
TPAMI SUBMISSION 1

AutoNet-Generated Deep Layer-Wise Convex
Networks for ECG Classification

Yanting Shen1∗, Lei Lu1,2∗, Tingting Zhu1, Xinshao Wang1, Lei Clifton3, Zhengming Chen3,
Robert Clarke3, and David A. Clifton1,4

Abstract—The design of neural networks typically involves trial-and-error, a time-consuming process for obtaining an optimal
architecture, even for experienced researchers. Additionally, it is widely accepted that loss functions of deep neural networks are
generally non-convex with respect to the parameters to be optimised. We propose the Layer-wise Convex Theorem to ensure that the
loss is convex with respect to the parameters of a given layer, achieved by constraining each layer to be an overdetermined system of
non-linear equations. Based on this theorem, we developed an end-to-end algorithm (the AutoNet) to automatically generate layer-wise
convex networks (LCNs) for any given training set. We then demonstrate the performance of the AutoNet-generated LCNs
(AutoNet-LCNs) compared to state-of-the-art models on three electrocardiogram (ECG) classification benchmark datasets, with further
validation on two non-ECG benchmark datasets for more general tasks. The AutoNet-LCN was able to find networks customised for
each dataset without manual fine-tuning under 2 GPU-hours, and the resulting networks outperformed the state-of-the-art models with
fewer than 5% parameters on all the above five benchmark datasets. The efficiency and robustness of the AutoNet-LCN markedly
reduce model discovery costs and enable efficient training of deep learning models in resource-constrained settings.

Index Terms—AutoML, deep learning, deep neural networks, neural architecture search, layer-wise convex networks,
electrocardiogram classification.

✦

1 INTRODUCTION

1 MAchine learning models have been increasingly used2

to analyze ECG signals, which are important clinical3

measurements for screening cardiovascular disease (CVD)4

[1], [2], [3]. Typically, convolutional neural networks (CNNs)5

[4], [5], residual blocks [3], [6], recurrent neural networks6

(RNNs) [7], [8], and transformer encoders [9], [10] are used7

as backbones to develop deep neural networks (DNNs) for8

feature extraction. Despite the remarkable performance of9

these deep learning models for ECG signal analysis, they are10

generally developed by trial-and-error, requiring substantial11

efforts and expertise in model design. Additionally, the12

randomness inherent in the training of neural networks13

due to random weight initialization, stochastic gradient14

estimation, and other sources of randomness makes model15

development particularly challenging [11], [12], as it is16

difficult to discern whether a change in performance is17

due to intervention (such as adding layers and changing18

hyperparameters) or due to randomness in training. Typi-19

cally, researchers would train a model using the same set20

of hyperparameters on several occasions before concluding21

• DAC was supported by the Pandemic Sciences Institute at the University
of Oxford; the National Institute for Health Research (NIHR) Oxford
Biomedical Research Centre (BRC); an NIHR Research Professorship;
a Royal Academy of Engineering Research Chair; the Wellcome Trust
funded VITAL project (217650/Z/19/Z); and the InnoHK Hong Kong
Centre for Centre for Cerebro-cardiovascular Engineering (COCHE).
(∗Yanting Shen and Lei Lu are the co-first authors of this work.)

• 1Department of Engineering Science, University of Oxford, UK.
• 2School of Life Course & Population Sciences, King’s College London,

London, UK.
• 3Nuffield Department of Population Health, University of Oxford, UK.
• 4Oxford Suzhou Centre for Advanced Research, Suzhou, China.
• Corresponding authors: Lei Lu, email: lei.lu@eng.ox.ac.uk; Xinshao Wang,

email: xinshaowang@gmail.com.

