (4.51) yields maximally entangled states. If the temporal alignment in the experiment
cannot be established to better than |𝛥𝜏| < 𝜏 for a given bound 𝜏, the reduction in fidelity
can thus be avoided by only considering detector clicks in [𝜏,∞) relative to the first regis-
tered photons to be valid. Thus, temporal misalignment can be regarded as instead having
a coincidence rate cost of e−𝛤𝜏.

Magnetic field mismatch. Recall from eq. (4.3) that the photon wavepackets are given by
𝜙𝑖(𝑡) ≔ √𝛤e−i𝛿𝑖𝑡 e−

𝛤
2 𝑡Θ(𝑡), where 𝛿𝑖 = 𝜈𝑒𝑖𝐵 is the difference in atomic splitting from the

zero-field transition frequency we chose as the reference, as given by the overall Zeeman
sensitivity 𝜈𝑒𝑖 to the static ambient magnetic field 𝐵 (in angular units). If the magnetic
fields at the two systems differ by 𝛥𝐵 ≔ 𝐵𝐴 −𝐵𝐵, this of course does not individually cause
any drop in the ion–photon entanglement fidelity for each system, as long as the qubit
frequencies are properly calibrated. In the ion–ion case, however, the wavepacket overlap
integrals are

⟨𝜙𝐵0 , 𝜙𝐴0 ⟩ = 𝛤
∞

∫
0

e−𝛤𝑡e−i𝜈𝑒0𝛥𝐵 𝑡d𝑡 = 𝛤
𝛤 + i𝜈𝑒0𝛥𝐵

,

⟨𝜙𝐴1 , 𝜙𝐵1⟩ = 𝛤
∞

∫
0

e−𝛤𝑡ei𝜈𝑒1𝛥𝐵 𝑡d𝑡 = 𝛤
𝛤 − i𝜈𝑒1𝛥𝐵

,

(4.60)

giving rise to an error

ℰ𝛥𝐵 =
1
2
(1 − 1

√(1 + 𝜈
2
𝑒0𝛥𝐵2
𝛤2 ) (1 +

𝜈2𝑒1𝛥𝐵2
𝛤2 )
) ≈ 𝜈

2
𝑒0 + 𝜈2𝑒1
4𝛤2
𝛥𝐵2 + O(𝛥𝐵4). (4.61)
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For the error in 88Sr+ to accumulate to 1% across the short 7.39 ns photons, a magnetic
field mismatch on the 0.2mT-level would be needed; here, this is almost half the nominal
quantisation field.

In other situations where significant qubit frequency mismatch might be more com-
mon (e.g. because the frequency cannot be as freely tuned as through the 𝐵 field here), it
can be interesting not to discard the time information. Assume, more generally, that the
photonic envelopes from the two ions are related by a pure phase term, 𝜙𝑖(𝑡) ≔ 𝜙𝐴𝑖 (𝑡) =
e−i𝜗𝑖(𝑡)𝜙𝐵𝑖 (𝑡) for some 𝜗𝑖 ∶ ℝ → ℝ. The density matrices from eq. (4.51) are then (without
applying any knowledge about the form of 𝜙𝑖(𝑡))

𝜌∧𝐴∧𝐶(𝑡, 𝑡′) = 𝜌∧𝐵∧𝐷(𝑡, 𝑡′) =

𝜂𝐴𝜂𝐵(𝜂det)2
16
|𝜙0(𝑡)|2|𝜙1(𝑡′)|2(

0 0 0 0
0 1 ei(𝜗1(𝑡′)−𝜗0(𝑡)) 0
0 e−i(𝜗1(𝑡′)−𝜗0(𝑡)) 1 0
0 0 0 0

),
(4.62)

and with minus signs on the anti-diagonal elements for 𝜌∧𝐴∧𝐷(𝑡, 𝑡′) = 𝜌∧𝐵∧𝐶(𝑡, 𝑡′). For the
Hong–Ou–Mandel-suppressed coincidences,

𝜌∧𝐴∧𝐵(𝑡, 𝑡′) =
𝜂𝐴𝜂𝐵(𝜂det)2
8
|𝜙0(𝑡)|2|𝜙0(𝑡′)|2 (1 − cos (𝜗0(𝑡′) − 𝜗0(𝑡))) |0⟩⟨0| ,

𝜌∧𝐶∧𝐷(𝑡, 𝑡′) =
𝜂𝐴𝜂𝐵(𝜂det)2
8
|𝜙1(𝑡)|2|𝜙1(𝑡′)|2 (1 − cos (𝜗1(𝑡′) − 𝜗1(𝑡))) |1⟩⟨1| .

(4.63)

From eq. (4.62), it is clear that for every particular pair of detection times 𝑡 and 𝑡′, the ions
are in a pure, maximally entangled state

𝜌|(𝐴∧𝐶)(𝑡, 𝑡′) = 𝜌|(𝐵∧𝐷)(𝑡, 𝑡′) = |𝜓𝑡,𝑡′⟩⟨𝜓𝑡,𝑡′ | , with |𝜓𝑡,𝑡′⟩ =
1
√2
(|01⟩ + ei(𝜗0(𝑡)−𝜗1(𝑡′)) |10⟩) ,

(4.64)
with a minus sign for the 𝐴 ∧ 𝐷 and 𝐵 ∧ 𝐶 patterns. If the form of the time dependence
is known, an appropriate phase gate (local 𝑧-axis rotation) can thus be applied to the ion
qubits afterwards to correct for it.

Retuning to the particular case of a magnetic field mismatch, the time dependence
is simply 𝜗𝑖(𝑡) = 𝜈𝑒𝑖 𝛥𝐵 𝑡 giving the phase correction19 to apply as ei𝛥𝐵(𝜈𝑒0𝑡−𝜈𝑒1𝑡′). This
matches, and generalises, the results from an experimental demonstration [Vit+14], where
both polarisations were assumed to have the same frequency difference. A phase feed-
forward scheme of this kind has also been demonstrated for entanglement swapping in a

19Recall from §4.1 that we are, for each ion, working in a rotating frame exactly matching the Zeeman
qubit splitting, and referenced to the laboratory frame at the time of the excitation pulse. In eliding the
temporal evolution through the photon collection optics, optical fibres, and the entangler, we have here
chosen 𝑡 = 𝑡′ = 0 to correspond to the initial edge of the wavepacket, where spontaneous emission photons
begin to arrive at the detectors in question.
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Figure 4.22: Hong–Ou–Mandel suppression of same-polarisation coincidences on opposite sides of the
50:50 beamsplitter if the photon centre frequencies do not match exactly. Shown is the probability density
for detecting two photons with a time difference 𝛥𝑡 normalised by the linewidth 𝛤 (see eq. (4.65)). As the
frequency difference 𝛥𝜔 becomes much larger than the linewidth, the behaviour approaches that of the
fully distinguishable case.

purely photonic experiment [Zha+14]. To illustrate the effect on the Hong–Ou–Mandel-
suppressed coincidences, let 𝑡′ = 𝑡+𝛥𝑡 and average across all detection times 𝑡 of the other
photon:

∞

∫
−∞

𝜌∧𝐴∧𝐵(𝑡, 𝑡 + 𝛥𝑡)d𝑡 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
𝛤𝑓(𝛥𝑡, 𝜈𝑒0𝛥𝐵) |0⟩⟨0| ,

with 𝑓(𝛥𝑡, 𝛥𝜔) ≔ 1
2
e−𝛤|𝛥𝑡| (1 − cos (𝛥𝜔𝛥𝑡)) .

(4.65)

(same for 𝐶 ∧ 𝐷 with 𝛥𝜔 = 𝜈𝑒1𝛥𝐵). The behaviour of the normalised coincidence prob-
ability function 𝑓 is shown in fig. 4.22: While coincidences at 𝛥𝑡 = 0 remain disallowed,
the oscillations within the exponential envelope given by the atomic linewidth increase in
frequency with 𝛥𝜔, approaching the case of two distinguishable photons for 𝛥𝜔 → ∞.

Periodic phase modulation (e.g. micromotion). A key fact regarding the relative impor-
tance of various imperfections is that any change in the optical path lengths, whether
through motion of the ion emitters or mechanical changes in the optical system, will be on
a similar scale to the optical wavelength (422 nm), which is much smaller than the spatial
extent of the photon wavepackets (2m) or the wavelength corresponding to the Zeeman
qubit frequency splitting (21m). Any such change, whether in the form of slow drifts
across many entanglement events, or fast motion across a single photon wavepacket, can
thus in excellent approximation be described by the same purely imaginary phase envelope
applied to both 𝜙0(𝑡) and 𝜙1(𝑡).

A well-known feature of two-photon heralding schemes is that they are not sensitive
to constant offsets in the absolute optical phase (cf. eq. (4.62) with 𝜗0(𝑡) = 𝜗1(𝑡) = 𝛿𝜑).
This is a big advantage, as it means that no long-term interferometric stability is required.
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Figure 4.23: Loss in ion–ion Bell state fidelity from a sinusoidal phase modulation e−i𝛼 sin(𝛺𝑡+𝜑) (with uni-
formly distributed phase 𝜑). The strength of the effect depends on the ratio of modulation frequency to
excited state linewidth; an approximately constant phase offset from modulation slow compared to the
length of the photons does not have any effect on the ion–ion state. The dashed curves give the approxima-
tion 𝛺

2

𝛤2+𝛺2 (
𝛼
2 )
2
(to second order for 𝛼 small).

However, this does not hold for modulation at time scales comparable to or faster than the
linewidth 𝛤. A prominent source of such modulation in Paul traps is excess micromotion
at the trap drive frequency𝛺rf (see §2.2.1). We already considered the effects of micromo-
tion in the imaging direction in §4.3.4, and saw that its effect on the coupling efficiency
was only mild. Continuing to neglect any higher-order effects on the spontaneous emis-
sion process, we consider the effect of a positional modulation 𝑟 sin(𝛺𝑡 + 𝜑) to be a pure
phase modulation e−i𝛼 sin(𝛺𝑡+𝜑), where 𝛼 ≔ 𝑘𝑛𝑟 is the modulation index given the angular
wavenumber 𝑘𝑛 corresponding to the optical transition frequency (which is to good ap-
proximation the same for both decay channels). For excess micromotion, 𝛺 = 𝛺rf, and
𝜑 = 𝜑rf is the phase of the radio-frequency drive with respect to the excitation pulse timing,
which varies quickly and, in effect, randomly from entanglement attempt to entanglement
attempt. Hence, we consider the ion–photon state of Alice to be in a statistical mixture
of wavepackets 𝜙𝐴,𝜑𝑖 (𝑡) = e−i𝛼 sin(𝛺𝑡+𝜑)𝜙𝐵𝑖 (𝑡) with 𝜑 uniformly distributed in [0, 2𝜋), giving
rise to the coherences

1
2𝜋

2𝜋

∫
0

⟨𝜙𝐵0 , 𝜙
𝐴,𝜑
0 ⟩ ⟨𝜙

𝐴,𝜑
𝐴 , 𝜙𝐵0⟩ d𝜑 =

1
2𝜋

2𝜋

∫
0

∞

∫
0

∞

∫
0

𝛤2e−𝛤(𝑡+𝑡′)ei𝛼(sin(𝛺𝑡+𝜑)−sin(𝛺𝑡′+𝜑)) d𝑡′ d𝑡 d𝜑

= 𝛤
∞

∫
0

e−𝛤𝑡𝐽0 (2𝛼 sin (
𝛺
2
𝑡)) d𝑡 ≈ 1 − 𝛼

2𝛺2
2(𝛤2 + 𝛺2)

+ O(𝛼4).

(4.66)
From eq. (4.55), we thus obtain the Bell-state infidelity from periodic phase modulation,
for small modulation indices 𝛼, as

ℰPM ≈
𝛺2
𝛤2 + 𝛺2

(𝛼
2
)
2
+ O(𝛼4). (4.67)
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The full expression, along with this approximation, is shown in fig. 4.23. Assuming that
the modulation is caused by excess micromotion due to a stray electric field 𝐸stray in the
imaging direction, and the confinement with trap frequency 𝜔𝑚 in that direction to be
given entirely by the rf pseudopotential, the infidelity due to micromotion is

ℰmm ≈
1
2
1
𝛤2 + 𝛺2rf

( 𝑒𝑘𝑛
𝑚𝜔𝑚
𝐸stray)

2
+ O(𝐸stray4) , (4.68)

where 𝑒 is the ion charge, 𝑚 the ion mass. For 88Sr+ in a trap with 𝛺rf = 2𝜋 × 50MHz
and a radial mode frequency of 𝜔𝑚 = 2𝜋 × 3MHz aligned with the collection direction,
an error of ℰmm = 0.5% is reached at a stray field of 𝐸stray = 39Vm−1. Here, the coupling
efficiency has reduced less than 0.1% (see fig. 4.19), confirming that anymodulation of the
probability envelope can safely be neglected.

In principle, the secular motion of the ion in the trap would similarly cause an error
by reducing the wavefunction overlap, as described by eqs. (4.66) and (4.67). However,
compared to the rf case, this will be suppressed by the lower motional frequency𝛺 = 𝜔𝑚
(usually 𝜔𝑚 ≪ 𝛤). Laser cooling typically leaves the ion in close to a thermal state with
some average motional occupation number 𝑛. Considering the ions to follow a classical
harmonic oscillator trajectory20 after the reservoir interaction is “turned off” [Win+98],
we can estimate the error by averaging over the decomposition into coherent states |�̃�⟩⟨�̃�|
according to eq. (2.32). The dimensionless, complex coherent state amplitude �̃� is related
to the classical oscillation amplitude by ⟨�̃�|𝑥|�̃�⟩ = 2 𝑥0 re(�̃�), where 𝑥0 is the spread of the
ground-state wavefunction (see eq. (2.27)), giving the corresponding modulation index as
𝛼 = 2𝑘𝑛𝑥0|�̃�|. Hence, we obtain an estimate for the error due to thermal motion as

ℰ𝑛 =
2
𝑛

∞

∫
0

e− �̃�
2
𝑛 ℰPM �̃� d�̃� ≈

𝜔2𝑚
𝛤2 + 𝜔2𝑚

(𝛼𝑛
2
)
2
+ O (𝛼𝑛4) , (4.69)

where we have introduced an effective modulation index 𝛼𝑛 ≔ 2𝑘𝑛√𝑛𝑥0. For the above
case of 88Sr+ with a radial mode frequency of 𝜔𝑚 = 2𝜋 × 3MHz, an error of ℰ𝑛 = 0.5% is
reached at 𝑛 ≈ 62 (while the Doppler cooling limit is 𝑛 ≈ 4).

4.5.2 Residual birefringence

In the last section, we considered various situations with an ideal optical apparatus, where
the ion–ion density matrices are invariably of the form (4.51). We now turn our attention
to imperfections caused by the optical apparatus, for which this is no longer the case.

One instance of this is the misalignment of the two (still orthogonal) photon polari-
sations corresponding to the atomic 𝜎+ and 𝜋 decay channels from one ion as compared

20In this estimate, we neglect the intrinsic micromotion which contributes an additional modulation at
𝛺rf, see §2.2.1.
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to the basis defined by the polarising beamsplitters. The stress birefringence in the optical
fibres connecting Alice and Bob to the heralding station is not well-controlled, so a pair of
wave plates at the input to the entangler is used to ensure the 𝜎 ↔ 𝐻, 𝜋 ↔ 𝑉 polarisation
mapping we assumed in eq. (4.46). If the calibration is erroneous (e.g. because the overall
birefringence through the fibres slowly drifted over time), this potentially leads to an er-
ror in the entangled state. Assume Bob’s polarisation states are rotated by a unitary 𝑈fibre,
while Alice’s still follow the ideal mapping. The total system is then described by

𝑈𝑃 = 𝑈ideal𝑃 ⋅ 𝒱𝐵𝐻↔𝐵𝑉(𝑈fibre) (4.70)

with 𝑈ideal𝑃 from eq. (4.49).

The effect of birefringence that just adds a phase shift between the components, but
leaves the 𝜎 ↔ 𝐻, 𝜋 ↔ 𝑉 mapping unaffected, is trivial; it just shifts the entangled state
phase. Explicitly, if 𝑈fibre = 𝑅𝑧(𝜃) = diag(1, ei𝜃), then

𝜌∧𝑝 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
|𝜓⟩⟨𝜓| , |𝜓⟩ = 1√2

(|01⟩ ± e−i𝜃 |10⟩) , (4.71)

with the plus sign for the same-side patterns 𝑝 ∈ {𝐴 ∧ 𝐶, 𝐵 ∧ 𝐷}, the minus sign for the
opposite-side patterns 𝑝 ∈ {𝐴 ∧ 𝐷, 𝐵 ∧ 𝐶}. It can easily be corrected for by incorporating
the phase shift into the later ion operations – indeed, in our experimental apparatus, we
cannot even correct for this optically given that we only employ a pair of wave plates per
input; rather, we recalibrate the ion–ion state phase assumed for subsequent operations as
necessary.

As rotations around axes in the𝑥𝑦plane are equivalent up to conjugation by 𝑧 rotations,
we just consider rotations around the 𝑦 axis, with

𝑈fibre = (
cos 𝜗 sin 𝜗
− sin 𝜗 cos 𝜗) . (4.72)

As such a rotation mixes photons of different transitions, the results depend on the fre-
quency splitting between the 𝜎 and 𝜋 decays paths. Introducing the normalised frequency
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Figure 4.24: Loss in fidelity from uncompensated birefringence in the optical path connecting one of the
nodes to the heralding station. Shown is the fully entangled fractionℱ for the ion–ion states post-selected
on any of the four valid heralding patterns, as affected by a rotation with angle 𝜗 around any axis in the
𝑥 − 𝑦 plane containing the circular and diagonal polarisation states. The strength of the effect depends on
the normalised transition frequency splitting 𝛽 = (𝜈𝑒1−𝜈𝑒0)𝐵𝛤 ; 𝛽 = 0.65matches the experiment.

splitting 𝛽 ≔ (𝜈𝑒1−𝜈𝑒0)𝐵𝛤 , the time-averaged density matrices are

𝜌∧𝐴∧𝐶 = 𝜌∧𝐵∧𝐷 =
𝜂𝐴𝜂𝐵(𝜂det)2
16
⋅

(

(sin 𝜗)2 − sin 𝜗 cos 𝜗1−i𝛽 −
sin 𝜗 cos 𝜗
1−i𝛽 −

(sin 𝜗)2
1−2i𝛽

− sin 𝜗 cos 𝜗1+i𝛽 (cos 𝜗)2 (cos 𝜗)2 sin 𝜗 cos 𝜗1−i𝛽
− sin 𝜗 cos 𝜗1+i𝛽 (cos 𝜗)2 (cos 𝜗)2 sin 𝜗 cos 𝜗1−i𝛽
− (sin 𝜗)

2

1+2i𝛽
sin 𝜗 cos 𝜗
1+i𝛽

sin 𝜗 cos 𝜗
1+i𝛽 (sin 𝜗)2

),

𝜌∧𝐴∧𝐷 = 𝜌∧𝐵∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
16
⋅

(

(sin 𝜗)2 − sin 𝜗 cos 𝜗1−i𝛽
sin 𝜗 cos 𝜗
1−i𝛽

(sin 𝜗)2
1−2i𝛽

− sin 𝜗 cos 𝜗1+i𝛽 (cos 𝜗)2 −(cos 𝜗)2 − sin 𝜗 cos 𝜗1−i𝛽
sin 𝜗 cos 𝜗
1+i𝛽 −(cos 𝜗)2 (cos 𝜗)2 sin 𝜗 cos 𝜗

1−i𝛽
(sin 𝜗)2
1+2i𝛽 −

sin 𝜗 cos 𝜗
1+i𝛽

sin 𝜗 cos 𝜗
1+i𝛽 (sin 𝜗)2

).

(4.73)

The four patterns are all still equally likely to occur. If the frequency splitting is negligible
compared to the transition linewidth, |𝛽| ≪ 1, then the result is just amaximally entangled
state in a rotated basis,

𝜌𝛽=0∧𝑝 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
|𝜓⟩⟨𝜓| , |𝜓⟩ ≔ 1√2

(− sin 𝜗 |00⟩ + cos 𝜗 |01⟩ ± cos 𝜗 |10⟩ ± sin 𝜗 |11⟩) ,
(4.74)

where the plus signs hold apply for the same-side patterns 𝑝 ∈ {𝐴 ∧ 𝐶, 𝐵 ∧ 𝐷}, the minus
signs for the opposite-side patterns 𝑝 ∈ {𝐴 ∧ 𝐷, 𝐵 ∧ 𝐶}.

If the frequency splitting cannot be neglected, the states are no longer maximally en-
tangled (in our apparatus, 𝐵 ≈ 0.5mT, so in 88Sr+, 𝛽 ≈ 0.65). The fully entangled fraction
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for any of the patterns, as a function of the rotation angle 𝜗 for any axis in the 𝑥 − 𝑦 plane,
is shown in fig. 4.24. To yield an infidelity of ℰ𝜗,𝛽=0.65 < 0.5%, the amount of rotationmust
be less than |𝜗| < 0.13 = 7°.21

4.5.3 Imperfect 50 : 50 beamsplitter

Next, we consider a deviation of the non-polarising beamsplitter from the ideal 50 ∶ 50
splitting ratio, as expressed by a deviation of the angles in eq. (4.49) from 𝜃50∶50𝐻 = 𝜃50∶50𝑉 = 𝜋4 .
Here, the consequences qualitatively depend on how the error affects the two polarisations
(there are no temporal effects, so we directly consider the detection-time-averaged states):

Let 𝜃50∶50𝐻 = 𝜋4 + 𝛿𝐻, 𝜃
50∶50
𝑉 = 𝜋4 + 𝛿𝑉. The sub-normalised density matrices are then

𝜌∧𝐴∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
16
⋅

(

0 0 0 0
0 (1 − sin(2𝛿𝐻))(1 + sin(2𝛿𝑉)) cos(2(𝛿𝐻+𝛿𝑉))

2 + cos(2(𝛿𝐻−𝛿𝑉))2 0
0 cos(2(𝛿𝐻+𝛿𝑉))

2 + cos(2(𝛿𝐻−𝛿𝑉))2 (1 + sin(2𝛿𝐻))(1 − sin(2𝛿𝑉)) 0
0 0 0 0

),

𝜌∧𝐵∧𝐷 =
𝜂𝐴𝜂𝐵(𝜂det)2
16
⋅

(

0 0 0 0
0 (1 + sin(2𝛿𝐻))(1 − sin(2𝛿𝑉)) cos(2(𝛿𝐻+𝛿𝑉))

2 + cos(2(𝛿𝐻−𝛿𝑉))2 0
0 cos(2(𝛿𝐻+𝛿𝑉))

2 + cos(2(𝛿𝐻−𝛿𝑉))2 (1 − sin(2𝛿𝐻))(1 + sin(2𝛿𝑉)) 0
0 0 0 0

),

𝜌∧𝐴∧𝐷 =
𝜂𝐴𝜂𝐵(𝜂det)2
16
⋅

(

0 0 0 0
0 (1 − sin(2𝛿𝐻))(1 − sin(2𝛿𝑉)) − cos(2(𝛿𝐻+𝛿𝑉))2 − cos(2(𝛿𝐻−𝛿𝑉))2 0
0 − cos(2(𝛿𝐻+𝛿𝑉))2 − cos(2(𝛿𝐻−𝛿𝑉))2 (1 + sin(2𝛿𝐻))(1 + sin(2𝛿𝑉)) 0
0 0 0 0

),

𝜌∧𝐵∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
16
⋅

(

0 0 0 0
0 (1 + sin(2𝛿𝐻))(1 + sin(2𝛿𝑉)) − cos(2(𝛿𝐻+𝛿𝑉))2 − cos(2(𝛿𝐻−𝛿𝑉))2 0
0 − cos(2(𝛿𝐻+𝛿𝑉))2 − cos(2(𝛿𝐻−𝛿𝑉))2 (1 − sin(2𝛿𝐻))(1 − sin(2𝛿𝑉)) 0
0 0 0 0

).

(4.75)
21As a reminder, this only captures the decoherence resulting from the frequency mismatch; any form of

birefringence will also change the form of themaximally entangled state produced, cf. eqs. (4.71) and (4.74)).
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If the ratio differs from ideal the same for both polarisations, 𝛿𝐻 = 𝛿𝑉 = 𝛿, then the
heralding patterns with clicks on the same side of the beamsplitter, stay unaffected except
for a slight decrease in probability

ℱ(𝜌𝛿𝐻=𝛿𝑉|(𝐴∧𝐶)) = ℱ(𝜌
𝛿𝐻=𝛿𝑉
|(𝐵∧𝐷)) = 1,

tr 𝜌𝛿𝐻=𝛿𝑉∧𝐴∧𝐶 = tr 𝜌
𝛿𝐻=𝛿𝑉
∧𝐵∧𝐷 =

𝜂𝐴𝜂𝐵(𝜂det)2
8
cos(2𝛿)2

, (4.76)

but for the patterns on opposite sides of the beamsplitter, the fidelity is lowered but the
probability is increased:

ℱ(𝜌𝛿𝐻=𝛿𝑉|(𝐴∧𝐷)) = ℱ(𝜌
𝛿𝐻=𝛿𝑉
|(𝐵∧𝐶)) =

1
1 + sin(2𝛿)2

≈ 1 − (2𝛿)2 + O(𝛿3),

tr 𝜌𝛿𝐻=𝛿𝑉∧𝐴∧𝐷 = tr 𝜌
𝛿𝐻=𝛿𝑉
∧𝐵∧𝐶 =

𝜂𝐴𝜂𝐵(𝜂det)2
8
1 + sin(2𝛿)2
2
.

(4.77)

The situation is reversed if the error is antisymmetric in the polarisations, 𝛿𝐻 = 𝛿, 𝛿𝑉 =
−𝛿. Now, the opposite-side patterns are unaffected except for a decrease in probability,

ℱ(𝜌𝛿𝐻=−𝛿𝑉|(𝐴∧𝐷) ) = ℱ(𝜌
𝛿𝐻=−𝛿𝑉
|(𝐵∧𝐶) ) = 1,

tr 𝜌𝛿𝐻=−𝛿𝑉∧𝐴∧𝐷 = tr 𝜌
𝛿𝐻=−𝛿𝑉
∧𝐵∧𝐶 =

𝜂𝐴𝜂𝐵(𝜂det)2
8
cos(2𝛿)2

(4.78)

while the same-side patterns are affected,

ℱ(𝜌𝛿𝐻=−𝛿𝑉|(𝐴∧𝐷) ) = ℱ(𝜌
𝛿𝐻=−𝛿𝑉
|(𝐵∧𝐶) ) =

1
1 + sin(2𝛿)2

≈ 1 − (2𝛿)2 + O(𝛿3),

tr 𝜌𝛿𝐻=−𝛿𝑉∧𝐴∧𝐶 = tr 𝜌
𝛿𝐻=−𝛿𝑉
∧𝐵∧𝐷 =

𝜂𝐴𝜂𝐵(𝜂det)2
8
1 + sin(2𝛿)2
2
.

(4.79)

In both these cases, the overall coincidence probability remains the same, but the fi-
delity averaged across all patterns (weighted by the respective probability) drops by

ℰ𝛿𝐻=±𝛿𝑉𝛿 = sin(2𝛿)
2

2
, (4.80)

though this could of course be avoided at the cost of a factor > 2 in success probability by
not using the affected click patterns. Both Hong–Ou–Mandel-suppressed patterns occur
with the same probability in either case,

𝜌𝛿𝐻=±𝛿𝑉∧𝐴∧𝐵 =
𝜂𝐴𝜂𝐵(𝜂det)2
4
sin(2𝛿)2 |0⟩⟨0| ,

𝜌𝛿𝐻=±𝛿𝑉∧𝐶∧𝐷 =
𝜂𝐴𝜂𝐵(𝜂det)2
4
sin(2𝛿)2 |1⟩⟨1| .

(4.81)

For ℰ𝛿𝐻=±𝛿𝑉𝛿 < 1%, the imbalance must be less than |𝛿| < 0.071, equivalent to a 57 ∶ 43
beamsplitter ratio.
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If the imbalance does not affect the polarisations (anti-)symmetrically, none of the pat-
terns remain unaffected in fidelity. For instance, if 𝛿𝑉 = 0, then

ℱ(𝜌𝛿𝑉=0|(𝐴∧𝐶)) = ℱ(𝜌
𝛿𝑉=0
|(𝐵∧𝐷)) = ℱ(𝜌

𝛿𝑉=0
|(𝐴∧𝐷)) = ℱ(𝜌

𝛿𝑉=0
|(𝐵∧𝐶)) =

1
2
(1 + |cos(2𝛿𝐻)|) ,

tr 𝜌𝛿𝑉=0∧𝐴∧𝐶 = tr 𝜌
𝛿𝑉=0
∧𝐵∧𝐷 = tr 𝜌

𝛿𝑉=0
∧𝐴∧𝐷 = tr 𝜌

𝛿𝑉=0
∧𝐵∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
.

(4.82)

In this case, only the Hong–Ou–Mandel-suppressed coincidences corresponding to the
affected polarisation (here𝐻) is observed, with frequency still given by eq. (4.81).

4.5.4 Imperfect polarising beamsplitters

Finally, we consider issues caused by the polarising beamsplitters.

PBS extinction ratio. We model polarising beamsplitters that do not perfectly separate
the polarisations, but leave a certain amount of 𝑉 polarisation in the transmitted beam
or 𝐻 polarisation in the reflected beam, by setting the angles22 𝜃PBS A

𝐻 = 𝛿𝐴𝐻, 𝜃PBS B
𝐻 =

𝛿𝐵𝐻, 𝜃PBS A
𝑉
𝜋
2 + 𝛿
𝐴
𝑉, 𝜃PBS B
𝑉
𝜋
2 + 𝛿
𝐵
𝑉 in eq. (4.49). The effects do not depend on the temporal

wavepackets, so we directly consider the detection-time-averaged states:

𝜌∧𝐴∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
32
⋅

(

1 − cos(4𝛿𝐴𝐻) 0 0 0
0 1 + cos(2𝛿𝐴𝐻) cos(2𝛿𝐴𝑉) 1 + cos(2𝛿𝐴𝐻) cos(2𝛿𝐴𝑉) 0
0 1 + cos(2𝛿𝐴𝐻) cos(2𝛿𝐴𝑉) 1 + cos(2𝛿𝐴𝐻) cos(2𝛿𝐴𝑉) 0
0 0 0 1 − cos(4𝛿𝐴𝑉)

) ,

𝜌∧𝐴∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
32
⋅

(

1 − cos(4𝛿𝐵𝐻) 0 0 0
0 1 + cos(2𝛿𝐵𝐻) cos(2𝛿𝐵𝑉) 1 + cos(2𝛿𝐵𝐻) cos(2𝛿𝐵𝑉) 0
0 1 + cos(2𝛿𝐵𝐻) cos(2𝛿𝐵𝑉) 1 + cos(2𝛿𝐵𝐻) cos(2𝛿𝐵𝑉) 0
0 0 0 1 − cos(4𝛿𝐵𝑉)

) ,

𝜌∧𝐴∧𝐷 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
((cos 𝛿𝐴𝐻)2(cos 𝛿𝐵𝑉)2 + (sin 𝛿𝐴𝑉)2(sin 𝛿𝐵𝐻)2) |𝛹−⟩⟨𝛹−| ,

𝜌∧𝐵∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
((cos 𝛿𝐴𝑉)2(cos 𝛿𝐵𝐻)2 + (sin 𝛿𝐴𝐻)2(sin 𝛿𝐵𝑉)2) |𝛹−⟩⟨𝛹−| .

(4.83)
The detection patterns with detectors on opposite sides of the 50 ∶ 50 beamsplitter are

22Particularly in the regime of very high extinction ratios, the remaining imperfections might well be
non-uniform over the beam diameter, which would result in a non-unitary transformation once the spatial
degree is traced out. As we do not further modify the polarisations, however, but merely direct the outputs
onto photodetectors, that distinction is without consequence here.
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Figure 4.25: Fully entangled fraction of the ion–ion state post-selected on the detection of two photons
on the outputs of a polarising beamsplitter with imperfect extinction for either polarisation, as given by
the angles 𝛿𝐻 and 𝛿𝑉 specifying the deviation from perfectly transmitting𝐻 polarisation and perfectly
reflecting 𝑉 polarisation.

unaffected by any pbs imperfections except for a reduction in rate; the Hong–Ou–Mandel
effect alone is enough to uniquely project the photonic part into the antisymmetric Bell
state. The same-side patterns increase in rate compensating the decrease in the others,
but drop in fidelity for an imperfect pbs on the respective side. Dropping the superscripts
identifying the side,

ℰ𝛿𝐻,𝛿𝑉𝐴∧𝐶,𝐵∧𝐷 =
1

1 − 2 cos(2𝛿𝐻) cos(2𝛿𝑉)+1cos(4𝛿𝐻)+cos(4𝛿𝑉)−2
≈ 2 𝛿𝐻2 + 2 𝛿𝑉2 + O(𝛿𝐻4 + 𝛿𝑉4), (4.84)

which is depicted in fig. 4.25. The error in pbses is often asymmetric, but if we assume
𝛿𝑠𝐻 = 𝛿𝑠𝑉 = 𝛿 for a first estimate, the average over all patterns (weighted by the respective
probability) is

ℰ𝛿 =
sin(2𝛿)2
2
. (4.85)

For the infidelity to remain below ℰ𝛿 < 1%, |𝛿| < 0.071, i.e. the pbses are required to have
an extinction ratio better than 200 ∶ 1.

Tilted pbs axes. Even for a perfectly polarising beamsplitter, a last source of imperfections
lies in the orientation of the polarisation measurement bases. If the basis set by one pbs
is used to calibrate out the fibre birefringence, and the measurement axis set by the other
pbs is rotated with respect to it – whether due to it being mounted at an angle, due to
manufacturing differences, or different birefringence in the two paths following the 50 ∶ 50
beamsplitter – heralding patterns involving that second pbs will be negatively impacted.
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Concretely, assume that pbs B is rotated by an angle𝛼 around the optical axis compared
to the other pbs and the ion decay channel mapping. Retaining the indices 𝐻 and 𝑉 for
the transmitted and reflected polarisations of the beamsplitter for ease of notation, the total
unitary is

𝑈𝑃 = 𝒱𝐵𝑉↔𝐷𝑉 (𝑈BS(𝜃PBS B
𝑉 )) ⋅ 𝒱𝐵𝐻↔𝐷𝐻 (𝑈BS(𝜃PBS B

𝐻 )) ⋅
𝒱𝐵𝐻↔𝐵𝑉 (𝑈rot(𝛼)) ⋅
𝒱𝐴𝑉↔𝐶𝑉 (𝑈BS(𝜃PBS A

𝑉 )) ⋅ 𝒱𝐴𝐻↔𝐶𝐻 (𝑈BS(𝜃PBS A
𝐻 )) ⋅

𝒱𝐴𝑉↔𝐵𝑉 (𝑈BS(𝜃50∶50𝑉 )) ⋅ 𝒱𝐴𝐻↔𝐵𝐻 (𝑈BS(𝜃50∶50𝐻 ))

(4.86)

with

𝑈rot(𝛼) = (
cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼) . (4.87)

The same-side pattern on the other pbs (𝐴∧𝐶) is entirely unaffected. The two opposite-side
patterns still lead to the same, maximally-entangled post-selected states, as guaranteed by
the Hong–Ou–Mandel effect. Their probability drops, however:

tr 𝜌∧𝐴∧𝐷 = tr 𝜌∧𝐵∧𝐶 =
𝜂𝐴𝜂𝐵(𝜂det)2
8
(cos 𝛼)2. (4.88)

Lastly, the phases in the ion–ion state post-selected on two clicks on the ports of the rotated
pbs become dependent on the detection time (unless 𝛼 is a multiple of 𝜋/2), such that the
averaged density matrix is

𝜌𝛼∧𝐵∧𝐷 =
𝜂𝐴𝜂𝐵(𝜂det)2
32
⋅

(

1 − cos(4𝛼) − sin(4𝛼)1−i𝛽 − sin(4𝛼)1−i𝛽
cos(4𝛼)−1
1−2i𝛽

− sin(4𝛼)1+i𝛽 1 + cos(4𝛼) 1 + cos(4𝛼) sin(4𝛼)
1−i𝛽

− sin(4𝛼)1+i𝛽 1 + cos(4𝛼) 1 + cos(4𝛼) sin(4𝛼)
1−i𝛽

cos(4𝛼)−1
1+2i𝛽

sin(4𝛼)
1+i𝛽

sin(4𝛼)
1+i𝛽 1 − cos(4𝛼)

) ,
(4.89)

where 𝛽 ≔ (𝜈𝑒1−𝜈𝑒0)𝐵𝛤 is again the Zeeman frequency splitting normalised by the excited
state linewidth. In fact, 𝜌𝛼∧𝐵∧𝐷 is very similar in form to the result for uncompensated
birefringence from eq. (4.73), with 𝜗 = 2𝛼. The fully entangled fraction behaves exactly
as illustrated for that case in fig. 4.24: if 𝛼 is a multiple of 𝜋/2, then the atomic decay
channels map exactly to the pbs axes (possibly swapped from the intended mapping), and
no reduction in fidelity occurs. For the one pattern to lose less than 1% in fidelity, |𝛼| < 5°
(or |𝛼| < 11° for less than 1% loss when averaged over all four patterns).

4.5.5 Imperfections not considered

In the above, we have considered the single-photon detectors to be perfect (if of limited
quantum efficiency). In particular, we have neglected dark counts, as they are negligible in
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our experiment; across a typical 30 ns heralding window, the dark count rate of 50Hz of
our detectors (which is fairly high compared to the best-in-class performance) only yields
a 2 × 10−6 probability for a false click, compared to 2 × 10−2 to detect a photon from an
ion. We have also neglected the timing resolution and jitter of the detectors – while it
leads to dephasing in ion–photon experiments, the ion–ion state is, in the ideal configu-
ration, time-independent, and we do not rely on tight windowing to combat arrival time
mismatch or dark counts. If of interest, both of these effects would be readily integrated
into the model by replacing the detection operator by the more complex povm elements
from ref. [Gou+18], however23.

We also have not considered any non-unitary effects, such as due to imperfect overlap
of the input modes on the non-polarising beamsplitter, non-uniformities (e.g. in birefrin-
gence) across the beam modes, or differential loss between the polarisation components.
Such effects could be described by generalising the conjugation of 𝜌𝐴𝐼𝐴𝑃⊗𝜌𝐵𝐼𝐵𝑃 by 𝟙𝐼𝐴𝐼𝐵 ⊗𝑈𝑃
in eq. (4.48) to the application of a general completely positive map.

4.6 Summary

We have studied the generation of ion–photon entanglement through spontaneous decay
of a trapped ion after excitation to a short lived state with 𝜎+ and 𝜋 dipole-allowed decay
channels, for instance on the 𝑆1/2 ↔ 𝑃1/2 transition in 88Sr+ (and other commonly used
species such as 40Ca+, 138Ba+).

The use of single-mode fibres as spatial mode filters was shown to select only contri-
butions from the transversal components of the atomic dipole moments. This results in
polarisation only parallel to that of the respective atomic dipole moment component at
the fibre output. Conditioned on the detection of a photon, decays on the 𝑆1/2 ↔ 𝑃1/2
transition thus give rise to maximally entangled ion–photon states.

This result is valid for arbitrarily large collection angles, which allows the implementa-
tion of a coherent ion–photon interface with high heralded success probability, and, owing
to the simple excitation scheme in 88Sr+, a relatively high attempt rate, using polarisation
encoding. The latter is convenient for basic experiments, as polarisation states are readily
manipulated using birefringent optics. In the half-space limit of na 1.0, up to 22% of the
total emission can be coupled into a Gaussian single-mode fibre using a standard imag-
ing system. We also derived an apparent shift in the emitter position for emission from
transitions with non-zero angular momentum, and showed that the correctly aligned con-
figuration can still be identified in the experiment by optimising the fibre position based on
π emission only (which does not exhibit this shift), or on average unpolarised steady-state
fluorescence.

23If dark counts are significant, it will also be necessary to include the 𝜌𝑠dark,𝐼𝑠 terms from eq. (4.45) for
an accurate estimate of the post-herald state.
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We also presented a numerical study of the system performance under small misalign-
ments and other relevant experimental imperfections, and showed that fidelities well above
99.5% should be reachable in a typical 88Sr+experiment with na 0.6 collection optics. This
is in contrast to a free-space fidelity limit of 93.5% at the same numerical aperture due to
polarisation mixing effects.

Finally, we described a generic method for treating the interference and detection of
pairs of single photons in a linear-optics instrument such as the partial Bell-basis mea-
surement setup used for heralded entanglement swapping, integrating entanglement with
other subsystems (the ions) into the full density-operator treatment. We analytically cal-
culated the post-herald ion–ion states and loss of Hong–Ou–Mandel suppression under a
number of imperfections, including that of periodic phase modulation due to ion motion.

Most of the above considerations are not specific to the trapped-ion systems studied
here, but also apply to quantum dipole emitters more generally, or in case of the heralded
entanglement swapping procedure, to generic qubit–photon systems. As high quantum
gate fidelities are also being reached in such platforms, such as in nitrogen-vacancy colour
centres in diamond lattices, the results presented here should find wider applicability to
networking with other qubit platforms as well.





5 Micromotion minimisation by synchronous
detection of parametrically excited motion

An inherent feature of Paul traps, where a quadrupole potential oscillating in the radio-
frequency range (rf) provides effective time-averaged confinement of charged parti-
cles [Pau90], is “micromotion”: the coherent modulation of particle trajectories on the
rf time scale, which is minimal1 at the central null of the quadrupole potential. If the
equilibrium position of the particle does not coincide with this null, the particle undergoes
excess micromotion that cannot be reduced by cooling.