the benefits or hazards of an intervention. This process is 22

undesirable for large models whose training process may 23

take days or months. 24

There has been a growing interest in developing algorithmic 25

solutions for neural architecture search (NAS) recently [13], 26

[14], [15], [16]. NAS aims to introduce an efficient way to 27

automate the process of developing deep learning models, 28

putting an end to the trial-and-error practice of architecture 29

design. Generally, there are three key components in an NAS 30

framework: the architecture search space, module search 31

strategy, and performance evaluation strategy [15], [16]. The 32

core idea of NAS is to use a search strategy to find an 33

optimal network structure in the predefined search space 34

with limited computational cost [13], [14]. 35

Early studies of NAS mostly used heuristic algorithms to 36

drive the process of searching for architecture, such as 37

reinforcement learning (RL) [17], [18] and evolutionary al- 38

gorithms [19], [20]. These methods initially utilise a policy 39

network to generate candidate architectures and evaluate 40

them on a validation set. Then, the validation loss is used 41

as a reward to update the policy network and train it 42

to produce a more performant architecture [17], [18], [21]. 43

However, these search methods often became computation- 44

ally expensive, particularly when the task had a large search 45

space. Recent NAS approaches employ elaborate strategies 46

to speed up the search process, such as developing an 47

expressive search space that supports complex topologies 48

[19], integration of transfer learning and multi-objective evo- 49

lution [22], weight-sharing one-shot architecture search [16], 50

differentiable frameworks for block-wise architecture search 51

[23], and knowledge distillation and adaptive combination 52

of multiple searched networks [14]. 53

2 TPAMI SUBMISSION

NAS has demonstrated advancements in improving model1

performance across various applications, such as image2

processing [24], [25], semantic segmentation [26], [27], and3

object detection [28], [29]. Recent research also explores the4

use of NAS for healthcare applications, such as electroen-5

cephalography (EEG) data processing [30], muscle fatigue6

detection [31], cardiac abnormality diagnosis [32], and heart-7

beat classification [33]. Moreover, an NAS was developed8

by leveraging k-fold cross-validation, and the deep learning9

model was evaluated on data from the UCR archive [34].10

However, the development of NAS still faces significant11

limitations. Searching through every possible architecture,12

one of the most fundamental approaches of NAS, is com-13

putationally prohibitive, which requires vast resources and14

time. While algorithms like RL reduce the need for ex-15

haustive search, they use a defined space of operations,16

limiting the potential to discover more efficient or effective17

designs that fall outside the search space. Additionally, the18

majority of these search strategies are treated as a black-19

box optimisation problem [13], [14], [16], [21], [22], which20

necessitates a large number of architecture evaluations, and21

it is also challenging to explain why these approaches lead22

to model performance improvement.23

The development of automated ECG analysis is critical in24

cardiovascular medicine, where the ECG signal has been a25

long-standing source of valuable insights and cost-effective26

solutions for managing cardiovascular diseases (CVDs) [7],27

[8], [35]. Examples include using large sets of ECGs to28

develop deep learning models for predicting atrial fibrilla-29

tion [1], ventricular dysfunction [3], myocardial infarction30

[5], and heart failure [36], as well as assessing mortality31

risks [37]. While these studies have demonstrated promis-32

ing results for deep learning in ECG analysis, the models33

are typically designed empirically, relying on hand-crafted34

building blocks, which are highly sensitive to the choice of35

feature extractors. In this context, NAS offers the potential36

to create an optimal model that could improve healthcare37

outcomes and enable the generalisation of the model for38

diverse healthcare applications.39

In this work, we propose a novel NAS framework to gener-40

ate optimal deep learning models for automated ECG data41

analysis. In particular, we propose the Layer-Wise Convex42

Networks (LCNs) that enable us to search for optimal mod-43

els based on the characteristics of the training set. We begin44

by providing an overview of the core principles of deep45

learning, followed by the derivation of our proposed LCNs46

and a theorem with the same name. We then introduce47

AutoNet, a heuristic algorithm designed to automatically48

generate deep LCNs based on the characteristics of the49

training set. Finally, we demonstrate the performance of50

auto-generated LCNs by comparing them to the state-of-51

the-art deep learning model for ECG classification on three52

datasets: (i) International Conference on Biomedical Engi-53

neering and Biotechnology (ICBEB)1 Physiological Signal54

Challenge 2018, (ii) the PhysioNet Atrial Fibrillation De-55

tection Challenge 2017 [38], and (iii) the China Kadoorie56

Biobank (CKB)2. To assess the generalisation of our model,57

1. http://2018.icbeb.org/Challenge.html
2. https://www.ckbiobank.org/site/

we further validated the proposed AutoNet algorithm on 58

non-ECG datasets. 59

The contributions of this paper are: 60

• We propose an efficient AutoNet-LCN algorithm that 61

automatically determines the optimal architecture of 62

the deep neural networks for customised datasets 63

and applications. 64

• Instead of a vast search space for learnable param- 65

eters of deep learning models, our proposed LCN 66

theorem can reduce the search space of NAS to one 67

dimension. 68

• We provide compelling evidence to validate the ef- 69

fectiveness of our developed NAS in the relatively 70

unexplored yet highly essential realm of time-series 71

data analysis. 72

• This is the first time that an NAS framework has been 73

benchmarked on multiple healthcare datasets with 74

variations in data durations, signal-to-noise ratios, 75

number of classes, and sampling frequencies. 76

The remainder of this paper is organised as follows. Sec- 77

tion 2 describes the notations that are used for the model 78

developed. Section 3 presents our proposed LCN theorem, 79

and Section 4 develops the AutoNet algorithm for model 80

generation. Section 5 presents the experiments and their 81

results using three ECG datasets (ICBEB, PhysioNet, a pri- 82

vate dataset from CKB), and additional validation on two 83

non-ECG datasets. Section 6 discusses the strengths and 84

limitations of this study. Finally, conclusions are drawn in 85

Section 7. 86

2 NOTATIONS 87

Without loss of generality, we introduce the notations 88

through a K-class classification problem. Let X ∈ RD×m
89

denote the design matrix, where D is the dimension of the 90

feature vector, and m is the number of training examples. 91

Y ∈ RK×m represents the training targets, where K is 92

the number of classes. Let Ŷ represent the prediction of Y 93

given by an L-layer neural network. Then, each layer of the 94

network computes: 95

Z [l] = W [l]A[l−1] + b[l], (1)
96

A[l] = g[l](Z [l]), (2)

where, l = 0, 1, ..., L is the layer index, with 0 and L 97

representing the input and output layers, respectively. In 98

other words, A[0] = X , and A[L] = Ŷ . The matrix 99

A[l] ∈ Rn[l]×m is referred to as the activation or output of 100

layer l. The function g[l] typically denotes the non-linear 101

activation function of layer l. Z [l] ∈ Rn[l]×m represents 102

the affine transformation of the activations of layer l − 1. 103

The matrix W [l] ∈ Rn[l]×n[l−1]

denotes the weight matrix 104

connecting layer l − 1 to layer l in the forward pass, where 105

n[l−1] and n[l] represent the number of neurons in layers 106

l − 1 and l, respectively. b[l] ∈ Rn[l]

denotes the bias vector 107

of layer l. 108

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 3

n_w

n_h

n_c

f_h

f_w
f_c

f_h

f_w

n_f

f_c

Figure 1: The convolution operation of a filter

We illustrate the notations of CNNs in Fig. 1 and formulate1

the calculations in equations 3-5. Each of the small yellow2

patches in Fig. 1 is referred to as a kernel or filter.3

z11 = w111x111 + w121x121 + ...+ w333x333, (3)
4

z12 = w111x121+w121x131+w131x141+ ...+w333x343, (4)
5

zi′,j′ = b+

fc∑
k=1

fh∑
i=1

fw∑
j=1

wi,j,kx(i′−1)s+i,(j′−1)s+j,k, (5)

where, b represents the bias parameter, with one bias per6

filter by convention. c denotes the number of input channels,7

while fh and fw indicate the kernel’s height and width,8

respectively. w denotes the kernel weight, and x represents9

the element in the input tensor. s denotes the stride, and p10

represents the padding hyperparameter. It is worth noting11

that the input tensor and the filters must have the same12

number of channels.13

Let fh, fw, and fc denote the height, width, and number14

of channels of the filter, respectively. Then, the filter has15

fh × fw × fc weight parameters. The resulting tensor from16

the convolution operation, denoted as Z = zi′,j′ , is called17

a feature map. If we have nf filters, then we will have nf18

feature maps. Following the convention of having one bias19

parameter per filter, a convolutional layer with nf filters has20

nf×fh×fw×fc weights and nf bias parameters. The filters21

in CNN are equivalent to the neurons in feed-forward neural22

networks.23

In summary, if the dimension of input tensor to a convo-24

lutional layer is nh × nw × nc, the kernel dimension is25

fh × fw × fc, and there are nf filters, and we use the26

convention of one bias per filter, and pad p rows or columns27

on all edges, with stride s, and by convention fc = nc;28

Then, the output shape of such a convolutional layer is29

⌊1+ nh−fh+2p
s ⌋ × ⌊1+ nw−fw+2p

s ⌋ × nf , and the number of30

parameters (weights and biases) is nf × (fh × fw × fc + 1).31

3 LAYER-WISE CONVEX NETWORKS32

3.1 Motivation33

The Layer-Wise Convex Network (LCN) theorem is moti-34

vated by the rational and effective design of neural networks35

using the training dataset. A feed-forward neural network is36

essentially a computational graph where each layer can only37

“see” the layers directly connected to it, and has no way to38

tell whether its upstream layer is an input layer or a hidden39

layer. This “layer-unawareness” idea is similar to what is40

acknowledged in the development of batch normalisation 41

[39] and is the central idea of the LCN theorem. The LCN 42

approaches machine learning from function approximation 43

and information theory perspectives. 44

3.2 The Layer-Wise Convex Theorem 45

Theorem 1. For an L-layer feed-forward neural network, the 46

sufficient conditions for there existing a unique set of pa- 47

rameters W [l] and b[l] that minimises the Euclidean distance 48

|A[l] − g[l](W [l]A[l−1] + b[l])|2,∀l ∈ [1, L] are: 49

• n
[l]
W + n

[l]
b ≤ m, ∀l ∈ [0, L], where m is the number 50

of training examples, and n
[l]
W and n

[l]
b are the number of 51

weights and biases in layer l, respectively. 52

• The network does not have skip connections. 53

• All activation functions of the network are strictly mono- 54

tonic, but different layers may have different monotonicity. 55

For example, some layers can be strictly increasing, while 56

other layers can be strictly decreasing. 57

• All reverse functions of the activation functions are Lips- 58

chitz continuous. 59

Definition 3.1. Layer-Wise Convex Network: Any network 60

fulfilling Theorem 1 is called a Layer-Wise Convex Network 61

(LCN). 62

3.3 Sketch of Proof 63

Suppose we have a training set X ∈ RD×m with training 64

labels Y ∈ Rn, and there exists a deterministic data gener- 65

ating process f : X 7→ Y . Our aim is to approximate the 66

data generating process f using a neural network. The uni- 67

versal approximation theorem [40], [41] states that a feed- 68

forward neural network with a linear output and at least 69

one sufficiently wide hidden activation layer with a broad 70

class of activation functions, including sigmoid and piece- 71

wise linear functions [42], can approximate any continuous 72

function and its derivative defined on a closed and bounded 73

subset of Rn to arbitrary precision [43]. According to the 74

universal approximation theorem, there exists a set of neural 75

network parameters θ such that 76

|f − f(θ)| < ϵ, (6)