Excess micromotion can be avoided by applying electrostatic compensation fields that
shift the equilibrium position onto the rf null, but for this, a way to detect this mismatch is
necessary. Across the history of rf traps, a wide range of approaches have been proposed
for this. However, as detailed in §5.1, none of them are particularly well suited to our case
of a planar surface electrode trap where all the laser beams propagate parallel to the trap
surface. To be able to compensate stray fields normal to the trap surface, we employ a
novel method based on amplitude modulation of the trapping potential, which we intro-
duce, along with a comprehensive theoretical treatment, in §5.2. We present experimental
data validating the theoretical model (§5.3), and discuss some practical concerns regard-
ing the use of this method to build a robust automated procedure for the compensation
of stray fields in typical non-ideal surface traps without detailed knowledge about the mo-
tional mode structure (§5.4). We discuss the statistical floor to the practically achievable
compensation accuracies in our setup (§5.5), and compare the result to two other micro-
motion detection methods, for which we observe significant systematic shifts (§5.6). Our
method is robust, achieves a high sensitivity, and requires a minimal degree of technical
complexity. This makes it well-suited for many other applications of Paul traps in quan-
tum information processing and beyond; we conclude the chapter with a discussion of its
merits compared to other techniques.

1Even if the average position of the particle does coincide with the rf null, the trajectories of secular
motion with non-zero amplitude will still be modulated at the trap drive frequency in what is known as
intrinsic micromotion; in a quantum description, the harmonic oscillator wavepackets will “breathe” ac-
cordingly even in the ground state (see §2.2.1).
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5.1 Background

Uncontrolled excess micromotion is rarely a desirable feature. For atomic clocks using
trapped ions, the modulation in velocity leads to an appreciable time-dilation shift in the
observed frequency; the associated uncertainty has dominated the accuracy budget of re-
cent experiments [Bre+19]. In quantum information experiments, micromotion can not
only lead to increased sensitivity of the heating rate of the secular modes of motion to rf
noise [BP01], but also introduces a periodic phase modulation to all interactions of the
trapped ions with external fields (such as lasers or local microwave gradients). In our case,
we are also interested in minimising micromotion in the direction normal to the trap sur-
face (“out of plane”, oop) to avoid phase modulation of the photons entangled with the ion
state.

Trap electrode geometries are usually designed such that the rf and dc fields both
vanish at the intended trapping location2. For a single trapped particle, excess micromo-
tion is thus the consequence of imperfections in the experimental realisation, such as dc
field offsets caused by stray charges on nearby elements of the trap apparatus, or phase
shifts between different rf electrodes. Here, we focus on the former, which is generally
the larger source of micromotion. It can be counteracted by shifting the dc field null back
onto the rf null using static compensation potentials applied to a suitable combination of
trap electrodes.

Various techniques to determine the required compensation fields have been proposed.
Some of these micromotion compensation methods make use of particularities of the
experimental systems for which they were developed, for instance a co-trapped gas of
ultra-cold atoms [Här+13; Mei+16], a high-finesse optical cavity collecting ion emission
[Chu+13], microwave near-field magnetic gradients [War+13], strongly-focussed high-
power laser beams for optical dipole trapping [Hub+14], or fluorescence imaging optics
with adjustable focus [Glo+15]. If the rf confinement strength can be varied, stray fields
lead to a change in the ion equilibrium position, which can be detected using camera imag-
ing [Ber02; Hir+20], or, as very recently demonstrated, with exquisite precision through
coherent detection of the corresponding phase shift in a laser beam addressing a narrow-
linewidth transition [Hig+21].

Another, generally applicable family of methods relies onmicromotion-induced phase
modulation of a laser beam in the ion rest frame [Ber+98]. These include minimisation
of the amplitude of the micromotion modulation sideband observed for a transition with
a linewidth smaller than the trap drive frequency, or minimising temporal variations in
the stimulated emission rate for a transition of linewidth comparable to or larger than the

2In many linear trap designs, the finite extent of the trap leads to a small amount of axial micromotion
everywhere except for one point of symmetry. Thus, the fields only completely vanish for a single confined
ion; for strings of more than one ion, the ions away from the centre will experience a small but non-zero rf
field even if the string is positioned exactly at the intended location.
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Figure 5.1: Radial slices through the HOA2 surface trap used here (left), and a prototypical “four-rod”
macroscopic Paul trap (right); not to scale. The ion position in the centre is illustrated by the small white
dot. In the former case, all the laser beams are confined to the same plane parallel to the trap surface (in-
cluding incoherent cooling beams 𝒌cool, and those for coherent qubit manipulation 𝒌qubit). The insets show
a snapshot of the rf potential near the ion position, illustrating the different orientation of the principal
axes, which leads to opposite relations of ion displacement vs. induced micromotion. For the surface trap,
the radial motional modes of the ion in the pseudopotential are also shown (labelled lf and hf, referring
to the lower- and higher-frequency one), which are the mechanism by which our method achieves direc-
tional resolution.

trap rf (see ref. [Kel+15] for a comprehensive discussion). Such methods measure the
projection of micromotion onto the wavevector 𝒌 of a probing laser. As such, multiple
probe beams are required to be able to resolve stray fields in all directions.

5.1.1 Limitations of previous methods in surface traps

The methods based on micromotion-induced modulation of a laser beam are widely used
throughout ion trap research. However, their intrinsic coupling between the probed direc-
tion and that of a laser beam is challenging in the planar “surface trap” designs produced
through scalablemicrofabrication techniques, such as that used here (see chapter 3). There,
it is usually not possible to achieve a direction 𝒌 with an appreciable component perpen-
dicular to the trap plane without the laser beam also striking the trap, which is generally
undesirable due to charging effects (with the exception of the infrared beams necessary to
cool some ion species [All+10]).

Our particular case is illustrated in fig. 5.1: The axis normal to the trap plane is taken
up by the high-na single-photon collection optics, and while there is access through the
central slot below the ion position, it is taken up by the state-dependent fluorescence read-
out optics. All the laser beams propagate, to good approximation, exactly in the same
plane parallel to the trap surface; consequently, methods based on laser phase modulation
are not sensitive to micromotion in the out-of-plane direction. Furthermore, the princi-
pal axes of the rf potential minimum are rotated by 45° compared to a typical situation
in a macroscopic Paul trap, such that a positional shift along the in-plane or out-of-plane
directions (where there is camera and laser access) results in micromotion parallel to the
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displacement, rather than normal to it. Consequently, a number of combinations which
allow the probing of stray fields without extra laser access in four-rod-like geometries are
not applicable here3.

The key idea to address the challenge of stray field compensation in the out-of-plane
direction without introducing any extra laser beams along that axis – which we would
rather avoid, as the alignment requirements to achieve a high single-photon collection
efficiency are already challenging without needing to take extra elements for additional
beams into account – is to address it using amechanism that already has a projection in the
vertical direction: the radial modes of motion of the ion in the rf pseudopotential. These
can be addressed in a way that is sensitive to the ion position w.r.t. the rf null through
modulation of the rf trapping potential, as described in the next section.

5.2 Parametric excitation

Parametric excitation refers to the phenomenon that motion in a harmonic oscillator can
be excited through periodic modulation of its parameters over time. In particular, if the
oscillation frequency 𝜔0 is modulated at a frequency 𝜔am twice that of the unperturbed
oscillator or integer subharmonics thereof (𝜔am = 2𝜔0/𝑛 for 𝑛 ∈ ℕ), a parametric reso-
nance is triggered, where the oscillation amplitude grows exponentially over time (unless
counteracted by a damping term).

Parametric instabilities of this kind have been studied in a wide variety of mechanical
and electrical systems [RS16]. For ions confined in Paul traps in particular, parametric ex-
citation has been used for themass-selective removal of ion species from the trap [Sch+20],
and also for stray field compensation [ITU11; Nar+11; Tan+12]. These proposals are based
on the fact that the quickly-growing solutions of a system driven at parametric resonance
can easily lead to large ion orbits where changes to the average fluorescence scattering
rate during laser cooling can be observed. As the unstable behaviour in the presence of
damping from laser cooling empirically somewhat depends on the distance from the ion
equilibrium position to the rf null – that is, the strength of the stray field –, this can be
used for micromotion minimisation by trying to determine the strength of applied com-
pensation field for which the excitation vanishes. For that purpose, excitation at the first
parametric resonance (𝑛 = 1, i.e. 𝜔am = 2𝜔0) is most convenient, as the instability region
is broadest there.

3For instance, in traps resembling a four-rod design, one could probe vertical fields with a horizontal
laser beam, and horizontal fields by determining the position shift for different rf confinement strengths
using a vertically-placed camera [Ber02], or even the same horizontal beam(s) using coherent techniques
[Hig+21]. In our case, camera imaging covers the two directions already accessible via laser beams, while
offering barely any resolution in the out-of-plane direction, at least without extra mechanical elements to
scan a narrow plane of focus [Glo+15].
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Figure 5.2: Principle of the parametric excitation method for stray field detection. Top: The total effective
potential 𝑈 experienced by the ion along one radial direction 𝑥𝑖 is a sum of the averaged confining effect of
the rf potential, expressed by the pseudopotential 𝛷rf, and any static potential 𝛷dc. Amplitude modulation
of the rf potential near the frequency of the ion’s secular mode of motion excites a parametric resonance,
which in the presence of some linear damping 𝜁 leads to steady-state oscillations. Bottom: The steady-state
amplitude of the excited motion depends on the signed amplitude of the stray electric field 𝐸stray.

These previous proposals already share an important characteristic with the method
described here, in that they allow one to distinguish fields in multiple spatial directions
by addressing the modes of motion in frequency space. They also have some practical
shortcomings, however. As the amplitude of the observed signal is a result of various
non-linear effects, it is not always easy to interpret; for instance, based on a number of
parameters, the resonance can lead to an increase [ITU11] in observed count rate, but also
a decrease [Nar+11]. Furthermore, as the signal results from what is fundamentally an un-
stable runaway process (limited only by non-idealities in the system), it is relatively easy
to accidentally eject the ion from the trap, especially when working with large excitation
amplitudes and little damping in order to obtain good resolution.

Here, we propose4 to work in a completely different regime instead: near the second
parametric resonance (𝜔am ≈ 𝜔0), but for a small modulation depth ℎ such that damp-
ing from laser cooling suppresses the exponential growth in amplitude. As illustrated in

4The synchronous detection of motion excited through sidebands on the trap rf drive was already de-
scribed in A. M. Eltony’s 2013 MSc thesis as “synchronous tickle measurement” [Elt13]. However, the theo-
retical treatment there was limited, modelling the interaction as an oscillator driven by a uniform force rather
than a parametric interaction (ignoring the potential of the latter for instability) among a number of other
simplifications. To my knowledge, these earlier efforts were – unfortunately! – never formally published.
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Figure 5.3: The parametrically excited motion can be detected through modulation of the ion fluorescence
rate if the laser parameters are chosen such that there is a linear dependence of scattering rate to the laser
detuning (e.g. at a detuning of half the transition linewidth 𝛤). Then, the Doppler effect causes parametri-
cally driven oscillations at 𝜔am to produce a modulation in scattering rate at the same frequency 𝜔am. Thus,
as long as the wavevector of the cooling beam has a non-zero projection onto each motional mode direc-
tion, a single beam is sufficient to resolve multiple modes of different frequencies.

fig. 5.2, amplitude modulation of the rf trapping potential coherently excites secular mo-
tion if the dc and rf nulls do not coincide (that is, in the presence of a stray field 𝐸 ≠ 0).
The equilibrium behaviour of the ion is then to oscillate at 𝜔am, with an amplitude pro-
portional to the component of the stray field in the respective mode direction, and a well-
defined phase relationship to the amplitude-modulation signal independent of the initial
conditions, as we will show in the rest of this section.

To quantify amplitude and phase of the resulting motion, we record and digitally de-
modulate the arrival times of photons scattered during laser cooling, which is modulated
through the Doppler effect, as illustrated in fig. 5.3. A single laser beam is sufficient for
this as long as its wavevector 𝒌 has a non-vanishing component along the direction of each
mode.

The shift of the ion equilibrium position from the rf null in all three dimensions can
thus be determined by successively modulating the potential at frequencies close to that of
everymode ofmotion. The amplitude ofmotion correlated to the excitation signal depends
linearly on the stray field along the direction of the addressed mode and crosses zero at the
point where the dc and rf nulls coincide, providing a robust signal for a micromotion
minimisation procedure.

5.2.1 Equations of motion in the pseudopotential approximation

Following the discussion in chapter 2, the time-dependent position 𝑥𝑖 of the ion along one
axis can be described by a Mathieu equation. Here, we will consider the case of a laser-
cooled particle with an additional, unwanted electric field of uniform strength 𝑬 = (𝐸𝑖)𝑖,
which we wish to probe by amplitude-modulating the driving rf field at frequency 𝜔am
and modulation depth ℎ. We thus extend eq. (2.21) to the form (dropping tildes and mode
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index subscripts)

�̈� + 2𝜁 �̇� + (𝛺rf
2
)
2
(𝑎 + 2𝑞(1 + ℎ cos(𝜔am𝑡)) cos(𝛺rf𝑡)) 𝑥 =

𝐸𝑍𝑒
𝑚
, (5.1)

where 𝜁 gives the strength of linear viscous damping induced by laser cooling (see §5.2.4).
Note that we have carried over the simplification to an uncoupled scalar equation from
§2.2.1. As we are interested only in small modulation depths ℎ, this is a reasonable approx-
imation, but as discussed there, extensions of Floquet theory to the full matrix case could
be employed for quantitative calculations [Hou08; Lan+12].

To understand the effect of the amplitude-modulated trapping potential on the ion’s
secular motion, it is instructive to consider eq. (5.1) in the pseudopotential approximation,
where fast dynamics on the scale of 𝛺rf are ignored. Here, for |𝑎| ≪ |𝑞| ≪ 1 and 𝜔am, 𝜁 ≪
𝛺rf, we obtain5

̈�̄� + 2𝜁 ̇�̄� + (𝛺rf
2
)
2
(𝑎 + 𝑞

2

2
(1 + ℎ cos(𝜔am𝑡))

2) �̄� = 𝐸𝑍𝑒
𝑚

(5.2)

for the slowly-varying position �̄�. Defining

𝜔0 ≔
𝛺rf
2
√𝑎 + 𝑞

2

2
(1 + ℎ

2

2
) (5.3)

for the resulting frequency of secular motion and

ℎ̃ ≔ ℎ
1 + ℎ2/2

(1 − 𝑎𝛺
2
rf
4𝜔20
) (5.4)

as an “effective” modulation index, reflecting the fact that the contribution of 𝛷dc to the
radial curvature is static, we obtain

̈�̄� + 2𝜁 ̇�̄� + 𝜔20 (1 + 2ℎ̃ cos(𝜔am𝑡) + ℎℎ̃ cos(2𝜔am𝑡)) �̄� =
𝐸𝑍𝑒
𝑚
. (5.5)

Bringing this closer to the canonical form of a Mathieu equation, we can write

̈�̄� + 2𝜁 ̇�̄� + (𝜔am
2
)
2
(𝐴 + 2𝑄 cos(𝜔am𝑡) + 𝑅 cos(2𝜔am𝑡)) �̄� =

𝐸𝑍𝑒
𝑚
, (5.6)

another damped Mathieu equation with stability parameters 𝐴 ≔ (2𝜔0/𝜔am)2 and 𝑄 ≔
ℎ̃𝐴 (up to the O(ℎ2) term oscillating at twice the modulation frequency, with amplitude
𝑅 ≔ ℎℎ̃𝐴). Note that the parameter regime is quite different from the case describing
ion motion in the radial plane, i.e. eq. (2.21), where |𝑎| ≪ |𝑞| is usually a small amount
of anticonfinement resulting from the axially confining dc potential, and |𝑞| ≪ 1. Here,

5For instance by expressing 𝑥 as a sum of two terms, 𝑥 = �̄� + 𝜉, which are assumed to vary on different
time scales.
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we are instead interested in the regime close to the onset of parametric instability, that is,
𝐴 ≈ 𝑛2 > 0 for the resonance index 𝑛 ∈ ℕ, or 𝜔am ≈ 2𝜔0/𝑛.

Incidentally, note that eq. (5.6) has the same form as the equations of motion for a
static harmonic potential superposed with an oscillating electric field linear in position,
𝐸𝑥(𝑡) = 𝜔2am𝑚𝑄𝑥 cos(𝜔am𝑡) / (2 𝑍𝑒) (plus the small O(ℎ2) term). This could be a use-
ful observation in applications where it might not be technically feasible to amplitude-
modulate the trap rf drive signal at all, for instance because of an extremely narrow-band
resonant rf matching circuit. In that case, the parametric excitation technique could still
be used by instead applying the 𝜔am signal directly to the rf electrodes (e.g. combining it
with the 𝛺rf drive through a diplexer)6. In general, amplitude-modulation of the rf drive
signal appears to be preferable, however, as the accuracy of the obtained minimum is not
sensitive to a possible imbalance in electrode impedances between 𝜔am and 𝛺rf (only be-
tween𝛺rf ±𝜔am), and the electrode voltages can more easily be filtered at frequencies near
the secular modes of motion to avoid heating due to technical noise (which tends to be
more prevalent at lower frequencies).

5.2.2 Derivation of approximate solutions

Solutions to eq. (5.6), that is, the ion trajectories resulting from parametric excitation, dif-
fer in character depending on the relative strength of excitation and damping. For the ho-
mogeneous case with no stray field, 𝐸 = 0, the stability of the solutions can be investigated
using standard techniques for the treatment of Mathieu equations. Analytical approxima-
tions for the stability boundaries can be obtained for small damping factors and detunings
from resonance using a multiple-parameter perturbation method [WGW95]. For small
amounts of damping, 𝜁 ≪ 𝜔0, the second parametric resonance is excited most strongly if
𝜔am = 𝜔0, where the stability condition can be approximated to first order as

ℎ̃ ≲ 2𝜁
𝜔0
. (5.7)

In the stable region of parameter space, solutions for arbitrary initial conditions decay to
the equilibrium at �̄� = 0 in the stable region of parameter space, at a characteristic rate
given by the damping strength 𝜁. It can be shown [ST11] that the presence of an inho-
mogeneous term 𝐸 ≠ 0 does not alter the stability considerations. However, rather than
tending towards a stationary equilibrium, solutions will then generally exhibit bounded
steady-state behaviour. We have verified this to be an excellent approximation for the sta-
bility boundary for zero detuning in the experimentally relevant regime by numerical inte-
gration of eq. (5.1), although in practice nonlinearities in laser cooling and trap potentials
significantly affect the transitory regime towards instability.

6Conversely, techniques where a modulating potential is directly applied to the trap rf electrodes, such
as the quantum squeezing protocol demonstrated in ref. [Bur+19], should be accessible through amplitude-
modulation sidebands near 𝛺rf as well.
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To now derive an approximation for bounded solutions for 𝐴 ≈ 4 (that is, 𝜔am ≈ 𝜔0),
we transition to normalised time 𝑇 ≔ 𝜔am2 𝑡, giving

d2𝑥
d𝑇2
+ 2𝐵d𝑥
d𝑇
+ (𝐴 + 2𝑄 cos 2𝑇 + 𝑅 cos 4𝑇) 𝑥 = 𝐹, (5.8)

for 𝐵 ≔ 2𝜁𝜔am , 𝐹 ≔ ( 2𝜔am)
2 𝐸𝑍𝑒
𝑚 (and 𝐴, 𝑄, 𝑅 as in eq. (5.6)). All time-dependent factors

in this linear differential equation are periodic in time with period 𝜋, so informed by a
Floquet analysis of the system, we search for solutions of the form7

𝑥(𝑇) =
∞
∑
𝑛=−∞
𝑐𝑛e2i𝑛𝑇, (5.9)

with coefficients (𝑐𝑛)𝑛∈ℤ ⊂ ℂ satisfying 𝑐−𝑛 = 𝑐𝑛 as 𝑥(𝑇) ∈ ℝ. Inserting eq. (5.9) into
eq. (5.8), i.e. following a harmonic balance approach, yields a system of recurrence relation
equations for the coefficients:

2𝑄(𝑐𝑛−1 + 𝑐𝑛+1) + 𝑅(𝑐𝑛−2 + 𝑐𝑛+2) + 2(𝐴 − 4𝑛2 + 4𝑛i𝐵)𝑐𝑛 = 𝛿𝑛,02𝐹. (5.10)

The magnitude of 𝑐𝑛 will fall rapidly with |𝑛| due to the 4𝑛2 factor, as 𝑄, 𝑅 and 𝐵 are small
for typical conditions. We can thus obtain an analytical solution by truncating the system
at an appropriate |𝑛| for the desired degree of accuracy.

To do so for small excitation amplitudes, we substitute 𝑄 = ℎ̃𝐴 and 𝑅 = 𝛼ℎ̃2𝐴 (with
𝛼 ≔ ℎ/ℎ̃ ≈ 1), and expand to second order in ℎ̃ (for which including terms up to |𝑛| = 2 is
sufficient), obtaining

𝑐0 =
𝐹
𝐴
(1 − ℎ̃2 2𝐴(4 − 𝐴)
(4 − 𝐴)2 + (4𝐵)2

) + O(ℎ̃3),

𝑐1 = ℎ̃
𝐹

4 − 𝐴 − 4i𝐵
+ O(ℎ̃3),

𝑐2 = ℎ̃2
𝐹(2𝐴 + 𝛼(4 − 𝐴 − 4i𝐵))
2(4 − 𝐴 − 4i𝐵)(16 − 𝐴 − 8i𝐵)

+ O(ℎ̃3).

(5.11)

It is worth noting that the ansatz (5.9) only covers bounded solutions, and only the case
of excitation near integer subharmonics of the motional frequency (of which 𝜔am ≈ 𝜔0 is
the strongest). Parametric resonance near 2𝜔0 and other subharmonics thereof excites
motion at half the modulation frequency, which is consequently not captured by the above
solution.

7With thanks to P.Drmota for the suggestion of introducing complex coefficients here instead of separate
cosine and sine terms, leading to a pleasingly compact recurrence relation.
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5.2.3 Behaviour of the first-order steady-state solution

Considering the expressions from eq. (5.11) to first order in ℎ̃ (ℎ̃2 ≪ 1), all coefficients
𝑐𝑛 with |𝑛| > 1 vanish, and substituting back physical units, we obtain the average ion
position in

𝑐0 =
𝐸𝑍𝑒
𝑚𝜔20

(5.12)

as expected for the equilibrium position given a constant force from the external electric
field 𝐸. Introducing the normalised excitation frequency and damping parameters

𝑓 ≔ 𝜔am
𝜔0
, 𝑑 ≔ 𝜁

𝜔0
, (5.13)

and defining 𝐶 ≔ 2𝑐−1 for compactness of notation such that �̄�(𝑡) = 𝑐0 + re(𝐶 e−i𝜔am𝑡) +
𝑂(ℎ̃2), we obtain

𝐶 = 2ℎ̃
𝑓2 + 2i𝑓𝑑 − 1

𝑐0, (5.14)

which is which is valid to second order in ℎ̃, or in terms of magnitude and phase,

|𝐶| = 2ℎ̃
√(𝑓2 − 1)2 + 4𝑓2𝑑2

|𝑐0|,
arg(𝐶) = arg(𝐸(𝑓2 − 2i𝑓𝑑 − 1))
=Atan(−2𝑓𝑑𝐸, (𝑓2 − 1)𝐸)

. (5.15)

In the limit of small modulation depth, the system thus behaves like a damped, driven
harmonic oscillator. If the mode is excited exactly on resonance, the resulting motion
is phase-shifted by ±𝜋/2 compared to the applied amplitude modulation (depending on
the sign of 𝐸). At modulation frequencies much smaller or much larger than the mode
frequency the shift is 0 or 𝜋, respectively, with the width of the transition region being
proportional to the damping coefficient.

Figure 5.4 shows the behaviour predicted by eq. (5.15) for a set of parameters typical
for a microfabricated surface trap, along with numerical simulations for the full motional
dynamics as per eq. (5.1). For the small modulation depth of ℎ = 0.007 used here, the
approximation from eq. (5.15), which includes only terms linear in ℎ, only slightly under-
estimates the amplitude near resonance.

Crucially, the correlated amplitude 𝐶 is linear in 𝑐0, and thus in the stray field strength
𝐸. This linear dependence enables a simple stray field compensation procedure: for an
arbitrary fixed modulation frequency 𝜔am close to the frequency of one mode of motion,
measure 𝐶 for a variety of static compensation fields; its zero-crossing then marks the
compensated point where the stray field is exactly cancelled.

For any given set of system parameters, excitation exactly at resonance (𝑓 = 1) yields
the maximum signal |𝐶|, so in principle this would be the optimal working point for the
calibration procedure. However, at this point, the observed amplitude 𝐶 is maximally sen-
sitive to small deviations in the mode frequency, whether caused by trap anharmonicity
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Figure 5.4: Predicted amplitude and phase of steady-state oscillation following excitation at 𝜔am with mod-
ulation index ℎ = 0.007 and damping 𝜁 = 2.4ms−1 in the presence of a stray field with 𝐸𝑍𝑒/𝑚 = −1m/s2,
for a motional mode described by 𝑎 = −0.00259, 𝑞 = 0.179, and 𝛺rf = 2𝜋× 50MHz (𝜔0 = 2𝜋× 2.903MHz).
The solid blue curves show the result obtained to first order in ℎ in the pseudopotential approximation,
given by eq. (5.15). The dashed red curves were obtained by numerically integrating the full equations
of motion. For ease of comparison, the latter were shifted horizontally by the 2𝜋 × 17.51 kHz difference
between the mode frequency obtained from full simulations without modulation and that in the pseu-
dopotential approximation, 𝜔0 ≈ 𝛺rf/2√𝑎 + 𝑞2/2 (𝜔0 is indicated by the vertical dashed lines).

(changes in local pseudopotential curvature as the ion position is shifted by different static
compensation fields), or for instance by technical drifts in the rf voltage level across the
duration of the calibration procedure. Concretely, consider the relative change in signal
caused by a small shift in the actual mode frequency,

|𝜔0
𝜕𝐶
𝜕𝜔0
/𝐶| = 2
√(𝑓2 − 1)2 + 4𝑓2𝑑2

(= |𝐶|
ℎ̃|𝑐0|
) , (5.16)

which is in fact maximal at resonance and decreases with increased detuning exactly as
quickly as the magnitude of the signal |𝐶| does. Thus, detuning 𝜔am by a small amount
chosen based on the observed stability of 𝜔0 can greatly increase the robustness of the
procedure in practice, at the cost of a reduction in signal strength. To some extent, the loss
in signal can be counteracted by an increase in modulation depth, though eventually the
approximations made here (ℎ ≪ 1) will break down.

5.2.4 Approximate ion dynamics in the linearised two-level picture

To connect the results obtained in the last section to the experiment, it is necessary to
model the internal degrees of freedom of the trapped ion, both in order to extract the
damping coefficient 𝜁 resulting from laser cooling, and to derive the modulation in fluo-
rescence count rate used to infer themotional amplitude. A simplemodel adequate for our
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purposes is that of a two-level system always assumed to be in equilibrium (that is, with
internal state dynamics fast compared to 𝜔0).

Linear damping throughDoppler cooling. Consider a two-level systemwith ground state
𝑔 and excited state 𝑒, connected by a transition with linewidth𝛤, and driven to equilibrium
by an external field (here, the cooling laser) with Rabi frequency𝛺𝑒𝑔 and a detuning𝛥 from
resonance, which scatters photons at a rate 𝑅 given by eq. (2.60). Due to the Doppler shift,
ion motion gives rise to an instantaneous detuning −𝑘�̇�, where 𝑘 is the projection of the
wavevector of the laser beam onto themode direction. Making the simplifying assumption
that the ion velocity changes slowly [Lei+03], such that the internal state is in equilibrium
at any point, we can write

𝑅 = 𝛤 (𝜌𝑒𝑒(𝛥) − 𝜌′𝑒𝑒(𝛥) 𝑘�̇� + 𝑂((𝑘�̇�/𝛤)2)) . (5.17)

Neglecting momentum diffusion from the isotropically emitted photons as well as any
temporal correlations between absorption and emission events, laser cooling can then be
modelled through the average scattering force 𝐹 = ℏ𝑘𝑅, giving the linear damping term as

𝜁 = − 1
2𝑚
𝜕𝐹
𝜕�̇�
. (5.18)

Motion-dependent fluorescence modulation. The Doppler shift also leads to a modula-
tion of the scattering rate dependent on the ion motion. If a fraction of the emitted pho-
tons are registered by some detection system with overall efficiency 𝜂, and the ion velocity
is given by �̇�(𝑡) = 𝜔am im(𝐶e−i𝜔am𝑡) for the complex amplitude 𝐶 defined in §5.2.3, the
observed count rate is given by

𝑟(𝑡) = 𝜂𝑅(𝑡) ≈ 𝜂(𝑅0 +
4𝑘𝜔am
𝛤

𝑠𝛥

(1 + 𝑠 + (2𝛥𝛤 )
2)
2 im(𝐶e−i𝜔am𝑡)) , (5.19)

where 𝑅0 = 𝑅(�̇� = 0) is the average scattering rate which coincides with the unexcited
case.

As such, by measuring the frequency component of the count rate at the excitation
frequency, which we call the correlated rate 𝑆, we can recover the excitation amplitude 𝐶
via

𝑆 ≔ ⟨𝑟(𝑡)ei𝜔am𝑡⟩𝑡 = −i
2𝜂𝑘𝜔am
𝛤

𝑠𝛥

(1 + 𝑠 + (2𝛥𝛤 )
2)
2 𝐶, (5.20)

where ⟨⋅⟩𝑡 denotes the average over an integer multiple of excitation periods.
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In the experiment, 𝑆 is easily estimated by recording the arrival times (𝑡𝑛)𝑛=1,…,𝑁 of𝑁
photons over some time 𝑇 ≫ 2𝜋/𝜔am and digitally demodulating the signal as

⟨𝑟(𝑡)ei𝜔am𝑡⟩𝑡 ≈
1
𝑇

𝑁
∑
𝑛=1
ei𝜔am𝑡𝑛 . (5.21)

The finite number 𝑁 of observed photons leads to a statistical variance, i.e. photon shot
noise, of 𝑁/(2𝑇2) = 𝜂𝑅0/(2𝑇) per complex component of 𝑆. 𝑆 is linear in the motional
amplitude 𝐶 and thus, as shown in the previous section, in the stray electric field 𝐸. If we
use this procedure to estimate 𝐸, the statistical variance for an observation time 𝑇 is

𝜎𝐸2 = |
𝐸
𝑆
|
2 𝜂𝑅0
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝛼2

1
𝑇
, (5.22)

where we have introduced the overall (inverse) sensitivity 𝛼 of the stray field measurement
(unit: Vm−1/√Hz). Substituting the concrete expressions for 𝑆 and 𝐶 obtained earlier, we
thus obtain the sensitivity of the method in this linearised model as

𝛼2 ≔ ( 𝑚
2ℎ̃𝑍𝑒
)
2
((𝑓2 − 1)2 + 4𝑓2𝑑2)

𝛤3 (1 + 𝑠 + (2𝛥𝛤 )
2)
3

16𝜂𝑘2𝛥2𝑠
, (5.23)

noting that the laser parameters 𝑠 and 𝛥 also enter the normalised damping parameter 𝑑
(see eqs. (2.60), (5.13) and (5.18)).

Choosing parameters for sensitivity. Without further constraints, attempts to choose ex-
perimental parameters for optimal sensitivity by minimising eq. (5.23) are ill-fated. For
excitation exactly at the mode frequency (𝑓 = 1), reducing the damping coefficient would
lead to arbitrarily large ion orbits and thus relative signal rates 𝑆/(𝜂𝑅0). In reality, however,
nonlinearities of trap and cooling forces [Ake+10] and the onset of parametric instability
limit the achievable amplitudes. The simple, linear model derived here is thus inadequate
to derive an ultimate bound on the sensitivity of this method. Nevertheless, if the allow-
able motional amplitude |𝐶| is fixed (for instance, as limited by trap uniformity), eq. (5.23)
attains a minimum at −𝛥 = 𝛺𝑒𝑔 = 𝛤/2. Similarly, if ℎ̃ and 𝑓 are fixed (choosing, for in-
stance, a detuning 1 − 𝑓 ≈ 5 ⋅ 10−3 to decrease sensitivity to trap frequency drifts), the
sensitivity is again found to be maximal near 𝛥 ≈ −𝛤/2 over a range of mode frequencies
and linewidths typical of trapped ion experiments. This suggests 𝛥 = −𝛤/2 to be a suitable
starting point for further empirical optimisation.

5.3 Experimental parametric excitation response

We demonstrate this method using a single 88Sr+ ion in the “Alice” node described in chap-
ter 3. For this, we operate the trap with electrode voltages chosen to result in typical mode
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Figure 5.5: Observed amplitude and phase of the correlated photon count rate versus the modulation
frequency. The signal amplitude 𝑆 is given as a fraction of the approximately constant total count rate of
𝜂𝑅0 = 15 kHz, for cooling parameters 𝛥 = −2𝜋 × 13MHz, 𝑠 ≈ 0.9. The excitation frequencies are near
the higher-frequency radial mode, and we intentionally apply an offset field of 5V/m along the mode di-
rection. Data for five different modulation indices ℎ are shown: For the smaller four, the solid lines lines
show a fit of the model from eq. (5.15), allowing for an individual offset in mode frequency and a constant
phase shift common to all curves (yielding a damping rate 𝜁 = 2.4ms−1). For excitation at ℎ ≈ 0.74%,
where nonlinear effects dominate, the dashed line connects the points to guide the eye. Error bars show 1𝜎
statistical errors from photon shot noise (50 000 photons per point).

frequencies of 1.85MHz, 2.28MHz, and 2.90MHz for the axial and two radial modes, for
which a static quadrupole field term is added such that the radial mode vectors are rotated
by 28° about the trap axis (resulting in overall angles of 70° and 51° between the cooling
beams and the low- and high-frequency radial modes, respectively). The amplitudemodu-
lation signal is generated using a dds which is phase-referenced to the same clock used for
photon timestamping, as described in §3.2.1, which enables a purely digital demodulation
of the fluorescence rate signal.

Figure 5.5 shows amplitude and phase of the correlated scattering rate signal 𝑆 as a
fraction of the total fluorescence rate for excitation near the higher-frequency radial mode,
with the ion shifted from the rf null by 5Vm−1 along the direction of thatmode. For these
data, the ion is continuously cooled. After switching on the amplitude-modulation signal,
a 300 µs settling period reduces the influence of the initial conditions. Timestamps are
then recorded for each PMT click until a pre-defined number of photons (here 50 000)
has been observed. The signal is demodulated according to eq. (5.21) by comparing the
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Figure 5.6: Shift of the hf mode frequency versus amplitude of an off-resonant amplitude modulation tone
at 𝜔am = 2𝜋 × 2.5MHz, as observed using a “tickle” measurement. The statistical uncertainty of each point
is smaller than the marker size, but the accuracy is affected by kHz-level drifts in the unperturbed mode
frequency over the duration of the measurement (points acquired in random order).

timestamps to the phase origin of the parametric excitation envelope signal8.
The behaviour for a number of different excitation amplitudes is shown, with cooling

parameters 𝛥 = −2𝜋 × 13MHz, 𝑠 ≈ 0.9. The absolute scaling of the depth of the applied
modulation after the trap resonator was calibrated to about one significant figure by prob-
ing the signal at a capacitive voltage divider after the resonant circuit with an oscilloscope.
For small modulation indices, the behaviour agrees with the linearmodel derived in §5.2.3,
shown in the form of fit curves.

The observed rate grows linearly with modulation amplitude (and distance from the
rf null, which is constant here) until non-linearities in trap and motional coupling start
to become significant. Empirically, we observe a gradual saturation behaviour towards a
correlated fraction of 0.35 of the total fluorescence rate, i.e. a scattering rate amplitudemod-
ulation depth of 0.7. For larger excitation amplitudes, a sharp drop in correlated photon
rate is observed near resonance. This effect cannot be reproduced by the linear response
model; we attribute it to ion response nonlinearities (when |𝑘 ̇�̄�| reaches a significant frac-
tion of the linewidth), trap nonlinearities (for large orbits), and the onset of parametric
instability. Empirically, we observe that for excitation near 𝜔0 the ion remains confined
in the trap even under those conditions. Higher excitation amplitudes at larger detunings
can be a useful working point for the stray field compensation algorithm discussed in the
following section, as the effectively broadened response reduces the sensitivity to changes
in mode frequency.

Another effect visible in fig. 5.5 not captured by the model is a systematic increase in
observed mode frequencies towards higher excitation amplitudes (𝜔0 was allowed to float
for each curve in the joint fit). The origin of this effect is unclear. In the pseudopotential

8There is a non-zero total delay through the rf modulation and detection chain, so a linear phase equiv-
alent to 1.8 µs was subtracted from the data for display purposes, recovering an asymptotically flat phase
response far off resonance. This does not affect the stray field compensation algorithm described in §5.4.
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approximation, a (larger) increase in mode frequency with increasing modulation index
ℎ is expected according to eq. (5.3). On the other hand, numerical integration of eq. (5.1),
the full equation ofmotion, for parameters 𝑎 = −0.0026 and 𝑞 = 0.17 suggests a decrease in
observed mode frequency for pure amplitude modulation instead. To probe this effect in
isolation, trap rf modulation was applied at 𝜔am = 2𝜋×2.5MHz, far from resonance with
either motional mode. The hf mode frequency was then determined using the “tickle”
method, where a resonant electric field applied to one of the trap electrodes excites the
ion motion. We detect the change in total fluorescence rate due to the large motional
amplitudes produced this way. An increase of mode frequency with modulation index is
indeed observed, as shown in fig. 5.6, butmatches neither the result from the pseudopoten-
tial approximation nor the numerical simulations of the full one-dimensional model from
eq. (5.1)9. In practice, this shift is not a hindrance for use of the stray field compensation
method as the mode frequency can simply be determined at the target modulation index.
However, it needs to be accounted for when deriving the amplitude-modulation settings
from mode frequencies calibrated using a different method and large modulation depths
are to be used.

To determine the optimum compensation fields, themodulation frequency𝜔am is kept
fixed, but a varying offset field 𝐸 is applied instead, as shown in fig. 5.7. Matching the
prediction from eq. (5.15) and eq. (5.20), the correlated rate is observed to change linearly
with the applied electric field. The setting that minimises the micromotion amplitude is
thus easy to determine by linear regression, which is computationally cheap and robust to
statistical perturbations.

5.4 Multi-dimensional stray field compensation

By probing for parametric excitation near each of the mode frequencies, we can measure
the stray field component along eachmode. Thus, stray fields in all spatial directions could
be compensated. As inmost linear Paul traps, the rf potential curvature along the trap axis
is very small in our system by design, so we present data only for the plane spanned by the
two radial modes in the following.

9One possible origin for this discrepancy lies in the static dc quadrupole field applied to rotate themode
directions away from the trap plane, which leads to the treatment of the equations of motion as three un-
coupled scalar equations not to be strictly accurate (see the discussion in §2.2.1/eq. (2.21)). Whether this
plays a role or e.g. effects from non-uniform curvature dominate would be straightforward to investigate by
simulating the full three-dimensional dynamics of the ion in the fields derived from the model of the trap
geometry. Whatever the explanation, any such effects should not appreciably offset the excitation minimum
extracted for low modulation strengths, however. In this context, it is still somewhat unfortunate that the
amplitude-dependent mode frequency shift is not modelled well by the analytical or one-dimensional nu-
merical simulations, as it could have otherwise served as a convenient calibration of the actual modulation
index after the band-pass filter formed by the resonant trap rf matching circuit.
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Figure 5.7: Correlated scattering rate signal for excitation close to a 2.88MHz radial mode (detuning
−22 kHz, ℎ ≈ 0.02), given as fraction of the 30 kHz total count rate for varying compensation fields along
the mode direction. The dots are coloured to denote the applied fields, ranging from −20Vm−1 (dark) to
20Vm−1 (light) relative to an arbitrary value close to the compensation optimum; their size corresponds
to the 1𝜎 statistical error from 100 000 observed photons each. The dashed line shows a linear complex
least-squares fit to the data as a function of 𝐸-field. In the inset the same data is shown in one-dimensional
form, with the vertical axis now giving the projection of each point onto the best-fit line, where zero cor-
responds to the point on the line closest to the coordinate origin. The symbols show the statistical error,
confirming that the magnitude of excitation is linear to excellent approximation. The cross in the main
plot denotes the inferred compensation optimum, that is, the point on the fit line closest to the origin. The
same point, corresponding to 𝐸 = 1.95(3) Vm−1, is indicated in the inset by the dotted line.

As illustrated in fig. 5.8, this is a multi-dimensional optimisation problem. Even when
only varying the applied compensation fields along a single direction, there will usually
be a point for each mode where the excitation vanishes, i.e. the shift between dc and rf
minimum along that mode direction is zero. However, unless the spatial orientation of
the motional modes is known to high precision so that an appropriate compensation volt-
age basis can be chosen (taking into account, for instance, the contributions of any stray
quadrupole potentials), such a one-dimensional search will in general not yield enough
information to determine the voltage set that positions the ion exactly on the rf null.

This is further illustrated in fig. 5.9, which shows the motional amplitudes observed as
the compensation fields vary in both radial directions for a fixed excitation frequency. For
each mode, there exists a linear minimum in excitation amplitude, where the projection of
stray field onto themode direction vanishes, and the ion ismerely translated perpendicular
to the mode direction. A linear fit to each dataset reveals mode directions of −63° and
26° relative to the trap plane (based on the geometry of the compensation electrodes), in
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Figure 5.8: Complex fractional amplitude of correlated photon arrival times, as a function of excitation
frequency and applied field normal to the trap plane 𝐸OOP, for three different in-plane compensation fields
𝐸IP (as illustrated in the radial plane sections to the right, where 𝒆𝑳𝑭 and 𝒆𝑯𝑭 refer to the directions of
the lower- and higher-frequency radial modes). Colour shows phase, and brightness shows amplitude
(extracted from 10 000 photons observed per point). The dashed circles highlight the points where the
projection of micromotion onto the respective radial mode vanishes. Only when 𝐸IP is chosen such that
the stray field in the in-plane direction is minimised (centre plot) can both modes be compensated. The
dependence of radial mode frequencies on ion position due to trap anharmonicity is visible as a slant to
the resonance lines.
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Figure 5.9: Stray field compensation in two dimensions. The plots show the complex fractional amplitude
of photon arrival times correlated with the fixed excitation frequency of 2.339MHz and 2.900MHz, re-
spectively, for a detuning of 22 kHz relative to each radial mode in the scan centre. Along the dashed lines,
the residual displacement of in the direction of the given mode is minimised; all radial micromotion is
compensated in the centre of the plot, where both lines would intersect. The dotted vertical lines mark the
values for 𝐸IP used in the three scans from fig. 5.8 for visual comparison. Both mode frequencies increase
towards negative out-of-plane fields, reducing the detuning and giving rise to the stronger signals towards
the lower edge of the plots.
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Figure 5.10: To compensate simultaneously the stray fields in both directions, a fixed-point iteration
scheme can be employed, where the excitation on either mode is minimised in an alternating fashion by
applying compensation fields in some pre-defined basis (here in the ip and oop directions). This simple
strategy is successful as long as the mode orientation is known to better than 45° (left), but an adaptive
algorithm, which at each point estimates the local mode directions from previous measurements to avoid
moving the ion off the other null, can greatly speed up convergence (right). (On the approximately straight
lines in the background, no motion is excited in the lf or hf modes, with the place where they meet being
the compensation optimum. The markers, connected by lines, denote the result from each iteration step of
the respective compensation algorithm, starting from an arbitrarily chosen point.)

reasonable agreement with the 28° intended mode axis rotation angle. At the point where
both lines intersect, the trap is compensated: the ion is centred on the rf null and no
parametric excitation is observed.
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5.4.1 Iterative compensation algorithm

Acquisition of two-dimensional data of this nature is unnecessarily time-consuming. As
illustrated in fig. 5.9 (c), as long as the direction of the applied compensation fields relative
to the normal modes is known to better than 45°, a simple fixed-point iteration method,
where excitation for eachmode is minimised in an alternating fashion, will converge to the
compensation optimum. The orientation of each mode, expressed in terms of compensa-
tion voltages, is typically constant to good approximation, at least close to the compensated
point. If, at each step, the direction of the currently inactivemode(s) is estimated from pre-
vious iterations, and the probe direction is then chosen such as not to displace the ion in
that direction, convergence can be greatly accelerated. Note that the obtained motional
mode directions are not necessarily normal when expressed in the compensation voltage
basis, for instance if the fields generated by each electrode voltage set are not in fact orthog-
onal at the ion position, or of different magnitude.

In practice, a further complication arises from the fact that the observedmode frequen-
cies will shift slightly as a function of the applied compensation voltages. One reason for
this is that the dc and rf potential curvatures are not necessarily constant over the volume
probed by the ion positions, especially in surface electrode traps. Thepotentials introduced
by the compensation electrodes are also not in general curvature-free. In fig. 5.8, this shift
appears as a slant to the resonance features. To some extent, this can bemitigated by choos-
ing a parametric excitation frequency far enough detuned from resonance that the change
in response remains acceptably small over the region of interest. However, if the region
of compensation fields to be investigated is large, the detuning required for this might be
too big to be practical, given that the achievable damping rate and amplitude modulation
index will be limited.

To robustly find a set of compensation electrode voltages without prior knowledge
of the mode structure, we thus employ a multi-step algorithm (still alternating between
modes). Given a frequency estimate for the modes of interest and an initial guess and
search radius for the respective compensation voltage sets to apply, iterate over the follow-
ing steps:

1. Determine the frequency of the mode in question at the current compensation set-
tings plus a shift of one search radius in one direction. This can for instance be
achieved by varying the excitation frequency and fitting a step of 𝜋 in phase to the
observed correlated amplitude (see fig. 5.5).

2. Repeat step 1 for voltages shifted by one radius in the opposite direction, thus ob-
taining a linear model for mode frequency as a function of compensation voltage.

3. Then, vary the applied compensationfield over the search rangewhile parametrically
exciting at some fixed frequency offset to the approximation just determined, and
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Figure 5.11: Stability evaluation of the compensation field in the direction of the high-frequency mode.
Shown is the overlapping two-sample (Allan) deviation 𝜎𝐸(𝜏) for the inferred compensation field for dif-
ferent averaging times 𝜏, converted into a positional uncertainty for the 2.92MHz 88Sr+ mode on the right
axis. The shaded region indicates the statistical uncertainty (1𝜎) due to photon shot noise, obtained from
parametric bootstrapping. The dotted line denotes the error expected purely from photon shot noise at the
fitted sensitivity, and the dashed line indicates the minimum uncertainty of 𝜎𝐸 = 0.015Vm−1 achieved at
an averaging time of 𝜏 ≈ 150 s.

determine the point of minimal excitation by a complex linear fit to the count rate
correlations (see fig. 5.7).

Steps 1–3 are applied, alternating between all motional modes, until the change in esti-
mate between iterations is smaller than some pre-set target precision. After having cycled
through each mode two times the mode direction estimates can be refined, allowing com-
pensation voltage sets to be chosen adaptively such as to minimally disturb the result of
previous iterations. As the rf null is approached, the excitation amplitude can be increased
while decreasing the scan radius to improve the sensitivity. The mode frequency calibra-
tions, i.e. steps 1–2, can be skipped if the mode parameters are well-known, for instance
when repeatedly running calibrations to track small stray field changes while the setup
remains nominally unchanged.

5.5 Statistical uncertainty

The main source of statistical measurement uncertainty is photon shot noise, i.e. the Pois-
sonian distribution of observed photon counts. As such, large light collection efficiencies
are desirable to reduce data acquisition time for a given target precision. Beyond that, there
is a trade-off between sensitivity and robustness: For operation in automated calibration
routines, we typically choose larger damping rates and detunings (∼ 10 kHz) for robustness
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against slow radial mode frequency drifts (which we tend not to track with very high reso-
lution) as well as lower excitation amplitudes to handle larger stray field changes without
leaving the linear region. With these conservative settings, stray fields can be compensated
to well below 1V/m from 200 000 photons per direction in our apparatus.

When choosing larger excitation amplitudes and smaller detunings (∼ 3 kHz), sensi-
tivities of the correlated fraction to stray fields of |𝑆|/𝐸 ≈ 1.4 kHz/(Vm−1) at total count
rates of 𝜂𝑅0 = 17 kHz can routinely be reached in our apparatus, giving a statistical noise
floor of 𝛼 = 0.1Vm−1/√Hz per mode direction.

To estimate the practical resolution limit achievable with our method given the slow,
technical drifts in the voltage sources and the environment (e.g. due to temperature
changes), we consider Allan’s two-sample variance for the inferred stray electric field. We
continuously measure the correlated amplitude for a range of applied compensation fields
chosen uniformly between ±2.5Vm−1, for excitation with ℎ ≈ 0.03 detuned −3 kHz from
the high-frequency radial mode, cooling parameters 𝑠 ≈ 1, 𝛥 = −13MHz, and𝑁 = 1000
photons per compensation field setting.

Let �̄�𝑖;𝑙 denote the estimate for the compensation field that minimizes the excess mi-
cromotion amplitude as determined by linear regression (as discussed in §5.4; see fig. 5.7)
over the subset of correlated amplitude measurements from index 𝑖 to 𝑖 + 𝑙 − 1, which we
assume to originate from 𝐿 − 1 equal time intervals 𝛥𝑡 = 𝑁𝜂𝑅0 . For technical simplicity, we
acquire an equal number of photons per point, making this only true in approximation
due to the Poissonian count statistics. The overlapping two-sample variance 𝜎𝐸(𝜏)2 for an
averaging period 𝜏 = 𝑙 𝛥𝑡, 𝑙 ∈ ℕ, is then

𝜎2𝐸(𝑙 𝛥𝑡) =
1

2(𝐿 − 2𝑙 + 1)

𝐿−2𝑙
∑
𝑖=1
(�̄�𝑖;𝑙 − �̄�𝑖+𝑙;𝑙)

2 . (5.24)

Figure 5.11 shows the dependence of this variance on the averaging time for a represen-
tative data set, for averaging windows of 𝑙 = 8 to 19 640. At short times, the variance drops
with the square root of the averaging time, reflecting the floor set by the photon shot noise.
Around 𝜏 ≈ 1min, a plateau is reached, where further averaging does not significantly im-
prove the variance. The achieved minimal uncertainty is 𝜎𝐸 = 0.015Vm−1, which, given
the 2.92MHz frequency of the mode used for this dataset and the charge-to-mass ratio of
88Sr+, corresponds to an uncertainty in position relative to the rf null of 𝜎𝛥𝑥 = 34 pm, or
an equivalent force of 𝜎𝐹 = 1.7 zN. At longer averaging times, slow drifts in the stray fields
or electrode voltages dominate.

5.6 Systematic effects

The data in the previous section only covers the statistical uncertainty in the compensa-
tion fields. To check for any unknown systematic effects, we compare the results against
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two phase-modulation-based methods, albeit only along the one direction parallel to the
trap plane in which the relevant laser beams propagate. Here we find small but statistically
significant differences between the three approaches: At one point, a typical set of com-
pensation fields obtained by the parametric excitation method was 𝐸IP = −119.6(1) Vm−1
and 𝐸OOP = 147.8(1) Vm−1. Subsequently adjusting 𝐸IP to instead minimise the corre-
lations between 422 nm photons scattered during Doppler cooling and the trap rf drive
yielded a 𝐸IP value lower by 3.3(1) Vm−1. As a third method, we can minimise the Rabi
frequency on the first negative micromotion sideband of the narrow-linewidth 674 nm
|𝑆1/2, 𝑚 = −1/2⟩ ↔ |𝐷5/2, 𝑚 = −3/2⟩ transition: this minimum occurred at an 𝐸IP value
lower by 7.2(1) Vm−1 compared with that given by the parametric excitation method.
Some weeks prior to that, the same 674 nm sideband method had given a result higher
by 1.1(1) Vm−1.

Taking some known, but relatively obscure systematic shifts affecting the other meth-
ods into account, the differences for the 422 nm rf correlation and 674 nm sidebandmeth-
ods reduced to −1.0(1) Vm−1 and −3.7(1) Vm−1, respectively, but still persisted. Con-
cretely, the systematic effects taken into account were a substantial modulation in pmt de-
tection efficiency due to the trap rf drive (see §5.6.1) and an additional modulation from
magnetic fields at the ion position presumably combined with at least one other effect (see
§5.6.3). With the exception of a ∼ 1Vm−1 shift in some cases far outside the linear regime,
no evidence suggesting any systematic shifts affecting the parametric excitation method
was found (§5.6.4).

Ultimately, the origin of these remaining systematic shifts remains unclear; a discrep-
ancy between rf correlation and sideband methods of similar magnitude was reported in
ref. [Kel+15]. As the parametric excitation method probes the position to the rf null very
directly through modulation of the rf potential, yet does not rely on demodulation of any
measurements near that frequency, it should be fairly robust against many potential sys-
tematics. Even a residual offset on the few-Vm−1 level would not be an issue for our use
case (see §4.5.1). To gain certainty about the origin of the remaining shifts, and validate the
parametric modulation method for use in more sensitive applications, it would be still use-
ful to implement another high-resolution method in our apparatus for comparison, such
as that recently proposed in ref. [Hig+21].

5.6.1 RF correlations: Photomultiplier gain modulation

As previously reported by Keller et al. [Kel+15], we find that the quantum efficiency of the
photomultiplier tube used to detect the ion fluorescence is modulated by the presence of
ambient radio-frequency fields, in particular by radiation leaking from the trap electrodes.
Extraneous frequency content near the carrier frequency has the potential to cause sys-
tematic shifts in any measurement relying on synchronous demodulation, such as the rf
correlation and parametric excitation micromotion compensation schemes:
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If the detection probability of photons is modulated by 𝐺(𝑡) = 1 + re(𝑔 ei𝛺rf𝑡), where
𝑔 is the complex modulation amplitude, a signal of amplitude 𝑟 ∈ ℂ at frequency 𝛺rf
in the fluorescence rate 𝑅(𝑡) = 𝑅0(1 + re(𝑟 ei𝛺rf𝑡)) will yield a demodulated amplitude
of ⟨𝐺(𝑡)𝑅(𝑡)e−i𝛺rf𝑡⟩𝑡 ∝ 𝑟 + 𝑔 instead, i.e. the efficiency modulation results in a shift of
the measured signal in the complex plane. In the context of stray field compensation, a
component of 𝑔 along 𝑟 will cause a systematic offset in the inferred minimum.

The phase difference between 𝑟 and 𝑔 depends on various phase shifts and time delays,
whether in the rf signal chain (e.g. the physical detector placement) or the ion phase re-
sponse (influenced by the cooling laser parameters). Thus, there is no reason to believe that
the gain modulation shift should be orthogonal to the signal direction, and hence must be
characterised so it can be subtracted from the data in order to obtain accurate results.

For the data presented here, we use aHamamatsuH10682-210 photomultipliermodule
to detect ion fluorescence, situated approximately 0.5m from the trap centre. With the ion
trap empty, light from a torch is leaked into the apparatus to provide photon counts at a rate
close to that used for the rf correlation measurements, but certainly free of correlations
with the trap rf drive. A modulation with a magnitude of 1.2% is measured; it appears
to be fractionally constant across a range of signal count rates, and is not present in the
(significantly lower) dark count rate. Subtracting this offset from from the rf correlation
data leads to a shift of 2.3Vm−1 in the estimated micromotion minimum. As discussed at
the beginning of this section, a small difference between the results of the rf correlation
and parametric excitation methods remains even taking this offset into account.

While the exact origin of this effect is not known, it is plausible that the parametric
excitation method proposed here should be far less susceptible to it: the rf amplitude is
only modulated by a small amount ℎ ≪ 1%, and as long as the detection chain responds
linearly, the signal will only exhibit frequency components at 𝛺rf ± 𝜔am (but not at 𝜔am,
where it is demodulated to extract the motional amplitude). Even for a large modulation
depth ℎ = 6%, the correlated amplitude for background light was indeed measured to be
consistent with zero, 𝑆 = 6(11) × 10−5.

5.6.2 Radiation pressure

Radiation pressure from 422 nm photons can be excluded as a reason for the mismatch
in our parameter regime. For a typical count rate of 15 kHz observed in the parametric
excitation and rf correlation measurements and a detection efficiency of 3.6 × 10−4, the
ion scatters 𝛾 = 4.0 × 106 s−1 photons. Since the photons are re-emitted isotropically, the
average force experienced by the ion is simply

𝑭 = ℏ 𝛾 𝒌.

For the above parameters, |𝑭| = 6.3 zN, which equivalent to an electric field of |𝑭|/𝑒 =
39mVm−1. This estimate does not include the projection onto the compensation direction
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Figure 5.12: In-plane compensation fields that minimise the observed Rabi frequency on the ±1st micro-
motion sidebands of each of the 674 nm electric quadrupole transitions (connecting 𝑆1/2 and𝐷5/2 Zeeman
sublevels) accessible in the experiment. The transitions are arranged by their sensitivity to magnetic fields;
the labels on the top denote the respective𝑚𝐽 quantum numbers. The measurement uncertainty for each
point is smaller than the marker size; the points are connected by lines to guide the eye. The dashed line
shows a least-squares fit to the mean of the two measurements for each transition. The fields are given
relative to the compensation field obtained from the parametric excitation method, which was stable to
< 1Vm−1 over the measurement duration.

of interest, which attenuates the effect by a factor of ≈ 0.7 in this comparison. While
our method is capable of resolving this effect (see §5.5), it is far too small to explain the
observed discrepancies.

5.6.3 674 nm sideband Rabi frequency: transition dependence

As the micromotion sideband suppression method works by minimising the lab-frame
modulation of a narrow-linewidth transition by micromotion at the trap frequency, it is
affected by other mechanisms that modulate the transition frequency at𝛺rf.10 The 674 nm
𝑆1/2 ↔ 𝐷5/2 electric quadrupole transitions we use for this are sensitive to magnetic fields
through the Zeeman effect. One possible modulation source are thus residual magnetic
fields at the ion position caused by the trap rf electrode supply paths, as recently described
in ref. [Mei+18]. This effect would scale with the strength of the oscillating magnetic field
at the ion and the Zeeman sensitivity of the probed transition.

When comparing the points of minimum excitation across the different 674 nm tran-
sitions accessible in our experiment, as shown in fig. 5.12, we indeed observe a systematic
shift roughly consistent with a linear dependence on the magnetic field sensitivity. We,

10This is much the same as for the rf correlation and parametric excitation methods, only that the signal
is “demodulated” here by the ion, which effectively probes the field in its rest frame.
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however, also observe at least one additional effect that leads to different shifts depend-
ing on the sign of the micromotion sideband probed, with the effect varying across the
different transitions in a complex fashion.

The compensation value quoted in the above comparison to the other methods was
obtained as the interpolation to zero from a linear fit to the data from fig. 5.12, that is, ef-
fectively averaged across Zeeman transitions and sideband orders. However, until the ad-
ditional mechanism(s) at play can be elucidated through amore systematic investigation11,
and the symmetry of the resulting shifts confirmed, the accuracy of the results from the
674 nm sideband method quoted here should be considered to be limited to ∼ 5Vm−1.

5.6.4 Parametric excitation method

Benign shift from out-of-phase rf field. The dataset from fig. 5.7 shows an effect not
captured by the pseudopotential approximation: Instead of crossing the origin, the line
describing the correlated amplitude is offset from zero by a small amount, here correspond-
ing to a correlated fraction of 0.006 (a displacement equivalent to a stray field of 0.12Vm−1
along the fit line). Numerical simulations of eq. (5.1), shown in fig. 5.13, with an added
position-independent sin(𝛺rf𝑡) term indicate that a possible origin would lie in a residual
out-of-phase rf field of ∼ 60Vm−1 near the ion position, for instance caused by slight im-
balances in drive or grounding of the two rf electrodes. Similar to the equivalent effect
in rf correlation measurements, for which an analytical approximation is more readily
derived [Ber+98; Kel+15], this appears to shift the observed complex rate in a direction
precisely perpendicular to the modulation caused by stray dc fields, thus not affecting the
inferred compensation optimum.

Partial phase modulation from non-ideal modulation circuitry. Both from path-length
mismatches in trap rf modulation circuitry (see §3.2.1) and from a mismatch in the res-
onant impedance matching circuit response between the sidebands (e.g. if 𝛺rf is not per-
fectly centred on its resonance), it would be possible for the trap rf drive to also acquire
some phase modulation in addition to the desired amplitude modulation component. Fig-
ure 5.14 shows a numerical simulation of the full equations of motion from eq. (5.1) for
a range of static offset fields, showing that the response changes phase and loses in ampli-
tude if some of the modulation is distributed into the phase channel, but does not shift the
position of the signal null. As such, this would not affect the stray field calibration accu-
racy, although we typically operate our apparatus in a way producing very close to pure
amplitude modulation anyway.

11It is well possible that this is one of a number of effects recently discussed in the optical clock literature
[Gan+18; Arn+19].
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Figure 5.13: Response of the parametric excitation
correlation signal to the presence of a uniform out-
of-phase rf term 𝐸sin sin(𝛺rf𝑡) in addition to the
cos(𝛺rf𝑡) quadrupole trap potential. Each line shows
the complex amplitude of the ion’s velocity at 𝜔am at
one choice of 𝐸sin as the stray field is varied, with the
markers being equally spaced between offset fields
𝐸dc = −1Vm−1 and +1Vm−1. The extra field results
in a linear shift in the demodulated signal, but does
not affect stray field compensation accuracy, as it is
perpendicular in direction.
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Figure 5.14: Response of the parametric excitation
correlation signal to a phase shift 𝜙 between con-
stant trap rf drive cos(𝛺rf𝑡) and modulation term
ℎ cos(𝜔am𝑡) cos(𝛺rf𝑡 + 𝜑), for ℎ = 0.01. Each line
shows the complex amplitude of the ion’s velocity
at 𝜔am at one choice of phase offset 𝜑 as the stray
field is varied, with the markers being equally spaced
between offset fields 𝐸dc = −1Vm−1 and +1Vm−1.
The phase offsets range from pure amplitude mod-
ulation at 𝜑 = 0 to maximally mixed modulation
at 𝜑 = 𝜋/2, where the correlated signal is greatly
diminished in amplitude, but the stray-field-less case
is still in the origin.

Frequency-dependent shift for large modulation amplitudes. According to the theoreti-
cal treatment developed in §5.2, the stray field compensation optimum is unambiguously
given by the point where the correlated amplitude vanishes. The modulation frequency
only affects the strength (and, close to resonance, phase) of the correlation signal.

At low andmoderatemodulation depths ℎ, the correlation optimum, as inferred by the
complex linear regression procedure, is indeed observed to be independent of the choice of
modulation frequency 𝜔am, enabling robust stray field compensation. At high modulation
depths, however, we observe a systematic shift of up to 1Vm−1 (compared to the value
obtained at lower excitation strengths) for 𝜔am slightly above the mode frequency. An
example of this behaviour is shown in fig. 5.15.

The exact mechanism for this is unknown and the behaviour could not be replicated
in numerical simulations based on eq. (5.1). Empirically, however, we only observe this
shift if the ion is driven very strongly to where the response is no longer linear and, for
𝜔am close to the mode frequency, a parametric instability is excited. This can be diagnosed
by its effect on the total fluorescence rate, which remains constant in the linear regime.
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Figure 5.15: Systematic shift in the inferred compensation optimum at large excitation amplitudes: Each
point represents the compensation optimum inferred from a fit to 51 correlation measurements at offsets
of ±10Vm−1 along the hf mode direction, with modulation index ℎ ≈ 0.02 and cooling parameters
𝛥 = −2𝜋 × 13MHz, 𝑠 ≈ 0.9. For modulation immediately above the mode frequency (the shaded region
includes measurement uncertainty and drifts over the measurement duration), a systematic shift towards
positive values is apparent.

By choosing the experimental parameters such that the fluorescence does not significantly
change as 𝜔am is scanned over the resonance, or as the modulation is turned on and off at
the target 𝜔am, the problematic parameter regime can easily be avoided in practice.

5.7 Discussion

We have described a method for stray field compensation in radio-frequency traps based
on parametric excitation of the secular modes of motion and synchronous detection of
particle motion. No directional resolution is required for the motional measurement, as
directions are addressed via spectrally separated oscillatorymodes. This is particularly con-
venient for surface-electrode traps, for which optical access may be limited. For trapped
ions, this means a single laser cooling beam is sufficient for compensation in all spatial
directions as long as it has a projection onto all modes, which is in any case required for
efficient laser cooling. Neither the ability to access transitions of linewidths much smaller
than the trap drive frequency nor to perform cooling to themotional ground state is neces-
sary. The presentedmethod is thus equally applicable to other types of rf-trapped systems,
as long as motion can be weakly damped and detected.

Phase sensitivity in the detection of motion is not a strict requirement; the compen-
sated point could be found by just minimising the magnitude of parametrically excited
motion. When phase information is available, however, the compensation optimum can
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trivially be extracted in a robust fashion even in the presence of large amounts of statisti-
cal noise by linear regression, making this technique well-suited to unattended calibration
routines. Compared to approaches based on variations in the total fluorescence rate due
to parametric instabilities, where the change in rate away from the rf null can be pos-
itive or negative depending on the parameters, the signal here is unambiguous and does
not require careful development of robust fitting algorithms. As themethod utilises excita-
tion amplitudes below the parametric instability threshold and works in a small-amplitude
regime where the cooling dynamics are to good approximation linear, the trap stability is
hardly affected; we do not observe elevated ion loss rates during stray field calibrations.

The compensationmethod is simple to implement in practice. Technical requirements
are limited to a provision for amplitude modulation of the trap potential, whether through
a built-in function of the trap rf source or an external circuit. The required modulation
depth is small, so the necessary amplitude-modulation sidebands can be passed through
all but the most narrow-band step-up resonator designs (or replaced by a baseband signal
directly to the rf electrodes). Compared to techniques which detect stray fields by imag-
ing the shift in ion position resulting from changes in rf trap strengths, an advantage of
this scheme is that the trap configuration can be kept nearly constant, alleviating any con-
cerns about systematic shifts due to changes e.g. in rf power dissipation. The required
photon timestamp resolution is set by the motional frequencies; with typical secular mode
frequencies in the lowMHz region, phase jitter small enough that it does not significantly
reduce the signal can easily be achieved using almost all commercially available photon
detectors and real-time control hardware.

While themethod relies on knowledge of well-separated secularmode frequencies, the
width of the parametric resonance feature can be tuned via the cooling parameters. For
our parameters, typical linewidths are on order of 1 kHz, which is workable, even though
our apparatus has not been designed with a focus on radial mode stability or a particularly
harmonic trapping potential, and we indeed observe mode frequency changes of several
kilohertz due to laboratory temperature fluctuations.

The achieved statistical uncertainties are comparable to or below that of the lowest re-
sults reported in the literature for other stray field compensation methods (see table 5.1).
In addition to finding the stray field minimum, this method can in principle also be used
to directly obtain single-point estimates of the rf potential at the ion position owing to
the linear response. For this application, however, either a detailed description of the ion
cooling dynamics or the capability to apply well-characterised additional fields for calibra-
tion (i.e. a locally accurate model for the dc electrode fields) is necessary to calculate the
scaling factor.

While numerical results indicate a small sensitivity to out-of-phase rf field terms such
as caused by phase asymmetries in the rf electrode drive, this cannot be described in the
simple pseudopotential picture presented here. This method is hence not particularly suit-
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𝜎𝐸
Vm−1

𝛼
Vm−1/√Hz

OOP comp.
in our setup

Cavity emission spectroscopy [Chu+13] 1.8 1.6 ×
Repumper rf correlations [All+10] 1 1 ×

Micromotion sideband Rabi frequency [Chw09] 0.4 - ×
Parametric excitation (total fluorescence rate) [Kel+15] 0.3 - ✓

Focus-scanning position shift imaging [Glo+15] 0.09 2.30 ~
rf correlations [Kel+15] 0.09 0.57 ×

Co-trapped ultracold atoms [Här+13] 0.02 - ×
Direct position shift imaging [Hir+20] ≈ 0.01 - ×

This method 0.015 0.1 ✓
Optical dipole trap beam overlap [Hub+14] 0.009 ≈ 0.08 ×

Ramsey measurement of position shift [Hig+21] 0.0035 0.031 ×

Table 5.1: Comparison of stray field uncertainties achieved using various compensation methods, and
whether they would be suitable for addressing the out-of-plane direction in our apparatus (without ma-
jor hardware additions). To provide an approximate indication of the performance achieved in typical
experiments, the lowest published uncertainties 𝜎𝐸 for each method are given, along with the inverse sen-
sitivity 𝛼 (where reported) for the same measurement. Note that the figures heavily depend on ion species
and experimental parameters, as do the conversion factors to other quantities of interest (e.g. the induced
second-order Doppler shift); see ref. [Kel+15] for a more detailed comparison of some of these results.

able for the investigation of “quadrature” excess micromotion caused by such effects, the
compensation of which in either case requires changes to the rf trapping fields [Ber+98;
Moh+19].

Here, we have only discussed a mode of operation where both parametric excitation
close to themotional frequency (𝜔am ≈ 𝜔0) and cooling are applied in a stationary fashion,
as the resulting signal is robust, linear in the stray field, and independent of initial con-
ditions. To increase sensitivity if the available modulation depth is limited, this scheme
could be combined with excitation at the principal parametric resonance (𝜔am ≈ 2𝜔0) to
amplify small amounts of motion [YDN93]. By preparing the motional modes in a suf-
ficiently well-known state through initial coherent excitation (possibly after ground state
cooling), parametric excitation could also be used subsequently to probe stray fields where
no dissipation mechanism is available, for instance along laser-free storage or interaction
regions of an extended shuttling-based quantum computing chip. It should also be possi-
ble to acquire data formultiple mode directions in parallel by applyingmultiple amplitude-
modulation tones at the same time. The method would scale to multiple-ion crystals via
use of their centre-of-mass (in-phase) motional modes.

In conclusion, we have presented a simplemethod formulti-directional stray field com-
pensation in Paul traps based on spectrally addressed parametric excitation of the secular
modes through amplitude modulation of the rf trapping potential. The technique is appli-
cable to a wide variety of trapped particle systems; in typical trapped-ion experiments, the
added technical complexity is minimal, and the achieved resolution compares favourably
with that reported for alternative methods.



6 Experimental entanglement characterisation

Wenow turn to the characterisation of the entanglement generation primitives – between a
single ion and a single photon, and after entanglement swapping, between two remote ions
– in the experiment. We begin with a look at the correlations between the ion state after
spontaneous emission and the polarisation of emitted photons (§6.1), where we will see
two distinctive geometric effects predicted by the theory from §4.2: the shift in apparent
emitter position for 𝜎-polarised photons, and the avoidance of polarisation mixing if the
single-mode fibre is positioned exactly on the optical axis. §6.2 then describes the joint
quantum state between ion and photon polarisation including coherences through the use
of state tomography. §6.3 finally presents results from the characterisation of the entangled
state between two remote ions, again through state tomography.

Our perspective throughout will be one of evaluating the remote entanglement link
as a building block for more complex quantum networking applications. As such, we at
no point attempt to back out any known imperfections from the experimental data. The
latter is sometimes done in studies of individual mechanisms (e.g. “readout normalisation”
in work on high-fidelity gates), but is of course impossible in many applications where
the entanglement is further used in some way. As such, the presented data place a lower
bound on the fidelity achievable through this remote entanglement generationmechanism.
High-fidelity local operations are not difficult to achieve in trapped ions, however, and as
discussed at the end of the chapter in §6.4, our results significantly improve on remote
entanglement quality across all matter qubit platforms.

6.1 Ion–photon correlations

Evaluating the ion–photon polarisation correlations is somewhat challenging for two fun-
damental reasons: first, it not possible to obtain spontaneous emission from a 𝐽 = 1/2 ↔
𝐽′ = 1/2 transition that is purely 𝜋 or 𝜎 polarised, and secondly, the optical fibre necessary
as a spatial filter of the unwanted non-orthogonal polarisation components will always
introduce an uncontrolled polarisation rotation due to birefringence1. To establish a po-

1One could attempt tomanually compensate it by coupling cw laser light through the system to align the
polarisation measurement bases with the magnetic field direction. This would be cumbersome to achieve
with a high degree of precision, though.
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Figure 6.1: Basic steps in the experiments for 88Sr+ ion–photon polarisation correlation analysis, ion–
photon state tomography, and the ion–ion state tomography experiments (for which this is executed
by both nodes with shared heralding logic). (a) The ion is initialised in |0⟩ ≔ |5𝑠 2𝑆1/2, 𝑚𝐽 = − 12⟩
through optical pumping; infrared lasers repump any population trapped in the metastable𝐷 levels. (b)
A resonant ∼ 5 ps laser pulse excites the ion to |𝑒⟩ ≔ |5𝑝 2𝑃1/2, 𝑚𝐽 = 12⟩. (c) The ion spontaneously
decays from |𝑒⟩, with high probability into one of the Zeeman-split ground states. (d) A 𝜋 pulse maps
|1⟩ ≔ |5𝑠 2𝑆1/2, 𝑚𝐽 = 12⟩ to |1

′⟩ ≔ |4𝑑 2𝐷5/2, 𝑚𝐽 = − 32⟩. (e) If the ion state is to be read out along an axis in
the 𝑥𝑦 plane of the Bloch sphere instead of the computational basis, a 𝜋/2 pulse on the “main” optical tran-
sition between |0⟩ and |1′⟩ is applied. (f) The ion state is read out using resonant fluorescence detection.

larisationmeasurement aligned with the ion decay channels, one thus needs to work in the
single-photon regime and measure the ion state after each photon detection to determine
which of the two transitions the photon originated from.

6.1.1 Experimental sequence

The steps in the experimental data acquisition cycle for such experiments with single spon-
taneous decay photons are outlined in fig. 6.1. First, the ion is prepared in the |0⟩ ≔
|5𝑠 2𝑆1/2, 𝑚𝐽 = −12⟩ ground state through optical pumping with 𝜎−-polarised 422 nm light.
It is then excited to |𝑒⟩ ≔ |5𝑝 2𝑃1/2, 𝑚𝐽 = 12⟩ by a 𝜎+-polarised 422 nm ∼ 5 ps laser pulse.
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Figure 6.2: Timing of the experimental sequence (not to scale) for ion–photon polarisation correla-
tion analysis, ion–photon state tomography, and ion–ion state tomography experiments. The first
674 nm laser pulse on the “map” transition |5𝑠 2𝑆1/2, 𝑚𝐽 = 12⟩ → |4𝑑

2𝐷5/2, 𝑚𝐽 = − 32⟩ is always present.
For measurement away from the computational basis, an additional pulse on the “main” transition
|5𝑠 2𝑆1/2, 𝑚𝐽 = − 12⟩ ↔ |4𝑑

2𝐷5/2, 𝑚𝐽 = − 32⟩ further rotates the ion state before state-dependent fluores-
cence readout. The sequence of state manipulation and detection pulses to run can be selected in real time
depending on the detector click pattern observed at the herald station (which is not necessary for state to-
mography, but is relied on in the diqkd experiments described in chapter 7).

This excitation sequence is coordinated by the real-time fpga state machine, such that
it can be retried with minimal delays if no 422 nm spontaneous emission photon is de-
tected (attempt rate: 1MHz). If a photon is in fact registered on the detectors – we use
the same Bell-state measurement apparatus throughout, also for single-ion experiments –,
we map |1⟩ ≔ |5𝑠 2𝑆1/2, 𝑚𝐽 = 12⟩ to the |1′⟩ ≔ |4𝑑 2𝐷5/2, 𝑚𝐽 = −32⟩ state using a 674 nm
laser pulse. Like this, the resulting state can be read out using fluorescence detection on
the 𝑆1/2 ↔ 𝑃1/2 ↔ 𝐷3/2 cycle and recorded, after which the ion is Doppler-cooled again,
and the next iteration begins. A Doppler-cooling period is also inserted if no herald is de-
tected in a certain period of time to avoid excessive ion heating (typically 1ms), although
this limit is seldom reached in typical single-ion experiments on account of the total system
efficiencies.

This sequence structure is also shown as a timing diagram in fig. 6.2. This basic struc-
ture remains the same for all single-ion experiments described in this chapter, with the
ion qubit manipulation 674 nm laser pulses chosen as required to implement state read-
out in the desired basis. It is also the sequence run on each node independently and in
parallel for the two-node ion–ion entanglement experiments described here and in chap-
ter 7, for which the fpga state machines on each node coordinate between each other to
synchronise timing and heralding success conditions.
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6.1.2 Aligning the polarisation measurement basis

In the Bell-state measurement apparatus used also for all the single-ion experiments, the
photonic polarisation measurement basis set by the pbs cubes is rotated by (in addition
to any residual birefringence in the optics) the two wave plates following the optical fibres
from the trap nodes. As discussed in §2.3.2, they effect a rotation𝑈wp(𝛼2, 𝛽2) ⋅𝑈wp(𝛼4, 𝛽4)
on the incoming photon polarisation, where 𝛼𝑖 ∈ [0, 2𝜋) are the retardances, 𝛽𝑖 ∈ [0, 𝜋)
the orientations of the fast axis w.r.t. the horizontal plane, and 𝑖 = 2 denotes the half-wave
plate, 𝑖 = 4 the quarter-wave plate. A convenient parametrisation2 of the angles is through
the parameters {𝛾1, 𝛾2} ⊂ ℝ via 𝛽2 ≔

𝛾1+𝛾2
4 , 𝛽4 ≔

𝛾1
2 . Then, for ideal wave plates (𝛼2 = 𝜋,

𝛼4 = 𝜋2 ), the combined unitary is

𝑈 ≔ 𝑈wp (𝜋,
𝛾1 + 𝛾2
4
) ⋅ 𝑈wp (

𝜋
2
, 𝛾1
2
)

=(cos 𝛾1 cos 𝛾2 + i sin 𝛾1 sin 𝛾2 sin 𝛾1 cos 𝛾2 − i cos 𝛾1 sin 𝛾2cos 𝛾1 sin 𝛾2 − i sin 𝛾1 cos 𝛾2 sin 𝛾1 sin 𝛾2 + i cos 𝛾1 cos 𝛾2
) .

(6.1)

The measurement corresponding to pbs transmission represented as a Bloch vector 𝜉(𝜌) is
then

𝜉 (𝑈† |0⟩⟨0| 𝑈) = (
sin(2𝛾1) cos(2𝛾2)
sin(2𝛾2)

cos(2𝛾1) cos(2𝛾2)
) , (6.2)

i.e. 2𝛾1 and 2𝛾2 are spherical coordinates, where the polar axis contains the circular po-
larisation states and the origin of the azimuthal coordinate 𝛾2 is chosen such that 𝛾2 = 0
describes the equator, not one of the poles. In the experiment, the retardance of the wave
plates will differ slightly from the ideal values, so the correspondence to spherical coordi-
nates will only be approximate. We nevertheless parametrise the angles through 𝛾1 and 𝛾2
for interactive exploration/iterative optimisation in the experiment, as this still aids ease
of interpretation as long as the wave plates are reasonably accurate (and compute the ac-
curate unitaries used for ion–photon state tomography from these parameters from the
actual retardances as determined using a crossed-polariser measurement).

The polarisations corresponding to the atomic decay channels, as rotated by the fibre
birefringence, can simply be found by empirically optimising 𝛾1 and 𝛾2 such that the ion
state post-selected on detection of a photon on a given apd is as close to the computational
basis states as possible. This proceeds as described in §6.1.1, without any additional qubit
manipulation pulses apart from the transfer of the |1⟩ Zeeman state to the 𝐷5/2 manifold
for state readout; a sample scan is shown in fig. 6.3.

The assignment between detector channels and atomic decay channels can be chosen
arbitrarily as long as it is the same between the ion trap nodes. We typically choose to align
the 𝜎+ decays, which remain bright in the state readout, with transmission on the pbses, as

2This parametrisation was originally suggested by P. Drmota based on empirical observations.
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Figure 6.3: Ion state after detection of a photon in the given detector for a varying wave plate rotation 𝛾1
(see text for definition); 10 000 photons total for each angle acquired in node Alice. The symbols show the
probability to find the ion in the non-shelved state |0⟩ after detection of a photon in the given apd (with
the 1𝜎 confidence interval from binomial statistics). The reduced contrast in the middle extrema is caused
by the fact that the retardance of the wave plates in the apparatus differs slightly from the ideal values.
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Figure 6.4: Ion state after detection of a photon in the given detector for varying wave plate rotation angles
𝛾1 and 𝛾2 (see text) close to a previously determined optimum; 10 000 photons total for each angle ac-
quired in node Bob. The symbols show the probability to find the ion in the non-shelved state |0⟩ after de-
tection of a photon in the given apd (with the 1𝜎 confidence interval from binomial statistics). Parabolic
fits are shown as solid lines, with the vertical lines denoting the position of the extremum and its standard
error from the least-squares fit. A statistically significant offset is visible between the extrema in the results
post-selected on pbs transmission and reflection; at the time of writing, its origin was unclear.
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Figure 6.5: Spatial dependence of steady-state fluorescence count rates. The axes give the collection fibre
tip position in micrometres, with the direction matching the laboratory orientation shown in fig. 3.6 (the
ambient magnetic field points from top left to bottom right). (a): Total count rates across the two apds
corresponding to each polarisation (set up such that 𝜎± → 𝐻, 𝜋 → 𝑉 on axis). Crosses mark the centre
of mass of the distribution, which is virtually identical between the polarisations, although their shape
differs slightly. (b): Difference between the count rates, emphasising their different spatial dependence.
Blue marks the regions where 𝑉 (∥ 𝑩) polarisation dominates, red those where𝐻 (⟂ 𝑩) does.

this gives the signal of the highest contrast if some 𝜎 → 𝜋 polarisation mixing, finite pbs
extinction ratios, or imperfections in the 674 nm laser pulses or state readout are present
(though these effects are small). A narrow scan close to an optimum is shown in fig. 6.4.
Curiously, we consistently observe a small but statistically significant offset between the
optima obtained from the detectors in pbs transmission or pbs reflection; at the time of
writing, its origin remained unclear.

6.1.3 Position-dependent count rates for steady-state fluorescence

With the wave plate set such that the detectors are aligned with the atomic polarisation
axes, we can investigate polarisation effects in the position dependence of the steady-state
fluorescence of the ion during Doppler cooling on the 𝑆1/2 ↔ 𝑃1/2 ↔ 𝐷3/2 cycle, which
we also use to optimise the fibre position to match the ion image. A sample scan in node
Bob is shown in fig. 6.5. The two 𝜎 decays occur with equal rate; this is necessarily the case,
as the 422 nm and 1092 nm laser beams, incident perpendicular to the magnetic field, do
not carry any angularmomentum. As expected from the Clebsch–Gordan coefficients and
dipole emission patterns (§4.1),𝐻 photons (set up to correspond to 𝜎) and𝑉 photons (set
up to correspond to 𝜋) are both detected with approximately equal rate. The shapes differ,
however: As the𝐻 detection channel captures photons scattered on both 𝜎+ and 𝜎− transi-
tions, it is elongated in the direction perpendicular to the magnetic field as a consequence
of the apparent positional shift inherent in observing circularly polarised dipole emitters
described in §4.2.3 (𝜎+ and 𝜎− are each shifted slightly to opposite sides, leading their in-
coherent sum to take an elongated shape). The 𝑉 channel peak is slightly elongated in the
direction along the magnetic field, as it captures contributions from the longitudinal com-
ponents of the 𝜎 dipoles there. As the centres of mass of the distributions (or the centres
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Figure 6.6: Ion state following detection of a photon of𝐻 and 𝑉 polarisation (set up such that 𝜎± → 𝐻,
𝜋 → 𝑉 on axis), given as the probability to obtain the undesired outcome during the fluorescence measure-
ment at the end of the sequence (ideally,𝐻 ↔ |0⟩ (ion bright), 𝑉 ↔ |1⟩ (ion dark) with unit probability).
For each of the 25 × 25 points, scanned in lines from bottom to top, 500 clicks were collected between all
four apds. The 𝑥 and 𝑦 axes match the laboratory orientation shown in fig. 3.6 with the ambient magnetic
field pointing diagonally in the down-right direction. The white crosses mark the directions parallel and
perpendicular to the magnetic field (inferred from a parabolic fit to the 𝑉 channel) centred on the optical
axis (inferred from the 𝜋 collection efficiency maximum, see fig. 6.8).

of a two-dimensional Gaussian fit) still match, however, special care is not required when
optimising the fibre position in the experiment.