∀ϵ > 0. As the neural network computes a chain of func- 77

tions, if we can find θ, then we have the following equations: 78

|g[l](θ[l]Ã
[l−1]

)− Ã
[l]| < ϵ, (7)

79

A[0] = X, (8)
80

|A[L] − Y | < ϵ, (9)

where, l ∈ [0, L] is the layer index; Ã
[l] ∈ R(n[l]+1)×m and it 81

differs from A[l], as it has one dummy row of 1s to include 82

b into θ; in other words, Ã = [1;A]. To estimate θ, recall 83

an over-determined system of linear equations Ax = y 84

has a unique set of solutions that minimises the Euclidean 85

distance |Ax− y|2. This property also extends to nonlinear 86

equations, as long as the nonlinear activation g[l] is strictly 87

monotonic and its reverse function is Lipschitz continuous. 88

4 TPAMI SUBMISSION

Formally, a real function h is said to be Lipschitz continuous1

if one can find a positive real constant K such that2

|h(x1)− h(x2)| ≤ K|x1 − x2|, (10)

for any real x1 and x2 in the domain of h. Any function with3

a bounded gradient on its domain is Lipschitz continuous.4

As the inverse of a strictly monotonic function is defined5

and unique, we write the equivalent form of inequality (7)6

by taking inverse on both sides,7

g−1[l](Ã
[l]
− ϵ) < θ[l]Ã

[l−1]
< g−1[l](Ã

[l]
+ ϵ). (11)

Using Lipschitz continuity of g−1[l], we can find a positive
real constant K such that

g−1[l](Ã
[l]
)−Kϵ ≤ g−1[l](Ã

[l]
− ϵ) <

θ[l]Ã
[l−1]

< g−1[l](Ã
[l]
+ ϵ) ≤ g−1[l](Ã

[l]
) +Kϵ,

(12)

∀ϵ > 0, which implies8

|θ[l]Ã
[l−1]

− g−1(Ã
[l]
)| < Kϵ, (13)

9

lim
ϵ→0

θ[l]Ã
[l−1]

= g−1(Ã
[l]
). (14)

We showed the estimation of θ at the lth layer in equation10

(14), l = 1, 2, · · · , L, which uses Lipschitz continuity to11

transform the inequality (7) into a set of linear equations.12

It can be seen from equation (14) that, in an ideal case,13

there is a unique and optimal solution θ[l] for each layer14

l when the number of equations nθ is equal the number15

of training samples m. However, the condition is too harsh16

when designing neural networks, therefore, we generalise17

the constraint as the inequality (7); and if the system is18

overdetermined, i.e., nθ ≤ m, we can always find a set19

of parameters to minimise the Euclidean distance for the20

estimation. In practice, as shown in Section 4, we find21

the maximum number of parameters that are close to the22

number of training samples, which will make the solution23

have a sufficiently small error for the estimation.24

3.4 Relaxation of the LCN Constraints25

The strict monotonicity of activations and the no-skip con-26

nections are necessary to prove the uniqueness of the so-27

lution to the system of non-linear equations between each28

layer. However, the LCN theorem does not consider the29

problem of gradient vanishing for very deep neural net-30

works; therefore, the resulting architecture may theoretically31

have appropriate model capacity, but cannot be trained32

effectively. With this in mind, we relax the condition of no-33

skip connections, and allow for skip connections when the34

model is too deep to be trained effectively. We investigate35

the effectiveness of relaxing LCN constraints in Section 5.36

In addition, it is of interest to study whether the mono-37

tonicity condition of LCN can be relaxed and allows for38

non-strictly monotonic activation functions (e.g., ReLU).39

This would enable the application of the LCN theorem to40

a variety of neural networks. Therefore, we compare two41

variants of LCN, ReLU-LCN and Leaky-LCN in the Section42

5, where the hidden layer activations of ReLU-LCN are all43

ReLU, and the hidden layer activations of Leaky-LCN are 44

all leaky ReLU with α = 0.3, denoted as follows, 45

y =

{
x if x > 0,

αx if x ≤ 0.
(15)

4 AUTONET ALGORITHM FOR SEARCHING LCNS 46

We design the AutoNet algorithm that allows us to automat- 47

ically generate a layer-wise convex network with a given 48

dataset, outlined in Algorithms 1 and 2. 49

4.1 Timescale Hyperparameter for Sequential Inputs 50

In this study, we simply the process of designing neural 51

networks by using repeated feature learning blocks. For 52

example, each block of the stack convolutional layers is 53

followed by a max-pooling layer [1]. Then, the key question 54

of the estimation is how to calculate the number of repeated 55

blocks. We are motivated by the fact that many time-series 56

signals have the property of periodicity, informing that the 57

timescale of the period can be helpful for the model to learn 58

latent features from the periodic data. We therefore use the 59

term fsτ to estimate the repeated model blocks, where fs 60

is the sampling frequency, and τ is a timescale parameter 61

for the rough estimation of periodicity. Then, the number of 62

max-pooling layers is estimated as follows, 63

nmaxpool = ⌈logp(fsτ)⌉, (16)

For example, if the input time-series ECG data has a sam- 64

pling frequency of 500Hz , the timescale τ = 1s, and 65

p is the pooling size with a default value p = 2, then 66

we can calculate the number of max-pooling layers as 67

⌈log2(1 × 500)⌉ = 9. If the input signal is not apparently 68

periodic, we can set d = fsτ and roughly estimate the value 69

to be the length of the entire or half of input time-series data. 70

4.2 An Example of Generating the Baseline LCN Model 71

We present an example of using the LCN theorem to design 72

model architecture for the CKB dataset, which is a four-class 73

classification task. Each training example is a 12-lead ECG 74

time series with a 10s time duration and 500Hz sampling 75

frequency, thus the input dimension D of each training 76

example is 500 × 10 × 12 = 60, 000. According to the LCN 77

theorem, the number of parameters per layer should not 78

exceed the number of training samples (nsample = 6, 065). 79

Because D > m, if we use a feed-forward network, the 80

first layer will have at least D parameters, then we must 81

use weight-sharing mechanisms; Meanwhile, because we 82

are analysing time-series data, 1-D CNN is a natural choice. 83

In this work, we use 1-D CNN with the conventional pa- 84

rameter of nh = 1, and fh is also constrained to be 1. 85

We design the networks using repeated structures, ensuring 86

that all layers maintain the same output shape until the final 87

output layer. This repeated structure not only reduces the 88

number of hyperparameters but also mitigates the issues 89

of gradient vanishing or exploding [44]. It is recommended 90

to avoid adding fully connected layers between the last 91

convolutional layer and the output layer to prevent exceed- 92

ing the upper bound. The dimension of densely connected 93

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 5

layers has to be very small, which means that it will become1

“bottlenecks” in the flow of information. Therefore, we2

utilize only convolutional, pooling (for dimension reduc-3

tion), and softmax output layers. When using a CNN layer4

with kernel size k, stride s, padding p, and the number5

of filters nf , the output shape of the convolutional layer6

is (⌊ input dimension−k+2p+1
s ⌋, nf), and the number of pa-7

rameters for this layer is nf (knf + 1) (assuming multiple8

convolutional layers are stacked together). Since a stride9

s > 1 results in dimension reduction and empirically worse10

performance than max-pooling, we maintain s = 1. To keep11

the output shape identical to the input shape, we set the12

parameter as “same” padding, then we calculate k and nf13

as follows,14

k = nf = argmaxnf (n
2
f + 1), (17)

subject to15

nf (n
2
f + 1) ≤ m. (18)

We constrain k = nf to avoid k being unreasonably large16

for long signals with few channels.17

After calculating the hyperparameters k and nf , and ob-18

taining the number of max-pooling layers from equation19

(16), we are able to develop the baseline model (Fig. 2)20

for the CKB dataset. We stack convolutional layers between21

max-pooling layers for model generation. The number of22

convolutional layers stacked between max-pooling layers is23

a hyperparameter, denoted as nrepeat. The next step is to24

determine the depth of the deep neural networks. However,25

there is no guideline for calculating the optimal depth; the26

principle is that adding more layers should not harm the27

model performance.28

4.3 AutoNet for Deep Neural Network Generation29

We note that the width and depth of convolutional layers are30

two important hyperparameters in developing deep neural31

networks. In this study, we introduced the LCN Theorem to32

calculate the width of the neural networks, and proposed33

a hierarchical approach AutoNet (Algorithms 1 and 2) to34

search the depth of the model. Combining the two parts, the35

method allows us to automatically search the architecture36

of the deep LCNs. Particularly, in Algorithm 1, we calculate37

the width of the neural networks according to Theorem 1,38

and then generate a baseline model LCN; In Algorithm 2 we39

update the LCN model by increasing the value of nrepeat,40

and we track the losses of training and validation. The41

parameter nrepeat will stop increasing when neither of them42

decreases. Next, skip connections and batch normalisation43

will be added to the building blocks, which attempt to44

improve the gradient flow for model training. We describe45

our proposed AutoNet for the generation of deep neural46

networks with the following steps.47

4.3.1 Step One: Generate the Baseline Model48

The LCN model for ECG classification has only five hy-49

perparameters: nrepeat ∈ N, nmaxpool ∈ N, nf ∈ N,50

skip ∈ B (Boolean domain), and bn ∈ B, which can be51

determined by the training set and the AutoNet algorithm.52

nf is the number of filters of each convolutional layer,53

calculated according to the LCN theory using the number54

Algorithm 1: Build a LCN. See Fig. 3 for the
positions of convolutional, activation, batch nor-
malisation, and maxpooling layers.

Input: m, nchannel, nclass, nrepeat, skip, bn,
nmaxpool.

Output: model.
1 nf = argmaxnf

nf (n
2
f + 1) subject to

nf (n
2
f + 1) ≤ m.

2 add the input layer.
3 if bn then
4 add a batch normalisation layer.
5 end
6 add a convolutional layer, kernel size = nf ,

nfilters = nf .
7 if bn then
8 add a batch normalisation layer.
9 end

10 add a maxpooling layer, pooling size= 2.
11 for in range nmaxpool − 1 do
12 for in range nrepeat do
13 add a convolutional layer, kernel size = nf ,

nfilter = nf .
14 if skip then
15 connect the before-activation output of

every nmaxpool − 1 convolutional layers
by addition.

16 end
17 add an activation (ReLU or leaky ReLU)

layer.
18 if bn then
19 add a batchnorm layer.
20 end
21 end
22 add a maxpooling layer.
23 end
24 add a time-distributed softmax layer.

of whole training samples. The number of max-pooling 55

is determined by equation (16). The output layer of the 56

model is a time-distributed softmax layer, which classifies 57

the entire signal by majority voting. After calculating the 58

hyperparameters, the baseline LCN model is trained using 59

Algorithm 1 over mini-batches. The parameters skip and 60

bn are the “switches” indicating whether the network adds 61

skip connections and batch normalisation, respectively. 62

4.3.2 Step Two: Develop the Model 63

With the developed baseline LCN model, we use Algorithm 64

2 to generate the optimal deep neural networks for the 65

classification task, which is outlined as follows. 66

• Start with the baseline model, without batch 67

normalisation nor skip connection, i.e., bn = 68

FALSE, skip = FALSE, and nrepeat = 1. The 69

stopping criterion is no reduction in validation loss 70

for eight epochs. 71

• Increase nrepeat by one each time, until neither 72

the training loss nor the validation loss decreases, 73

then turn on skip connection and connect every 74

6 TPAMI SUBMISSION

nlead

input

c
c

c
c

c
c

c
c

c

in
pu
t

co
nv
+
ac
tiv
at
io
n

m
ax
po
ol
in
g

so
ft
m
ax

nclass

output

Figure 2: Baseline model architecture. The number of max-pooling layers is calculated by equation (16). Before each max-
pooling layer, the baseline model has one convolutional layer and one activation layer, which can be ReLU or Leaky
ReLU. When adding skip connections, the post-convolution (before activation) tensor is added to every nmaxpool − 1 post-
convolution tensor (see Fig. 3). When necessary, the batch normalisation layers are added after the input layer and each
activation layer.

+ +

co
nv

ac
tiv
at
io
n

B
N

m
ax
po
ol
in
g

Figure 3: The positions of convolutional, activation, batch normalisation, max-pooling layers, and the skip connection. The
illustrated network has a repeated structure of convolution-activation-BN, with nmaxpool = 9, nrepeat = 5. The max-pooling
layer is added after every nrepeat (5 in this example) batch normalisation layers. The element-wise addition is applied to
the output tensor of every nmaxpool − 1 (8 in this example) convolutional layers. For example, the output tensor of the first
convolutional layer is element-wisely added to the output tensor of the 9th convolutional layer, and the resulting tensor is
the input to the following activation layer, which is also used in the element-wise addition with the output tensor of the
17th convolutional layer.

nmaxpool − 1 layer by adding the post-convolution-1

before-activation tensors with the output tensor of2

nmaxpool − 1 convolutional layers (Fig. 3).3

• Increase nrepeat by one each time, until neither the4

training loss nor the validation loss decreases, then add5

batch normalisation after each activation layer.6

• Increase nrepeat by one each time until neither the7

training loss nor the validation loss decreases. The8

model which yields minimum validation loss is se-9

lected to be the “best” model.10

4.3.3 Step Three: Model Averaging11

We first train the identified “best” network architecture K12

times, yielding K models. Then, we calculate the average13

probability predictions provided by these K models to clas- 14

sify the case into the class with the highest mean probability, 15

i.e., 16

î = argmax
i

1

K

K∑
j=1

pij , (19)

where pij is the probability of i-th class predicted by the j-th 17

model. This step can be omitted if one is not reporting the 18

final results and intends to prototype quickly. 19

5 EXPERIMENTS AND RESULTS 20

We compare LCN models generated by our AutoNet with 21

Hannun-Rajpurkar’s ResNet model [1]. The latter has been 22

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 7

Algorithm 2: Develop the model using AutoNet.
This algorithm calls Algorithm 1 to build each
LCN, then train the model until early stopping
criteria is met. It tracks the minimum training loss
and the minimum validation loss during training
and compare them against the policy.

Input: m, nchannel, nclass, nrepeat, skip, bn,
nmaxpool, X , Y , model averaging,
fold = 10.