6.1.4 Position-dependent ion–photon correlations

To study these effects depending on the position of the collection fibre inmore detail, we re-
turn to the single-photon setting, where the signal measured is the ion state after detection
of a spontaneously emitted photon following picosecond laser excitation.

Thedependence of the ion state following detection of a photon on a detector calibrated
to correspond to 𝜎 or 𝜋 polarisation on the transversal position of the fibre tip is shown in
fig. 6.6. As expected from theory (see §4.3.1), the cancellation of the longitudinal dipole
contribution that causes 𝜎 → 𝜋 polarisationmixing only works in the plane perpendicular
to themagnetic field. Displacement of the fibre in either direction along themagnetic field
causes the ion to be observed in |0⟩ even following the detection of a photon on an apd
set up to correspond to 𝜋 polarisation. A displacement perpendicular to the magnetic
field does not appreciably change the post-selected ion states, though. This is shown more
explicitly in fig. 6.7 along with the theory prediction.

By combining the post-selected ion state with the number of attempts until detection
of a photon and relative frequency of the four detector clicks in these measurements, it is
also possible to map out the overall collection efficiency for photons from either atomic
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Figure 6.7: Ion state following detection of a photon of𝐻 and 𝑉 polarisation (set up such that 𝜎± → 𝐻,
𝜋 → 𝑉 on axis), given as the probability for the ion to fluoresce brightly at the end of the sequence (corre-
sponding to |0⟩). Shown are two slices through the data from fig. 6.6 around the point where the collection
probability for π photons is maximised, perpendicular to the magnetic field direction (left), and along it
(right). As the data was acquired on a grid in the laboratory coordinate system which is rotated approxi-
mately 45° compared to the magnetic field direction of interest here, the curves are bilinear interpolates
between the data points (the grid points do not coincide exactly with the slices shown). The shaded bands
give an approximate indication of the 1𝜎 confidence interval expected from binomial statistics. The dashed
line in the bottom-right slice depicts the theory prediction (§§4.2.3 and 4.3.1) for 𝜎+ → 𝑉 polarisation
mixing assuming nominal imaging system magnification, fibre mode field diameter, and piezo positioning
stage calibration.
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Figure 6.8: Overall collection efficiencies for photons from 𝜎+ (left) and 𝜋 (right) decays. The 𝑥 and 𝑦 axes
match the laboratory orientation shown in fig. 3.6 with the ambient magnetic field pointing diagonally in
the down-right direction. The black plus signs mark the peak position inferred from a two-dimensional
Gaussian fit to the data. The white crosses mark the directions parallel and perpendicular to the magnetic
field (inferred from the 𝜎 → 𝑉 polarisation mixing suppression data in fig. 6.6), centred on the 𝜋 collec-
tion efficiency peak.
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transition as a function of fibre position; an example for such data is shown in fig. 6.8.
Compared to the steady-state fluorescence data in fig. 6.5, this cleanly shows only 𝜎+, not
an equal mixture of 𝜎±, and also avoids the influence of 𝜎± → 𝑉 polarisation mixing off-
axis. The 𝜎+ collection efficiency peak is indeed shifted perpendicular to themagnetic field
compared to the𝜋 peak, with the sign expected from the theory. Themagnitude of the shift
is 0.458(10) µm, which matches the theoretical prediction of 0.461 µm, though this close
agreement might well be coincidence given that the analysis assumes the imaging system
parameters and the voltage–distance transfer function of the piezoelectric translation stage
to match the nominal values provided by the manufacturers.

In future work, it would be interesting to quantitatively probe the correspondence be-
tween the measurements presented here and the model from chapter 4. This will require
some care, as the measurement is affected by drifts and hysteresis in the piezoelectric ac-
tuators used to position the fibre, other mechanical drifts in the system, the actual system
magnification and travel of the piezoelectric translation stages per applied voltage (nom-
inal values were used throughout), and any aberrations in the imaging system, such as
caused by imperfect alignment.

6.2 Ion–photon entanglement

To study not just the purity of correlations between atomic decay channels and photon
polarisation, but the full quantum state including coherences, the obvious tool is quan-
tum state tomography – once the density operator describing the full state has been recon-
structed, any further quantities can be derived from it.

Here, we will restrict the analysis to the state considered to the ℂ2 ⊗ ℂ2 Hilbert space
given by the Zeeman ground states on the ion and the polarisation degree of freedom on
the photon, post-selected on the detection of a photon in one of the apds. We perform
all operations on the ion qubit in a rotating frame referenced to the laboratory frame at
the time the photon is detected, after which we can ignore the continuous temporal de-
gree of freedom, and the ion–photon state in the above discrete space should ideally be a
maximally entangled two-qubit state (see §4.1).

The most straightforward method to reconstruct the state is to consider the ion state
post-selected on the detection of a photon in a single detector, and vary both the pulses
setting the ion readout basis and the wave-plate angles selecting the detected polarisation
such that they span the complete Hilbert space (e.g. by measuring each qubit system along
the three Cartesian coordinate axes of the Bloch sphere). The data acquisition for this
proceeds as described in §6.1.1. The tomographic reconstruction requires some care, as
a photon will only be detected with some total efficiency 0 < 𝜂 < 1. With only a single
detector, we necessarily need to make the assumption that 𝜂 is stable across the duration
of the experiment (which is a very good approximation for the losses in the optical system
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and detector efficiencies, but not necessarily for the pulsed laser excitation or the alignment
of the collection fibre). Under this assumption, the ion–photon state can be reconstructed
using a maximum likelihood estimation (mle) technique, which I have first described in
ref. [Nad16].

Concretely, let 𝛤𝑖 be the projector corresponding to the 𝑖-th photonic measurement
settings. For post-selection on apd0, which by convention corresponds to𝐻 polarisation
(see fig. 3.7), this is

𝛤𝑖 = 𝑈wp(𝛼4, 𝛽4,𝑖)†𝑈wp(𝛼2, 𝛽2,𝑖)† |𝐻⟩⟨𝐻|𝑈wp(𝛼2, 𝛽2,𝑖) 𝑈wp(𝛼4, 𝛽4,𝑖), (6.3)

where 𝛼2 and 𝛼4 are the actual retardances of the half- and quarter-wave plates, and
(𝛽2,𝑖, 𝛽4,𝑖) their respective orientations for the 𝑖-th photonic measurement settings. Let
𝑛𝑖 the total number of photons observed for this detector setting (corresponding to the
povm element 𝜂𝛤𝑖), and 𝑁𝑖 > 𝑛𝑖 the total number of excitation attempt cycles necessary
to do so3. Similarly, let 𝛯𝑗 be the projector corresponding to a bright ion measurement
outcome for the 𝑗-th ion measurement setting. For measurements in the computational
basis, 𝛯𝑗 = |0⟩⟨0|, or with an additional rotation,

𝛯𝑗 = 𝑅𝑥𝑦(𝜗𝑗, 𝜙𝑗)† |0⟩⟨0| 𝑅𝑥𝑦(𝜗𝑗, 𝜙𝑗). (6.4)

Let 𝑏𝑖𝑗, 𝑑𝑖𝑗 be the number of bright and dark outcomes observed for the photon and ion
measurement settings with the given indices (∑𝑗 𝑏𝑖𝑗 +𝑑𝑖𝑗 = 𝑛𝑖). After dropping some com-
binatorial pre-factors independent of the model parameters, the overall likelihood for a
given set of observed events given an ion–photon density matrix 𝜌𝐼𝑃 and detection effi-
ciency 𝜂 is ℒ(𝜌𝐼𝑃, 𝜂; (𝑏𝑖𝑗)𝑖𝑗, (𝑑𝑖𝑗)𝑖𝑗, (𝑛𝑖)𝑖, (𝑁𝑖)𝑖)

=∏
𝑖
tr (𝜂𝛤𝑖𝜌𝑃)

𝑛𝑖 tr ((𝟙 − 𝜂𝛤𝑖)𝜌𝑃)
𝑁𝑖−𝑛𝑖

⋅∏
𝑖𝑗

1
tr (𝛤𝑖𝜌𝑃)

𝑏𝑖𝑗+𝑑𝑖𝑗
tr ((𝛯𝑗 ⊗ 𝛤𝑖)𝜌𝐼𝑃)

𝑏𝑖𝑗 tr (((𝟙 − 𝛯𝑗) ⊗ 𝛤𝑖) 𝜌𝐼𝑃)
𝑑𝑖𝑗 ,

(6.5)

where 𝜌𝑃 = tr𝐼 𝜌𝐼𝑃 is the reduced state of the photon. The maximum-likelihood estimate
for the state is then

̃𝜌𝐼𝑃, ̃𝜂 = argmax
𝜌𝐼𝑃, 𝜂

ℒ(𝜌𝐼𝑃, 𝜂; (𝑏𝑖𝑗)𝑖𝑗, (𝑑𝑖𝑗)𝑖𝑗, (𝑛𝑖)𝑖, (𝑁𝑖)𝑖). (6.6)

Compared to the original description in ref. [Nad16], we have not included any readout
normalisation, as the Zeeman qubit state can efficiently be read out using the 674 nm laser

3We do not assume knowledge of the photon state in the analysis. In the experiment, we just choose
a number of successful detections for each measurement setting, 𝑛𝑖 = const., and record the number of at-
tempts𝑁𝑖 until that number of successes is reached. Fixing the number of herald events slightly simplifies
some aspects of our real-time data acquisition implementation and as the reduced state of the photons is
approximately maximally mixed, 𝑁𝑖 ≈ 2𝑛𝑖𝛾 , we still allocate approximately the same amount of data acqui-
sition time to each measurement basis. If the polarisation state was such that it contained very little of the
post-selected state for some wave-plate settings, a strategy fixing the number of attempts instead would give
more balanced statistical uncertainties.
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Figure 6.9: Maximum-likelihood estimates of the joint ion–photon state produced in nodes Alice (left) and
Bob (right), obtained from 624 000 and 572 000 individual state tomography measurements, respectively.
The states are rotated away from the ideal Bell state |𝛷+⟩ = (|0𝐻⟩ + |1𝑉⟩) /√2 due to the a priori unknown
unitary action of the birefringence in the fibre carrying the photons.

pulses. The control system hardware now also supports deterministic real-time phase up-
dates relative to the photon detection time, so instead of relying on the spread in photon
arrival times to result in different phases shot-to-shot4, we now just select between one of
several settings as denoted by the index 𝑗.

For the experiment, we typically choose an intentionally over-complete set of measure-
ment bases5, given by the Cartesian product of 𝛽4 ∈ {0, 𝜋4 }, 𝛽2 ∈ {0,

𝜋
8 ,
𝜋
4 ,
3𝜋
8 },

6 and mea-
suring the ion approximately 13 of the time in the computational basis, the other 23 rotated
by 𝑅𝑥𝑦(𝜋2 , 𝜙𝑘), (𝜙𝑘)𝑘=0,…,7 = (

𝑘𝜋
4 )𝑘=0,…,7, i.e. measuring along one of eight equally spaced

axes in the 𝑥𝑦 plane of the ion Bloch sphere. The order of points can be randomised to
avoid slow collection efficiency drifts resulting in systematic biases (although we typically
find that this is not necessary given the high data acquisition rates, preferring to rotate
the motorised wave plates less to avoid the associated execution time overhead). We also
typically apply a spin echo (Hahn echo) to the ion qubit, where initially the ion state is just
inverted using the 674 nm laser and mapped back to the Zeeman qubit before the 𝜋2 analy-
sis pulse, though this became less important following improvements to the technical delay
between herald event and analysis sequence, and the ambient magnetic field stability.

The results for two such tomography runs, one in each of the nodes Alice and Bob, are

4This approach was a natural fit for the experiments in ref. [Nad16], where the higher magnetic field of
14.6mT led to a Zeeman splitting much larger than the excited state linewidth.

5Such an over-complete set of measurements is useful to verify the calibration of the wave plate retar-
dances (which can be difficult to establish accurately if not done in place), or for the investigation of sign
issues between theory and implementation.

6For ideal wave plates, several of these angle combinations would give rise to identical measurement
projectors.
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Figure 6.10: Maximum-likelihood ion–photon state estimates in nodes Alice (left) and Bob (right) from
fig. 6.9, transformed post-hoc with unitary operations acting locally on the two subsystems to maximize
the overlap with the Bell state |𝛷+⟩ = (|0𝐻⟩ + |1𝑉⟩) /√2, which corrects for the fibre birefringence and
makes it visually clear that the states are in fact close to a maximally entangled state.

System Alice Bob

Fully entangled fractionℱ 0.979(3) 0.977(1)
Entanglement of formation 𝐸𝐹 0.941(8) 0.938(3)

Logarithmic negativity𝒩 0.969(4) 0.966(1)

Single-detector efficiency 0.403% 0.568%

Table 6.1: Ion–photon state figures of merit, derived from the mle tomography estimate (errors are the
standard deviation obtained from bootstrapping). The efficiency is given end-to-end from entanglement
trials to clicks on apd0; the combined efficiency for all four detectors is approximately a factor of 4 higher.
The collection lens alignment in node Alice had degraded at the time this dataset was obtained, giving rise
to the lower efficiency.

shown in fig. 6.9. For these data, 624 000 copies of the ion–photon state were measured in
Alice, 572 000 in Bob, distributed over 27min and 18min of wall-clock time, respectively.
The density matrix estimates were obtained by a numerical implementation of eq. (6.6) in
the formof a directminimisation of the negative log-likelihood− log(ℒ(𝜌𝐼𝑃, 𝜂;…)) accord-
ing to eq. (6.5). This optimisation has 15+1 real degrees of freedomparametrising the state
and the overall collection efficiency. To ensure positivity of the density matrix, the matrix
was expressed in its Cholesky decomposition 𝜌 = 𝐿𝐿†, where 𝐿 is a lower-triangularmatrix
with non-negative diagonal entries, the entries of which are optimised over. A summary
of several figures of merit is shown in table 6.1, along with an estimate for the standard
errors obtained using bootstrapping.

The form of the resulting states depends on the uncontrolled unitary transformation
effected by the polarisation rotation in the optical fibres, as well as the choice of phase
reference for the ion Zeeman qubit manipulation, which depends on the absolute latency
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Figure 6.11: Drift in the ion–photon entangled state reconstructed from tomography measurements across
one week (node Alice, for the states post-selected on a click on apd0, with spin echo on the ion qubit). To
decouple the overlap data from entanglement imperfections (ℱ∼ 96% for the data presented here), the
fidelity of the largest pure state component (density matrix eigenvector) at each point to that of the first
measured state is shown, in form of the 1𝜎 confidence interval obtained from bootstrapping. The drift
is caused by birefringence variations in the optical fibre links, whose magnitude depends on the thermal
stability and any mechanical disturbances; oscillations on the time scale typical for temperature changes
due to the laboratory air conditioning are visible in the first, more densely sampled section.

through the photon detection and rf synthesis chain. For ease of visual interpretation, the
same mle results are also shown in fig. 6.10 post-processed using qubit-local rotations to
maximise their overlap with |𝛷+⟩ = 1√2 (|0𝐻⟩ + |1𝑉⟩). In practice, we also use a similar
optimisation procedure on the tomography data to initialise the wave plate settings for the
ion–ion entanglement use case, which we choose such that 𝑝𝐼=0|𝑃=𝐻 is maximal. Drifts in
birefringence due to ambient temperature and mechanical stresses lead to slow changes in
the unitary polarisation rotation induced by the fibre depending on environmental condi-
tions, but we typically observe the state to be stable to ≳ 98% over days (see fig. 6.11).

To improve data acquisition rates while continuing to use the ion–ion entanglement
generation setup (Bell-state analyser) as the polarisation-sensitive detector, it would be
desirable to extend this tomography technique to make use of photons in all four apd de-
tectors. This is relatively straightforward but requires the introduction of some knowledge
about the exact behaviour of the Bell-state measurement apparatus into the device model:
as the attempt loop will terminate after the detection of a photon in any of the apds, the
data cannot simply be divided up into four streams of the form described here after the
fact. A description of such as a scheme which is now routinely used in the experiment
will be given in P. Drmota’s upcoming DPhil thesis; the tomography data presented here
is older and was still acquired using only one detector.

6.3 Ion–ion entanglement

The simultaneous detection of two photons of different polarisation in the Bell-state anal-
yser heralds the creation of an approximately maximally-entangled ion–ion state. As dis-
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cussed in §4.4, there are four different heralding detector click patterns, which in the ideal
case leave the ions in a pure state independent of the photon detection times, given by

|𝛹±𝐴𝐵⟩ =
1
√2
(|0𝐴1𝐵⟩ ± ei𝜙 |1𝐴0𝐵⟩) , (6.7)

where 𝜙 is an a priori unknown phase set by the residual fibre birefringence (along the
third axis not compensated by the wave plates), and in practice also the choice of phase
reference for the manipulation of the Zeeman qubits. The states for the cases where the
photons are detected on the same side of the 50 ∶ 50 beamsplitter are predicted to be the
same, and so are those where detectors on opposite sides click, corresponding to the two
signs in eq. (6.7). This does not hold in the presence of various technical imperfections, so
in the following, we treat each heralding detector click pattern separately.

To analyse the creation of entanglement in the experiment, we again follow the
blueprint from §6.1.1, now synchronised between the two ion trap nodes: we (re)initialise
the ions in |0⟩, excite them, and observe apd detector clicks until we detect an acceptable
herald pattern. The total success probability now goes with the square of the single ion–
photon efficiency, so is on the order of 10−4. For the tomographic reconstruction of the
created states, we either measure directly in the computational basis after mapping to the
|0⟩ ≔ |5𝑠 2𝑆1/2, 𝑚𝐽 = −12⟩ ↔ |1

′⟩ ≔ |4𝑑 2𝐷5/2, 𝑚𝐽 = −32⟩ optical qubit, or apply extra 𝜋/2
pulses to measure along the other two axes of the respective Bloch sphere. In other words,
for each of the 3 × 3 combinations, we collect statistics for a projective measurement onto
one of four Pauli matrix tensor product eigenstates.

As the ideal state does not evolve in time (except for a global phase), the choice of
phase origin for these measurements does not matter, as long it is synchronised between
the ions; we choose the end of the last (successful) 1 µs attempt cycle as the reference time
for the sake of it being well-defined across the systems. No spin echo is performed, as
it does not further improve the state fidelity for the short (∼ 30 µs) wait times between
successful herald and mapping into the optical qubit. To suppress the effect of non-ideal
“map” π pulses, such as due to motional heating across the attempt sequence, an additional
shelving π pulse |5𝑠 2𝑆1/2, 𝑚𝐽 = 12⟩ → |4𝑑

2𝐷5/2, 𝑚𝐽 = 32⟩ is applied instead of the𝜋/2 pulse
formeasurements in the computational basis (thoughnot formeasurements in the𝑋 and𝑌
bases, as this cannot preserve the coherence between the states). We sequentially measure
in each combination of bases for a predetermined number of successful heralds, accepting
all four detector click patterns every time and dividing the data into separate streams for
each pattern after the fact. As the four patterns occur with roughly equal probabilities –
up to differences in the detector efficiencies –, the statistical uncertainties in the estimates
will be roughly matched between the patterns nevertheless.

A first set of measurements, taken in April 2019, was reported in ref. [Ste+20], with
an average fidelity of ℱ = 94.0(5)% and rate of 182 s−1. It was analysed the same way as
discussed here for the dataset from table 6.2, which was acquired more recently, in May
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𝑂𝐴 𝑂𝐵 +𝐴+𝐵 +𝐴−𝐵 −𝐴+𝐵 −𝐴−𝐵
X X 229 332 375 284
X Y 27 526 650 15
X -X 317 184 310 374
X -Y 532 23 24 580
X Z 541 558 650 609
Y X 548 16 20 579
Y Y 284 301 389 241
Y -X 25 509 618 27
Y -Y 286 253 260 379
Y Z 551 626 715 594
-X X 356 296 237 347
-X Y 618 19 27 500
-X -X 271 362 321 211
-X -Y 20 633 563 29
-X Z 684 671 539 514
-Y X 23 621 527 17
-Y Y 400 231 286 292
-Y -X 617 33 23 516
-Y -Y 251 378 308 277
-Y Z 717 594 544 561
Z X 525 693 620 527
Z Y 655 562 634 502
Z -X 661 579 635 589
Z -Y 543 674 521 575
Z Z 82 2415 2378 17

(a) Number of observations per Pauli eigenstate for
detector pattern 0011, for a total of 43 182 clicks.

𝑂𝐴 𝑂𝐵 +𝐴+𝐵 +𝐴−𝐵 −𝐴+𝐵 −𝐴−𝐵
X X 229 358 408 305
X Y 36 553 667 16
X -X 363 229 322 417
X -Y 558 35 34 698
X Z 581 631 774 669
Y X 589 28 32 646
Y Y 286 343 470 259
Y -X 20 593 679 26
Y -Y 346 284 255 447
Y Z 560 681 731 620
-X X 409 327 235 354
-X Y 759 26 29 551
-X -X 283 433 370 236
-X -Y 23 662 594 31
-X Z 773 755 580 643
-Y X 39 645 582 22
-Y Y 411 271 288 351
-Y -X 691 33 28 609
-Y -Y 277 461 301 282
-Y Z 707 674 556 587
Z X 640 713 620 605
Z Y 735 568 668 605
Z -X 679 653 609 604
Z -Y 550 828 671 662
Z Z 69 2603 2517 13

(b) Number of observations per Pauli eigenstate for
detector pattern 1100, for a total of 47 278 clicks.

𝑂𝐴 𝑂𝐵 +𝐴+𝐵 +𝐴−𝐵 −𝐴+𝐵 −𝐴−𝐵
X X 357 242 310 368
X Y 588 21 14 658
X -X 247 338 346 357
X -Y 19 571 658 29
X Z 596 608 683 659
Y X 19 603 680 26
Y Y 284 267 277 375
Y -X 604 18 28 643
Y -Y 289 284 408 273
Y Z 506 716 695 658
-X X 345 359 329 251
-X Y 20 674 565 27
-X -X 352 340 292 325
-X -Y 637 17 26 573
-X Z 694 668 562 562
-Y X 685 20 28 560
-Y Y 237 383 335 300
-Y -X 28 623 604 15
-Y -Y 372 298 287 343
-Y Z 723 629 534 735
Z X 797 573 556 659
Z Y 608 727 629 642
Z -X 548 785 697 524
Z -Y 667 623 657 569
Z Z 50 2489 2513 24

(c) Number of observations per Pauli eigenstate for
detector pattern 1010, for a total of 46 016 clicks.

𝑂𝐴 𝑂𝐵 +𝐴+𝐵 +𝐴−𝐵 −𝐴+𝐵 −𝐴−𝐵
X X 337 201 296 369
X Y 571 40 22 596
X -X 195 373 343 285
X -Y 35 548 633 23
X Z 564 575 664 638
Y X 31 562 589 32
Y Y 341 257 208 418
Y -X 556 29 50 575
Y -Y 230 356 396 254
Y Z 464 662 681 540
-X X 242 356 365 192
-X Y 23 608 525 29
-X -X 365 248 204 387
-X -Y 618 19 23 532
-X Z 622 622 556 555
-Y X 618 30 22 561
-Y Y 246 410 330 229
-Y -X 41 579 541 19
-Y -Y 370 236 224 335
-Y Z 762 537 560 580
Z X 708 515 583 666
Z Y 526 704 588 647
Z -X 481 736 691 529
Z -Y 706 545 597 612
Z Z 60 2284 2459 27

(d) Number of observations per Pauli eigenstate for
detector pattern 0101, for a total of 43 524 clicks.

Table 6.2: Number of observations of each eigenstate for tensor product combinations 𝑂𝐴 ⊗ 𝑂𝐵 of Pauli
operators in the Alice-Bob state tomography experiment, for each of the four detector click patterns.
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Figure 6.12: Number of shots before herald for the ion–ion state tomography dataset shown in table 6.2.
With an effective attempt rate of 625 kHz (including periodic cooling), the entanglement generation rate is
100 s−1.

2021, following a number of experimental upgrades that greatly increased automation and
robustness7. It consists of 180 000 total heralds spread across the four detector click pat-
terns. To avoid any potential bias in the 𝑥𝑦 plane introduced by gate rotation angle errors
(cf. §7.4.1), we also include, in addition to the measurement settings {𝑋, 𝑌, 𝑍}, the oppo-
site basis change rotations leading to −𝑋 and −𝑌 (which, ideally, just lead to mirrored
outcomes).

The distribution of excitation attempts before observing a herald event for this dataset
is shown in fig. 6.12. A 30 ns coincidence acceptance window aligned with the excitation
laser pulse was used to capture most events while excluding background counts (≈ 98%,
although this could likely be tuned further). As both the pulsed laser excitation efficiencies
and fibre-coupling efficiencies had degraded due to misalignments in the optical paths
compared to the April 2019 data in ref. [Ste+20], the success probability was only 1.588 ×
10−4. Additionally, an attempt timeout of only 500 µs had been used for this dataset by
accident, leading to an overall rate of only 100 s−1. This is solely a consequence of the data
having been acquired at the end of a long effort focussed on automation and long-term
robustness, not peak performance; there is no reason to expect the 182 s−1 rate not to be
restored (and exceeded) at the same higher level of fidelity following realignment of the
collection optics.

The observation counts from table 6.2, along with the corresponding ideal projectors,
make up the entire input for the state tomography procedure (i.e., no extra readout correc-
tion, etc. is employed). The likelihood function for the number of times 𝑛𝑘 each measure-
ment outcome 𝑘 was observed, given the ion–ion density matrix 𝜌𝐴𝐵, is simply (up to a

7This particular dataset was chosen as it was contemporaneous to the diqkd experiments described in
the next chapter, but is representative of the experiment performance at the time.
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Detector click pattern 0011 1100 0101 1010

Fully entangled fractionℱ 0.958(2) 0.958(2) 0.961(3) 0.964(2)
Entanglement of formation 𝐸𝐹 0.887(7) 0.885(7) 0.890(8) 0.899(6)

Logarithmic negativity𝒩 0.938(3) 0.938(4) 0.943(4) 0.948(3)

Herald probability 3.82 × 10−5 4.18 × 10−5 3.85 × 10−5 4.07 × 10−5

Table 6.3: Commonly cited figures of merit quantifying the amount of entanglement in the maximum-
likelihood density matrix estimates.

combinatorial factor independent of the state)

ℒ(𝜌𝐴𝐵; (𝑛𝑘)𝑘) =
24×4
∏
𝑘=1
tr(𝐸𝑘𝜌𝐴𝐵)𝑛𝑘 , (6.8)

where 𝐸𝑘 are the projectors onto the various measurement outcomes. The mle state esti-
mate that maximises eq. (6.8) can be obtained by any number of optimisation methods;
I chose the diluted fixed-point iteration algorithm described by Reháček et al. [Reh+07]
(which, as any sensible mle procedure, ensures that the result is physical, i.e. Hermitian,
positive-semidefinite and of unit trace). The resulting density matrices are shown in
fig. 6.13. Table 6.3 summarises a few figures of merit calculated from the mle predictions.
Most commonly reported in the literature on remote entanglement generation is the
fidelity to the closest Bell state, or maximally entangled fraction; ℱ ≈ 96% is observed
across all four heralding detector click patterns here.

The average performance, ℱ = 96.0(1)% at a rate of 100 s−1, currently represents the
state of the art across matter qubit remote entanglement experiments (see §6.4). Thus, the
statistical confidence in the fidelity estimate merits particular attention.

6.3.1 Confidence intervals

Maximum-likelihood tomography is widely used in practice, as it is conceptually simple,
has a clear statistical interpretation, and performs well on the nearly-pure states that are
often of interest. Sampling noise, however, tends to be non-negligible in real-world ap-
plications – not least, one would not want to spend more laboratory time than necessary
gathering the data –, such that a point estimate alone is not very helpful: What one would
really like to obtain is some form of confidence region describing the range of values the
true quantities are likely to inhabit.

One commonly used approach to this is bootstrapping, that is, generating many artifi-
cial datasets with the same statistical properties as the experimental results and analysing
them the same way. The statistical uncertainty in some derived quantity of interest is then
estimated by recording its distribution over the artificial tomography results. This is sim-
ple to implement numerically and works in many different situations without requiring
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(a) 𝜌𝐴𝐵 for detector click pattern 0011, estimated
from a total of 43 182 clicks.

⟨00∣ ⟨10∣ ⟨01∣ ⟨11∣

∣11⟩

∣01⟩

∣10⟩

∣00⟩

0.047⋅
ei0.600π

0.044⋅
ei1.220π

0.001⋅
ei1.055π

0.465⋅
ei0.560π

0.012⋅
ei0.979π

0.008⋅
ei0.665π

0.5 0.25 0.1 0.01
+−

i

−i

(b) 𝜌𝐴𝐵 for detector click pattern 1100, estimated
from a total of 47 278 clicks.
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(c) 𝜌𝐴𝐵 for detector click pattern 0101, estimated
from a total of 43 524 clicks.
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(d) 𝜌𝐴𝐵 for detector click pattern 1010, estimated
from a total of 46 016 clicks.

Figure 6.13: Density matrices for the joint states 𝜌𝐴𝐵 of Alice’s and Bob’s ions following each of the four
heralding detector click patterns, as obtained by maximum-likelihood estimation for the data from ta-
ble 6.2, representing 180 000 total herald events across all the detector click patterns. See table 6.1 for nu-
merical figures of merit derived from this.
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extra theoretical work, but precise statements about the meaning of its results are hard to
make (at least if they are required to be useful).

Using the mle density matrix estimate for the calculation of derived quantities is a per-
ilous undertaking also for other reasons. For instance, mle can be shown not to be optimal
(in the sense of admissibility) for commonly used error metrics [FB18], and there is work
discussing bias in derived quantities [SGV17] and implausibility of its results [Blu10]. In
particular, the fact that the estimators are biased leads to bootstrapped error bars not nec-
essarily being a good indicator for the uncertainty in the state estimate, as discussed in
ref. [Blu12].

Alternative methods to obtain estimates from tomography data along with some mea-
sure for their uncertainty exist, such as various Bayesian approaches, but they are not with-
out their own challenges and shortcomings. At this point, the field has not adopted a sin-
gle solution as the “gold standard” yet. Thankfully, the two-qubit case is reasonably cheap
to tackle in terms of computational effort, such that we can easily implement and com-
pare various approaches directly, here taking the fully entangled fraction as the quantity
of interest. Concretely, we will compare two bootstrapping methods with a more princi-
pled approach to constructing error bars from likelihood-weighted densitymatrix samples
(which also has a Bayesian interpretation).

For bootstrapping, there are two main variants in the context of state tomography, of-
ten referred to as parametric and non-parametric bootstrapping. In the parametric case,
the mle density matrix estimate is used as the model, and further instances of the exper-
iment simulated using a multinomial outcome distribution according to the ideal Pauli-
product measurement projectors. The distribution of the quantities of interest across the
tomographic reconstructions for each of these synthetic experiments is then used to de-
rive e.g. an estimate for the standard error. For the non-parametric case, the synthetic
experiments are generated by directly resampling the experimental outcomes, that is, by
sampling from a multinomial distribution with probabilities given by the respective frac-
tions of observed outcomes in the experimental dataset

Lastly, I implement a more principled approach in the spirit of the confidence regions
proposed by Christandl and Renner [CR12]. The main idea here is that the likelihood
function can be used to define a probability distribution 𝜇 by

𝜇(𝜌) ≔ 1
𝑐
ℒ(𝜌; (𝑛𝑘)𝑘), (6.9)

where 𝑐 is a normalisation factor depending on the choice of projectors such that
∫𝜇(𝜌) d𝜌 = 1 for the Hilbert-Schmidt measure d𝜌 (with ∫ d𝜌 = 1). The reduced
distribution for a given derived figure of merit 𝐹 is then

𝜇𝐹(𝑓) = ∫ δ(𝐹(𝜌) − 𝑓) 𝜇(𝜌) d𝜌, (6.10)

which we can approximate numerically following ref. [FR16] by sampling density matrices
according to (6.9) using a Markov-chain Monte-Carlo algorithm (Metropolis–Hastings).
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(b) Estimate density for detector click pattern 1100.
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(c) Estimate density for detector click pattern 0101.
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(d) Estimate density for detector click pattern 1010.

Figure 6.14: Distribution of estimates for the fully entangled fractionℱ (fidelity to closest maximally en-
tangled state). Shown are histograms obtained by different methods for numerically estimating the figure-
of-merit distributions: parametric b. refers to parametric bootstrapping using outcomes simulated from
the mle density matrix estimate, resampled b. to non-parametric bootstrapping by directly sampling from
the observed outcomes with replacement, and Bayesian to integrating over likelihood-weighted samples
obtained using the Metropolis–Hastings algorithm, which coincides with the posterior distribution for a
Hilbert–Schmidt-uniform prior in a Bayesian picture.
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Like for bootstrapping, the quantities 𝐹(𝜌) are collected into a histogram. In a Bayesian
picture, 𝜇 coincides with the Bayesian posterior for a Hilbert–Schmidt-uniform prior, as
proposed e.g. in ref. [Blu10]. This numerical approximation of 𝜇𝐹(𝑓) can also be used to
construct confidence regions with precisely definedmeaning, although I don’t attempt this
here as they tend to be unhelpfully large [CR12; FR16].

Figure 6.14 shows the results of applying all the above schemes to the fully entangled
fraction (fidelity to the closest maximally entangled state). As before, the four herald pat-
terns are analysed separately. The parametric and simple resampling bootstrap approaches
give virtually identical results. As the data is decently sampled and there don’t seem to be
any gross irregularities, this isn’t surprising. The fidelity distribution obtained using the
Metropolis–Hastings samples is of approximately the same width, but is centred around
slightly lower values. Such a bias was also observed in ref. [FR16], presumably as the vol-
ume factor increases towards less pure states. For the final values of ℱ quoted, I chose to
report the mle point estimates together with the standard deviation of the estimate densi-
ties in accordance with the general practice in the field.

Densitymatrix rank. For all four of themaximum-likelihood estimates shown in fig. 6.13,
the smallest singular value (i.e. magnitude of the smallest eigenvalue) is < 2 × 10−3. The
tendency of mle to produce reduced-rank estimates in the face of sampling noise or non-
ideal data is well-documented [Blu10]; in many cases this can be understood as stemming
from an actual likelihood maximum outside the set of physical (positive) density matrices,
where the closest physical state is then rank-deficient. However, if the physical state is
indeed close to being rank-deficient, this is of interest for entanglement distillation, as the
corresponding type of error could then be amplifiedwith little consequence. In our remote
entanglement case this might be plausible, as neither 𝜎+ → 𝑉 polarisation mixing, dark-
to-bright readout errors (from imperfect mapping pulses or decay from the shelf level),
nor ion dephasing lead to any population in |11⟩⟨11|.

Figure 6.15 shows the results from sampling densitymatrices weighted by likelihood to
estimate the distribution from eq. (6.10) for their three smallest singular values (using the
same Metropolis–Hastings approach employed for the fidelity error estimates in fig. 6.14).
This likelihood-weighted (or uniform-Bayesian-prior) analysis lends some credibility to
the idea that a specialised distillation protocol that trades off a reduced input Bell pair
count against an amplification of the errors in one particular channel might indeed work
well to further increase the entangled state fidelity.
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(a) Estimate density for detector click pattern 0011.
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(b) Estimate density for detector click pattern 1100.

0.00 0.01 0.02 0.03 0.04
Singular values

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc
y

(c) Estimate density for detector click pattern 0101.
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(d) Estimate density for detector click pattern 1010.

Figure 6.15: Distribution of estimates for the three smallest singular values of the ion–ion state 𝜌𝐴𝐵.
Shown are histograms obtained from sampling density matrices distributed according to their likelihood
given the experimental tomography. Each bin is 1/3 ⋅ 10−3 in width; their sum is normalised to 1.
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6.4 Discussion

6.4.1 Error sources

As our recent focus was on enabling the use of the remote entanglement link as a building
block inmore complex experiments (such as that described in chapter 7), with consequent
demands on stability and automation, the construction and validation of amodel for the re-
maining imperfections has not been a high priority – at least not before severe degradation
of the vacuum in one of the nodes made further experiments impossible. The discussion
here must thus remain rather perfunctory in nature.

The observations in §6.1 qualitatively validate the considerations from chapter 4; the
correlations are considerably better than would be expected for collection with na 0.6 in
free space, and both the dependence of collection efficiencies and 𝜎+ → 𝐻 polarisation
mixing on the fibre position are as expected from theory. However, even with the fibre
well-aligned, an imbalance in the errors 𝑝𝐼=0|𝑃=𝑉 and 𝑝𝐼=1|𝑃=𝐻 remains. As configured
here, both polarisation mixing and errors in the 674 nm single-qubit gates (e.g. due to the
thermal state of motion of the ions) would only produce 𝑝𝐼=1|𝑃=𝐻, so an imbalance of this
sign is not implausible8. A likely explanation for residual polarisationmixing errors would
be non-uniform birefringence in the high-na portion of the optical system, for example
from stresses on the vacuum viewport.

This imbalance in errors in the {|0⟩ , |1⟩} and {|𝐻⟩ , |𝑉⟩} bases is also visible in the
ion–photon full tomography density matrices from §6.2. The reconstructed states further-
more suggest that there might be a slight additional loss in fidelity from an unidentified
dephasing process (beyond that explained by ion coherence times and photon detection
jitter, both of which are small). All in all, the ≈ 2% (each) of ion–photon entanglement
errors constitute the largest share of the 4% ion–ion infidelity9. The known imperfections
of the Bell-state analyser (see fig. 3.7) only contribute ≈ 3 × 10−3 to the ion–ion state error,
although it would be interesting to cross-validate this, e.g. by monitoring the number of
Hong–Ou–Mandel-forbidden coincidences. The framework described in chapter 4 is com-
prehensive and would readily support the matching of the experimental observed density
matrices to models for any of these imperfections; this remains for future work, however.
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Fidelity Rate Wavelength

Maryland (2007) 0.63(3) 0.002 s−1 369 nm ref. [Moe+07]
Maryland (2009) 0.87(2) 0.0015 s−1 369 nm ref. [Mau+09]
München (2011) 0.95(3) 0.0024 s−1 795 nm ref. [Let+11]
München (2012) 0.85(1) 30 s−1 795 nm ref. [Rit+12]
München (2012) 0.781 0.027 s−1 795 nm ref. [Hof+12]
Innsbruck (2013) 0.64(2) 0.23 s−1 493 nm ref. [Slo+13]
München (2013) 0.79(1) 10 s−1 780 nm ref. [Nöl+13]

Delft (2013) 0.69(5) 0.0017 s−1 637 nm ref. [Ber+13]
Delft (2014) 0.87 0.004 s−1 637 nm ref. [Pfa+14]

Maryland (2014) 0.78(3) 4.5 s−1 369 nm ref. [Huc+15]
Delft (2015) 0.92(3) 0.0003 s−1 637 nm ref. [Hen+15]
Zürich (2015) 0.55(4) 2300 s−1 950 nm ref. [Del+16]
Delft (2017) 0.55(1) 0.054 s−1 637 nm ref. [Kal+17]

Cambridge (2017) 0.62(2) 7300 s−1 968 nm ref. [Sto+17]
Delft (2018) 0.81(2) 6 s−1 637 nm ref. [Hum+18]

Oxford (2020) 0.940(5) 180 s−1 422 nm ref. [Ste+20]
Delft (2021) 0.816(4) 9 s−1 637 nm ref. [Pom+21]

Oxford (2021) 0.960(1) 100 s−1 422 nm ref. [Nad+22]
München (2021) 0.89(2) 0.012 s−1 780 nm ref. [Zha+22]
München (2022) 0.82(2) 0.072 s−1 1517 nm ref. [vLee+22]
Innsbruck (2022) 0.85(4) 0.052 s−1 854 nm ref. [Kru+23]

Table 6.4: Bell-state fidelity and rate for entanglement generated using an optical link between remote
matter qubits (see fig. 6.16).

6.4.2 Other remote entanglement experiments

There are several possible dimensions along which remote qubit entanglement experi-
ments can be evaluated. The most fundamental, and most widely reported, metrics are
the quality of the generated entanglement, most commonly expressed in terms of the fi-
delity of the produced state to the closest maximally entangled state, which coincides with
the fully entangled fraction ℱ, and the rate at which these entangled qubit pairs can be
produced10. A survey of previous demonstrations of entanglement between remote mat-

8Cursory experiments attempting to disentangle this were hampered by the fact that at the time, both
alignment and gate errors would drift at the sub-percent level.