Output: best model.
1 batch size = 32, patience = 8, bn = False, skip =

False.
2 build a LCN model using Algorithm 1 and train it.
3 while min train loss or min validation loss declines

do
4 nrepeat = nrepeat + 1.
5 build a new LCN using Algorithm 1 and train it.
6 update min train loss and min validation loss.
7 end
8 skip =True.
9 while min train loss or min validation loss declines

do
10 nrepeat = nrepeat + 1.
11 build a new LCN using Algorithm 1 and train it.
12 update min train loss and min validation loss.
13 end
14 bn =True.
15 while min train loss or min validation loss declines

do
16 nrepeat = nrepeat + 1.
17 build a new LCN using Algorithm 1 and train it.
18 update min train loss and min validation loss.
19 end
20 best model = the model with min validation loss.
21 if model average then
22 train the best network fold times.
23 best model = the average ensemble of the fold

models.
24 end

demonstrated to exceed average cardiologist performance1

in classifying 12 rhythm classes on 91,232 recordings, and is2

regarded as the state-of-the-art.3

5.1 ECG Datasets4

5.1.1 ICBEB Dataset5

The publicly available training set of the International6

Conference on Biomedical Engineering and Biotechnology7

(ICBEB) 2018 challenge includes 12-lead 500Hz 5-143s ECG8

time-series waveform from 6,877 participants (3,178 female9

and 3,699 male). The dataset has nine classes. The primary10

evaluation criterion of the Challenge is the 9-class average11

F1 score, and the secondary evaluation criteria are F1 scores12

of sub-abnormal classes: FAF , FBlock, FPC , FST , which are13

calculated as follows [45],14

F1 =
1

9

9∑
i=1

2Nii∑9
j=1(Nij +Nji)

, (20)

15

FAF =
2N22∑9

j=1(N2j +Nj2)
, (21)

16

FBlock =
2
∑5

i=3 Nii∑5
i=3

∑9
j=1(Nij +Nji)

, (22)

17

FPC =
2
∑7

i=6 Nii∑7
i=6

∑9
j=1(Nij +Nji)

, (23)

18

FST =
2
∑9

i=8 Nii∑9
i=8

∑9
j=1(Nij +Nji)

. (24)

5.1.2 PhysioNet Dataset 19

The publicly available training set of the PhysioNet 2017 20

Atrial Fibrillation Detection Challenge [38] has 8,528 record- 21

ings of single-lead ECGs with a time duration of 9-60s and a 22

sampling rate of 300Hz. The dataset consists of four classes: 23

5,050 normal recordings, 738 atrial fibrillation recordings, 24

2,456 “other rhythms” recordings, and 284 noisy record- 25

ings, where the numbers are counted from the downloaded 26

dataset. 27

5.1.3 CKB Dataset 28

The China Kadoorie Biobank (CKB) [46] is publicly available 29

for bonafide researchers at http://www.ckbiobank.org/ 30

site/Data+Access. The standard 12-lead ECGs (10s duration, 31

sampled at 500Hz) were recorded for 24,959 participants. 32

After removing 113 participants with incomplete records, 33

the ECG records collected from the remaining 24,906 partic- 34

ipants were used to support this study. 35

5.2 Experiment Configuration 36

All LCN models were trained using Adam with default hy- 37

perparameters (β1 = 0.9, β2 = 0.999) and the default learn- 38

ing rate of 0.001. The Hannun-Rajpurkar model, as a bench- 39

marking approach, was trained using the authors’ origi- 40

nal implementation (https://github.com/awni/ecg) to en- 41

sure identical implementation. In brief, Hannun-Rajpurkar 42

model used Adam [47] with a learning rate scheduler that 43

decreases the learning rate after no improvement in the val- 44

idation loss for two epochs. All hyperparameters were kept 45

the same as described in the provided code [1]. All models 46

were trained using early stopping (parameter ”patience” = 8 47

epochs) with a maximum of 100 epochs for training [1]. All 48

experiments were performed on Ubuntu 18.04, CPU with 49

32G RAM, single Nvidia GeForce GTX 1080 GPU, Python 50

version 2.7.15, and Tensorflow version 1.8.0. 51

5.3 Experimental Validation on ECG Datasets 52

5.3.1 Validation on ICBEB Dataset 53

We divided the dataset into training, validation, and test sets 54

as shown in Fig. 4a. We constructed balanced datasets by 55

maintaining the same class distribution across all sets. Lack- 56

ing access to the hidden test set, we randomly sampled 50 57

examples from each class in the publicly available training 58

portion (n = 6, 877) to build a balanced test set (n = 450), 59

resulting in the same size and class distribution as the ICBEB 60

Challenge. Similarly, we sampled another 15 examples per 61

http://www.ckbiobank.org/site/Data+Access
http://www.ckbiobank.org/site/Data+Access
http://www.ckbiobank.org/site/Data+Access
https://github.com/awni/ecg

8 TPAMI SUBMISSION

(a) ICBEB.

(b) PhysioNet.

(c) CKB.

Figure 4: Training-Validation-Test Split of each dataset.

class to form a balanced validation set. We repeated the split1

and experiment five times. In each repeat, all models shared2

the same training, validation, and test sets.3

The samples were weighted by the inverse of their class ratio4

in the training set. For example, if class i has ni samples5

in the training set, then each sample of class i receives6 ∑
i ni

ni
weight during training. Since the pooling size is fixed7

for both the LCN and Hannun-Rajpurkar models during8

training, these models require the input signals to have9

the same number of data points. Ideally, the target length10

should be the maximum signal duration in the training set,11

i.e., 61s. However, due to memory constraints, we could12

only feed in signals with the duration of 37s. Therefore, the13

target length of signals for ICBEB is 37s. If the original signal14

is shorter than the target length, zeros are padded to the end15

of the signal. If the signal is longer than the target length, it16

is truncated at the end.17

In each repeat, AutoNet identifies the “best” ReLU-LCN18

model and the “best” Leaky-LCN model separately. The19

hyperparameter nf is calculated according to equations (17)20

and (18) with nf = 20. The nmaxpool is calculated as 921

according to equation (16) with fs = 500Hz, τ = 1s, p = 2.22

It took 1h 25min (5,095s) on average for the AutoNet to23

identify the best ReLU-LCN model, and 1h 55min (6,936s)24

to identify the best Leaky-LCN model. For ReLU-LCN,25

three out of five repeats converged at nrepeat = 5 with26

both skip connections and batch normalisation (Fig. 5a);27

one experiment converged at nrepeat = 6, with both skip28

connections and batch normalisation; and one experiment29

converged at nrepeat = 4, with both skip connections and30

batch normalisation (Table 3). For Leaky-LCN, four out31

of five repeats converged at nrepeat = 5, with both skip32

connections and batch normalisation, while the other repeat33

converged at nrepeat = 7, with both skip connections and34

batch normalisation.35

Model architectures and training characteristics of ReLU-36

Table 1: The architecture and training characteristics of
ReLU-LCN, Leaky-LCN, and the Hannun-Rajpurkar mod-
els on ICBEB. conv: convolutional layer; BN: batch normali-
sation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-Rajpurkar
Train size 6,427 6,427 6,427
Test size 450 450 450
Batch size 32 32 32

Parametric
layers

84 (41 conv,
42 BN, 1 TDS)

84 (41 conv,
42 BN, 1 TDS)

67 (33 conv,
33 BN, 1 TDS)

Parameters (%)* 239,596 (2.3) 239,596 (2.3) 10,473,322 (100)
Speed (s/epoch) 36 41 91
Total epoch 27 30 21
Runtime (s, %)* 955 (50.0) 1,248 (65.3) 1,911 (100)

* % relative to the Hannun-Rajpurkar model.

Table 2: Mean and standard deviation (SD), mean ± SD,
of the test F1 scores from five experiments by ReLU-LCN,
Leaky-LCN, and Hannun-Rajpurkar models on ICBEB. The
highest mean F1 score of each category is in bold font. No
model averaging was performed.