9In fact, a calculation using the best observed ion–photon density matrices predicts a slightlyworse ion–
ion Bell state error, ℰ = 4.4(2)%, than the best measured data actually shows, ℰ = 4.0(1)%. Any attempt at
interpretation of this barely significant difference is at best tenuous as the ion–photon and ion–ion data were
not acquired contemporaneously and the timing of the experimental sequences differed slightly, but possible
explanations for such a discrepancy would include detector jitter or common-mode noise between the two
nodes such as on the phase of the 674 nm laser that would cancel in ion–ion experiments.

10Other quantities of interest are the ratio of coherence times available in the particular qubit system to
the time necessary to generate one Bell pair (which limits the size of the computations/multi-qubit entangled
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ter qubits mediated by an optical link along these two dimensions is shown in fig. 6.16,
with extra numerical information in table 6.4. At the time of writing, the ion–ion entan-
glement results presented here constitute the highest-fidelity optical remote entanglement
demonstration across all qubit platforms, and the highest generation entanglement rate
for fidelities larger than 65%.

In trapped ions, remote entanglement experiments were pioneered by the group of
C. Monroe at the University of Maryland11 [Moe+07]. Compared to their latest results
[Huc+15], which were obtained in 171Yb+, our results represent a 5.5× reduction in error
at a 22× increased rate. All these results (including ours) were obtained using blue/ultra-
violet spontaneous decay photons for nodes located in the same laboratory. Very recently,
results across 230m distance (520m fibre) were reported from the University of Innsbruck
[Kru+23], for which cavities were used to enhance coupling to the 854 nm 𝑃1/2 ↔ 𝐷3/2
transition in 40Ca+. Owing to limitations of the cavities, only much lower fidelities and
rates of 0.85(4) and 0.052 s−1 were achieved. Downconversion to wavelengths more suit-
able to long-distance fibre transmission has been demonstrated in a number of separate
experiments (see discussion in §8.1.2), but thus far not in an integrated two-node remote
entanglement experiment.

Using optically trapped rubidium atoms, two groups in Munich (G. Rempe, H. Wein-
furter) have demonstrated a wide variety of remote entanglement generation techniques,
both using free-space collection of emission as well as optical cavities. The strong cou-
pling between atoms and light achievable using cavities also enabled the demonstration of
non-demolition detection of photons [Nie+21], which could be of wider interest for quan-
tum networking applications. Recently, entanglement between two Rb atoms mediated by
photons down-converted to 1517 nmwas demonstrated [vLee+22], in the first such exper-
iment for two matter qubits. The rates and fidelities achieved in neutral atom experiments
have remained lower than demonstrated here [Rit+12; Zha+22].

Nitrogen-vacancy centres in diamond have also enjoyed popularity as a candidate
qubit platform for quantum networks, and have prominently been investigated at Delft
University of Technology (R. Hanson). While high fidelities have been reached (∼ 90%)
using two-photon herald methods, this was at extremely low rates (∼mHz) [Pfa+14;
Hen+15], as the small branching fraction of ≈ 3% for decays that do not also involve
vibronic bulk interactions (the “zero-phonon line”) limits the achievable collection effi-
ciencies [Dav74; Ruf+21]. Most recent work in nv centres has thus explored single-photon
heralding schemes, which require global optical phase stability across the network link.
Thus far, the fidelities achieved this way were limited to ≈ 80% (e.g. in ref. [Pom+21], a
demonstration of a three-node network, for which six cascaded optical phase stabilisation
loops were necessary).

states accessible in the system), and, for quantumcommunication applications, the physical distance between
the nodes.

11The group recently relocated to Duke University (Durham, NC, United States).
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In solid-state quantum dots, remote entanglement generation rates of several kilo-
hertz were demonstrated [Del+16; Sto+17], at present the fastest rates across all optical
remote entanglement experiments12. The short dephasing times and other technical fac-
tors have thus far limited state fidelities to barely above the classical limit of fifty percent,
however. An interesting technical facet of these quantum dot experiments is the use of
electro-optical modulators to modulate the necessary initialisation and excitation lasers
to achieve repetition rates in excess of 10MHz, which could potentially be of interest for
experiments in trapped ions as well.

In conclusion, informed by an in-depth theoretical analysis (see chapter 4), and by
careful engineering of the experimental implementation, we were able to significantly im-
prove on the state of the art in high-rate, high-fidelity remote entanglement generation.
Crucially, the performance routinely achieved in the current configuration of the experi-
ment is already sufficient to enable interactive exploration of the entanglement generation
process13, as well as to demonstrate rudimentary quantum networking applications in a
realistic setting. In the next chapter, we will turn our attention to just such an application –
device-independent quantum key distribution, which requires the production of millions
of Bell pairs at high fidelity, and thus also stable operation of the remote entanglement link
–, before finally discussing further potential improvements to rate and fidelity in chapter 8.

12Entanglement rates in excess of 10 kHz were achieved between superconducting qubits, but through
the use of microwave photons, requiring the use of waveguides cooled tomK temperatures.

13From an experimentalist’s perspective, a repetition rate of 100 s−1 for simple experiments requiring only
one Bell pair is already twice as fast as many sensitive experiments, often synchronised to the ac mains cycle,
would run.





7 Device-independent
quantum key distribution

We use the remote entanglement link described in the preceding chapters to implement
a long-sought-after form of quantum cryptography that approaches the ultimate limit on
security by avoiding any dependency on the detailed workings of the quantum devices in-
volved. This task is known as device-independent quantum key distribution, short diqkd.
Our experiment is the first successful realisation of such a protocol, demonstrating that
it is feasible for two parties connected only by a (quantum-) optical fibre link to obtain a
private encryption key in a device-independent fashion, even given the imperfections of
present-day technology. In doing this, we rely on both the high-fidelity, high-rate entan-
glement and the associated large detection-loophole-free Bell violation accessible in our
experiment, but also on significant improvements to the theoretical analysis and classi-
cal algorithms required for the parties to obtain a fully secure, identical key from the raw
experimental data.

This chapter is intended as a fairly self-contained introduction to entanglement-based
quantumkey distribution accessible to the experimental quantumphysicist, while also pro-
viding enough details on the practical implementation to substantiate the claim of a first
real-world demonstration. After a brief high-level introduction to quantum cryptography
and the role of entanglement (§7.1), we more formally consider the device-independent
setting, from its remaining assumptions to the precise notion of security (§7.2). A concrete
diqkd protocol is described; we discuss elements of its security analysis to illustrate the
challenging requirements imposed on experimental platforms (§7.3). The remainder of
the chapter focusses on the particular implementation, including enough detail on both
quantum and classical components for the results to be replicated on other remote entan-
glement platforms in the future (sections 7.4–7.6), before briefly discussing concurrent
and future work as well as the implications for real-world security (§7.7).

159
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BobAlice

Eve

classical network

quantum network

Figure 7.1: Cartoon illustration of the two-party encryption scenario. Two parties, Alice and Bob, wish
to privately exchange messages over a public classical network (e.g. the internet). However, an arbitrar-
ily powerful eavesdropper, Eve, has access to all information beyond the boundaries of Alice’s and Bob’s
secure sites, which are indicated by the boxes. If Alice and Bob each have access to one of a pair of quan-
tum devices connected via a (public) quantum channel, quantum key distribution (qkd) can achieve
information-theoretic security.

7.1 A conceptual introduction to entanglement-based
quantum cryptography

Perhaps the most fundamental scenario in cryptography is that of two-party secure
communication. Two distant parties – we will call them Alice and Bob, following the
time-honoured conventions of the field – wish to exchange information over a public
(untrusted) network connecting their locations. This ability to privately communicate
using shared network infrastructure is of fundamental importance in the modern infor-
mation age, which has fuelled considerable innovation in the age-old struggle between
“code makers” (cryptographers) and “code breakers” (cryptanalysts). Its culmination
are a number of classical key exchange protocols [DH76; RSA78; Mer78], which are in
ubiquitous use today to allow two remote parties to establish encryption keys for secret
communication, for example all across the internet.

These protocols, however, rely on unproven conjectures regarding the computational
hardness of certain problems, for instance, that any eavesdropper, which we shall refer to
as Eve, cannot feasibly factor a large number into its prime factors. If Eve’s computational
capabilities are unbounded, the only way to achieve security is for Alice and Bob to use a
pre-shared encryption key that is exactly as long as themessages, and only use that key once
[KL15]. In this case, the one-time pad technique, illustrated in fig. 7.2, achieves perfect
information-theoretical security, but the challenge of distributing the key material ahead
of time makes it impractical for many situations.

Nevertheless, the one-time-pad is enormously useful, as it allows the parties to separate
the message encryption in time from the key exchange. If Alice and Bob have the opportu-
nity to exchange a long key at some point, for example through physical proximity in the
real world (or, in a spy movie, an armed courier with a suitcase handcuffed to their wrist),
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message m
key k

ciphertext c

Encryption
0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0
1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1
1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1

⊕

⊕

ciphertext c
key k'

message m'

Decryption
1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1
1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1
0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0

Figure 7.2: One-time pad encryption for
information-theoretic security. To encrypt a mes-
sage𝒎, Alice computes the bitwise exclusive-or
𝒄 = 𝒎 ⊕ 𝒌 with a shared key 𝒌. For decryption,
the procedure is simply repeated,𝒎′ = 𝒄 ⊕ 𝒌′. If
Bob has access to the same key, 𝒌′ = 𝒌, he recovers
the message𝒎′ = 𝒎. However, to an adversary
not in possession of the key the ciphertext is com-
pletely random (and any arbitrary message𝒎′ of the
same length would be a valid decryption for the key
𝒌′ = 𝒄 ⊕ 𝒎′). Thus, the one-time pad is provably
secure.

basis 0

basis 1

basis 0

basis 1

bit 0 bit 1

Alice

Bob

Figure 7.3: “Regular” prepare-and-measure qkd
using polarisation encoding [BB84]. Alice encodes
each bit of the random key in a single photon which
she sends to Bob, choosing one of two polarisation
bases at random. Bob similarly chooses a random
measurement basis each time. Alice and Bob later
compare their basis choices and discard mismatched
rounds. Since Eve does not know the basis choices
ahead of time, any measurements to eavesdrop on
the transmitted photons would risk her altering their
state, which Alice and Bob can detect. As Alice relies
on her source emitting only a single photon each
time (and in the correct basis), this protocol cannot
offer any device-independent security. (Graphical
presentation inspired by that in ref. [Sto11].)

they can, potentially much later, use it to promptly exchange messages. In other words,
because the one-time pad is information-theoretically secure, a pre-shared key of length
𝑙 and an authenticated (but insecure) channel for 𝑙 bits can be used to construct a secure
channel for 𝑙 bits; this notion of construction can in fact be formalised in a mathematically
precise way [Mau11].

The one-time pad key can—and must—be completely independent of any of the con-
tents of later messages. This property enables what has become the best-known example
of quantum cryptography, that of quantum key distribution (qkd): Quantum mechanics
promises the ability for two parties to generate secret correlations without any third party
learning of the results. If a secret key has been established in such a qkd process, the
one-time pad then completes the link to quantum-secure encryption, i.e. an information-
theoretically secure cryptosystem for the encryption of messages, where no1 initial key is
required, but generated on-the-fly from shared quantum resources instead.

One intuitive way to implement qkd is based on the existence of non-commutingmea-
surements and the non-cloning property in quantum mechanics. The prototypical exam-
ple for this is the original proposal by Bennett and Brassard [BB84], the principle of which
is easily explained (see fig. 7.3): Alice sends single photons to Bob in one of two mutually
unbiased polarisation bases. As she chooses the basis at random each time, and Bob does

1In fact, a short initial key is required for authentication purposes, as discussed in §7.2.1. Amore precise
name for quantum key distribution would have perhaps been “quantum key expansion”.
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the same with his measurement basis, Eve cannot measure the photons herself without af-
fecting their polarisation state, leaving a statistical signature of her eavesdropping. Such
protocols, with some adaptions to better match available technology (e.g. in the form of
“decoy state” protocols that work with weak coherent laser pulses instead of single pho-
tons [LMC05]), have been widely studied and even deployed in commercially available
systems; see ref. [Pir+20] for a recent review. However, such prepare-and-measure pro-
tocols are in their security analysis inevitably based on device models that describe the
behaviour of the sources and detectors, and which need to be trusted in the security analy-
sis. An accurate characterisation of the devices on the quantum level, valid over time, can
be challenging to obtain, however, and any mismatch between the actual device behaviour
and the assumptions made at the time of the security analysis can leave a loophole for Eve
to gain information about the outcomes. A number of such attacks against qkd systems
have in fact been demonstrated in practice [Zha+08; Lyd+10; Ger+11; Wei+11; GSM20],
a discipline sometimes referred to as quantum hacking.

Curiously enough, it is possible to construct qkd protocols that do not require any
detailed knowledge about the behaviour of the quantum devices that they are executed
on. This, perhaps counter-intuitive, possibility of device-independent security builds on an-
other facet of quantum mechanics: that of non-locality in the form of entanglement. Such
protocols go back to an early proposal by A. Ekert [Eke91] suggesting the use of a Bell
inequality violation between the outputs of Alice’s and Bob’s devices to bound the infor-
mation available to any adversary. In the rest of this section, we will develop an intuitive
perspective on how the observation of a particular kind of correlations in a Bell test exper-
iment can conceptually lead to guarantees about the privacy of the measured outcomes,
before returning to a more formal discussion in §7.2.

7.1.1 Magic coins and free choice

The mechanism by which J. S. Bell’s eponymous inequality [Bel64] shows that quantum
mechanics is incompatible with local realist hidden-variable theories is relatively straight-
forward and has been discussed at length in the literature [Gen05], as is their role in the
recent experiments which finally demonstrated that Nature in fact does not behave in a
locally realist way [Giu+15; Hen+15; Sha+15]. To motivate the role of Bell inequalities in
the context of device-independence, however, it is instructive to consider a slightly differ-
ent line of argumentation (as e.g. done in ref. [ER14]), which initially does not even make
any references to quantum theory.

Suppose Alice and Bob each have a pair of special, “magic” coins, of which they are
allowed to choose one, and only one, to throw. Let 𝐴𝑖, 𝐵𝑖 ∈ {−1, 1} be the outcome (−1
heads, 1 tails) observed when choosing to throw the 𝑖-th coin (𝑖 ∈ {0, 1}). The coins are
magically linked such that, depending on which one of their pair each party chooses, their
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outcomes are always correlated in the following way:

𝐴0 = 𝐵0, 𝐴0 = 𝐵1, 𝐴1 = 𝐵0, 𝐴1 ≠ 𝐵1. (7.1)

Remarkably, assuming that Alice and Bob really can choose between the coins freely and
privately (without their choice leaking to a third party), these conditions alone already
imply that there can be no third coin𝐸 that replicates the outcomes of one of the other coins.
Consider, for instance, that a would-be eavesdropper Eve has a coin 𝐸 that, by whatever
other magical means, always produces the same outcomes as 𝐴0. If now Eve throws her
coin but Alice actually chooses to throw 𝐴1, and for the sake of the argument, both coins
come up as 1, then𝐴0 = 𝐸 = 𝐴1. But now, if Bob were to choose to throw 𝐵1, then eq. (7.1)
would result in the contradiction 𝐵1 ≠ 𝐵1. Thus, the presence of Eve’s copy 𝐸 would force
the choice of 𝐵0 onto Bob for logical consistency. Similar contradictions ensue for other
choices of coins and outcomes2. In other words, just the ability of Alice and Bob to choose
their coins freely is enough to ensure that Eve cannot learn the outcomes of their throws,
no matter how exactly the “magic” correlations actually come about.

While magic of this sort is unfortunately not real, quantum mechanics gets close: If we
define a sum of expectation values mirroring eq. (7.1),

𝑆 ≔ ⟨𝐴0𝐵0⟩ + ⟨𝐴0𝐵1⟩ + ⟨𝐴1𝐵0⟩ − ⟨𝐴1𝐵1⟩ , (7.2)

the perfectly correlated coins would be equivalent to 𝑆 = 4. The parameter 𝑆 is of course
the expectation value that appears in the Clauser–Horne–Shimony–Holt formulation of
a Bell inequality, |𝑆| ≤ 2, often called the chsh score [Cla+69], and we might hope that
we can derive some of the same privacy guarantees from an observation of suitably high
values of 𝑆. By choosing to implement the coins as a choice of two measurements on a
maximally entangled state |𝛷+⟩ = 1√2 (|↑↑⟩ + |↓↓⟩), taking

𝐴0 = 𝑍, 𝐴1 = 𝑋, 𝐵0 =
1
√2
(𝑍 + 𝑋), 𝐵1 =

1
√2
(𝑍 − 𝑋) (7.3)

yields 𝑆 = ⟨𝛷+|𝐴0𝐵0 + 𝐴0𝐵1 + 𝐴1𝐵0 − 𝐴1𝐵1|𝛷+⟩ = 2√2. This evidently violates the chsh
inequality, and is in fact the maximum achievable score in quantum mechanics, known as
Tsirelson’s bound3 [Cir80].

Before investigating whether there “is any magic left” in the quantum maximum, let
us mention an equivalent way of phrasing this in terms of a two-player game, the chsh
game. Two parties, who cannot communicate, are each provided with one input 𝑥 and 𝑦

2The conditions from eq. (7.1) nevertheless are not themselves contradictory, as without such an extra
coin 𝐸, Alice and Bob only get to choose one of their coins each; 𝐴0 and 𝐴1 or 𝐵0 and 𝐵1 are never both
“evaluated” simultaneously.

3The cyrillic name of the Russian–Israeli mathematician for which the 𝑆 ≤ 2√2 bound is named has
been transliterated in two different ways; earlier work such as ref. [Cir80] uses “Cirel’son”, while the author
later himself preferred “Tsirelson” in his English-language publications.
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Tsirelson’s bound

maximally
entangled state

PR box

Figure 7.4: Conceptual illustration of the space of correlations allowed by non-signalling (𝒩𝒮), quan-
tum (𝒬) and classical (realist local,ℒ) theories. The outer border corresponds to the “Popescu–Rohrlich
box” [PR94] which always wins the chsh game; the dot marks an extremal point in the space of quantum
correlations, realised by a measurement on a maximally entangled state. (This figure was adapted from
ref. [Bru+14], where the two coordinate axes are given a quantitative interpretation as the chsh scores for
two complementary Bell inequalities.)

randomly chosen from {0, 1} and asked to produce outputs 𝑎, 𝑏 ∈ {0, 1} aiming to ensure
that the relation

𝑎 ⊕ 𝑏 = 𝑥 ⋅ 𝑦 (7.4)

always holds (where ⊕ is modular addition inℤ/2ℤ). This game can always be won using
the magic coins from eq. (7.1), but the optimal quantum strategy is again to obtain 𝑎 and
𝑏 from a joint measurement 𝐴𝑥 ⊗ 𝐵𝑦 on the maximally entangled state |𝛷+⟩ (or, more
precisely, 12(𝐴𝑥 + 1) ⊗

1
2(𝐵𝑦 + 1) to convert the −1 eigenvalue to the 0 outcome). The

probability 𝜔 of winning this game is then given by

𝜔 = 𝑆 + 4
8
. (7.5)

7.1.2 Geometry of correlations

Even though a statistical test of the chsh score 𝑆 is at the heart of both “Bell test” exper-
iments to reject a realist local description of Nature and the statement about the secrecy
of outcomes that is of interest here, the role of the parameter is subtly different. This is
most easily illustrated by considering the space of correlations – in our case, expressed by
the conditional probabilities 𝑃(𝑎, 𝑏|𝑥, 𝑦) – allowed by different physical theories, as done
in fig. 7.4. The no-signalling condition 𝒩𝒮, forbidding the superluminal transfer of in-
formation, places a very general restriction on the possible correlations between separate
systems. Much more restrictive than that are those imposed by classical physics ℒ, that
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is the insistence on a realist local description, for which |𝑆| ≤ 2. The set of correlations
allowed by quantum theory, 𝒬, is larger than that of classical physics, but is still more
restricted than that of all non-signalling correlations.

Within quantum theory, correlations that are “maximally quantum” and saturate
Tsirelson’s bound |𝑆| ≤ 2√2 have an interesting property, that of monogamy: If two
systems share such maximal correlations, they cannot be at all correlated with any third
system [Bru+14]. In particular, this holds for any system that would be controlled by Eve,
so that we have located some residue of the above “magic” in the quantum case. This can
also be formulated in terms of the quantum states underlying the measurement results as
monogamy of entanglement [CKW00] (and generalises to non-locality in a wider sense
[Ton09]). Importantly for our case, if Alice and Bob observe a chsh score of almost 2√2,
then Eve can have almost no information on their outcomes; the property degrades in a
gradual way (see the later fig. 7.7).

In summary, in a Bell test experiment, observing a chsh score |𝑆| > 2 allows one to
conclude that correlations inNature are not confined toℒ. For diqkd, however, we assume
that Nature is in particular described by quantum theory, such that observing |𝑆| ≈ 2√2
allows Alice and Bob to conclude that their devices operate close to the boundary of 𝒬,
where, as described by the monogamy of entanglement, their outputs are hidden from
Eve’s prying eyes.

7.2 Device-independent security

To transform this theoretical insight about the nature of quantum correlations into a piece
of quantum technology, Alice and Bob in their secure sites each operate one of a pair of
quantum devices. The devices will internally make use of entanglement in some way, but
the “user interface” Alice and Bob have to these devices is strictly classical: as illustrated in
fig. 7.5, device-independent key distribution protocols proceed in rounds, where Alice and
Bob each time present the device with a classical input, and get back one of two classical
outputs. The expectation is that the inputs will affect the choice ofmeasurements on amax-
imally entangled state shared between the two devices in a way that maximises the chsh
score, but this does not need to be an assumption: if the outputs follow the desired distribu-
tion, then it is clear from quantum theory that they can only result from measurements on
a maximally entangled state, guaranteeing security from the monogamy of entanglement.

This concept of self-testing was first explicitly formalised in ref. [MY04], and remains
a useful tool for conceptualising these experiments (although we do not take their mathe-
matical perspective in the actual security analysis). Since Alice and Bob are ultimately not
interested in certifying that their devices produce a maximally entangled state, but wish
to obtain a shared, secure encryption key, a purely practical improvement is for them to
most of the time choose inputs that yield perfectly correlated outputs, and only allocate
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Figure 7.5: A high-level view of device-independent quantum key distribution. Alice and Bob each have a
box which promises to generate and measure a maximally entangled state. They proceed in rounds; each
time entanglement is available, they apply classical inputs𝑋𝑖 and 𝑌𝑖 to their respective box, and record
the corresponding classical outputs 𝐴𝑖 and 𝐵𝑖; no further assumptions about the internal workings of the
quantum devices are made in the security proof. Rather, by randomly alternating between measurement
settings realising a Bell test and settings which lead to highly correlated outputs, the output bit strings can
be certified to originate from appropriate measurements on a quantum state that is close to being maxi-
mally entangled, ensuring secrecy.

some of the rounds to Bell tests (indicated by the colours in fig. 7.5). This way, they can
generate keymaterial muchmore efficiently than through the imperfect chsh correlations
while, crucially, still reaching statistical confidence that their devices operated on a max-
imally entangled state for all the rounds, as they choose between round types at random
every time. The vital ingredient that allows Alice and Bob to be confident that such a pro-
cedure, and indeed also the Bell test approach itself, is secure – that is, the “root of trust”
for diqkd in general – is the fact that they make these choices based on trusted random
number generators.

Continuing the intellectual lineage of Ekert’s original proposal for entanglement-based
QKD [Eke91], a number of concrete scenarios and protocols along these lines have been
discussed in recent years, see e.g. refs. [Ací+07; VV14; ARV19] and references therein. The
primary challenge lies in devising protocols and security proofs that do not make more
assumptions than necessary, yet are able to guarantee security even with real-world, noisy
quantum devices. Before turning to a description of the concrete protocol that we use to
bridge the gap between assumptions and security in our demonstration, we first inspect
these two, starting point and goal, in more explicit detail.
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7.2.1 Assumptions

In our security analysis, we want to confine ourselves to the minimal set of assumptions
usually employed in a diqkd setting, as e.g. discussed in ref. [Pir+09]:

(i) Any attacker is restricted to quantum physics.
(ii) Alice’s and Bob’s laboratories are isolated from the outside world, that is, no un-

wanted information can leak to the environment,
(iii) they each have trusted classical computers for storage/post-processing,
(iv) they share an authenticated (not necessarily secure) classical channel, and
(v) they each have a trusted random number generator.

Conventional qkd adds an additional assumption [Sca+09; LCT14]:

(vi) Alice’s and Bob’s quantum devices perform the expected operations, that is, they
know an exact description of the quantum states and measurements.

Assumption (vi) could also be called that of trusted device models, and e.g. also includes the
dimensionality of the involved quantum states [AGM06]. As discussed in the introduction
to this chapter, this is not easy to achieve in practice, and it is precisely this (and only this)
assumption that diqkd avoids. So-called measurement-device-independent protocols sit
somewhere in the middle; they allow untrusted measurements and thus, for instance, tol-
erate attacks on single-photon detectors used, but still require well-characterised sources.

Most physicists would be content with assumption (i), quantum theory being as well-
tested as it is, and with this assumption only concerning the structure of reality in general,
not a description of the particular quantum devices used. Nevertheless, it is interesting
to note that there are potential ways of relaxing this assumption even further, e.g. by only
requiring a more general no-signalling condition as discussed in [BHK05].

Assumptions (ii) and (iii) are intrinsic to the setting of cryptography. While appro-
priate isolation (including all possible side channels such as the timing of external com-
munication) can be challenging to ensure in practice, even just the definitions of concepts
such as “private keys” and “secrecy” implicitly assume that private information can be kept
privately.

Assumption (iv) is not always explicitly stated, as it is fundamentally necessary for se-
curity in an elementary way: if Alice and Bob do not have a way of identifying each other,
a trivial man-in-the-middle attack is possible, where Eve just honestly executes the diqkd
protocol with either of them, pretending to be the respective other party. Fortunately,
information-theoretically secure authentication can easily be achieved even through clas-
sical means: while a short secret shared by Alice and Bob ahead of time is required (and
consumed by the protocol), its length is only required to grow logarithmically in the size
of the messages to secure [KL15]. In the diqkd protocol described later in this chapter, we
explicitly include classical signatures for all the relevant messages in the diqkd protocol
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(and budget for the corresponding secret key consumption)4, just implicitly assuming the
existence of a public (classical) channel.

Assumption (v) is critical, as the free choice of classical inputs underpins all the device-
independent security claims. It is universally accepted that such a truly random choice can
be implemented by a self-contained module that internally exploits some physical process
that is to the best of our knowledge random, e.g. by measuring the photon counting statis-
tics of a weak beam at a beamsplitter. To avoid the dependence on a particular device im-
plementation, one could employ device-independent randomness extraction techniques
[KA20] to increase trust in the random sources, or even cleverly re-use other randomness
unknown to Eve [Agu+16]; this does, however, not change the fact that “free choice” is
ultimately necessary for all techniques based on Bell inequalities.

7.2.2 Security definitions: soundness and completeness

A diqkd protocol necessarily has two outcomes: either the protocol succeeds and Alice
and Bob have generated a private key, or it aborts, for instance because Eve has interfered
with the execution. To formalise the desired outcome, we denote the successful completion
of the protocol as𝛺, andwrite𝜌|𝛺 for the (normalised) quantum state of the entire scenario,
comprisingAlice’s andBob’s private subsystems𝐴 and𝐵 (their nodes), aswell as those parts
available to a potential adversary 𝐸.

Any useful security definition for a diqkd protocol is going to be a probabilistic state-
ment. Thismight be unavoidable due to the probabilistic nature of quantummeasurements
or noise in the experimental realisation, but more fundamentally, is a direct consequence
of the statistical nature of the self-testing approach: The number of Bell test rounds in an
execution of the protocol places an upper bound of the amount of deviation from an hon-
est implementation we can hope to detect. We thus introduce the notions of correctness,
secrecy, soundness and completeness each “up to a small deviation” given by a parameter
𝜖 ∈ [0, 1], following e.g. ref. [ARV19]. Sensible protocols would allow these parameters
to be chosen to be arbitrarily small, although at increased cost e.g. in terms of minimum
number of rounds required.

If the protocol succeeds, the private keys 𝑲𝑨 and 𝑲𝑩 ∈ {0, 1}𝑙 that Alice and Bob end
up with should agree. We formalise this in the notion of 𝜖corr-correctness, for which we
require

𝑃(𝛺 ∧ 𝑲𝑨 ≠ 𝑲𝑩) ≤ 𝜖corr. (7.6)

This shared key should be completely unknown to the adversary. To capture this, we
define a protocol to be 𝜖sec-secret if

𝑃(𝛺) 1
2
‖(𝜌|𝛺)𝑲𝑨𝐸 − 𝕌𝑲𝑨 ⊗ (𝜌|𝛺)𝐸‖1 ≤ 𝜖sec, (7.7)

4This is the reason why we do not explicitly mention authentication when introducing the other require-
ments in the journal manuscript, ref. [Nad+22].
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that is, the joint state of adversary and secret key (𝜌|𝛺)𝑲𝑨𝐸 is very close (in trace distance)
to the state where𝑲𝑨 just factors out as maximally mixed, i.e. a uniform distribution𝕌𝑲𝑨
over all possible strings. 𝜖sec-secrecy necessarily implies that the produced key is (almost)
uniformly random.

The desired success criterion is then the logical conjunction of the two: Alice and Bob
share the same, random key, that is unknown to Eve. We call a protocol that fulfils both
criteria 𝜖snd-sound, requiring

𝜖corr + 𝜖sec ≤ 𝜖snd. (7.8)

Going only by the above criteria, one protocol that would be 𝜖snd-sound to an arbitrary
degree and for arbitrary devices would be the trivial protocol that always aborts – perfectly
secure by never generating a key. We hence define our last desired property: A protocol is
𝜖com-complete if it admits a honest implementation which aborts with probability less than
𝜖com, that is

𝑃(𝛺) ≥ 1 − 𝜖com. (7.9)

To meet these conditions to a meaningful extent when implemented using real-world,
noisy devices will require some amount of error correction for correctness, and the
ability to tolerate quite substantially non-ideal chsh scores while preserving secrecy.
This is achieved by combining the “quantum” data acquisition phase with classical post-
processing methods amenable to an information-theoretic treatment. Such a combined
protocol is presented in the next section.

7.3 The concrete protocol

Our concrete diqkd protocol follows the same overall structure as in a number of previous
proposals (see e.g. refs. [Pir+09; Arn+18]). The complete structure, including the classical
post-processing steps, is illustrated in fig. 7.6.

Before execution starts, all the relevant protocol parameters, 𝑛, 𝛾,𝑚 and 𝜔thr, are fixed,
which we shall define shortly. Alice and Bob also need to share a short private key 𝑲𝟎
for authentication purposes, as we do not make the prior assumption of an authenticated
channel (see §7.2.1). Its exact length depends on the implementation details of the classical
post-processing pipeline.

The data acquisition step proceeds in one block, consisting of 𝑛 rounds, that is, 𝑛 uses
of the quantum “boxes”. For each round, Bob randomly decides whether to perform a Bell
test (with probability given by the test round fraction 𝛾 ∈ (0, 1)) or a key generation round
(with probability 1 − 𝛾). After the quantum devices indicate that entanglement has been
established, and have been disconnected from the environment, Bob communicates the
choice of round type in form of the test round bit 𝑇𝑖 to Alice. This avoids later “sifting”,
where some rounds without useful correlations due to a mismatch in measurement bases
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measurement results as Ai and Bi.

Bob computes Ti = χ(Yi ≠ 2) and sends Ti to Alice.
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Alice sends X to Bob.

Alice computes syndrome M of A (length m) and sends it to Bob.
Bob reconstructs a guess Ã of A.

Alice computes an encrypted hash GEC of A using K0 and sends it to Bob.
Bob computes the hash G~ EC of Ã. If G~ EC ≠ GEC, the protocol aborts.

Alice and Bob apply a strong randomness extractor with a seed from K0

to A and Ã to obtain KA and KB.

Bob computes an encrypted tag GB for T using K0 and an unconditionally
secure message authentication code and sends it to Alice.

Bob computes a tag GF for F using K0 and sends it to Alice.
Alice veri�es the tag; if it does not match or F = 0, the protocol aborts.

Bob sends F to Alice.

Alice veri�es the tag and sends C = 1 to Bob if it matches the earlier
communication, C = 0 if it does not.

Alice similarly computes a tag GA for (X, GEC, C) and sends it to Bob.
Bob de�nes F = 1 if the tag matches and C = 1, F = 0 otherwise. 

Alice removes the used bits from K0 and de�nes K′A by appending KA.
Bob does the same to get K′B.

If Bob, considering only rounds i with Ti = 1, �nds that
∑i χ(Ai ⨁ Bi ≠ Xi  · Yi) > n   (1 − ωthr), the protocol aborts.

Figure 7.6: Structure of our diqkd protocol. Before execution starts, the number of rounds 𝑛, the proba-
bility 𝛾 of each round being chosen to be Bell test round, an acceptance threshold 𝜔thr for the chsh win-
ning probability, and the length𝑚 of the error correction syndrome are fixed. An initial key𝑲𝟎, mostly
reusable, is required to seed the privacy amplification and authentication algorithms, and as a one-time
pad to encrypt a few short messages (indicated using a key symbol). Arrows indicate the classical messages
exchanged between the parties, bold letters strings consisting of multiple bits, 𝜒 the indicator function
with 𝜒(𝑃) = 1 if 𝑃 is true and 0 otherwise. In a honest implementation using noisy quantum devices, the
Bell violation verification step is the last point of failure: if the classical communication between the nodes
is not tampered with, the later steps deterministically succeed.
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would be removed. For Bell test rounds, Alice and Bob each choose their inputs 𝑋𝑖 and
𝑌𝑖 from {0, 1} uniformly at random, for key generation rounds, they apply the fixed inputs
(𝑋𝑖, 𝑌𝑖) = (0, 2). In either case, they keep track of their outputs in bit strings𝑨 = (𝐴𝑖)𝑖 and
𝑩 = (𝐵𝑖)𝑖 ∈ {0, 1}𝑛.

The protocol then enters the purely classical post-processing or reconciliation phase,
where Alice and Bob need to verify the amount of Bell violation, and extract an identical
key. To achieve both those steps in the one-way reconciliation scheme employed here,
one node (here: Bob) needs to know the outcomes of the other node (here: Alice). To
achieve this with a minimum of information leakage, Alice sends a short error correction
syndrome string𝑴 of length 𝑚 ∈ ℕ (along with her basis choices 𝑿), which allows Bob
to reconstruct a guess at her outcomes �̃�. To verify whether this was successful, Alice
also sends an encrypted hash of 𝑨 to Bob; if the hashes match, then 𝑨 = �̃� with very
high probability, if not, the security may be compromised and the protocol aborts. Now
having 𝑿𝒀𝑨𝑩, Bob can verify whether the chsh winning probability observed exceeds a
pre-agreed threshold 𝜔thr ∈ (0, 1) by simply tallying up the number of chsh losses, that is,
the test rounds where 𝐴𝑖 ⊕ 𝐵𝑖 ≠ 𝑋𝑖 ⋅ 𝑌𝑖. If the number of losses exceeds the threshold, the
protocol again aborts.

At this point, the parties know that – assuming their classical communication was not
tampered with – their quantum devices behaved close enough to an ideal, honest imple-
mentation and they can locally process their strings 𝑨 and �̃� into shorter strings 𝑲𝑨 and
𝑲𝑩 using a randomness extractor to obtain identical final keys with a guaranteed, arbi-
trarily low bound on the information available to any adversary. The amount of private
entropy in the outcomes, that is, the length of the secret key that can be obtained in this
privacy amplification process for a given soundness error 𝜖snd, only depends on the ini-
tially fixed parameters 𝑛, 𝛾, 𝜔thr and 𝑚. This fixed structure makes it straightforward to
formulate the statistical bounds in a sound way, and makes it relatively easy to disallow
many adaptive strategies that the attacker might otherwise have.

Alice and Bob are then left with the task to ensure that their classical communication
was not tampered with, which would mean that any of their earlier conclusions about se-
crecy and correctnessmight be faulty. To this end, each side simply computes an encrypted
hash of all the previously sent communication and sends it to the other party to verify
against their local records.

Finally, there is one wrinkle regarding the establishment of success: In the particular
arrangement shown in fig. 7.6, Bob already knows at the end of the authentication step
that his key is secure, and can thus be used in further communication, e.g. as a one-time
pad. Alice, however, has no way of knowing whether the check of her encrypted signature
actually succeeded on Bob’s side, so Bob sends one last authenticated message to Alice
to inform her whether the protocol aborted or not, at which point the qkd procedure is
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complete5, and both parties can be confident that the generated key is secure to use in other
cryptographic applications.

7.3.1 Outline of the security proof

To prove that a particular instantiation of this protocol is secure, that is, that for a certain
choice of parameters𝑛, 𝛾,𝜔thr and𝑚 an 𝜖snd-sound key of length 𝑙 can be extracted, is a non-
trivial, highly technical affair. The interested reader might want to refer to the supplement
to ref. [Nad+22] for the detailed analysis of the scenario in the later demonstration exper-
iment, which has considerable overlap with recent, purely theoretical treatments [ARV19;
Tan+20]. Here, we just outline enough of the details to discuss the consequences for the
requirements on an experimental realisation.

The first of the two requirements for soundness, 𝜖corr-correctness per (7.6), is easy to
achieve for arbitrary 𝜖corr > 0 by an appropriate choice of hash function in the error cor-
rection verification step: if the hashes for 𝑨 and �̃� match, then so with high probability
do the strings themselves, and thus the keys 𝑲𝑨 and 𝑲𝑩 derived from them via privacy
amplification. One such choice (universal hashing) is discussed in §7.4.3.

The crux of the issue lies in the second component of soundness, 𝜖sec-secrecy. Here,
the independence of the key 𝑲𝑨 from any side-information available to the eavesdropper
demanded by eq. (7.7) is guaranteed by the randomness extractor in the privacy ampli-
fication stage. For a suitable choice of extractor, this can be achieved for extracted key
lengths 𝑙 that are given (up to a logarithmic correction) by𝐻𝜖𝑠min(𝑨|𝐸), that is, the amount
of conditional entropy6 left in Alice’s outputs considering all the information 𝐸 available
to Eve.

This “side-information” 𝐸 consists of all the classical messages exchanged by Alice and
Bob during the protocol, plus any quantum state 𝐸 that Eve herself might hold. In terms
of the symbols from fig. 7.6, we can thus write (substituting the more information-rich 𝒀
for the round-type messages 𝑻)

𝐸 = 𝑿𝒀𝑴𝑮𝑬𝑪𝑮𝑩 𝐶𝑮𝑨 𝐹𝑮𝐹⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕𝑴′

𝐸.

In this information-theoretic setting, we assume that each bit of the classical messages
leaks the maximum possible entropy of one bit of information about 𝑨 to Eve, and can

5Although trivial, this final “key activation” procedure was, to my knowledge, not explicitly discussed
in earlier work. The need to address what is otherwise an imbalance between the state of Alice and Bob
emerged only during the practical implementation of the protocol, and because of the choice not to just
assume an authenticated channel. By structuring the protocol such that Bob is always the one to decide to
abort, he can simply encode the overall protocol success into the final key activationmessage. This requires an
extra authenticatedmessage, but leads to a pleasantly symmetric, composable postcondition for the protocol,
where both parties can go on to use the generated key material.

6For technical reasons – to accurately describe the worst-case distinguishability of states in the finite-
size, “one-shot” regime – the entropy measure that appears here is not the Shannon/von-Neumann entropy
𝐻, but the 𝜖𝑠-smooth min-entropy𝐻𝜖𝑠min. The basic intuition for the quantities remains the same.
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Figure 7.7: Amount of secret randomness 𝜂(𝑆) generated in a single round of the chsh game, as quantified
by the conditional entropy𝐻(𝐴|𝑋𝑌𝐸). 𝜂(𝑆) can be seen as the infimum across all device realisations com-
patible with an observed chsh score 𝑆, describing the von Neumann entropy that can be guaranteed in the
worst case. Some secret entropy is generated as soon as 𝑆 exceeds the classical bound, 𝑆 > 2; the amount
gradually increases until the outcomes are known to be perfectly secret at 𝑆 = 2√2.

thus estimate
𝐻𝜖𝑠min(𝑨|𝐸) ≥ 𝐻

𝜖𝑠
min(𝑨|𝑿𝒀𝐸) − |𝑴′|,

where |𝑴′| is the length of the exchanged messages, excluding those describing the clas-
sical inputs. The length of the authentication-related messages (𝑮𝑬𝑪, 𝑮𝑩, 𝐶, 𝑮𝑨, 𝐹, 𝑮𝑭) is
some constant 𝑘 that depends on the hash function chosen (in our demonstration, we
use 64-bit hashes, so 𝑘 = 258). The length of the error correction syndrome𝑴 required
depends on the efficiency of the chosen error-correction code, but will always be lower-
bounded by the information-theoretic uncertainty that Bob has about Alice’s outcomes.
Considering, for the purposes of expositional clarity, an ideal error correction code and
the asymptotic limit, we can thus bound the length of the extractable key as

𝑙 ≈ 𝐻(𝑨|𝑿𝒀𝐸) − 𝐻(𝑨|𝑿𝒀𝑩) − 𝑘. (7.10)

In other words, the key length emerges as a kind of balance of entropies, the difference
between the uncertainty that Eve has about Alice’s outcomes and the uncertainty that Bob
has about the same (and the fixed protocol overhead).