Training
size ReLU-LCN Leaky-LCN Hannun-Rajpurkar

N 868 64.1±3.8 64.8±6.0 69.8±4.4
AF 1,048 84.2±3.3 85.4±1.4 84.7±3.7
I-AVB 654 84.2±1.9 85.2±3.1 86.0±3.7
LBBB 1,57 89.1±1.7 88.7±2.4 88.0±2.0
RBBB 1,645 76.5±3.4 78.4±4.6 76.0±4.1
PAC 506 64.8±12.6 67.5±4.3 61.4±9.7
PVC 622 81.4±4.7 83.1±2.7 80.1±5.6
STD 775 68.1±6.9 76.2±5.1 78.9±4.7
STE 152 68.1±3.9 69.2±2.8 58.3±7.7
9-class F1 75.6±3.6 77.6±2.0 75.9±2.9
FAF 84.2±3.3 85.4±1.4 84.7±3.7
FBlock 83.3±2.1 84.1±2.1 83.0±2.3
FPC 72.0±9.3 75.0±3.1 70.7±7.1
FST 68.1±4.5 72.5±3.0 69.9±4.0

Table 3: The hyperparameters of the LCN models found on
the five ICBEB experiments. “+” indicates ”Yes”. The most
common architectures are in bold font.

Repeat ReLU-LCN Leaky-LCN

nrepeat skip bn nrepeat skip bn
1 5 + + 7 + +
2 6 + + 5 + +
3 4 + + 5 + +
4 5 + + 5 + +
5 5 + + 5 + +

LCN, Leaky-LCN, and the Hannun-Rajpurkar model are 37

shown in Table 1. The number of parametric layers rep- 38

resents the most frequently found architecture among the 39

five experiments, the speed (s/epoch) and total epochs are 40

the average values over the five experiments. The runtime 41

is calculated by equation (25). The identified “best” ar- 42

chitectures were identical for ReLU-LCN and Leaky-LCN, 43

both have only 2.3% parameters compared to the Hannun- 44

Rajpurkar model. Both ReLU-LCN and Leaky-LCN con- 45

verged to deeper architectures compared to the Hannun- 46

Rajpurkar model, supporting our hypothesis about the par- 47

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 9

17
50
0

12

input

18

gâteau 0

51
2

18

gâteau 1

25
6

18

gâteau 2

12
8

18

gâteau 3

64

18

gâteau 4

32

18

gâteau 5

16

18

gâteau 6

8

18

gâteau 7

4

18

gâteau 8

2

in
pu
t

B
N co

nv

m
ax
po
ol
in
g

so
ft
m
ax

10

output

(a) Auto-generated ReLU-LCN for ICBEB: nrepeat = 5, nmaxpool = 9, meaning there are a total of 9 max-pooling layers, and there
are five convolutional layers stacked between every two max-pooling layers. Batch normalisation is added after the input layer
and after each convolutional layer. The after-convolution tensor is added to every 8 subsequent after-convolutional tensors, which
are labelled in the figure. The output layer is a time-distributed 10-unit softmax layer, one unit for each of the nine classes and
one unit to indicate noise/zero paddings.

18
30
0

1

input

25
620

gâteau 0

12
8

20

gâteau 1

64
20

gâteau 2

32
20

gâteau 3

16
20

gâteau 4

8
20

gâteau 5

4
20

gâteau 6

2

20

gâteau 7

4

(b) The most commonly auto-generated Leaky-LCN for PhysioNet: nrepeat = 4, nmaxpool = 8, c = k = 20. A batch normalisation
layer (green) is added after the input layer and after every convolutional layer. A after-convolution tensor is added to every 7
subsequent after-convolution tensors.

50
0012

input

51
2

5000

gâteau 0

25
6

18

gâteau 1

12
8

18

gâteau 2

64
18

gâteau 3

32
18

gâteau 4

16
18

gâteau 5

8
18

gâteau 6

4
18

gâteau 7

2
18

gâteau 8

4

(c) Auto-generated network for CKB: nrepeat = 3, nmaxpool = 9, nf = k = 18. No batch normalisation nor skip connection was
needed. The output is a 4-unit time distributed softmax layer.

Figure 5: Visualisation of the auto-generated LCNs on three datasets. The activation can be ReLU or leaky ReLU, which
follows every convolutional layer, not shown in the figure to declutter the diagram. See Fig. 3 for magnified connection
structure.

10 TPAMI SUBMISSION

simony of LCN promoting deeper models.1

runtime =
1

5

5∑
i=1

total epoch× speed (25)

Both LCN models trained on each epoch faster than the2

Hannun-Rajpurkar model, although the latter converged3

after fewer epochs (Table 1). Both LCN models also have4

much shorter runtime compared to the Hannun-Rajpurkar5

model. Training speed depends on architecture, input signal6

length, and batch size. Longer signals and smaller batch7

sizes lead to slower training. Therefore, the runtime differ-8

ence between the LCN models and the Hannun-Rajpurkar9

model is less dramatic than the parameter comparison. On10

average, Leaky-LCN requires more runtime than ReLU-11

LCN, as the Leaky-LCN tends to find deeper models.12

Table 2 shows the testing accuracy F1 scores for the13

three models. Leaky-LCN has the highest mean value in14

most ECG classes, while ReLU-LCN performs similarly to15

Hannun-Rajpurkar in most cases. For sub-abnormal groups16

and the 9-class F1 score (used as the Challenge’s evaluation17

criteria), Leaky-LCN consistently outperforms the other two18

models. Surprisingly, all three models achieved their best19

performance in the LBBB class, even though LBBB is the20

second smallest class in the training set. This is likely due to21

the fact that LBBB has clear clinical ECG diagnosis criteria.22

The model performances did not show a strong correlation23

with the training size. For example, STE has a similar num-24

ber of training examples as LBBB but is poorly classified.25

This suggests that certain medical conditions, like STE, are26

inherently difficult for CNN-based architectures to classify27

from ECG, aligning with the clinical knowledge that some28

conditions lack definitive ECG characteristics.29

5.3.2 Validation on PhysioNet Dataset30

For the PhysioNet dataset, as shown in Fig. 4b, we randomly31

selected 30 samples (approximately 10% of the smallest32

class) from each class to build a balanced test set (n = 120),33

and another 25 samples (roughly 9% of the smallest class)34

from each class to build a balanced validation set, and the35

rest samples of the dataset were used for model training.36

The samples were weighted using the same procedure as37

described in section 5.3.1, and they were padded following38

the guidelines in Section 5.3.1.39

AutoNet identifies the “best” ReLU-LCN model and the40

“best” Leaky-LCN model separately in each repeat. The41

hyperparameter nf is calculated as nf = 20 according42

to equations (17) and (18). The nmaxpool is calculated as43

nmaxpool = 8 according to equation (16) with fs = 300Hz,44

τ = 1s, p = 2. It took 53 min (3203s) on average for the45

AutoNet to identify the best ReLU-LCN model, and 1h46

30min (5413s) to identify the best Leaky-LCN model. For47

ReLU-LCN, two out of five repeats converged at nrepeat = 248

without skip connections and batch normalisation (Table 6);49

One experiment converged at nrepeat = 2, with only skip50

connections and without batch normalisation; One experi-51

ment converged at nrepeat = 3, with both skip connections52

and batch normalisation; and the other repeat converged at53

nrepeat = 4 with only skip connections and without batch54

Table 4: The architecture and training characteristics of
ReLU-LCN, Leaky-LCN, and the Hannun-Rajpurkar model
on PhysioNet. conv: convolutional layer; BN: batch normal-
isation; TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-Rajpurkar
Training size 8,308 8,308 8,308
Test size 120 120 120
Batch size 32 32 32

Parametric
layers

16 (15 Conv,
1 TDS)

60 (29 conv,
30 BN, 1 TDS)

67 (33 conv,
33 BN, 1 TDS)

Parameters (%)* 112,784 (1.1) 226,226 (2.2) 104,661,48 (100)
Speed (s/epoch) 20.6 43.2 121
Total epoch 30 28 21
Runtime (s,%) 611 (23.6) 1,207 (46.6) 2,589 (100)

* % relative to the Hannun-Rajpurkar model.