To obtain a rigorous bound for the first term,𝐻𝜖𝑠min(𝑨|𝑿𝒀𝐸), is then the main focus of
the security analysis, and, since wewant tomakeminimal assumptions on the behaviour of
the system, technically quite challenging. Herein lies a big division between various diqkd
protocols and security proofs. One hugely simplifying assumption is to assume that the
entire data acquisition phase of 𝑛 rounds can be described as 𝑛 independent copies of a sin-
gle round, where both device and eavesdropper behaviour (with associated quantum side
information 𝐸𝑖) can be described as independent and identically distributed (i.i.d.). In this
case, also referred to as that of collective attacks, the entropy can, up to a√𝑛 statistical cor-
rection, easily be bounded by 𝑛 𝐻(𝐴𝑖|𝑋𝑖𝑌𝑖𝐸𝑖), that is, just 𝑛 times the entropy content of a
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single round that is compatible with the observed device behaviour. If Alice’s and Bob’s de-
vices behave according to an expected chsh score of 𝑆, the worst-case entropy compatible
with this is given in terms of the binary entropy function ℎ (eq. (2.3)) as [Pir+09]

𝜂(𝑆) = 1 − ℎ(
1 + √( 𝑆2)

2 − 1

2
) , (7.11)

which is illustrated in fig. 7.7.
Unfortunately, such a restriction to i.i.d. behaviour is not particularly well-motivated

in the generic device-independent case. As A. Ekert comments [Eke18]:

At the time, even the most fervent advocates of the device-independent cryp-
tography had to admit that the result, as neat as it was, had no direct bearing
on the device-independent scenario described above. Since Eve can manufac-
ture the devices as she sees fit, she can make successive outputs dependent on
what happened in all the previous runs.

A recent theoretical breakthrough in the analysis of the fully device-independent case, in
which Eve is allowed to act arbitrarily across rounds, including through quantum entangle-
ment – sometimes called coherent attacks –, is the so-called entropy accumulation theorem
[ARV19; DFR20]. Roughly speaking, it allows us to “rescue” most of the above i.i.d. intu-
ition over to the fully quantum case, giving the same bound

𝐻𝜖𝑠min(𝑨|𝑿𝒀𝐸) ≥ 𝑛 𝜂(𝑆) − 𝑐√𝑛 (7.12)

up to a (more complicated) correction factor 𝑐. In the later demonstration, we incorpo-
rate recent improvements [Liu+22] to the entropy accumulation theorem which increase
aspects of its statistical performance.

7.3.2 Experimental feasibility

From the proof sketch in the previous section, the completeness condition was notably
absent. It would be easy to prove by just inserting one particular model for a sufficiently
well-behaved quantum device. At the same time, such a feasibility proof with a simple
yes/no answer would not be very interesting in practice, as the question relevant to the
practitioner is a different one: Is there a practical device for which a positive key length can
be obtained?

To investigate this, we model the device non-idealities in an abstract, symmetric fash-
ion by two parameters, the observed chsh score 𝑆 and the quantum bit error rate, short
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qber, 𝑄 (that is, the probability for a “bit error” causing the output of a key generation
round to be anti-correlated instead of correlated). Explicitly, we define 𝑃(𝐴𝑖, 𝐵𝑖|𝑋𝑖, 𝑌𝑖) via

𝑃(𝑎, 𝑏|0, 0) ≔ 𝑃(𝑎, 𝑏|0, 1) ≔ 𝑃(𝑎, 𝑏|1, 0) ≔ 𝑃(𝑎, 1 − 𝑏|1, 1) ≔ 1 + (−1)
𝑎⊕𝑏𝑆/4
4

,

𝑃(𝑎, 𝑏|0, 2) ≔ 1 − 𝑎 ⊕ 𝑏 + (−1)
1−𝑎⊕𝑏𝑄

2
.

(7.13)

For this symmetric distribution of correlations in the key generation rounds, the asymp-
totic cost of error correction per round is simply ℎ(𝑄).

Looking at the difference of entropy terms in eq. (7.10), it is clear that to obtain a key
of positive length, we need an experimental platform with a large Bell violation 𝑆 and low
quantum bit error rate 𝑄. In practice, these will probably be somewhat correlated; for in-
stance, if the devices are described by optimal measurements on a maximally entangled
state affected by depolarising noise, then 𝑄 = (1 − 𝑆2√2)/2. We nevertheless keep the pa-
rameters separate, as e.g. 𝑆 will in many cases be more strongly affected by decoherence
than 𝑄.

An overview of the feasibility of obtaining a positive key length in the finite-size regime
for various parameters is shown in fig. 7.8 (left). Most previous detection-loophole-free
Bell test experiments between two remote nodes lie in the region where it is outright im-
possible to obtain a key. In particular, the limited efficiency of single-photon detectors
and entangled pair sources is a big challenge for purely photonic platforms, as one cannot
correct for a limited detector efficiency in the device-independent context and efficient
heralding schemes are not typically possible for them [Mur+19; Nie+21].

In the regime where the asymptotic key length (for 𝑛 → ∞) is in principle positive,
finite-size statistics are another significant challenge: with the security proof being statis-
tical in nature, an infeasibly large number of rounds might be required to obtain any key
that can be certified as secret at all. This is illustrated in fig. 7.8 (right), which shows that
for device parameters that are technically feasible at present, at least on the order of a mil-
lion rounds are required to cross the “cliff” where the key rate 𝑙/𝑛 drops precipitously and
reaches zero.

Thus, the system needs to be capable of distributing entanglement not only of high
quality, but also with a rate high enough to keep the data acquisition durations in the realm
of feasibility. The entanglement rate was a major challenge for past experiments using
matter qubits; for instance, the 𝑆 and 𝑄 link parameters achieved in ref. [Pir+10] might
lie in the positive key rate region, but accumulating the 𝑛 ∼ 108 rounds required to obtain
a key would take longer than a thousand years at the reported rate. Despite a significant
amount of theoretical progress to tighten the security analysis [BHK05; Ací+07; VV14;
Arn+18; Ho+20; Sch+21b; Sek+21], a practical realisation has thus far remained out of
reach.
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Figure 7.8: Finite-size behaviour of our diqkd protocol for various quantum link performance mod-
els (𝜖snd = 10−10 throughout). Left: Requirements (in terms of 𝑆 and 𝑄) to obtain a positive-length
key from a given number of rounds 𝑛. In the bottom-right red region, obtaining a key is impossible
even in the asymptotic limit. As this ultimate bound is approached, the number of rounds required in-
creases drastically due to finite-size effects; the shaded bands illustrate the decade boundaries up to which
𝑛 = 106,… , 1010 rounds are sufficient. This is an adaption of a similar figure from a recent review for our
improved finite-statistics analysis; the markers show a number of previous detection-loophole-free Bell
tests compiled by its authors [Mur+19]. For many experiments the achieved data rates would be infeasibly
low in the diqkd context, as intimated by the large standard errors on the inferred 𝑆/𝑄 parameters. High-
lighted in white are three recent results, including the one presented here (top left). Right: Quantitative
behaviour of the key length 𝑙 for a number of depolarising noise scenarios (where 𝑆 = 2√2 (2𝑄 − 1), corre-
sponding to the dashed diagonal in the left plot). To generate a key, 𝑛 ≈ 3 × 105 rounds are required even
in the noiseless case, which quickly increases for higher error rates. (Numerical calculations provided by
Jean-Daniel Bancal. To fix𝑚 and 𝜔thr for a given 𝑛, a target completeness error 𝜖com < 10−2 was assumed
throughout, the length 𝑙 of the resulting key then optimised numerically by varying 𝛾 and a number of
parameters internal to the detailed proof [Nad+22].)

As discussed in chapter 6, our two-node ion-trap quantum network provides both a
high fidelity and high rate of entanglement generation. As to be expected, the high Bell-
state fidelity has pleasant consequences also for the 𝑆 and 𝑄 performance metrics, which
we shall see in the next section.

7.4 Experimental implementation

We implement the protocol just discussed on our two-node ion-trap quantum network.
In this section, we will discuss some implementation details and performance metrics for
both the data acquisition step on the quantum link, as well as the state-of-the-art classi-
cal post-processing pipeline, both of which are instrumental in successfully obtaining a
positive-length key.
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Figure 7.9: High-level sketch of the experimental apparatus viewed through the lens of a diqkd experi-
ment. The regions corresponding to Alice’s and Bob’s secure nodes are indicated by the shaded areas, their
connections, including to the central heralding station, are shown explicitly. Shown are the acousto-optical
modulators (aoms) for node-local switching of the laser beams which are derived from a common set
of sources, in particular also for the 674 nm qubit manipulation laser, where agile radio-frequency (RF)
sources are programmed on the fly from the fpga-based real-time control systems to choose the mea-
surement bases. The digital-to-analogue converters (dacs) set the trap electrode voltages and are used to
disconnect the photonic link by changing the ion position.

As our aim is to prove the feasibility of distributing a key with full, device-independent
security using real-world devices, we opt to demonstrate all the steps as shown in fig. 7.6,
and in a realistic setting: the classical experiment control systems and post-processing
steps run on physically separate nodes which only communicate with each other as indi-
cated by the protocol, and the private data never leaves the nodes – in particular, we do not
manually “peek” at data at any point during data acquisition to choose suitable protocol
parameters, or the like.

To align an arbitrary choice made regarding the assignment of roles in the diqkd pro-
tocol with another arbitrary choice regarding the heralding logic in the real-time control
system, the system names “Alice” and “Bob” have been swapped throughout this chapter
compared to our internal naming in the laboratory and the rest of this thesis. This is a
completely incidental choice; both the underlying problem as well as the hardware are in
principle symmetric.
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Figure 7.10: Flow chart of the real-time logic during the diqkd data acquisition phase of the experimen-
tal sequence (left Bob, right Alice; separated by the dashed line). Execution starts on both systems with
private random bits𝑋𝑖 and 𝑌𝑖. After a period of cooling, the state machines synchronise using an acknowl-
edged trigger pulse. Subsequently, the attempt cycle is repeated until either a successful herald is received
from the external heralding station, or a set attempt duration limit has elapsed after which the ions are re-
cooled. When a successful herald is received, both systems disconnect from the link by shuttling the ion
away from the focus of the high-na lens. Only then, Bob announces the round type 𝑇𝑖 = 𝜒(𝑌𝑖 ≠ 2) to
Alice and executes the corresponding local analysis. Alice receives 𝑇𝑖 and follows suit. Both parties store
the outcome of their measurement, 𝐵𝑖 and 𝐴𝑖, locally. After scrambling their qubit state, both parties re-
connect the link, ready to start the process again for the next round. (Adapted from a diagram created by
P. Drmota for the journal manuscript [Nad+22].)

7.4.1 Implementing the DIQKD boxes

The two ion-trap nodes in our laboratory are already separated into two different parts,
as discussed in chapter 3, with the exception of the shared set of laser sources, which is
illustrated in fig. 7.9. The latter does not compromise the device-independent security, as
we will discuss in §7.6.4, so we can directly use the apparatus for the diqkd demonstration.
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Figure 7.11: Detailed timing of the experimental pulse sequence (not to scale). The ions are Doppler-
cooled prior to the entanglement attempt loop, during which tightly timed state preparation and picosec-
ond excitation pulses create single photons entangled with the ion state. If two coincident photons are
detected at the heralding station, which indicates the successful creation of a remote entangled state, the
loop terminates and the nodes proceed to the rest of the sequence. The first 674 nm laser pulse is always
a |𝑆1/2, 𝑚𝐽 = 1/2⟩ → |𝐷5/2, 𝑚𝐽 = −3/2⟩ π pulse to map the state into the optical qubit; only the second
depends on the detector click pattern observed at the herald station and the selected measurement basis.
The bottom trace shows the ion position along the trap axis, which is shifted to disconnect the link during
the entire measurement process.

The data acquisition portion of the protocol proceeds in much the same way as the re-
mote entanglement tomography experiment discussed in §6.3, only that the basis choice
for each measurement is now dictated by a stream of node-local private randomness, and
that the nodes additionally shuttle the ions away from the focus of the high-na imaging sys-
tem to prevent leakage of information outside the node during measurement. For the sake
of concreteness, the heralding and data acquisition logic for the diqkd case is shown in
fig. 7.10, which includes the communication of the round type bit 𝑇𝑖, which Bob transmits
to Alice in real-time via a shared ttl data line connecting the fpgas.

The detailed timing of the pulse sequence is shown in fig. 7.11. After a herald event,
each node first maps the entanglement from the Zeeman-split 𝑆1/2 level onto the less
magnetically-sensitive 674 nm qubit |𝑆1/2, 𝑚𝐽 = −1/2⟩ ↔ |𝐷5/2, 𝑚𝐽 = −3/2⟩ by means of
a 𝜋 pulse on the |𝑆1/2, 𝑚𝐽 = 1/2⟩ → |𝐷5/2, 𝑚𝐽 = −3/2⟩ transition. After this, the nodes
apply a step to the dc electrode voltages to shift the ions ≈ 3 µm along the trap axis in
order to disconnect the optical link, which is discussed in more detail in the context of the
isolation assumption in §7.6.2.

After a delay of ∼ 30 µs, which allows the electrode voltages (and hence ion position) to
settle, Alice and Bob choose the measurement basis according to their respective classical
inputs 𝑋𝑖 or 𝑌𝑖 via a second 674 nm laser pulse. The pulses corresponding to the settings
𝑋𝑖 ∈ {0, 1} for Alice and 𝑌𝑖 ∈ {0, 1, 2} for Bob are chosen such that the results𝐴𝑖, 𝐵𝑖 ∈ {0, 1}
from the subsequent measurements fulfil the protocol requirements in the honest case,
where the quantum link is not perturbed by an adversary.

In particular, for the case (𝑋𝑖, 𝑌𝑖) = (0, 2), the key generation rounds, the outputs
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should be maximally correlated, that is, the quantum bit error rate 𝑄 = 𝑃(𝐴𝑖 ≠ 𝐵𝑖|𝑋𝑖 =
0, 𝑌𝑖 = 2) should be minimal. As shown in chapter 4, the post-herald state for Alice’s and
Bob’s qubits is close to

|𝜓𝑘⟩ =
1
√2
(|01⟩ + ei𝜑𝑘 |10⟩) , (7.14)

where the phases 𝜑𝑘 between the components depend on the heralding detector click pat-
terns 𝑘 ∈ {0, 1, 2, 3}. If we really had this, maximally entangled, state, there would be an
infinite number of measurement basis pairs for which the outcomes are perfectly corre-
lated. In the actual implementation, however, we have reason to believe that the corre-
lations should be maximal in the computational basis. As long as the heralding station
wave-plates are set such that the polarising beamsplitter axes are aligned with the 𝜋 and 𝜎
decay channels, a coincident detection of two photons of opposite polarisation will always
leave the ions in some sort of state in span{|01⟩ , |10⟩} (in the absence of any polarisation
mixing effects), regardless of any dephasing that might affect the ion qubits. Furthermore,
measurement in a different basis would require further single-qubit gates, which will in-
troduce a further (small, but non-zero) error.

As the ion state is natively anti-correlated, we choose to just classically invert Bob’s
outcomes throughout, such that a bright measurement corresponds to 𝐵𝑖 = 1, a dark mea-
surement to 𝐵𝑖 = 0. We can thus just implement 𝑋𝑖 = 0 and 𝑌𝑖 = 2 as measurements
in the computational basis without further manipulation of the qubit; in practice, we ap-
ply an additional 674 nm 𝜋 pulse to shelve any population that might have been left over
in |𝑆1/2, 𝑚𝐽 = 1/2⟩ to the additional dark state |𝐷5/2, 𝑚𝐽 = 3/2⟩ (effectively squaring the
error from any mapping pulse imperfections).

What remains is to choose settings for 𝑋𝑖 = 1, 𝑌𝑖 = 0 and 𝑌𝑖 = 1 that maximise the
chsh score, that is, the winning probability 𝑃(𝐴𝑖 ⊕ 𝐵𝑖 = 𝑋𝑖 ⋅ 𝑌𝑖 | 𝑋𝑖, 𝑌𝑖 ∈ {0, 1}). As our
states are almostmaximally entangled, we simply choose the idealmeasurements that were
discussed to saturate Tsirelson’s bound in §7.1.1: For𝑋𝑖 = 1, Alice applies a𝜋/2 pulse along
the 𝑥 axis, 𝑅𝑥𝑦(𝜋/2, 0), and hence measures along the 𝑦 axis. Bob instead applies one of
two 𝜋/4 pulses with opposite phase, 𝑅𝑥𝑦(∓𝜋/4, 𝛼𝑘). Evaluating this choice of projectors on
the ideal state (7.14), we obtain

𝑆 = √2(1 + cos(𝛼𝑘 − 𝜑𝑘)), (7.15)

which assumes the maximum 𝑆 = 2√2 if the measurement pulse phase 𝛼𝑘 is chosen to
match the state phase 𝜑𝑘 for the respective heralding pattern. For the case 𝜑𝑘 = 0, this
corresponds to Alice’s and Bob’s measuring in the same plane on their Bloch spheres.

The experimentally observed chsh score for a number of choices for Bob’s phase pa-
rameter 𝛼 is shown in fig. 7.12, showing the sinusoidal dependence expected for a state
of the form (7.14). This signal could be used to empirically optimise the basis choice, al-
though in practice, we just use the optimum predicted from high-resolution ion–ion state
tomography data recorded during automated nightly calibration runs.
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Figure 7.12: Observed Bell inequality violation as a function of measurement basis phase offset between
Alice and Bob, for each of the four different two-photon detector coincidence patterns that herald the cre-
ation of remote entanglement. For each of the 21 choices of phase offset 𝛼, 5000 shots were taken, with
heralds divided roughly equally between the four possible patterns; the error bars give the 68% Clopper–
Pearson confidence intervals for the binomial distribution of won chsh games at each point. The lines
show a sinusoidal fit with amplitude and phase offset floated, to guide the eye. (The horizontal misalign-
ment in sampling grids between the four patterns is because a compensating phase offset had already been
applied during data acquisition.)

A digression: “optimised” measurement angles. One possible way of cross-checking the
heuristic conclusion of measuring in the computational basis being optimal would be to
inspect the density matrices produced from ion–ion state tomography with sufficient reso-
lution. Applied to the tomography data presented in §6.3, this approach however produced
a somewhat unexpected result.

Performing a numerical optimisation of both Alice’s and Bob’s local measurement
axis on the Bloch sphere to maximise correlations for each of the four heralding detector
click patterns predicts quite substantial improvements in qber, from 2.1(2)%, 1.8(2)%,
1.5(2)% and 1.6(2)% along the 𝑧 axes (in the computational basis), to 1.9(3)%, 1.0(3)%,
0.8(3)% and 1.1(3)%, respectively. As illustrated in fig. 7.13, these optima occur for quite
substantially tilted measurement axes, around 20° with regard to the 𝑧 axis. If this could
be confirmed in the experiment, the optimisation procedure could be extended to include
the other measurement settings to maximise the chsh score as well.

However, we were not able to observe this improvement in correlations when applying
the requisite extra pulses to implement the tilted measurement bases in the experiment.
The reason for this is unclear. As can be seen from the bootstrapped confidence intervals
on the above qbers, this did not appear to be purely a statistical artefact from the tomogra-
phy reconstruction. The extra 674 nm laser pulses to rotate the state into the desired basis
will introduce some extra error, but for a typical randomised benchmarking error per Clif-
ford group element of < 1 × 10−3, this should be small, and should furthermore affect the
tomography experiment as well. Furthermore, it is not clear where a choice of preferred an-
gle in the 𝑥 − 𝑦-plane would emerge from. The tomography data used here was acquired
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Figure 7.13: Optimal correlations between Alice’s and Bob’s outcomes as predicted from ion–ion state
tomography data (§6.3) for each of the four detector click patterns. Each point in the plot corresponds to
one choice of Alice’s measurement axis; she projects onto |𝜓(𝜃𝐴, 𝜙𝐴)⟩ = cos 𝜃𝐴2 |0⟩ + sin

𝜃𝐴
2 e
i𝜙𝐴 |1⟩ and its

complement. The colour and contour lines indicate the best qber achievable when then optimising over
Bob’s measurement angles; the colour scale is the same across the plots and ranges from 𝑄 = 0.81% to 𝑄 =
3.77%. Crosses mark the optima, where qbers of 1.9(3)%, 1.0(3)%, 0.8(3)% and 1.1(3)% respectively,
are expected for the four patterns (left to right, top to bottom: apd0 ∧ apd1, apd1 ∧ apd2, apd1 ∧ apd3,
apd2 ∧ apd3).
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𝑋𝑖
𝑌𝑖 0 1 2

0 ( 0.415(1) 0.0688(5)0.0961(6) 0.420(1) ) (
0.439(1) 0.0805(6)
0.0735(5) 0.4068(10)) (

0.5017(5) 0.00339(6)
0.0110(1) 0.4839(5) )

1 (0.3928(10) 0.0916(6)0.0851(6) 0.431(1) ) (
0.0820(6) 0.437(1)
0.3970(10) 0.0841(6)) —

Table 7.1: Empirical probabilities to observe classical outcome (𝐴𝑖, 𝐵𝑖) for measurements settings (𝑋𝑖,
𝑌𝑖). Matrix rows index Alice’s outcomes, columns that of Bob. The probabilities are estimated from the
1 920 000 total characterisation rounds also shown in fig. 7.15 and fig. 7.14, with the multinomial standard
errors given in parentheses. Bob’s classical outcomes were inverted (such that 1 corresponds to finding
the ion in the 𝑆1/2 manifold after shelving), giving maximum correlations for the key generation settings
𝑋 = 0, 𝑌 = 2, and maximising the probability that 𝐴𝑖 ⊕ 𝐵𝑖 = 𝑋𝑖 ⋅ 𝑌𝑖 in Bell test rounds.

with an over-complete set of measurement settings corresponding to {𝑍,𝑋, 𝑌, −𝑋, −𝑌},
which should prevent gate and readout errors from introducing such a bias.

At the time of writing, this discrepancy has not been resolved yet; one possible mecha-
nism would be a low-level drift in birefringence in the single-photon paths, which would
require a more systematic investigation to track down. For diqkd, the qber when just
measuring in the computational basis turned out to be sufficient for our demonstration.
However, care should be taken when using the tomographic data for other estimates sensi-
tive to the exact level correlations along a particular axis, such as possibly for entanglement
distillation.

7.4.2 Link performance

With this implementation of the two diqkd “black box” primitives (classical input → clas-
sical output) in hand, we first evaluate the performance of the remote entanglement link,
both to later be able to choose appropriate protocol parameters for the diqkd demonstra-
tion experiment, but also to document its performance, as none of that information is
revealed by the actual protocol (beyond the pass/fail information on Bell test verification
and error correction). For this purpose, we run the data acquisition portion of the proto-
col exactly as we would for the demonstration experiment, but with approximately equal
amounts of Bell test and key generation rounds (𝛾 ≈ 12) to gather statistics on both round
types.

Themost expansive data runwas taken on the sameweekend as the final diqkd demon-
stration, and comprises 𝑛 = 1 920 000 total rounds. After completion, the data from each
node is centrally combined and interactively analysed (in contrast to the actual diqkd
run!). The raw results are shown in fig. 7.14. As expected for a reasonably well-behaved
experiment (without, for example, undetected periods of complete equipment failures),
the outcomes visually look fairly uniformly distributed, without any obvious aggregations
of errors or the like.
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Key generation round, mismatch

CHSH game loss

Figure 7.14: Round-by-round outcomes for the diqkd link characterisation run. Each square shows the
round type (𝛾 ≈ 1/2) and outcome for one of 1 920 000 rounds in the dataset, arranged row by row from
left to right and top to bottom as indicated by the arrow. The experimental sequence is the same as for the
actual diqkd demonstration, but only here, the classical outputs are collected from the node pcs after-
wards to create the visualisation.
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Figure 7.15: A separate characterisation run of 1 920 000 total Bell pairs shows stable link performance.
Inputs and outputs from both nodes were collected to compute a moving average for the chsh score 𝑆 and
the quantum bit error rate 𝑄 (window length: 100 000 rounds; test round fraction: 𝛾 = 1/2). The shaded
bands indicate 95% confidence intervals from binomial statistics in each window. The rightmost panel
shows the acquisition timestamp for each Bell pair during the 8.5 h experiment duration. The vertical
steps, where time passed without heralds, correspond to ion loss and recalibration events..
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Figure 7.16: Histogram of the number of excitation attempts necessary until a two-photon herald event
was observed during acquisition of the link performance characterisation data. Data from 1 920 000 total
heralds is sorted into 200 bins; the solid line shows the exponential distribution corresponding to a Pois-
son process with success probability 1/6214 = 1.61 × 10−4. The effective attempt rate after including the
amortised cost of re-cooling for 250 µs every 1ms is 800 kHz, yielding a raw entanglement rate of 129 s−1.

A more easily interpreted summary of the data is shown in fig. 7.15, where the chsh
score and quantum bit error rate were computed in a moving window, and can be seen to
be approximately constant across the entire experiment duration. The full description of
the “black boxes” in terms of the empirical probabilities to observe certain outputs for a
given pair of inputs, averaged over all the data, is shown in table 7.1.

Figure 7.15 also shows the time at which each Bell pair was generated, relative to the
start of the data acquisition process. Overall, the data acquisition rate is fairly constant,
and the “raw” data acquisition rate of 129 s−1 (see fig. 7.16) actually exceeds the 100 s−1
reported in chapter 6 (which was accidentally limited by a short attempt duration between
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𝑃𝑇𝑖=1(𝐴𝑖, 𝐵𝑖) = (
0.4210 0.0807
0.0847 0.4136) 𝑃𝑇𝑖=0(𝐴𝑖, 𝐵𝑖) = (

0.5017 0.0034
0.0110 0.4839)

Table 7.2: Channel statistics assumed for the Bell test rounds (left) and key generating rounds (right) for
error correction; these probabilities define the decoder priors. The matrices give the expected correlations
between each bit in Alice’s and Bob’s strings 𝑨 = (𝐴𝑖)𝑖, 𝑩 = (𝐵𝑖)𝑖 (after flipping Bob’s result for the𝑋𝑖 =
𝑌𝑖 = 1 Bell test case), with rows corresponding to Alice’s outcomes and columns to Bob’s.

interruptions for recooling). The average rate across the entire duration of the experiment
is significantly lower, however, at 63 s−1. The biggest limitation was that the ion lifetime
in Alice had fallen to ∼ 5min due to a vacuum leak, which limited the achievable duty
cycle due to the need to frequently re-load the trap, and thus the overall rate across long
times7. These periods of the nodes waiting for Alice’s trap to reload an ion, along with
other periodic recalibration events (e.g. of the single photon fibre alignment), are visible
in fig. 7.15 as vertical steps in the acquisition time curve.

7.4.3 Classical post-processing

The implementation details of the classical post-processing pipeline matter greatly for the
feasibility of the experiment, as the amount of information revealed by an uneconomic
implementation during reconciliation could eclipse the amount of private entropy certified
from the given Bell inequality violation, possibly leading to an overall negative key rate.
This point, the “frugality” of the used algorithms, thus received significant attention by our
theory collaborators. Here, we only discuss a few salient points, in particular as they relate
to the link performance, and consequently, the parameter choicesmade for the experiment.

Error correction. One challenge in a practical implementation of diqkd is in the error
correction process, as it is imperative to keep the overhead as low as possible, as it directly
reduces the key rate. To that end, many previous theoretical analyses [ARV19; Mur+19;
Tan+20] assumed codes that can only be decoded by effectively inverting a hash func-
tion, which is computationally infeasible. In our work, we use a spatially coupled low-
density parity-check (SC-LDPC) code to achieve performance close to the theoretical limit
– LDPC codes are known to be (Shannon-)capacity-approaching, and SC-LDPC codes ad-
mit efficient decoders that converge to the maximum-likelihood decoding threshold of
the underlying LDPC code. The code was designed and implemented by K. Ivanov, and is
described in more detail in his doctoral thesis [Iva22, ch. 5].

For decoding, we implement a belief propagation decoder based on the standard
sum-product algorithm. This is a “soft-decision decoder” that iteratively approximates the

7This severe duty cycle limitation was the reason why we opted not to optimise the system efficiency at
the time, even though we could have presumably reproduced or exceeded the 182 s−1 rate we reported in
ref. [Ste+20] without much difficulty.
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maximum-likelihood decoding through a series of updates for the likelihood distribution
of each bit. This allows us to trivially incorporate the information about the different
statistics in Bell test and key generation rounds into the prior distributions assumed for
each bit, and treat the entire output strings in one go, which turns out to be advantageous
for the overall entropy cost of reconciliation. For this, we assume the distributions shown
in table 7.2, obtained by averaging across the various Bell test inputs from table 7.1.
The decoder is implemented in C++, and includes a simple stopping criterion, where
the iterative scheme is terminated if the (hard-decoded) guess at the output does not
change between successive rounds. For the 𝑛 = 1.5 × 106 rounds in the actual diqkd
demonstration, this criterion was reached in ≈ 4min.

The construction used includes the possibility to “prune” some of the parity checks to
fine-tune the length of the syndrome,𝑚. To pick a syndrome length that is high enough to
almost guarantee successful decoding, yet not unnecessarilywasteful in the entropy budget,
wemodel the correlations in the experiment according to eq. (7.13) and performnumerical
experiments for various numbers of rounds 𝑛. Based on this, we decide to set

𝑚 = (𝛾 ℎ(𝜔) + (1 − 𝛾) ℎ(𝑄)) 𝑛 + 50 √𝑛 (where 𝜔 = (𝑆 + 4)/8) (7.16)

in the later experiments, where the extra overhead on top of the asymptotic entropy cost,
expressed by the numerically determined pre-factor to the √𝑛 term, ensures successful
decoding in > 99% of simulations.

Privacy amplification using a strong extractor. In the privacy amplification step, we use
a randomness extractor to obtain a short key from the (error-corrected) long strings of raw
measurement outcomes. An extractor is a function that takes a “weakly” random string
𝑿 together with a uniformly random, short seed 𝑺, producing a shorter, but uniformly
random output. Crucially, if the seed 𝑺 is not known to Eve, the output appears entirely
uncorrelated to any partial knowledge she might have about Alice’s and Bob’s outcomes
that are used as the input, thus producing an (almost) perfectly secure key.

We choose an extractor based on Trevisian’s construction [Tre01] with a block weak
design, which has been shown to be quantum-proof [De+12], and furthermore is a “strong”
extractor: without complete knowledge of the inputs, the seed 𝑺 appears uncorrelated to
the output, enabling it to be re-used. The information-theoretical treatment is discussed
in detail in supplement S9B to ref. [Nad+22].

The extractor was implemented by N. Sangouard, based on an open-source implemen-
tation by W. Maurer [Mau14]. The performance is sufficient such as not to limit the post-
processing pipeline; to extract 95 884 bits from 1.5×106 raw input required 21 s on the node
pcs. For this, an initial key of 1 201 886 bits is necessary, but is entirely reusable between
rounds due to Trevisian’s construction being a strong extractor (see table 7.4).
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Message authentication through universal hashing. To generate short signatures of the
classical communication in the protocol, as well as to verify the correctness of the error
correction output (which are both bit strings with length ∼ 𝑛, the number of rounds), an
obvious choice is the use of hash functions: mathematical “one-way” functions that pro-
duce a short output from a potentially much longer input, in a fashion where the function
is hard to invert. Simple hash functions such as SHA family of standards published by
NIST are in widespread use in classical computing, but on their own are insufficient for
information-theoretic security, as with the exact knowledge of the algorithm, it would in
theory be possible for an attacker to find colliding inputs to spoof a message (if thought to
be computationally infeasible in practice).

We thus employ universal hashing, which builds on a whole family ℋ of hash func-
tions 𝑓𝑝 ∈ ℋ, parametrised by some seed parameter 𝑝. Colloquially, the desired uni-
versality property means that if we pick a hash function from the family at random, the
possibility for two distinct inputs 𝑿 ≠ 𝒀 to collide, that is, to produce identical outputs
𝑓𝑝(𝑿) = 𝑓𝑝(𝒀), is very low (ideally close to 2−𝑙). Formal definitions for this and some
related properties, as required for the security proof, are recapitulated in supplement S9A
to ref. [Nad+22].

Practically, thismeans that if Alice andBob share a private seed𝑝 ahead of time to select
a function from the family, Eve cannot generate the correct tags for any messages she were
to alter. In our case, we use the VHASH universal hash family to generate authentication
tags of 64 bit length, achieving a collision probability of 2−61 ≈ 4 × 10−19 [DK07]. For
this, the seed 𝑝 needs to be 1280 bits long. Chiefly to enable Alice and Bob to re-use this
seed across the entire protocol, we then encrypt the output with a fresh one-time pad each
time it is used. This procedure was implemented by J.-D. Bancal based on the reference
implementation of the VHASH family [Kro07], and is available as UVMAC [Ban21]; the
contribution to the post-processing time is minimal.

This cost of 64 bits of private key for each authentication tag is the only actual con-
sumption of (non-reusable) private randomness (see table 7.3), marked in fig. 7.6 with
a key symbol. As discussed in §7.2.1, some consumption of a short pre-shared key for
information-theoretically-secure authentication cannot be completely avoided.

7.5 Distribution of a key

What is left for a full demonstration of diqkd according to the protocol from fig. 7.6 is
to choose the parameters 𝑛, 𝛾, 𝜔thr and 𝑚, to initialise the required pre-shared key 𝑲𝟎,
and finally to execute the steps on the two-node network. For this first demonstration,
our aim was to obtain a key with full device-independent security (including a suitably
low security parameter 𝜖snd), but without any particular focus on the key rate or other
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performance metrics, as long as the length of the freshly generated key would exceed the
number of pre-shared key consumed for authentication.

Previous numerical investigation of the detailed entropy calculations in the full security
proof indicated that, based on some preliminary link performance characterisation data,
𝑛 ≳ 1 × 106 rounds should comfortably result in a non-zero key length. The choice of test
round fraction 𝛾 is a trade-off between the number of rounds allocated to Bell tests and
the tightness of the resulting bounds on the adversary’s knowledge, and for this range of
parameters was shown to result in an optimal key rate for 𝛾 ≈ 5% (see e.g. Fig. S15 and
S16 in the supplement to ref. [Nad+22]).

The final choice of parameters for the results presented in ref. [Nad+22] was made
based on some preliminary link characterisation data. At this point, the large dataset from
fig. 7.15 was not available yet, and the entropy calculations had not been finalised. We
somewhat arbitrarily chose 𝑛 = 1.5 × 106 (expecting a manageable experiment duration
of ∼ 7 h), and a test round fraction of 𝛾 = 13/256 ≈ 5.1% (with the rational power-of-two
fraction to trivially avoid any biases in the random number generation, see §7.6.5). From
the characterisation data, we decided on a conservative bound on the system performance,
expecting a Bell score of 𝑆 > 𝑆min ≔ 2.64 or a winning probability 𝜔min ≔ (𝑆min + 4)/8 =
0.83. Note, however, that 𝜔thr really enters the protocol as an upper bound 𝑛 𝛾 (1 − 𝜔thr)
on the allowable number of chsh game losses observed across the finite number of test
rounds. Both the number of test rounds (we expect 𝑛 × 𝛾 ≈ 76171) and the number
of failures among those result from probabilistic processes. In the honest implementation,
each round is independent and results in a failed Bell test with probability 𝜆 ≔ 𝛾 (1−𝜔min).
To guarantee a low possibility of spurious failures due to statistical fluctuations, we further
“derate” the maximum number of accepted failures by 𝑘 = 3 standard deviations from the
expected value, and accordingly choose 𝜔thr as

𝜆thr ≔
1
𝑛
(𝑛 𝜆 + 𝑘√𝑛𝜆(1 − 𝜆)) , 𝜔thr ≔ 1 −

𝜆thr
𝛾
≈ 0.825 538. (7.17)

For choosing the length of the error correction syndrome, we similarly decided to esti-
mate the link performance with the bound𝑄 < 𝑄max ≔ 1.8%, and according to the model
from eq. (7.16), chose 𝑚 = 296 517 to ensure a low chance of spurious error correction
failures (≤ 0.1%) for the honest implementation. As the subsequently acquired long char-
acterisation dataset (fig. 7.15) shows that the link performance at the time of data taking
was described by a typical chsh score 𝑆 = 2.677(6) and bit error rate 𝑄 = 1.44(2)%, these
assumption were indeed very conservative, and the protocol is expected to succeed with
significantly better probability than 99% (such that failures probably are not any more
likely than random failures of the laboratory equipment).

The protocol is now executed on the two separate node control computers. A set of
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Figure 7.17: Finite-size key rates achievable for a soundness error of 𝜖snd = 10−10. The circular marker on
the main curve corresponds to the parameters for the main diqkd demonstration, where we assumed a
link performance of 𝑆min = 2.64, 𝑄max = 1.8%, and chose 𝑛 = 1.5 × 106, 𝛾 = 13/256, 𝜔thr ≈ 0.825 538 and
𝑚 = 296 517, resulting in a key of length 𝑙 = 95 884. This is a rate of 𝑟 = 𝑙/𝑛 ≈ 6.4%, which reaches 42%
at 𝑛 = 1 × 1010 rounds. The two alternate curves illustrate its sensitivity to link parameters. The choices
were made to correspond to measurements on a depolarised state with the same 𝑆 and 𝑄 values as 𝑆min and
𝑄max, respectively, illustrating the impact of the better correlations in the computational basis observed in
the experiment. (Calculations supplied by Jean-Daniel Bancal.)
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Figure 7.18: Once Alice and Bob have obtained a secret key through diqkd, they can use it as a one-time
pad for provably secure communication. To illustrate this in the experiment, Alice transmits to Bob an
encrypted picture of John S. Bell (original photo: CERN). To encrypt the 309 pixel × 309 pixel black-and-
white picture, 95 481 bits of the generated key are used, and an additional 64 bits to encrypt an authentica-
tion tag for the encrypted message to guarantee integrity. The protocol generated 95 884 bits, of which 256
additional bits are required to replenish the consumed private key (see table 7.3) to be able to execute the
diqkd protocol again, leaving 82 bits of additional unused key. This demonstration was executed at the
very end of the project, and is the first time any of the secret information was used or inspected.



7.5 distribution of a key 191

Privacy amplification
Certified fresh entropy 95 884 bits

One-time pads
error correction −64 bits

auth. Bob to Alice −64 bits
auth. Alice to Bob −64 bits

key activation −64 bits

Overall key length gain 95 628 bits

Table 7.3: Entropy balance sheet for the diqkd
demonstration experiment. Based on the chosen
parameters 𝑛, 𝛾, 𝜔thr and𝑚, if the protocol succeeds,
we can extract 95 884 bits of uniformly random,
private key with 𝜖snd = 10−10. In the process, the
protocol consumes 256 bits from the initial key𝑲𝟎
for authentication, leading to an overall increase of
|𝑲𝟏| − |𝑲𝟎| = 95 628 bits.

Universal hashing seed 1280 bits
Trevisan’s extractor seed 1 201 886 bits

Total reusable secrets 1 203 166 bits

Table 7.4: Reusable private randomness required to
be shared between Alice and Bob for the protocol.
As we use a strong extractor for privacy amplifica-
tion, and all the authentication tags are encrypted
using a one-time pad, no information leaks to the
adversary. Hence, this key, while significantly longer
than the amount of entropy produced, can be reused
entirely between rounds.

simple Python scripts drive the data acquisition8, and connect the various post-processing
steps, as discussed in the previous section. The outcome strings, along with other private
data, neither leave the respective node pcs, nor are they manually inspected; the public
messages required by the protocol according to fig. 7.6 are exchanged over the Ethernet
network9.

We acquire data over 7.9 h of wall-clock time, interrupted for 4.4 h due to an unex-
pected laser failure10. As required for security, a heralding event during protocol execution
always resulted in a bit added to the final𝑨 and 𝑩 outcome strings; no post-selection took
place. Choosing a soundness error bound of 𝜖snd = 10−10, the detailed security analysis
(see supplements S10 and S11 to ref. [Nad+22], particularly eq. (73)) yielded an extractable
key length of 95 884 bits, equivalent to a key rate of 𝑙/𝑛 ≈ 6.4% as illustrated in fig. 7.17.
The classical part of the protocol completed successfully over a total duration of 5min, in-
dicating that Alice and Bob share a random key that is, with very high probability, private
and identical. As the amount of new key material greatly exceeds the 256 bits of private
randomness consumed during the protocol (see table 7.3 and table 7.4), Alice and Bob
can extend their private keys by 95 884 − 256 = 95 628 bits. Thus, this marks the first
demonstration of fully device-independent quantum key distribution.

8The high-level implementation of the post-processing pipeline was developed in collaboration with
Jean-Daniel Bancal.

9For simplicity, this was implemented using the scp file copy utility, which happens to be based on the
encrypted SSH (Secure Shell) protocol. Of course, this encryption layer is irrelevant here; a simple plain-text
socket connection could have been employed instead.

10More precisely, this was a sporadic rf dds failure that caused no 674 nm power to be available at one of
the nodes, and caused execution to halt after it was detected by the closed-loop power stabilisation system.
As this is in the part of the system that is “self-tested” via the observed chsh score, this is not a detriment
for the security of the resulting key – only the experimentalist’s pride, as other, similarly long experiments
successfully completed without any such issues.
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We made no attempts to characterise the long-term stability of the protocol with these
parameters, but once again stress that they were chosen quite conservatively – had the
aim been to optimise the key rate, rather than to just demonstrate the feasibility of diqkd
on real-world hardware, more aggressive parameters could have been chosen (and before
all, a larger number of rounds 𝑛). On the same weekend that the characterisation data
and diqkd results presented here were obtained, two more protocol runs were taken, one
with 𝑛 = 1 × 106, 𝑆min = 2.64, 𝑄max = 2%, and another with 𝑛 = 2 × 106, 𝑆min =
2.65, 𝑄max = 1.7%. The error correction verification step – the last chance for failure in
a scenario where the classical communication is not tampered with – succeeded for both
these runs. Although we opted to use the 𝑛 = 1.5 × 106 run to present as our main result,
keys could have been extracted from those runs as well.