Table 5: Mean and standard deviation (SD), mean ± SD,
of the test F1 scores in five experiments by ReLU-LCN,
Leaky-LCN, and Hannun-Rajpurkar models on PhysioNet.
The highest F1 score of each category is in bold font. No
model averaging was performed.

Training
size ReLU-LCN Leaky-LCN Hannun-Rajpurkar

AF 708 88.8±2.8 80.4±2.3 87.9±4.2
Normal 5,020 80.3±3.6 86.4±4.3 77.0±2.0
Other rhythms 2,426 72.3±7.7 79.5±3.7 74.6±3.8
Noise 254 87.9±4.3 72.4±4.6 74.7±6.1
F14 82.3±3.1 83.3±5.2 78.5±3.3
F13 80.5±3.6 79.5±1.5 79.8±2.6

Table 6: The hyperparameters of the LCN models found on
the five PhysioNet experiments. “+” indicates ”Yes”, and “-”
indicates “No”. The most common architectures are in bold
font.

Repeat ReLU-LCN Leaky-LCN

nrepeat skip bn nrepeat skip bn
1 3 + + 4 + +
2 4 + - 5 + -
3 2 + - 4 + +
4 2 - - 4 + +
5 2 - - 4 + +

normalisation. For Leaky-LCN, four out five repeats con- 55

verged at nrepeat = 4, with both skip connections and batch 56

normalisation (Fig. 5b), and the other repeat converged at 57

nrepeat = 5, with only skip connections and without batch 58

normalisation. 59

Model architectures and training characteristics of the three 60

models are shown in Table 4. The LCN models have no 61

more than 2.2% of the parameters than those of the Hannun- 62

Rajpurkar model. Similar conclusions are drawn regarding 63

runtime, total epochs, and training speed in the ICBEB and 64

PhysioNet experiments, suggesting the consistent perfor- 65

mance of the LCNs on different datasets. Table 5 shows 66

the test F1 scores of the three models. ReLU-LCN excels 67

at identifying atrial fibrillation and noise, while Leaky-LCN 68

outperforms other models in classifying normal and other 69

rhythms. Notably, all three models show no bias towards 70

larger classes, indicating the effectiveness of the sample 71

weighting mechanism. 72

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 11

Table 7: The architecture and training characteristics of
ReLU-LCN, Leaky-LCN, and the Hannun-Rajpurkar model
on CKB. conv: convolutional layer; BN: batch normalisation;
TDS: time distributed softmax.

ReLU-LCN Leaky-LCN Hannun-Rajpurkar
Training size 6,728 6,728 6,728
Test size 744 744 744
Batch size 32 32 32

Parametric
layers

10 (9 conv,
1 TDS)

10 (9 conv,
1 TDS)

67 (33 conv,
33BN, 1 TDS)

Parameters (%)* 50,782 (0.5) 50,7872 (0.5) 10,471,780 (100)
Speed (s/epoch) 4 5 34
Total epoch 24 20 13
Runtime (s, %)* 95 (21.5) 97 (22.0) 442 (100)

* % relative to the Hannun-Rajpurkar model.

Table 8: Mean and standard deviation (SD), mean ± SD,
of the test F1 scores on five experiments by ReLU-LCN,
Leaky-LCN, and Hannun-Rajpurkar models on CKB. The
highest F1 score of each category is in bold font. No model
averaging was performed.

Training
size ReLU-LCN Leaky-LCN Hannun-Rajpurkar

Arrhythmia 1,681 74.0±1.4 71.7±3.7 63.7±10.1
Hypertrophy 1,681 85.2±1.5 82.5±1.0 75.2±16.8
Ischemia 1,681 72.4±2.6 73.2±2.0 66.9±2.2
Normal 1,681 77.2±2.9 75.6±2.7 69.5±3.3
4-class F1 77.2±1.6 75.8±1.9 68.9±4.6

5.3.3 Validation on CKB Dataset1

For the CKB dataset, we constructed a balanced set of2

normal, arrhythmia, ischemia, and hypertrophy classes by3

randomly sampling 1,868 (the size of the smallest class)4

recordings from each of the four classes. The resulting set5

was then stratified into training, validation, and test sets,6

respectively (Fig. 4c). The sampling and split were repeated7

five times to generate the training, validation, and test8

sets. In each repeat, the training, validation, and test sets9

were shared among all models. The procedure for sample10

weighting is described in 5.3.1, and all signals in the CKB11

dataset have the same duration and sampling rate (10s,12

500Hz), thus there is no need for signal padding.13

The hyperparameter nf is calculated according to equations14

(17) and (18) with m = 6, 056, thus nf = 18. nmaxpool is15

calculated as 9 according to equation (16) with fs = 500Hz,16

τ = 1s, p = 2. It took approximately 7 min (427s) on average17

for the AutoNet to identify the best ReLU-LCN model,18

and 11 min (693s) to identify the best Leaky-LCN model.19

For ReLU-LCN, all five repeats converged at nrepeat = 120

without skip connections nor batch normalisation (Fig. 5c);21

for Leaky-LCN, three out of five repeats converged at22

nrepeat = 1, without skip connections nor batch normalisa-23

tion, while the other two repeats converged at nrepeat = 2,24

with only skip connections and without batch normalisation25

(Table 9).26

Model architectures and training characteristics of the three27

models are shown in the Table 7. Both LCN models con-28

verged at nine convolutional layers without the need of29

batch normalisation, with only 0.5% parameters and much30

Table 9: The hyperparameters of the LCN models found
on the five CKB experiments. “+” indicates ”Yes”, and “-”
indicates “No”. The most common architectures are in bold
font.

Repeat ReLU-LCN Leaky-LCN

nrepeat skip bn nrepeat skip bn
1 1 - - 2 + -
2 1 - - 1 - -
3 1 - - 2 + -
4 1 - - 1 - -
5 1 - - 1 - -