7.6 Plausibility of assumptions

While our comprehensive security analysis shows that the resulting key is secret against
the most general quantum attacks (and with a security parameter small enough to be be-
yond controversy), this high level of security critically rests on the diqkd assumptions
described in §7.2.1. The isolation assumption (ii), requiring that no unwanted informa-
tion can leak out of Alice’s and Bob’s nodes, deserves particular scrutiny, as it must hold
against a technologically arbitrarily capable attacker outside Alice’s and Bob’s laboratory.

Some amount of dependence on the hardware details of the quantum devices is un-
avoidable. We do not concern ourselves here with the complete shielding of electromag-
netic emanation from the two nodes. While an issue that requires care in practice (as
evidenced by the various standards for shielding of environments in which classified infor-
mation is handled), our diqkd setup is not substantially different from any other telecom-
munication/computing use case, as the necessary laser technology can be kept locally at
each node. What remains to discuss is the quantum link, wherewe, in practical terms, need
to assume that the adversary can at will direct the fibre outputs onto a perfectly efficient
detector, and can also shine arbitrarily powerful laser beams back into the system.

Some of these concerns are shared with Bell test experiments used to disprove local re-
alism, where deviations between the underlying theory of reality, the model describing the
experiments, and the apparatus itself are discussed under the term “loopholes”. As diqkd
also incorporates a chsh inequality violation, we will first briefly discuss some parallels
and differences between the settings, before turning to some data which makes it plausible
that our technical realisation of the isolation mechanism and random number generation
should be trustworthy.
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7.6.1 Bell-test loopholes: Space-like separation vs. locality

The aim of experiments colloquially referred to as “Bell tests” is to show that the behaviour
of Nature is inconsistent with a realist local description, often by observing a chsh score
violating the inequality |𝑆| < 2 which holds for all such theories [Bru+14]. A series of
early experiments (e.g. ref. [AGR81]) provided increasingly convincing evidence that this
should be the case, but suffered from a number of loopholes that would still permit a local
description if different parts of the apparatus suitably “conspired” against the experimenter.
Two considerations stand out among this series of loopholes, which were only finally all
addressed at the same time by a series of celebrated experiments in 2015 [Giu+15; Hen+15;
Sha+15]: the detection or fair-sampling loophole, and the locality loophole.

The detection loophole is a consequence of the finite quantum efficiency of (typically)
single-photon detectors. It arises if that limited efficiency is then backed out from the ob-
served data by assuming that it equally affects all measurements, that is, that the observed
events are a fair sample of an underlying true behaviour (independent of e.g. the measure-
ment settings). While the assumption that Nature does not actively conspire against the
experimenter to modulate the detector loss in complex ways might be defensible in a Bell
test experiment, clearly the detection loophole is of grave concern to diqkd, where we
explicitly assume the possible presence of a crafty, active eavesdropper. As discussed in
§7.4.1, we thus avoid post-selection, that is, we commit to appending the measurement
outcomes to the 𝑨 and 𝑩 strings as soon as we observe a herald signal – and crucially,
before revealing the round type or applying the measurement settings to the apparatus.

The Bell test and diqkd scenariosmarkedly differ regarding the locality loophole, how-
ever. If, in a Bell test experiment, the measurement setting choice made on one side could
propagate to the other node and influence the measurement outcome there, a realist lo-
cal explanation would again be possible. In order to exclude the possibility of such in-
formation transfer, even through some kind of yet-unknown physical mechanism, Bell
test experiments can be performed such that the measurement on one node is not in the
relativistic light-cone of the random measurement basis choice on the other node, hence
guaranteeing the absence of timely communication through space-like separation. Once
the classical measurement results are determined, there is no harm in information transfer
between the nodes; in fact, all the input and output data from the nodes is later brought
together to compute the chsh score 𝑆 (in much the same way as in §7.4.2). Space-like
separation of one node from the random basis choice at the other only holds for a limited
amount of time, but this is (with clever engineering) sufficient for a Bell test experiment.

The setting of diqkd, however, is fundamentally different. While the measurement
settings must also be unknown to the remote side in our case, this also applies to the re-
sults, i.e. the classical outputs – and crucially, these need to remain private for all times.
If the outputs do eventually reach an adversary, the generated key material is compro-
mised. Whether this leakage process is restricted to subluminal speeds or not is of little
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help in keeping the information secure; it needs to be excluded entirely. Either way, it
is not clear what would even be meant by “space-like separation” in the case of a diqkd
protocol like described in fig. 7.6, which of course includes interactive communication be-
tween the nodes. But even in a hypothetical protocol that is executed instantly and does
not require any classical messages for the reconciliation process, speed-of-light consider-
ations could only guarantee the security of a key for at most ≈ 43ms (if the adversary is
known to reside on the opposite side of Earth’s surface).

More generally, diqkd is a cryptographic protocol, and as such operates in the setting
of cryptography, where the ability to protect private information from leaking to the out-
side is a foundational prerequisite, and already required just for the term “private key” to
be well-defined and meaningful. Since the isolation condition by itself already guarantees
locality for the Bell-test component of the protocol, space-like separation of any parts of
the protocol does not help any further.

We thus conclude that space-like separation of some (which?) protocol events is nei-
ther necessary nor sufficient for security of a diqkd protocol, which is well-understood in
the quantum information theory community [Mur+19; Pir+10; Pir+09; Pir+20]. Rather,
the isolation of the nodes necessarily remains as an assumption, which has to be ensured
through technical means.

7.6.2 Shuttling-based isolation

Because the 422 nm transition used for remote entanglement generation is the same as is
used for the state-dependent fluorescence readout, a naive implementation of the diqkd
primitives in a trapped-ion remote entanglement experiment would, with high certainty,
leak the outcome of the measurement out of the nodes. As mentioned above, it is not
enough to consider the photons emitted during the intended readout process; the attacker
could actively couple resonant laser light back into the fibre leaving the node to excite the
transition outside that period.

This is not an issue during or immediately after the remote entanglement generation
process, as such attacks would in this case be detected by a corresponding drop in observed
chsh score. The critical section starts with the (optional) pulse that implements the basis
change for the Bell test rounds, and ends only with the reinitialisation of the qubit state
(see next section). During this period, the qubits need to be well-isolated from the optical
fibre link. As this is in tension with the requirement for the qubits to be well-coupled to
the link during the heralded entanglement generation step, an active disconnection mech-
anism is needed. Because of the good coherence times achievable in trapped ions, it is not
particularly challenging to implement this. In a real deployment, the isolation could for
instance be established to an effectively arbitrary degree through a free-space shutter or
a fast micro-electromechanical (mems) fibre switch, which would have the advantage of
being a macroscopic component that is easy to separately verify. Another option would be
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Figure 7.19: Position-dependent coupling efficiency from ion to fibre link, normalised to that in the trap
centre. For each point, detector counts were integrated over 30 s with the ion at the specified position
(through a trap electrode voltage set calculated from the electrostatic trap model) and the Doppler cooling
beams turned on. The positional variation in fluorescence was corrected for by normalising against the
respective count rates on the position-insensitive state readout pmt, although the variation in beam inten-
sity over the region shown here is small (< 4% and < 8% for Alice and Bob, respectively). The parabolas
show a least-squares fit of a Gaussian to the data; the actual behaviour from a convolution of imaging point
spread function and fibre mode is more complex, and in addition, heavily affected by aberrations in the
wings. The upper curve (approximately a horizontal line) up to which the background is shaded corre-
sponds to the counts from the 18 s−1 dark count rate of the used detectors, which were subtracted from the
data. The lower curve up to which the background is shaded more intensely represents the uncertainty in
the background count rate measurement (assuming Poissonian statistics), which limits the dynamic range
of the efficiency measurement. The error bars on each point denote the resulting 1𝜎 confidence intervals
for the coupling efficiency. Only counts from apd0 and apd3 were used, as their dark count rates were
significantly lower than apd1 and apd2.

to map the entanglement to another ion species before measurement in combination with
spectral filtering of the respective transitions on the optical link.

For this demonstration, however, the ions were disconnected from the optical link by
displacing them from the narrow focus of the high-numerical-aperture imaging system.
This had the advantage of being technically simple to implement – compared to e.g. free-
space shutters, which might introduce mechanical vibrations, or might suffer from duty-
cycle limitations –, as the apparatus had already been designed with shuttling-based exper-
iments in mind. While the ions can be shuttled by a large distance (≈ 1mm) in theHOA2
traps used for this work by sequential modification of the dc electrode potentials along
the trap axis, only the the four second-nearest-neighbour electrodes (Q15, Q16, Q23 and
Q24; see fig. 3.3) were updated for technical simplicity, as the temporary dac system used
to set the electrodes voltages at the time did not support high-rate, simultaneous updates
for many channels.

As discussed in §7.4.1, after a herald event, a 𝜋 pulse on the 674 nm |𝑆1/2, 𝑚𝐽 = 1/2⟩ →
|𝐷5/2, 𝑚𝐽 = −3/2⟩ transition first maps the information to the slightly less magnetically-
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Figure 7.20: Time-dependent attenuation of photons coupled into the fibre link when shuttling ions away
from the focus of the high-na fibre coupling optics. The shuttling sequence was executed ∼ 3 × 105 times
with the Doppler cooling lasers turned on, and the timestamps of heralding station apds relative to the
start of the sequence (the electrode dac voltage update) were recorded. The plots show the count totals in
5 µs bins, relative to the count rate of an ion in the focus, with the error bars giving 1𝜎 confidence intervals
assuming Poissonian statistics for signal and background. The upper horizontal line up to which the back-
ground is shaded corresponds to the counts from the dark count rate of the used detectors, which were
subtracted from the data. The lower line up to which the background is shaded more intensely represents
the uncertainty in the background count rate measurement (assuming Poissonian statistics), which limits
the dynamic range of the attenuation measurement. The dashed line at 55 µs (30 µs) marks the start of the
analysis pulse and subsequent readout.

sensitive optical qubit transition. At this point, the link is still connected. Before applying
the measurement-basis-dependent pulses, the ion is then moved 3 µm from the focus of
the high-na lens to greatly reduce its coupling to the link (see fig. 7.19). To separately study
the dynamics of this process, we initialise the ion in a bright state, and shuttle it to the side
many times with the fluorescence lasers turned on, monitoring the arrival times of photons
at the heralding station. The resulting time traces are shown in fig. 7.20. After a delay of
30 µs to allow the low-pass-filtered electrode voltages to settle, Bob sends the round type
signal (𝑇𝑖) to Alice. This is the point from which isolation is necessary; here, the coupling
has been reduced to ∼ 10−4.

Due to the large difference in wavelength, the probability for the 1092 nm photons
generated from occasional 𝑃1/2 → 𝑆1/2 decays during state readout to couple into the
single-photon-carrying fibre is so small that it would be very challenging tomeasure in our
system (certainly smaller than the residual coupling for 422 nm photons, which make up
≈ 95% of scattered photons). No photons from the 674 nm laser beam used to implement
the basis selection could be detected at the output of the single-mode fibre either11. The
coupling strength of the fibre mode to the ion for other wavelengths does not need to be

11While the 674 nm laser beams are quite strong (at the ∼ 1mW level), the absence of measurable scatter
on the 422 nm single-photondetectors is not particularly surprising given the fact that the beamspropagate at
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Ion state
𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 > 3 ⟨𝑘⟩

Alice Bob

dark dark 141 506 3864 80 2 0 0.0277
dark bright 656 728 19 770 378 6 0 0.0304
bright dark 670 039 18 685 322 7 0 0.0281
bright bright 141 707 4347 76 3 0 0.0308

Table 7.5: Leakage after shuttling-based link isolation during the diqkd link characterisation run (§7.4.2).
The columns give the numbers of rounds during which 𝑘 photons were registered at the central heralding
station detectors and the respective means ⟨𝑘⟩, conditioned on the classical outcomes measured on both
sides. The background counts measured for the dark classical outcome 01 are, to within the statistical
uncertainty, entirely due to detector dark counts.

considered: even if an attacker were able to e.g. create appreciable amounts of 674 nm
or 854 nm radiation intensity at the ion by coupling a strong laser beam back into the
fibre, leakage of information into the nodes does not need to be excluded, as its absence is
ensured via the Bell test rounds.

Appropriate isolation of the nodes is an assumption in diqkd that cannot be verified
using device-independent techniques. If there is any doubt as to the amount of infor-
mation leakage, isolation far beyond the required level should thus preferentially be es-
tablished through independent technical means (mechanical shutters/…, as mentioned
above), rather than trying to model the device behaviour in detail. Nevertheless, it is pos-
sible in principle to tolerate a small amount of residual leakage by shortening the length
of the extracted secret key accordingly. We chose not to rigorously pursue this here, but
in light of the somewhat limited extinction indicated by the above measurements (due to
the small transport distance), it is reassuring that taking these effects into account would
not compromise the claim of a positive key length. To verify the amount of shuttling-based
isolation, we additionally monitor the heralding station detectors while the nodes read out
the qubit states with the link disconnected during the link performance characterisation
run. The count totals listed in table 7.5, fromwhich we estimate the probability of a photon
leaking fromAlice during a brightmeasurement (classical outcome 0) as 6×10−4, that from
Bob (classical outcome 1) as 4.4×10−3. Here, we factored in an additional ∼ 25% entangler
coupling loss and ∼ 70% quantum efficiency of the single-photon detectors used, as well
as their dark count rate, which accounts for most of the background – an ideal adversary
would not be restricted by those. As the readout pulses take up almost the complete sensi-
tive time window and the laser parameters are optimised to obtain a high count rate from
the ions, extra laser light coupled back into the setup by an attacker could not appreciably
increase the amount of information leaked. For the sake of this estimate, we can lump in
the heralding station with one of the nodes (due to the observed asymmetry in extinction,

right angles to the collection axis, the large spectral separation, and the lack of immediate scattering surfaces
along that axis given the slot beneath the trap axis in the HOA2 traps.
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Figure 7.21: Population in the 𝑆1/2 ground level after initially preparing the ions in the |𝐷5/2, 𝑚𝐽 = −3/2⟩
state and applying a de-shelving pulse of various duration (left: Alice, right: Bob). Exponential fits and the
resulting time constants are shown, which differ due to a difference in power and spot size at the respective
ions, but are in either case much shorter than the 100 µs after which the photonic link is reconnected by
shuttling the ion back to the high-na lens focus. Thus, the ion has entered the 𝑆1/2 ↔ 𝑃1/2 ↔ 𝐷3/2 cooling
cycle with very high probability.

preferentially Bob). This effectively eliminates the leakage from one node, as the amount
of coupling from one input of the entangler apparatus back out of the other input is very
small. As the probability for a bright measurement on Alice’s side is 1/2, the probability of
a photon leaking from either system during the measurement is 3×10−4. The information
leaked by this channel is upper-bounded by the binary entropy ℎ(3×10−4) = 4×10−4, which
is significantly lower than the key rate of 0.064 obtained in the diqkd demonstration run,
and thus does not impact the claim of a positive key rate.

Given the importance of the isolation assumption for the security of diqkd, it might
still be preferable to place a bound low enough to be entirely negligible on the leakage by
an independent, macroscopically verifiable mechanism, such as through the addition of
fast mechanical shutters.

7.6.3 Qubit state scrambling before link reconnection

Given the quantum-non-demolition nature of fluorescence-based state detection in
trapped ions, Alice and Bob need to explicitly scramble the state of their qubits at the end
of one measurement round, that is, before reconnecting the quantum link in preparation
for the next entanglement generation attempt. Otherwise, the attacker might be able to
shine in the beams required for state detection through the photonic link and gain infor-
mation about the state before it is finally scrambled as part of the heralded entanglement
attempt cycle.

Like the isolation process discussed in the last section, this scrambling is again explic-
itly a device-dependent process, as we rely on the knowledge that the applied reset pro-
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cedure actually removes any trace of the measurement outcome from the system. This is,
in fact, a concrete instance of a more general challenge to device-independent protocols,
that of memory or device reuse attacks [BCK13]. Thankfully, dissipative processes that
just lose the quantum information tend to be much easier to plausibly and robustly im-
plement than coherent manipulation or measurements, especially for a qubit system of as
low a complexity as a single atomic ion. In practice, Alice and Bob achieve this by simply
applying the Doppler cooling lasers for 100 µs, including the 1033 nm laser to return pop-
ulation from the 𝐷5/2 shelf level (that corresponds to a “dark” measurement outcome) to
the cooling cycle. This is long enough for > 10 deshelving time constants to elapse, and
many 422 nm cooling photons to be scattered. When the link is finally reconnected and
the entanglement generation cycle resumes, the ion state is thus, for all practical purposes,
already uncorrelated to the readout result.

In the long term, the reliance on anecessarily device-dependent resetmechanismcould
be reduced if quantum registers large enough to hold the complete set of qubits needed for
the execution of the protocol are available, such that no reset would be needed within
the protocol execution. In a realistic scenario where Alice and Bob wish to continuously
generate fresh key material, the same issue would still arise when the apparatus is re-used
for the next run of the protocol, however [BCK13].

7.6.4 Sharing of laser sources

For this demonstration, the two nodes are located in the same laboratory; it is thus conve-
nient – and research-budget-friendly – to derive all the required laser beams from the same
set of sources. This is, of course, not representative of a real-world deployment of diqkd,
where it would likely not be economical to route several additional laser signals between
nodes. There could be two possible consequences of this for the interpretation of this proof-
of-concept demonstration. First, it could completely render the device-independence anal-
ysis invalid, which would put the validity of the entire demonstration into question. Sec-
ondly, it could have consequences for the feasibility of a real-world deployment, if this
tacitly led to the assumption of optical phase coherence between the nodes. However, nei-
ther of these cases applies to our experiment, as we will discuss in the following.

First, in practice, the laser beams are distributed between the systems by aid of a beam-
splitter, which, when acting on the large coherent state of laser light, produces two inde-
pendent coherent states in its output, linked only by the same coherent state amplitude
parameter. Resorting to this argument, however, is not actually necessary to show that the
sharing of the laser source is benign.

Rather, the only requirements placed on themeasurement settings by the security proof
are that the quantum state in each round is independent of the measurement settings, and
that the measurements act in a local fashion on Alice’s and Bob’s subsystems (i.e. can be
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described as a tensor product). The first is guaranteed by the assumption of trusted ran-
domness, which is not revealed until the links are disconnected. The second follows from
the fact that the two nodes occupy well-defined, disjoint regions in the laboratory (in prin-
ciple, there would not be anything to stop us from putting the two halves of the setup into
separate Faraday cages). Thus, it would not be an issue even if e.g. the shared 674 nm laser
was actively controlled by an adversary; in fact, one of the advantages of diqkd is precisely
that it guards against coherent attacks like this.

In this picture, we neglect the potential leakage of information back through the laser
supplies, as the coupling of each laser beam to the ion is very weak in absolute terms, and
could be further suppressed using optical isolators. We do not attempt to quantify this
further, as in the case that this was a concern, it would be much simpler to equip each
node with its own laser sources instead, such that only the classical network and quantum
links need to leave the nodes.

Lastly, using the same lasers for both nodes in our setup is really only beneficial in terms
of equipment cost and laboratory space needed; the only amount of technological overhead
avoided is that of occasional maintenance of the second set of lasers, as we already keep
the rest of the control systems completely separate. In an application with a larger distance
between nodes, a separate set of lasers could easily be used instead, as we do not rely on
any optical phase coherence between the nodes. The only synchronisation requirement is
for the entanglement-carrying photons to be well-matched in frequency and arrival time
at the heralding station compared to their 7 ns duration. In particular, we do not require
the phases of the 422 nm picosecond pulses or the absolute phase of the coherent 674 nm
laser pulses to be matched between the nodes or be stable. The relative phase between
projective measurements at each node is determined solely by the 14MHz rf beat note
between the two 674 nm pulses. As such, the most stringent synchronisation requirement
derives from the time overlap of the 7 ns photons at the heralding station, which is not
particularly challenging to achieve with modern time dissemination techniques – in the
simplest case, a clock signal could be directly sent from one node to the other.

As a side note, the apparatus used for the first demonstration of device-independent
randomness extraction [Pir+10] also employed a shared set of laser sources, although the
authors do not appear to explicitly address this – it is indeed irrelevant for the device-
independent analysis, as long as the measurement settings are chosen locally. More funda-
mentally, some amount of sharing of optical or electronic equipment is always going to be
necessary in an apparatus based on the measurement of remote entanglement, as, at the
very least, a common phase reference for the qubit measurements needs to be established.
In addition to this, both platforms based purely on photonic technologies and the heralded
entanglement generation schemes employed for atoms, ions or NV centres – including the
setups used in loophole-free Bell tests – also require the fine alignment of single-photon
time slots. Whichever one of these timescales happens to be more demanding for a given
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technology, at least some synchronisation equipment to ensure the time references are
matched will thus be required.

7.6.5 Trusted randomness

As the security of diqkd rests on the fact that an attacker cannot predict the measurement
settings applied in each round ahead of time, it is desirable to use a source of randomness
rooted in some well-understood hardware process, e.g. a quantum random number gen-
erator (qrng). Note that our requirements are technically much less challenging than for
the loophole-free Bell test experiments, where considerable engineering effort was spent
on the basis selection circuitry: for diqkd, the isolation assumption supersedes the re-
quirement for space-like isolation, as discussed in §7.6.1, and we thus are not concerned
with the “freshness” of the produced random bits. Without any latency requirement, we
can make use of the trusted local classical computation capabilities to apply any “whiten-
ing”/randomness amplification algorithms as necessary, and do not need to integrate the
random number generation with the real-time control system particularly tightly.

In fact, this is precisely the approachwe take in our demonstration experiment. To illus-
trate a possible implementation, Alice and Bob use an ID Quantique Quantis QRNG USB
4M quantum random number generator module, which is based on beamsplitter photon
counting statistics of a heavily attenuated light source. A random number string consider-
ably longer than necessary for the experiments is generated ahead of time at each node and
stored in the memory of the respective control pc. For each acquisition block, the round
types and measurement settings are derived from these strings on the pcs and transmitted
to the fpga core devices.

To actually establish trust in the randomnature of the device outputs, an analysis of the
internal workings of the qrng module would be necessary (which has been performed
by various commercial certification laboratories, and recently by external researchers
[Pet+22]). We did not perform such an analysis ourselves, but to exclude any major
issues in the quality of the generated outputs, analysed a sample of 19 121 635 328 bits
(far exceeding the ∼ 107 bits consumed during the experiment) for a number of statistical
defects using two widely used randomness test suites. dieharder [Bro20, version 3.31.1]
with default settings12 revealed no failures and 2 “weak” tests (out of 114 total, which is
within statistical expectations). All tests from the “Rabbit” and “Alphabit” batteries from
TestU01 [LS07, version 1.2.3], run over the maximum of 232 − 1 bits, passed as well.

Curiously, despite these industry-standard tests passing, a simple manual tally of the
number of zeros and ones in the full output did reveal a statistically unambiguous devia-
tion from a perfectly uniform distribution. The sample contained only 9 559 817 952 zeros,
which gives a probability point estimate of 0.499 948, or a two-sided 𝑝-value of < 10−46

12dieharder -a -g201 -f randomness.dat, where “randomness.dat” is a file containing raw bi-
nary data.
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for the null hypothesis of a uniform distribution. A small bias of this kind was also doc-
umented in ref. [HH20], and hints at a small design flaw in the on-module “unbiasing”
stage. As there are no latency requirements in our experiment, the bias can easily be re-
moved in post-processing. Using the universal-hashing-based extractor implemented in
the IDQuantique software (with themanufacturer’s default 2048×1972matrix) left no sta-
tistically significant bias behind in a sample of 8×(232−1) bits. Note that over the relatively
small number of protocol rounds in our demonstration, the bias remains well within what
would be likely just from statistical noise even without this extra post-processing step.

To avoid accidentally introducing any small bias between the protocol realisation and
the assumptions in the security proof, we derive the classical inputs𝑿 and 𝒀 in a way that
can very easily be seen to be correct, but is somewhat more wasteful in randomness than
necessary. The nodes both draw directly from the qrng output for the Bell test inputs
𝑿,𝒀 ⊂ {0, 1}. We choose a power-of-two fraction for the test round probability (𝛾 = 1328 ),
and Bob implements the round type choice in the straightforward way by consuming eight
random source bits. For key generation rounds, the random bits allocated to the Bell test
basis choice are simply discarded. This could be optimised further in a scenario where
random bits are slow to generate.

Ultimately, though, note that the above considerations serve simply to make the cor-
rect implementation of the random choices more plausible. The availability of trusted ran-
domness remains an assumption in diqkd, as discussed in §7.2.1, and is not addressed by
our experiment. In a real-world high-stakes deployment, this would likely be addressed
through a scrupulous engineering analysis of the randomnumber generator hardware. Suf-
ficiently paranoid users could alsomake use of device-independent randomness amplifica-
tion and multi-source extraction techniques, as e.g. described in ref. [KA20], to combine
randomness from multiple dissimilar sources.

7.7 Discussion

The results in this chapter mark the first demonstration of device-independent quantum
key distribution, where the used quantum devices are self-tested as part of the protocol ex-
ecution. Crucially, we have successfully obtained a key in a complete end-to-end demon-
stration: by combining our state-of-the-art experimental platform for remote entangle-
ment with a number of improvements to the theoretical analysis and the classical post-
processing pipelines, we were able to execute the detailed protocol on separate nodes from
start (i.e. fixing the protocol parameters) to finish, where the nodes each have an identi-
cal copy of a concrete secret key. This key is secure under the most general assumptions,
where the adversary can act arbitrarily on the quantum state (e.g. including entanglement
across rounds), and the measurement devices are allowed to act in a fashion correlated to
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the outcomes of previous rounds. This unambiguously demonstrates that provably secure,
device-independent quantum cryptography is possible with real-world devices.

Having cleared this straightforward criterion for success, the generation of a key longer
than any key material consumed, is particularly reassuring, as diqkd relies on many tech-
nical details from experimental quantum information processing as well as classical and
quantum information theory. The merits of a claimed demonstration of diqkd where the
effort stopped short of obtaining a keywould be difficult to evaluate for readers who are not
domain experts in both the relevant experimental and theoretical disciplines, as it would
be hard to judge which pieces are actually missing, and how feasible it would be to fill
those gaps. Conversely, as long as the entropy accounting in the security analysis is done
correctly, obtaining a key directly demonstrates that there are no unexpected surprises in
any of the many components, neither in the stability of the experimental apparatus, nor
any potentially unrealistic assumptions as to e.g. the performance of the error correction
code. In view of this, the detailed description of the protocol and state-of-the-art perfor-
mance of the post-processing pipeline used in our work should hopefully be of help to
future experimental efforts on other platforms as well.

7.7.1 Related experimental work

After publication of our initial manuscript as a preprint [Nad+22], two other manuscripts
appeared which make claims related to an experimental diqkd demonstration. Neither
of them, however, attempted to actually obtain a secret key, nor could they have easily
succeeded in doing so, as we shall briefly discuss.

W.-Z. Liu et al., Toward a Photonic Demonstration of Device-Independent Quantum Key
Distribution (Hefei/Shanghai). The authors of ref. [Liu+22] pursue a fully photonic ap-
proach, where entanglement between 1560 nm photons is created through spontaneous
parametric downconversion at a central station and directly measured at Alice’s and Bob’s
nodes. As described in §7.3.2, the lack of heralding is a challenge for purely photonic im-
plementations, but if it can be surmounted, high raw key rates are potentially available in a
technically simple fashion. To this end, the authors present a more complex diqkd proto-
col, where a novel combination of randomised post-processing and careful post-selection
increases the tolerance to finite detection efficiency. Through careful optimisation of the
detectors and sources, an overall system efficiency (including both entangled state gener-
ation and detection) of 87.5% is reached, resulting in a detection-loophole-free Bell in-
equality violation of 𝑆 = 2.0472.

No attempt to extract a key is made, but the authors claim that their performance char-
acterisation is equivalent to an asymptotic secret key generation rate of 466 bits/s over 20m
of fibre, or 2.6 bits/s over 200m. The setup as presented, however, does not include any
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fast polarisation modulators to select the polarisation basis in real-time (for the perfor-
mance analysis, wave plates are rotated mechanically to alternate between basis settings in
blocks). As the system efficiency is already very close to the threshold of 86.2% quoted by
the authors where the key rate vanishes entirely even in the asymptotic limit, fitting one
modulator per node into the efficiency budget remains as a significant challenge; even loss-
optimised free-space electro-optical modulators typically exhibit losses of at least 1–2%.
Furthermore, the security analysis is only performed in the collective (i.i.d.) limit; as the
protocol relies on post-selection, it is not obvious how the key rate will be affected when
transitioning to the full setting of coherent attacks.

W. Zhang et al., A device-independent quantum key distribution system for distant users
(München). In ref. [Zha+22], the authors describe a platform based on single optically
trapped 87Rb atoms. Impressively, this experiment was carried out with the nodes lo-
cated in two different laboratories separated by 400m (700m of fibre), using photons
at 780 nm for the quantum link as previously employed for a loophole-free Bell test ex-
periment [Ros+17]. After each herald, the atom state is detected via a destructive state-
selective photoionisation technique, which lends itself to making later classical leakage of
the internal state implausible. The authors employ a protocol broadly similar in structure
to the one described here, but with an extra measurement setting to increase tolerance to
larger quantum bit error rates [Sch+21b]. Measuring 3342 Bell pairs over 75 h, they show
that their link performance very likely lies in the region where a key could be extracted in
the asymptotic limit of infinitely many protocol rounds.

No attempt at practically implementing the diqkd protocol is made, however. Pre-
sumably this is because it was experimentally infeasible to continuously acquire data for
the extremely long durations that would be required given the modest entanglement qual-
ity (𝑆 = 2.58(8), 𝑄 = 7.8(9)%) and low rate of 0.012 s−1: depending on the choice of
security parameter, the experiment would have to be run continuously for on the order
of one year to obtain any key at all, even in the case analysed by the authors where only
collective (i.i.d.) attacks are considered, and several dozen years to reach security against
general attacks with parameters similar to our result.

7.7.2 Possible extensions

Leaving aside the possibility of incremental improvements to the quantum link perfor-
mance – while work on e.g. the entanglement generation rate is important with a view to-
wards real-world deployments, it wouldn’t lead to any results conceptually different from
our existing diqkd result –, two avenues of investigation for future proof-of-principle ex-
periments should be highlighted.

The first concerns the assumptions made in the protocol, and their experimental plau-
sibility. For instance, as discussed in §7.6.3, future large-scale quantum memories could
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make it possible to execute all the measurements required for the protocol in one go after
accumulating all the required entanglement, perhaps making it easier to ensure isolation
of the quantum link during that one measurement period. With experimentally achiev-
able Bell inequality violations increasing, it might also be interesting to revisit protocols
which do not assume the validity of quantum theory [BHK05], though it is unclear how
node isolation would then be ensured.

The second direction concerns the validation of improved diqkd protocols, and the
security analyses thereof. One trivial improvement to the protocol presented here is to
swap the direction of the round type announcements 𝑇𝑖, such that no communication
from Bob to Alice needs to be authenticated. For geographically distributed applications,
where speed-of-light delays in communication can be significant, protocols that avoid this
need for real-time signalling without requiring sifting could be of interest [Tan+20]. There
are quite a few proposals for other improvements to the certifiable key rates in certain
regimes of device parameters, for instance through more general measurements [Sek+21],
the addition of small amounts of trusted noise [Ho+20], or two-way reconciliation
schemes [TLR20]. A systematic comparison of such proposals, for some of which security
against coherent, non-i.i.d. attacks has not been shown yet, would be useful for future
practical demonstrations.

7.7.3 Outlook: DIQKD for real-world security

While our experiment already clears the bar for a demonstration of diqkd in a realistic set-
ting – we can obtain finite-sized keys in reasonable amounts of time, and the nodes could
easily be separated completely by purchasing a second set of laser sources and moving one
of the ion traps to a different laboratory –, significant work still remains to push it closer
to relevance for practical quantum key distribution settings. As diqkd is agnostic to the
system details, any further incremental improvements to entanglement fidelity, entangle-
ment generation rate, transmission distance, or compactness of technical integration of
the nodes will also incrementally improve the diqkd performance in the same way, given
that the protocol assumptions remain fulfilled. We thus leave a discussion of these aspects
for chapter 8, where we discuss them also for other, more general applications.

Taking a more conceptual, longer-term view, with diqkd having long (and rightly)
been discussed under headlines such as “the ultimate physical limit of privacy” [ER14],
does this mean we have now solved communication security, achieved “unhackable” se-
curity? Even leaving questions of practicability aside, every reputable practitioner would
answer in the negative, as such a question is founded in a fundamental misunderstanding
of the challenges in securing real-world devices.

One way to dispel such myths is by comparison to the classical case. After all, the
only thing keeping various classical cryptosystems from obtaining the same “unhackable”
label is their reliance on the bounded computational capabilities of any attacker. But even
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though the latter is still an excellent assumption for most widely deployed algorithms –
at least until a major breakthrough in cryptanalysis or large-scale fault-tolerant quantum
computing –, computers are often hacked and supposedly secure communication systems
are frequently broken. Rather than through attacks on their mathematical foundations,
this is due to implementationmistakes and incidental vulnerabilities, such as those to side-
channel attacks. Any diqkd implementation can suffer from these issues as well, in the
classical part of the protocol, but not least also in the additional hardware now necessary
for the quantum part.

This illustrates that to discuss implications for practical, real-world security, diqkd
has to be viewed through the lens of security engineering – a careful analysis of attack
surfaces and various trade-offs in system complexity and performance. QKD uniquely
provides information-theoretic security, even in the face of an adversary with unlimited
computational power, at the cost of requiring a quantum link. But “conventional” qkd also
adds the trusted models for the quantum device behaviour to the attack surface. DIQKD
allows one to avoid this increase in attack surface, removing assumption (vi) from the list
discussed in §7.2.1. In fact, the remaining assumptions (i)–(v) could be considered the
bare minimum necessary for a meaningful encryption system, and we prove security in a
fashion that is composable with other cryptographic primitives and algorithms [PR22]. As
such, while diqkd can never guarantee complete “black-box” security in itself – to reprise
the discussion from§7.6.1, if the classical devices used contain a covert transmitter relaying
the key material to the outside, no security can ever be achieved –, device-independent
protocols can offer practical engineering benefits over classical and other qkd systems.

We hope that our demonstration of a system close to the ultimate theoretical limit of
security can serve as a valuable example in a discussion about the level of security actually
achievable in practice, illustrating for instance the practical challenges in ensuring isolation
between rounds, the potential role of memory attacks, and similar issues.
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In this thesis, I have presented the theoretical study and experimental characterisation of
a photonic link between distant 88Sr+ qubits in two separate ion traps. This was achieved
through the collection of photons from spontaneous decay between levels with total angu-
lar momentum 1/2. This novel collection geometry is advantageous from a technological
point of view; the symmetry properties of single-mode optical fibres prevent the loss of
polarisation purity. The fidelity and rate reached currently represent the state of the art
in remote entanglement generation, which allowed us to demonstrate two quantum net-
working tasks; one cryptographic task with stringent go/no-go requirements on the exper-
imental performance (chapter 7 and ref. [Nad+22]), and another in using entanglement
to enhance the frequency comparison of remote atomic clocks [Nic+22]. A discussion
of more specific conclusions, including comparisons to prior work in the respective do-
mains, can be found in §§5.7, 6.4, and 7.7. Here, concluding this thesis, I more generally
discuss avenues for further improvements of the photonic remote entanglement genera-
tion link, which would increase the performance in the elementary two-qubit applications
already demonstrated, and make more complex, multi-qubit distributed quantum infor-
mation protocols feasible to realise.

8.1 Potential for increased link performance

8.1.1 Increasing the entanglement generation rate

Without any major changes to the apparatus, the entanglement rate could still be consid-
erably increased from the 184 s−1 observed thus far. Using superconducting nanowire de-
tectors [Esm+21; NTH12; Val+14; Sli+16], for which detection efficiencies in excess of
95% have been demonstrated, in place of the apd detectors, and further optimising the
Bell state analyser fibre couplings, a factor of 2.5× in two-photon coincidence rate should
be feasible. The coupling efficiency of the ion-fibre interfaces is still below expectations;
improving it to 85% of the theoretical value for na 0.6 would lead to an additional 2.9×
increase in rate. Finally, with a different driver for the picosecond laser pulse picker, and
some optimisation of the system latencies (perhaps adding some electro-optic modulators
for the state preparation beams as well), the attempt rate could feasibly be increased to
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∼ 4MHz. All in all, this would amount to a ∼ 30× increase in rate, reaching an entangled
state generation rate of ∼ 5ms−1.

At this point, the average time for the generation of a remote entangled ion pair would
be comparable to the duration of typical laser-driven local two-qubit entangling gates. For
modular quantum information processing applications (or if a high attempt rate is not
feasible), a further increase in collection efficiency would still be useful. To do this in
free space, one improvement (∼ 25%) would be to better match the radial profiles of the
(approximately Gaussian) fibre mode and the (more top-hat-like) imaged ion emission.
This could be achieved with standard imaging optics through the use of fibres with a tai-
lored mode profile or with matching optics integrated onto the fibre face [MF11; Gis+16;
GVB16]. In general, adaptive optics might help improve the coupling efficiency, but would
significantly increase the interface complexity. As discussed in chapter 4, an increase in
numerical aperture in theory does not affect the ion–photon entanglement fidelity, even
when collecting from an entire half-space. Various “soft” engineering constraints limit
the numerical aperture achievable in practice (in particular, parts of the optical system
might need to be moved inside the vacuum system), but na 0.8 seems feasible. The col-
lection angle could be further increased through the use of mirrors, whether macroscopic
in nature or integrated with the trap electrode structure [Shu+10; Fis+14; Gha+16]. If the
mirror spans close to 2𝜋 solid angle, a further improvement of collection efficiency should
be possible through destructive interference from a quarter-wavelength step in the mirror
profile [Ara+20].

It would also be possible to increase the entanglement generation rate by adopting
protocols based on a single-photonherald signal. The interferometric stability requirement
for the photonic links could be addressed using protocols which incorporate a stage of
entanglement distillation tailored for this case (“extreme photon loss” [CB08]). Ionmotion
might preclude reaching high fidelity levels unless carefully controlled, however [Slo+13],
and the ground-state cooling operations possibly required could significantly affect the
achievable repetition rate. Whether such a scheme could ultimately increase the system
performance over two-photon protocols will require more detailed investigation.

8.1.2 Increasing the distance

In the current demonstration, the photons propagate through ∼ 4m of single-mode fibre.
This could be extended to building-scale distances, such as relevant for large-scale mod-
ular quantum computing. For longer distances, however, the loss in conventional step-
index silica glass fibres represents a major challenge (∼ 30 dB/km, i.e. halving the rate ev-
ery 100m). For an ideal fibre, the main loss mechanism is Rayleigh scattering (∝ 𝜆−4); the
optimum is found around ≈ 1550 nm (known as the “C band” in telecommunications),
where losses as low as ∼ 0.14 dB/km have been achieved in a research setting [Tam+18]
(for longer wavelengths, losses from coupling to molecular vibration dominate). Optical
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difference frequency generation using non-linear materials can be operated in the single-
photon regime (“quantum frequency conversion”) while preserving the coherence of the
ion–photon entangled states, allowing the C band to be accessed even though none of the
laser-cooled ion species directly have a transition in this wavelength region. In trapped
ions, entanglement between a 40Ca+ ion in a cavity and a 1550 nm photon after transmis-
sion through 50 km of fibre has been demonstrated [Kru+17; Kru+19]; using neutral ru-
bidium atoms recently also the “full” heralded entanglement generation process between
two nodes across 33 km of fibre using down-conversion to 1517 nm [vLee+22].

In such frequency conversion systems, it is technically advantageous if the pump laser
has the longest among the three relevant wavelengths, as this avoids background from
non-phase-matched broadband spontaneous parametric downconversion and sponta-
neous Raman scattering [Pel+11], which would lead to spurious heralds and thus decrease
the remote entanglement fidelity. For source (atom) wavelengths shorter than ∼ 780 nm,
which cannot be operated in this regime, either more aggressive spectral filtering is nec-
essary, or a two-stage approach is necessary, both of which will have a certain efficiency
(rate) overhead. Direct conversion of the 422 nm wavelength to the C band was demon-
strated1 [Wri+18], but the conversion efficiency of 1% would benefit from optimisation,
and further filtering would need to be applied to obtain reasonable fidelities given the only
∼ 4% source photon collection probability in current experiments. Two-stage conversion
from 138Ba+ photons (493 nm) to 1534 nm has also been demonstrated [Han+21], though
at an efficiency of only 1–5%.

In a realistic, spatially separated deployment of quantum frequency conversion, the
pump laserswould need to be stabilisedwith respect to each other. As the relative linewidth
merely needs to be small relative to the photon bandwidth, this is relatively easy to achieve
(e.g. through distribution of seed light alongside the quantum link, or by referencing the
lasers to a frequency comb). If polarisation encoding is used, the birefringence would
likely need to be actively stabilised for longer, deployed runs of fibre, but this is routinely
achieved in practice through periodic calibrations (see e.g. ref. [Tre+09]).

In the case of 88Sr+, transmission losses at the 1033 nm and 1092 nm wavelengths of
the 𝑃 ↔ 𝐷 transitions can be limited to < 0.7 dB/km in loss-optimised pure silica core
fibres [Nag+02]. For medium distances, direct transmission of such photons might thus
be a viable, technically simpler alternative to quantum frequency conversion. The few-
percent branching fraction from the 𝑃 to the𝐷 levels would place a significant limit on the
achievable system efficiencies, though, if not enhanced through the use of optical cavities.

As an alternative to step-index silica fibres, hollow-core fibres, where the mode is al-
most entirely guided in a void between resonant elements, have the potential of vastly
reducing losses from Rayleigh scattering. Low-loss hollow-core fibres, particularly for
shorter wavelengths, are still an active area of research, but early results appear promising

1For technical reasons, the wavelength in this demonstration was actually 425 nm.
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for reaching few dB/km losses also at 422 nm (see e.g. ref. [Sak+20] for a demonstration at
600 nm). Free-space transmission, which has been used for QKD between distant ground
stations [Sch+07], as well as between ground stations and a satellite [Lia+17], could also
drastically reduce the link losses across long distances.

8.1.3 Optical cavities

Some of the earliest proposals for the realisation of light–matter interfaces for quantum
networking have involved optical cavities (e.g. [Cir+97]), and cavities have prominently
been used to link optically trapped neutral atom qubits with some success (though still
limited in fidelity/entanglement rate; see the literature comparison in chapter 6). Optical
cavities have been investigated in conjunction with ions in radio-frequency traps as well,
where they promise an enhanced collection efficiency for a given solid angle by modifying
the optical mode structure at the ion position, limited in principle only by the residual
losses in the cavity mirrors. This way, the weaker 𝑃 ↔ 𝐷 infrared transitions in earth-
alkaline ions could also be directly accessed. There has been considerable experimental
progress in recent years (see ref. [Kel22] for a recent introduction and review). For instance,
ion–photon entanglement with an overall collection and detection efficiency of 46.2(3)%
was recently demonstrated using 40Ca+ [Sch+21a].

While clearly of interest for high-performance photonic links between trapped-ion
qubits, optical cavities are not without their challenges in this context as well. Firstly, and
perhaps least importantly, the photons generated through optical cavities tailored for effi-
cient extraction tend to be several orders of magnitude longer in duration, limiting exper-
imental repetition rates, and potentially increasing sensitivity to drifts. More importantly,
electric field noise fromand/or charge accumulation on the dielectric cavitymirrors, which
are necessarily in close proximity to the ion for efficient designs with a small mode area at
the ion, presents a major challenge in practice (see e.g. ref. [Tel+21]).

A further complication for the use of cavities in the generation of heralded remote
entanglement is that the photons from each node need to be indistinguishable to a high
degree in order to obtain good fidelities. This requires a variety of cavity and driving pa-
rameters to be matched between the nodes; the observation of high-fidelity ion–photon
entanglement in a single-node experiment thus does not necessarily translate to the her-
alded remote entanglement case. For instance, in a recent demonstration of remote en-
tanglement between cavity-enhanced ion trap nodes, differential fluctuations in the cavity
lengths were a major contributor to the overall fidelity error, despite active stabilisation
of the same [Kru+19]. If decay channels of differing polarisations are used, the match-
ing requirement includes the cavity birefringence; as the manufacturing of cavities with
sufficiently low and well-controlled bireringence is technically challenging, this might mo-
tivate use of other (e.g. time-bin) qubit encodings [Kas+23]. Indistinguishability is much
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easier to ensure in free-space spontaneous emission, where the qubits are, in the absence
of modulation from motion or magnetic fields, guaranteed to be identical.

8.1.4 Increasing the Bell-state fidelity

As shown in chapter 4, fidelities in excess of 99% should in principle be achievable even
under a realistic choice of parameters for a wide range of experimental imperfections. At
present, the errors observed in the two-node network appear to be dominated by resid-
ual polarisation mixing, presumably due to aberrations in in the imaging optics, or non-
uniform birefringence e.g. in the vacuum viewport. Further, quantitative investigation is
not only necessary to confirm this hypothesis, but might also lead to further increases in
collection efficiency, if the cause is in some (non-symmetric) aberrations in the imaging
system.

At the ℱ > 95% level, however, a whole number of effects are potentially relevant.
In the face of longer distances, for instance, heralding detector dark counts or, if quan-
tum frequency conversion is employed, downconversion noise, can quickly become non-
negligible, and the achievable performance should be carefully modelled. To consistently
reach even higher fidelity levels, it might be necessary or preferable to use the high-fidelity
local entangling gates available in trapped ions to probabilistically combine multiple raw
Bell pairs into one of higher fidelity (see next section).

8.2 Towards more complex networks and network nodes

Trapped ions are attractive as a platform for complex quantum networking applications
not only because their identical, well-controlled nature lends itself to high-fidelity remote
entanglement generation as demonstrated in this work, but importantly also because of the
high coherence times and the well-developed toolbox of high-fidelity operations available
in trapped ions (state preparation, readout, universal gate sets). Here, trapped ions gener-
ally also offer state-of-the-art performance across all qubit technologies; for instance, the
Oxford group has previously demonstrated two-qubit entangling gates reaching a 43Ca+–
43Ca+ Bell state fidelity of 99.9(1)% [Bal+16], and a 88Sr+–43Ca+ mixed-species Bell state
fidelity of 99.7% [Hug+20]. Our ion-trap quantumnetwork nodes support using the 43Ca+

species2 in addition to the 88Sr+ interface ions, and are based on microfabricated surface
traps. This makes plausible the claim that the photonic interface is compatible with a tech-
nology at least in principle scalable to a large number of ions per node, and complex inter-
actions between them.

2Control of extended ion crystals and mixed-species gates have already been implemented, though at
the time of writing, the fidelity of the 88Sr+–43Ca+ gates is still limited by motional coherence issues.



212 outlook

Stage 1

“raw” entanglement generation swap gate

Hadamard gate Z-basis measurement

cnot gate

A
lic

e
Bo

b

Stage 3Stage 2

RZ(π/4) gate

88Sr+
43Ca+
43Ca+
43Ca+

88Sr+
43Ca+
43Ca+
43Ca+

Figure 8.1: Circuit representation of a cascaded entanglement distillation protocol between two identical
ion trap modules “Alice” and “Bob”. Two “raw” Bell pairs generated over the photonic link are used in
each of the three stages, reducing the infidelity from 𝜖 for the raw Bell pairs to ≈ 29 𝜖

2 after success of the
entire protocol. Depending on the outcome of the parity measurements, the respective stage or the entire
process might need to be restarted. The two inactive 43Ca+ “application qubits” hint at the remainder of the
computation, where the distilled entanglement can subsequently be used. For instance, to realise a remote
two-qubit gate Alice and Bob would both apply an extra two-qubit gate between the distillation result
and application qubit, measure the former, and perform any necessary local unitary corrections. (Figure
adapted from ref. [Nig+16].)

More practically, this design was in particular chosen with the aim to support the reali-
sation of universal entanglement distillation protocols to generate remote entanglement at
or near the fidelity level of local operations. In particular, our system can support the three-
stage distillation protocol described in ref. [Nig+16] (see fig. 8.1), using five ions per trap
(three 43Ca+ for storage, one 88Sr+ as photonic interface qubit, another 88Sr+ as sympathetic
coolant), and relying on (few) crystal configuration changes (shuttling/splitting/merging,
without requiring rotations) to choose different subsets of ions to interact instead of tightly-
focussed laser beams. Given the remote entanglement fidelities achieved here and local op-
erations at the state of the art previously demonstrated in Oxford, simulations indicate that
a fidelity of ℱ ≈ 99.8% should be reachable this way using six Bell pairs. This would un-
ambiguously be compatible with typical error-correcting codes considered for large-scale
fault-tolerant quantum computation (though specialised codes taking into account the in-
creased error rates but also the flexible topology for photonic links between modules will
likely be advantageous for this). In the near term, given that the ≈ 4% error in the remote
88Sr+–88Sr+ state observed here is not uniformly depolarising but contains considerable
structure (see §6.3.1), only one distillation layer could already achieveℱ > 99%.3 For this,
one 88Sr+–43Ca+ ion pair per node is sufficient, used to probabilistically combine two Bell
pairs with ∼ 60% probability for success.

3Numerical calculations by B. Koczor and S. Benjamin (private communication), performed with the
assumption of perfect node-local operations (including the 43Ca+–88Sr+ entangling gates).
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Mixed-species operation of the Alice and Bob nodes would also enable the prototyp-
ing of extensions to our recent entanglement-enhanced frequency metrology demonstra-
tion [Nic+22] to a setting more relevant to state-of-the-art atomic clocks using techniques
akin to quantum logic spectroscopy [Sch+05], where one ion species well-suited to cool-
ing/readout and remote entanglement generation would be combined with another with
favourable properties for a frequency standard. 43Ca+ is not the most favoured species
regarding systematic shifts, but should be perfectly adequate for the experimental investi-
gation of such techniques, particularly as a first-order magnetic-field-insensitive 729 nm
transition is readily accessible in our setup (at 𝐵 = 0.338mT and 𝐵 = 0.496mT [Ben+07]).

Another promising avenue of investigation would be to combine one such mixed-
species ion trap node with possibly significant local quantum resources (“server”) with a
simple node that can just receive and measure photons in a variable basis (“client”). Inter-
estingly, even such restricted receiving nodes are enough to enable algorithms not achiev-
able between classical client and server computers [WEH18]. One particularly counter-
intuitive capability is that of “blind” quantum computing [BKF09], by which it is possible
for a client to have secure access to remote quantum computers, without the operator of the
computer learning anything about the executed algorithms or processed data (see fig. 8.2).

Regarding the scaling to more complex devices, the current approach of fibre coupling
using bulky, refractive high-na optics naturally produces only one interface site on the
ion trap chip, the demagnified image of the fibre tip. Multiple sites could be coupled to
multiple fibres positioned in the right arrangement on the image sides, or to the same fibre
through scanning optics (but with increased requirements on optical lens design and align-
ment). Evenwith just one interface site, multiple ions could still be connected to the optical
link in turns by shuttling them around as necessary in a segmented electrode trap. Such a
shuttling approach would also be compatible with optical cavities or exotic high-na collec-
tion optics. For this, one could imagine a long racetrack-shaped trap sectionwhere ions are
circulated in conveyor-belt fashion belts until heralding success is reached, at which point
they are ejected into the rest of the quantum information processor chip (and returned
after use). Using a large number of ions, an arbitrary amount of link latency between
quantum network nodes could be tolerated while keeping a high attempt rate, in precisely
the same way that buffering hides latency in classical computer science. This could be
implemented in a pipelined architecture where the different operations (state preparation,
excitation/spontaneous emission, waiting, re-cooling after failure) are performed in spa-
tially different zones, perhaps in analogy to that developed for quantum logic gates by
transport through a fixed laser beam [Lei+07; dCle+16]. In theory, one could reach entan-
glement attempt rates of many MHz like this, even over longer distances. The only limit
would be due to the ∼ 10 ns time scale of spontaneous emission typical for candidate op-
tical transitions in ion species of interest (without cavity enhancement), where increasing
the repetition rate further would necessarily reduce the probability of collecting any one
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Figure 8.2: Universal blind quantum computation using a photonic interface to a trapped ion processor
(illustrated in the graphical formalism of Coecke et al. [Coe10]): (a) The “brickwork” state [BKF10], uni-
versal as a resource state for measurement-based quantum computation with single-qubit 𝑥𝑦-plane mea-
surements (indicated by unfinished ticks). Qubits are initialised in |+⟩ = |𝜑(0)⟩, |𝜑(𝛼)⟩ = 1√2 (|0⟩ + e

i𝛼 |1⟩)
and entangled using cz in a two-dimensional pattern as indicated. The protocol can be blinded if the client
prepares the states in |𝜑(𝜃𝑘)⟩ instead (with the phases 𝜃𝑘 hidden from the server), who then carries out
the rest of the computation. (b) Fragment of a brickwork state used to implement an arbitrary single-qubit
rotation (Euler angles). (c) Fragment of a brickwork state used to implement a cnot gate. (d) Proposed
experiment using a 88Sr+–43Ca+ crystal. The photon measurement angles 𝜃𝑘 defining the initial phase of
the cluster state nodes are chosen by the client at random, the ion measurement angles 𝛿𝑘 communicated
to the server are based on the former and feed-forward corrections from previous steps (which can be ex-
changed in real-time due to the long 43Ca+ coherence times, avoiding postselection). {𝛿𝑘}𝑘 could be fixed
if the {𝜃𝑘}𝑘 are updated in real-time along the lines of ref. [MF13]. With the one 43Ca+ storage ion shown,
arbitrary single-qubit and 1-deep two-qubit gate circuits can be implemented this way. Measuring the pho-
ton along the 𝑍 axis instead creates a “trap qubit” which splits the cluster state (as used in verifiable blind
quantum computation).
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photon.The technical challenges of shuttling ions quickly without significant motional ex-
citation might also pose a limit in practice, though.

The integration of laser beam delivery into microfabricated ion trap chips using litho-
graphically defined waveguides and free-space couplers has recently seen considerable at-
tention [Meh+16; Meh+20; Moo+22]. Particularly for sensing or quantum networking
applications deployed in the field, such integration could already be interesting even for
relatively simple remote entanglement experiments. The use of on-chip waveguides could
potentially be extended to single photon collection and routing. Across larger ion trap
chips, optical connectivity could potentially offer greater connection rates than achiev-
able using shuttling (including the necessary cooling steps), though polarisation purity,
coupling efficiency, and coverage of the large solid angle necessary to obtain appreciable
coupling efficiencies will potentially present a challenge.

Whether for themodular design of a large-scale quantum information processor, or re-
mote communication or sensing applications, an extension to multiple quantum network
nodes (as recently demonstrated for three nodes in nv centres [Pom+21]) will be of consid-
erable interest. A direct connection to more than one node could be achieved by placing
photon connection optics on more than one side of the trap centre (e.g. up to six along
the cartesian coordinate axes), or more likely, through a single interface per site or node
combined with an optical switch matrix to dynamically reconfigure the links to provide
arbitrary long-range connectivity [DM10].





A Truncated multi-mode Fock space
formalism for few-photon interference

When describing the heralding station in a remote ion–ion entanglement experiment
(§4.4), we are interested in at most one photon from each ion, two in total, distributed
between up to eight different spatial/polarisation modes. They are all (potentially) dis-
tinguishable, and the detectors time-resolved, necessitating the time coordinates to be
accurately traced through the calculation as well. This makes it desirable to express these
calculations in such a way as to be amenable to computer-assisted manipulations. For the
analysis of photonic circuits in the quantum computing context, a number of advanced
algebraic approaches exist, some of which for instance represent operations as elements
of the symplectic group acting on a list of creation and annihilation operators [Arv+95;
TMM21]. However, these methods are mainly geared towards handling the complexity of
e.g. Gaussian states in continuous-variable quantum computing, and seem to be of little
use for the calculations of interest here. Instead, this chapter describes a “component-wise”
way to express the time-dependent ion–photon wavepacket calculations that can easily be
evaluated using virtually any symbolic or numerical computer systems, that is, without
having to explicitly define symbolic time-dependent annihilation and creation operators
and their commutation relations.

We first identify single-photon excitations of a single spatial/polarisation mode with
their temporal envelope function (in the notation of eq. (2.41), 𝐵†𝑛𝛱 |0⟩ with 𝛽). We drop
the requirement for normalisation, and consider the Hilbert space of such single-mode
excitations to be that of square-integrable functions 𝐿2ℂ(ℝ)with the natural scalar product
⟨𝑓, 𝑔⟩ = ∫∞−∞ 𝑓(𝑡)𝑔(𝑡) d𝑡. We write 𝒜𝑛𝛱 for this space in its role for excitations for the
mode 𝑛𝛱 (though they are of course all isomorphic). The full Fock space for an arbitrary
number of excitations in that mode would be given by 𝐹(𝒜𝑛𝛱) = ⨁∞𝑛=0 𝑆𝒜⊗𝑛𝑛𝛱 = ℂ⊕𝒜𝑛𝛱⊕
𝑆 (𝒜𝑛𝛱 ⊗𝒜𝑛𝛱) ⊕ 𝑆 (𝒜𝑛𝛱 ⊗𝒜𝑛𝛱 ⊗𝒜𝑛𝛱) ⊕ ⋯ (or, more precisely, the closure of the same),
where 𝑆 is the symmetrisation operator. The multi-mode Hilbert space would then in turn
be given by the tensor product of the single-mode Fock spaces,ℋ𝑃 = ⨂𝑛𝛱 𝐹(𝒜𝑛𝛱).

As we consider only up to two photons in the system (one from each ion, with the
apparatus preserving the photon number), we can truncate the full Hilbert space to the
components with no more than two excitations. For two modes 𝑛 ∈ {𝐴, 𝐵} and polari-
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sations𝛱 ∈ {𝐻,𝑉}, this two-excitation-truncated spaceℋ≤2𝑃 would be:

ℋ≤2𝑃 ≔ ℂ⏟
≕ℋ(0)𝑃 , zero photons

⊕ 𝒜𝐴𝐻 ⊕𝒜𝐴𝑉 ⊕𝒜𝐵𝐻 ⊕𝒜𝐵𝑉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ℋ(1)𝑃 , one photon

⊕

(𝒜𝐴𝐻 ⊗𝒜𝐴𝐻) ⊕ (𝒜𝐴𝐻 ⊗𝒜𝐴𝑉) ⊕ (𝒜𝐴𝐻 ⊗𝒜𝐵𝐻) ⊕ (𝒜𝐴𝐻 ⊗𝒜𝐵𝑉) ⊕ (𝒜𝐴𝑉 ⊗𝒜𝐴𝑉) ⊕
(𝒜𝐴𝑉 ⊗𝒜𝐵𝐻) ⊕ (𝒜𝐴𝑉 ⊗𝒜𝐵𝑉) ⊕ (𝒜𝐵𝐻 ⊗𝒜𝐵𝐻) ⊕ (𝒜𝐵𝐻 ⊗𝒜𝐵𝑉) ⊕ (𝒜𝐵𝑉 ⊗𝒜𝐵𝑉).⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≕ℋ(2)𝑃 , two photons

(A.1)

For notational uniformity throughout this treatment, we have elided the explicit symmetri-
sation operator for the two-photon subspaces 𝒜𝐴𝐻 ⊗ 𝒜𝐴𝐻,… (where there are two exci-
tations in the same mode); we will explicitly ensure that the states and measurements re-
main symmetric1. Expansion including additional modes (e.g. modes𝐶 and𝐷 in fig. 4.21)
would proceed much the same way.

The pure ion–photon input state from eq. (4.46) for system 𝑛 ∈ {𝐴, 𝐵} would then lie
in ℋ𝐼 ⊗ (𝒜𝑛𝐻 ⊕𝒜𝑛𝑉) ⊂ ℋ𝐼 ⊗ℋ≤2𝑃 , where ℋ𝐼 ≔ ℂ2 are the relevant ion qubit levels for
either of the ions. The support of the joint state of the two ion–photon systems, given by
the tensor product |𝜓𝐴𝐼𝑃⟩⊗ |𝜓𝐵𝐼𝑃⟩, is all ofℋ𝐼⊗2⊗ℋ(2)𝑃 . We will simply writeℋ for the state
space of the full system,ℋ ≔ℋ𝐼⊗2 ⊗ℋ≤2𝑃 .

Equation (A.1) suggests a straightforward “enumerated” representation of a state |𝜁⟩ ∈
ℋ≤𝑘𝑃 as a vector of complex-valued coefficient functions

(𝜁∅, 𝜁𝐴𝐻(𝑡), 𝜁𝐴𝑉(𝑡),… , 𝜁𝐴𝐻,𝐴𝐻(𝑡, 𝑡′), 𝜁𝐴𝐻,𝐴𝑉(𝑡, 𝑡′),…)𝑇, (A.2)

where the number of time parameters varies with the number of total excitations. Their
ordering requires an arbitrary choice; a natural convention is to order the entries lexi-
cographically in terms of their mode index tuples (𝑛𝛱, 𝑛′𝛱′,…), which are themselves
sorted lexicographically, and then to consider the time indices {𝑡, 𝑡′, 𝑡″,…} to always ap-
ply to those modes from left to right (note that the entries of the vector are the functions
themselves, not their values when evaluated at a particular time; the arguments were just
listed in eq. (A.2) for illustration). This is just a way to define one conventional order for
the commutative (under a canonical isomorphism) tensor product, and an order when
writing such entries in a vector; it is not, for instance, any statement about the bosonic na-
ture of the excitations. In general, we will just invoke the permutation symmetries when
determining the matrix representation for operators on this space, but not in the vector
space structure itself.

Both the “photonic part” of the input density operator 𝜏𝐴𝑖𝐴𝑗𝐴 ⊗ 𝜏𝐵𝑖𝐵𝑗𝐵 ∈ 𝒮 (ℋ≤2𝑃 ) from
eq. (4.48) and the unitary describing the action of the beamsplitter network𝑈𝑃 (restricted
to the excitation-number-truncated Hilbert space) are linear operators in End(ℋ≤2𝑃 ) ≅
ℋ≤2𝑃 ⊗ (ℋ≤2𝑃 )∗. As such, we can consider them as square matrices with each axis arranged

1As the input states to the beamsplitter network consist of only one-photon terms, this is trivial, and on
the output side, two photons in the same mode turn out not to be interesting anyway.
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in the same vein as in eq. (A.2). To keep track of the time parameters from the different
sides, we will use {𝑙, 𝑙′, 𝑙″,…} for the “left” parameters corresponding to creation oper-
ators/kets, {𝑟, 𝑟′, 𝑟″,…} for the “right” parameters corresponding to annihilation opera-
tors/bras. For instance, the element 𝜉𝐴𝐻,𝐵𝐻;𝐴𝑉(𝑙, 𝑙′; 𝑟) of a matrix 𝜉 would be the term
acting as ∫∞−∞ ∫

∞
−∞ ∫
∞
−∞ 𝜉𝐴𝐻,𝐵𝐻;𝐴𝑉(𝑙, 𝑙

′; 𝑟) 𝑏†𝐴𝐻(𝑙)𝑏†𝐵𝐻(𝑙′) |0⟩⟨0| 𝑏𝐴𝑉(𝑟) d𝑟d𝑙′d𝑙. Matrix multi-
plication is defined in the natural way as a pointwise product of functions where the “in-
ner” time parameters ({𝑟, 𝑟′,…} of the left operand, {𝑙, 𝑙′,…} of the right operand) are
matched and integrated over, leaving a function in the “outer” parameters ({𝑙, 𝑙′,…} of the
left operand, {𝑟, 𝑟′,…} of the right operand), matching what is anyway required by dimen-
sionality considerations. A column vector such as that from eq. (A.2), matching the usual
isomorphic interpretation as a 𝑘 × 1matrix, has only “left” time parameters.

A.1 Lifting of two-mode unitary operations

The action of a number of optical elements (beamsplitters, birefringent elements) on a
photonic state given in second quantisation can be expressed by substituting the creation
operators {𝑐†, 𝑑†} of the two involved modes according to a 2 × 2 unitary matrix 𝑈,

(𝑐
†

𝑑†) ↦ 𝑈
𝑇 (𝑐
†

𝑑†) , (A.3)

where the transpose ensures that 𝑈 is the same entry by entry as the unitary matrix giv-
ing the qubit operation in the one-excitation subspace of the participating two modes,
span {𝑐† |0⟩ , 𝑑† |0⟩}.

In the present context, the transformations act on a larger system with a number of
other “bystander” modes, and multiple excitations (here, up to two). We assume the trans-
formations to be stationary and sufficiently wavelength-independent such that they just
act on two same-time creation operators 𝑏†𝑛𝛱(𝑡) and 𝑏†𝑛′𝛱′(𝑡) independently of 𝑡. We can
then straightforwardly embed, or lift, the two-mode unitary matrix into the space of op-
erators on ℋ≤2𝑃 . We will denote this lifting process for two modes 𝑥 and 𝑦 (specified by
spatial mode and polarisation; 𝑥 ≠ 𝑦) as 𝒱𝑥↔𝑦 ∶ U(2) → End(ℋ≤2𝑃 ), 𝑈 ↦ 𝒱𝑥↔𝑦(𝑈). The
explicit form of the lifted matrix𝒱𝑥↔𝑦(𝑈) is easily derived by inserting a decomposition of
the identity onℋ≤2𝑃 on either side of𝒱𝑥↔𝑦(𝑈) and evaluating the resultingmatrix elements
using the canonical commutation relations and action on the vacuum state as usual. The
resulting matrix “factors into blocks” in the following sense:

Consider 𝑈 ∈ U(2) to be of the form

𝑈 = (𝛼 𝛽𝛾 𝜀) (A.4)

for coefficients 𝛼, 𝛽, 𝛾, 𝜀 ∈ ℂ, and assume without loss of generality that 𝑥 < 𝑦 in lexico-
graphic order (𝑈 can just be flipped otherwise). On the subspace ofℋ≤2𝑃 which contains no
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excitations in the modes 𝑥 or 𝑦, 𝒱𝑥↔𝑦(𝑈) acts as the identity, or in terms of the amplitude
functions, merely “forwards” the time arguments. The zero-photon term is 1, one-photon
terms are δ(𝑙− 𝑟), two-photon terms δ(𝑙− 𝑟)δ(𝑙′ −𝑟′), etc. For instance, if we take the trun-
cated four-mode space from eq. (A.1) and 𝑥 = 𝐴𝐻, 𝑦 = 𝐵𝐻, then these non-participating
terms are ℂ,𝒜𝐴𝑉,𝒜𝐵𝑉,𝒜𝐴𝑉 ⊗𝒜𝐴𝑉,𝒜𝐴𝑉 ⊗𝒜𝐵𝑉, and𝒜𝐵𝑉 ⊗𝒜𝐵𝑉.

For subspaces ofℋ≤2𝑃 containing one excitation in 𝑥 or 𝑦, 𝒱𝑥↔𝑦(𝑈) acts in the straight-
forward fashion by forming the linear combination between the respective terms with 𝑥
and those in𝑦 according to the elements of𝑈. For instance, thematrix elements of𝒱𝑥↔𝑦(𝑈)
restricted to𝒜𝑥 = 𝒜𝐴𝐻 and𝒜𝑦 = 𝒜𝐵𝐻 are just

(𝛼δ(𝑙 − 𝑟) 𝛽 δ(𝑙 − 𝑟)𝛾 δ(𝑙 − 𝑟) 𝜀 δ(𝑙 − 𝑟)) . (A.5)

Note that these are not the only termswithmatrix elements of this form. Generally, consid-
ering all the terms containing one of𝒜𝐴𝐻 or𝒜𝐵𝐻 we can collect them as𝒜𝐴𝐻⊗(ℂ⊕𝒜𝐴𝑉⊕
𝒜𝐵𝑉) and 𝒜𝐵𝐻 ⊗ (ℂ ⊕ 𝒜𝐴𝑉 ⊕ 𝒜𝐵𝑉), where 𝒱𝑥↔𝑦 then acts on each of the blocks transver-
sally like in eq. (A.5), carrying through any extra time parameters. In pulling the tensor
products to the front like this, we have identified𝒜𝐴𝐻 ≅ 𝒜𝐴𝐻 ⊗ℂ. We also have made use
of the commutative property of the tensor product, as e.g. distributing tensor product in
𝒜𝐵𝐻 yields𝒜𝐵𝐻 ⊗𝒜𝐴𝐻, contrary to the “canonical” lexicographic order. Such order swaps
will result in a corresponding permutation of time parameters, giving e.g. δ(𝑙 − 𝑟′)δ(𝑙′ − 𝑟)
factors.

Finally, we have subspaces containing two excitations of the modes 𝑥 and 𝑦. We chose
the cut-off in ℋ≤𝑘𝑃 at 𝑘 = 2, so these are the highest-order terms, which also only consist
of 𝒜𝐴𝐻 ⊗ 𝒜𝐴𝐻, 𝒜𝐴𝐻 ⊗ 𝒜𝐵𝐻 and 𝒜𝐵𝐻 ⊗ 𝒜𝐵𝐻. Restricted to those three elements, the
action of 𝒱𝑥↔𝑦(𝑈), resulting from the canonical commutation relations, is (writing δ⇉ ≔
δ(𝑙 − 𝑟)δ(𝑙′ − 𝑟′), δ⤮ ≔ δ(𝑙 − 𝑟′)δ(𝑙′ − 𝑟)):

(
𝛼2 δ⇉ 𝛼𝛽 δ⇉ 𝛽2 δ⇉
𝛼𝛾(δ⇉ + δ⤮) 𝛼𝜀 δ⇉ + 𝛽𝛾 δ⤮ 𝛽𝜀(δ⇉ + δ⤮)
𝛾2 δ⇉ 𝛾𝜀 δ⇉ 𝜀2 δ⇉

). (A.6)

For higher excitation number cutoffs, this would also apply across blocks with other by-
stander modes in the same fashion as illustrated for the one-excitation case here.

To complete the explicit example, the full matrix of 𝒱𝐴𝐻↔𝐵𝐻(𝑈) in the truncated four-
mode, two-excitation space from eq. (A.1) obtained by following the above prescriptions
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is2:

[[[[[[[[[[[[[[
[

1
𝛼δ(𝑙−𝑟) 0 𝛽δ(𝑙−𝑟) 0
0 δ(𝑙−𝑟) 0 0
𝛾δ(𝑙−𝑟) 0 𝜀δ(𝑙−𝑟) 0
0 0 0 δ(𝑙−𝑟)

𝛼2δ⇉ 0 𝛼𝛽δ⇉ 0 0 0 0 𝛽2δ⇉ 0 0
0 𝛼δ⇉ 0 0 0 𝛽δ⤮ 0 0 0 0

𝛼𝛾(δ⇉+δ⤮) 0 𝛼𝜀δ⇉+𝛽𝛾δ⤮ 0 0 0 0 𝛽𝜀(δ⇉+δ⤮) 0 0
0 0 0 𝛼δ⇉ 0 0 0 0 𝛽δ⇉ 0
0 0 0 0 δ⇉ 0 0 0 0 0
0 𝛾δ⤮ 0 0 0 𝜀δ⇉ 0 0 0 0
0 0 0 0 0 0 δ⇉ 0 0 0
𝛾2δ⇉ 0 𝛾𝜀δ⇉ 0 0 0 0 𝜀2δ⇉ 0 0
0 0 0 𝛾δ⇉ 0 0 0 0 𝜀δ⇉ 0
0 0 0 0 0 0 0 0 0 δ⇉

]]]]]]]]]]]]]]
]

.

Because the action of 𝑈 preserves the number of excitations, the off-diagonal blocks that
would mix states of different excitation numbers are all zero.

A.2 Ideal ion–photon input states

For two ideal ion–photon states according to eq. (4.46), which we assume to arrive aligned
in time (for simplicity, 𝛥𝑡𝐴 = 𝛥𝑡𝐵 = 0), the relevant non-zero coefficients for the truncated
Fock space representation 𝜉 of the photonic part 𝜏𝐴𝑖𝐴𝑗𝐴 ⊗ 𝜏𝐵𝑖𝐵𝑗𝐵 are all in the two-excitation
subspace (discarding the non-coupled parts as we will post-select on the presence of two
photons, as explained in §4.4.1), and are given by

𝜉𝐴𝑜𝐴,𝐵𝑜𝐵;𝐴𝑝𝐴,𝐵𝑝𝐵(𝑙, 𝑙′; 𝑟, 𝑟′) = 𝜌𝐴𝑖𝐴𝑗𝐴𝑜𝐴𝑝𝐴(𝑙, 𝑟) 𝜌𝐵𝑖𝐵𝑗𝐵𝑜𝐵𝑝𝐵(𝑙′, 𝑟′)

= 1
4
δ𝜋(𝑖𝐴)𝑜𝐴 δ𝜋(𝑗𝐴)𝑝𝐴 δ𝜋(𝑖𝐵)𝑜𝐵 δ𝜋(𝑗𝐵)𝑝𝐵 𝜙𝑖𝐴(𝑙) 𝜙𝑖𝐵(𝑙′) 𝜙𝑗𝐴(𝑟) 𝜙𝑗𝐵(𝑟′),

(A.7)

where the first equality is the generic expansion of the tensor product, andwe have inserted
the ideal states (4.46) for the second.

A.3 Timestamped photon detection operators

The last ingredient necessary to implement the post-selected state computation from
eq. (4.48) is the representation of the measurement operators in the truncated Fock space
formalism. This is straightforward:

2Recall that the elements of this matrix (or its equivalent for other sets of modes) are from the ring(s) of
amplitude functions, such that the element multiplication operation when taking a matrix–matrix product
consists of integrating over the “inner” time parameters.
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Detection of two photons in modes 𝑥, 𝑦 (for 𝑥 ≠ 𝑦) at times 𝑡 and 𝑡′ is given by the
povm element (𝜂det)2𝑏†𝑥(𝑡)𝑏†𝑦(𝑡′) |0⟩⟨0| 𝑏𝑦(𝑡′)𝑏𝑥(𝑡). Its matrix representation is simply the
matrix that has one non-zero element on the diagonal,

𝜉𝑥,𝑦;𝑥,𝑦(𝑙, 𝑙′; 𝑟, 𝑟′) = (𝜂det)2δ(𝑙 − 𝑡) δ(𝑙′ − 𝑡′) δ(𝑟 − 𝑡) δ(𝑟′ − 𝑡′), (A.8)

and is zero elsewhere. For the detection of two photons in the same mode 𝑥, the one
non-zero element acquires a second term with 𝑡 and 𝑡′ swapped as a result of the indistin-
guishability of the excitations:

𝜉𝑥,𝑥;𝑥,𝑥(𝑙, 𝑙′; 𝑟, 𝑟′) = (𝜂det)2(δ(𝑙 − 𝑡) δ(𝑙′ − 𝑡′) δ(𝑟 − 𝑡) δ(𝑟′ − 𝑡′) +

δ(𝑙 − 𝑡′) δ(𝑙′ − 𝑡) δ(𝑟 − 𝑡′) δ(𝑟′ − 𝑡)).
(A.9)

In the general case, the trace operator in eq. (4.48) is equivalent to a summation of the
diagonal entries of the truncated Fock space matrices, along with an integration over the
respective pairs of time parameters 𝑙 ↔ 𝑟, 𝑙′ ↔ 𝑟′, etc. However, note that if 𝐹 is a povm
operator of the form (A.8), multiplying by 𝐹 and taking the trace is equivalent to just eval-
uating the (𝑥, 𝑦; 𝑥, 𝑦) element for 𝑙 = 𝑟 = 𝑡, 𝑙′ = 𝑟′ = 𝑡′ (plus the swapped assignment
for the same mode according to eq. (A.9)). Similarly, for all the other integrations from
the matrix-matrix products, at least one of the functions is a linear combination of delta
functions. Thus, these only consist of a propagation of coefficients associated with func-
tion evaluation at given time parameters as well, and no integrations actually need to be
carried out for the evaluation of eq. (4.48), as expected from a theory where interactions
are instantaneous in time.

Evidently, systems of larger number of modes and operations will still preferentially be
manipulated using automated means. However, the formalism presented here provides a
straightforward way to implement the calculations in any standard numerical or symbolic
programming environment. The evaluation of any integrals is only necessary in situations
where they are intrinsic to the problem, e.g. when averaging over a range of possible photon
arrival times.



Glossary of notation, symbols and abbreviations

Mathematical notation
⋅ complex conjugation
⋅𝑇 transpose of a vector or matrix
⋅† Hermitian conjugate (conjugate transpose)
|⋅| absolute value; 2-norm of a vector in ℝ𝑛 or ℂ𝑛; cardinality of a set
‖⋅‖ general 2-norm of a vector, e.g. the 𝐿2-norm of a complex function
‖⋅‖1 1-norm (trace norm) of a linear operator (‖𝐴‖1 = tr√𝐴†𝐴)
⋅ scalar product of vectors; multiplication of numbers
× cross product of vectors; multiplication of numbers
̂⋅ Euclidean unit vector (linear operators are not adorned thusly)
⊗ tensor product
⊕ direct sum; addition modulo 2 of bits and bitstrings (xor)
|⋅⟩ , ⟨⋅| quantum state and associated 1-form in Dirac notation
⟨⋅⟩ average or expectation value of the given quantity
⟨⋅, ⋅⟩ inner product of two complex functions
[ ⋅ , ⋅ ] commutator of two operators ([𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎)
{ ⋅ , ⋅ } a two-element set (does not appear here in reference to an anticommutator)
ℂ complex numbers
ℝ real numbers
ℤ integers
ℕ positive integers
𝟙 identity operator
arg argument of a complex number (𝑧 = |𝑧|ei arg 𝑧)
Atan two-argument arctangent function (arg 𝑧 = Atan(im(𝑧) , re(𝑧)))
e Euler’s number, exponential function
i imaginary unit
re(⋅) real part of a complex number
im(⋅) imaginary part of a complex number
𝐽𝑘 Bessel function of the first kind
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224 glossary

O(⋅) “big O” Landau asymptotic notation
𝒮 (ℋ) bounded operators on a Hilbert spaceℋ
SO(𝑛) special orthogonal group in 𝑛 dimensions
span linear hull of a set of vectors
tr trace of linear operators
tr𝐵 partial trace eliminating subsystem 𝐵
U(𝑛) unitary group in 𝑛 dimensions
δ(𝑡), δ(𝒗) Dirac delta distribution (normalised to unity)
δ𝑚𝑛 Kronecker delta (1 if𝑚 = 𝑛, 0 otherwise)
Θ(𝑡) Heaviside unit step function (1 if 𝑡 ≥ 0, 0 otherwise)
𝒂, 𝒃,… vectors; messages from a two- or three-character alphabet (in chapter 7)
̂𝒓 normalised direction of 𝑟 ( ̂𝒓 = 𝒓/|𝑟|)
𝛻𝛷 gradient of a scalar field 𝛷
𝑯𝛷 Hessian matrix of a scalar field 𝛷
𝜵𝒗 gradient of a vector field 𝒗
𝜵 ⋅ 𝒗 divergence of a vector field 𝒗
c. c. complex conjugate
h. c. Hermitian conjugate

•

Commonly used symbols
𝑎†𝒌𝛱 plane-wave creation operator for angular wavevector 𝒌 and polarisation𝛱
𝑏†𝑛𝛱(𝑡) time-domain creation operator for beam mode 𝑛 and polarisation𝛱

(see §2.3.1)
𝒅𝑖𝑒 atomic dipole for the transition |𝑖⟩ ↔ |𝑒⟩
𝑒 elementary charge (𝑒 ≔ 1.602 176 634 × 10−19 C)
̂𝒆0, ̂𝒆1, ̂𝒆−1 spherical basis vectors
ℰ Bell-state error/infidelity (1 − ℱ)
ℱ fully entangled fraction (“Bell-state fidelity”, see §2.1.3)
𝑔𝑆 𝑔-factor of the electron (𝑔𝑆 ≈ 2.002319)
ℎ trap rf amplitude modulation index (in chapter 5);

binary entropy function (in chapter 7)
ℎ̃ rescaled trap rf amplitude modulation index (eq. (5.4))
ℏ reduced Planck constant (2𝜋ℏ ≔ 6.626 070 15 × 10−34 J/Hz)
ℋ Hilbert space of quantum states
𝐻 Hamiltonian describing a quantum system
𝐻(𝜌𝐴) von-Neumann entropy of the state 𝜌𝐴
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𝐻(𝐴)𝜌 alternative notation for𝐻(𝜌𝐴)
𝐻(𝐴|𝐵)𝜌 conditional entropy of system 𝐴 given 𝐵 for state 𝜌
𝒌 angular wavevector
𝑘 angular wavenumber
k𝐵 Boltzmann constant (k𝐵 ≔ 1.380 649 × 10−23 J/K)
ℒ likelihood function
𝑛 mean excitation number of a harmonic oscillator mode
⋅𝑠 superscript denoting system/mode in chapter 4 (𝑠 ∈ {𝐴, 𝐵} or {𝐴, 𝐵, 𝐶,𝐷})
𝒱𝑎↔𝑏(𝑈) unitary 𝑈 acting on modes 𝑎 and 𝑏 (see appendix A)
�̂�, ̂𝒚, ̂𝒛 Cartesian basis vectors
𝑍 ion charge, in units of 𝑒
𝜀0 permittivity of free space
𝜇0 permeability of free space
𝜇𝐵 Bohr magneton
𝛱 transversal polarisation index
𝜌𝐴𝐵 density matrix for a composite system with subsystems 𝐴 and 𝐵
𝜌∧𝑋 sub-normalised density matrix conditioned on event𝑋
𝜌|𝑋 normalised density matrix conditioned on event𝑋, 𝜌|𝑋 = 𝜌∧𝑋/ tr 𝜌∧𝑋
𝛷dc static potential in a Paul trap
𝛷rf amplitude of instantaneous oscillating potential in a Paul trap
𝛷rf pseudopotential describing the rf-induced confinement in a Paul trap
𝜙𝑖(𝑡) temporal envelope of photon wavepacket for decay to |𝑖⟩ (see eq. (4.3))
𝜔 winning probability of the chsh game (in chapter 7)
𝛺rf angular frequency of the oscillating field in a Paul trap
𝜔0 angular frequency of a secular mode of motion
𝜔am angular frequency at which the rf trap drive is modulated (in chapter 5)

•

Acronyms and abbreviations
ac alternating current (such as that of the electrical power grid)
aom acousto-optic modulator
apd avalanche photodiode
chsh Clauser–Horne–Shimony–Holt (authors of ref. [Cla+69])
cnot the conditional not quantum gate (𝟙 ⊕ 𝑋)
cptp completely positive and trace-preserving
cz the conditional 𝑍 quantum gate (𝟙 ⊕ 𝑍)
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dac digital-to-analogue converter
dc direct current (colloquially used to refer to static, non-oscillatory potentials)
dds direct-digital synthesis (a method for radio-frequency generation)
diqkd device-independent quantum key distribution
fpga field-programmable gate array
hf higher-frequency (… radial mode of motion of a single ion)
i.i.d independent and identically distributed
ip in-plane (parallel to the surface of a planar ion trap)
lf lower-frequency (… radial mode of motion of a single ion)
locc local operations and classical control
mems micro-electromechanical system
mle maximum-likelihood estimation
na numerical aperture
nv nitrogen vacancy (a type of optically active point defect in diamond)
oop out-of-plane (orthogonal to the surface of a planar ion trap)
pbs polarising beamsplitter
pc personal computer
pmt photomultiplier tube
povm positive operator-valued measure
qber quantum bit-error rate
qkd quantum key distribution
qrng quantum random number generator
rf radio frequency
ttl transistor–transistor logic (conventionally used to refer to a binary high/low

voltage signal)

•
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