shorter runtime than the Hannun-Rajpurkar model. Table 8 31

shows the testing accuracy F1 scores for the three models. 32

LCN models outperformed the Hannun-Rajpurkar model in 33

all categories, with 8-16% improvement in performance de- 34

pending on the category and model. ReLU-LCN performed 35

best in most cases, except ischemia, while the difference 36

between ReLU-LCN and Leaky-LCN was not significant. 37

As both training and test sets are balanced, the performance 38

differences of the same model stems solely from the inherent 39

characteristics of the medical condition. Arrhythmia and 40

ischemia were more difficult than other classes for all three 41

models, while hypertrophy was the easiest pattern to be 42

identified. This agrees with the result in ICBEB (section 43

5.3.1) where LBBB was the best classified. This aligns with 44

the finding in Section 5.3.1 that LBBB was the easiest pattern 45

for identification. 46

5.4 Additional Validation on Non-ECG Datasets 47

Apart from validating our proposed AutoNet-LCN model 48

on the aforementioned three ECG datasets, we conducted 49

additional experiments on non-ECG datasets to further con- 50

firm the effectiveness of our model in broader classification 51

tasks. It’s worth noting the numerous of datasets avail- 52

able in the literature for benchmarking classification tasks. 53

Our proposed AutoNet-LCN primarily aims to enhance 54

the efficiency of developing an optimal model, particularly 55

in handling large datasets. In this study, we refrain from 56

considering small datasets (e.g., m < 100) for two reasons, 57

firstly, manually tuning models on samll datasets is cost- 58

prohibitive; and secondly, our AutoNet may compute model 59

kernels with reduced values for smaller datasets, potentially 60

restricting the model’s capacity for feature learning. 61

We retrieved the following datasets to validate our devel- 62

oped model, (i) Spoken Arabic Digits (SAD) 1, and (ii) Face 63

Detection (FD) 2. The SAD dataset comprises 6,599 training 64

samples and 2,199 testing samples for identifying 10 classes, 65

each with the dimension of 93 × 13 for length and width. 66

The FD dataset includes 5,890 training samples and 3,524 67

testing samples for 2 classes, with the dimension of 62 × 68

144 per sample. We either pad zeros or truncate signals to a 69

length of 64 data points and use equations (17) and (18) 70

to calculate the number of kernels for the AutoNet-LCN 71

model. The kernel size is determined as nf = 18, and the 72

1. http://www.timeseriesclassification.com/description.php?
Dataset=SpokenArabicDigits

2. https://www.timeseriesclassification.com/description.php?
Dataset=FaceDetection

http://www.timeseriesclassification.com/description.php?Dataset=SpokenArabicDigits
http://www.timeseriesclassification.com/description.php?Dataset=SpokenArabicDigits
https://www.timeseriesclassification.com/description.php?Dataset=FaceDetection
https://www.timeseriesclassification.com/description.php?Dataset=FaceDetection

12 TPAMI SUBMISSION

Table 10: Mean and standard deviation (SD), mean ± SD,
of the test F1 scores on five experiments by ReLU-LCN and
Leaky-LCN on SAD.

Class Training size ReLU-LCN Leaky-LCN
0 660 96.6 ± 1.3 98.8 ± 0.6
1 659 98.2 ± 1.2 99.0 ± 0.3
2 660 99.8 ± 0.3 99.7 ± 0.3
3 660 98.6 ± 0.9 99.4 ± 0.3
4 660 98.8 ± 1.0 98.5 ± 0.6
5 660 99.6 ± 0.3 99.6 ± 0.5
6 660 99.3 ± 1.1 99.8 ± 0.3
7 660 98.8 ± 0.9 99.6 ± 0.2
8 660 98.4 ± 1.0 98.5 ± 0.5
9 660 99.9 ± 0.1 99.6 ± 0.3

10-class F1 660 98.8 ± 0.3 99.3 ± 0.1

Table 11: Mean and standard deviation (SD), mean ± SD,
of the test F1 scores on five experiments by ReLU-LCN and
Leaky-LCN on FD.

Class Training size ReLU-LCN Leaky-LCN
Scramble 2,945 66.8±0.7 67.8±0.4

Face 2,945 66.7±0.8 67.7±0.5
2-class F1 66.8±0.6 67.7±0.2

Table 12: The hyperparameters of the LCN models found
on the five SAD experiments. “+” indicates ”Yes”. The most
common architectures are in bold font.

Repeat ReLU-LCN Leaky-LCN

nrepeat skip bn nrepeat skip bn
1 14 + + 9 + +
2 11 + + 8 + +
3 14 + + 9 + +
4 9 + + 14 + +
5 14 + + 14 + +

number of max-pooling layers is set to nmaxpool = 5 for1

both datasets. As illustrated in Figs. 6 and 7, we searched2

the optimal architectures for the two datasets using our3

proposed AutoNet algorithm.4

Tables 10 and 11 show the testing accuracy F1 scores for5

the generated AutoNet-LCN models on the SAD and FD6

datasets. The Leaky-LCN model has higher mean values7

of accuracies than the ReLU-LCN on the two datasets.8

However, both models have moderate performance on the9

FD experiments, highlighting the challenges of the classifi-10

cation task on the FD dataset. We show architectures of the11

generated models in Tables 12 and 13. Table 12 shows that12

both the ReLU-LCN and Leaky-LCN use skip connection13

and batch normalisation for model development. For ReLU-14

LCN, three out of five repeats converged at nrepeat = 14 on15

the SAD; for Leaky-LCN, two out of five repeats converge at16

nrepeat = 14 on the FD. In Table 13, both models mostly do17

not use skip connection and batch normalisation. For ReLU-18

LCN, four out of five repeats converged at nrepeat = 14; For19

Leaky-LCN, the models converged at around nrepeat = 3,20

suggesting the Leaky-LCN tends to learn deeper architec-21

tures than the ReLU-LCN.22

We also compared our developed AutoNet-LCN model with23

different types of machine learning models, including (i)24

six classical machine learning models, i.e., the dynamic25

time warping (DTW) model [48], XGBoost [49], Rocket26

Table 13: The hyperparameters of the LCN models found
on the five FD experiments. “+” indicates ”Yes”, and “-”
indicates “No”. The most common architectures are in bold
font.

Repeat ReLU-LCN Leaky-LCN

nrepeat skip bn nrepeat skip bn
1 2 - - 2 - -
2 1 - - 3 - -
3 1 - - 4 - -
4 1 - - 7 + +
5 1 - - 1 - -

[50], long short-term memory (LSTM) network [51], LSTNet 27

[52], and dilated CNN [53]; (ii) As Transformer [54] and 28

its variants have been demonstrated as powerful machine 29

learning models in recent years, we therefore compared our 30

AutoNet-LCN model with six transformer-based models, 31

including Transformer [54], Reformer [55], Informer [56], 32

Pyraformer [57], TimesNet [58], and FEDformer models [59]. 33

Table 14: Performance comparison between twelve different
machine learning models and AutoNet-LCN on the SAD
and FD datasets.

Models SAD Dataset FD Dataset
(Accuracy) (Accuracy)

Classical
models

DTW [48] 96.3 52.9
XGBoost [49] 69.6 63.3

Rocket [50] 71.2 64.7
LSTM [51] 31.9 57.7

LSTNet [52] 100 65.7
DilatedCNN [53] 95.6 52.8

Advanced
models

Transformer [54] 98.4 67.3
Pyraformer [57] 99.6 65.7
FEDformer [59] 100 66.0

Informer [56] 100 67.0
TimesNet [58] 99.0 68.6

Flowformer [60] 98.8 67.6
Our model AutoNet-LCN 99.3 67.7

Table 15: Parameters comparison between different machine
learning models and AutoNet-LCN on the SAD and FD
datasets.

Models SAD Dataset FD Dataset
(Parameters (%)∗) (Parameters (%)∗)

Advanced
models

Transformer [54] 522,250 469,378
Pyraformer [57] 785,514 526,306
FEDformer [59] 433,629 921,225

Informer [56] 725,393 672,521
TimesNet [58] 1,203,434 8,297,346

Flowformer [60] 6,780,426 6,475,266
Our model AutoNet-LCN 334,098 (4.93) 140,312 (1.69)

% relative to the model with the largest number of parameters.

We present the comparison results of classification perfor- 34

mance obtained using different machine learning models in 35

Table 14. The table indicates that our developed AutoNet- 36

LCN model achieves average F1 scores of 99.2% and 67.7% 37

on the two datasets respectively, outperforming five out 38

of six traditional machine learning models on SAD and 39

demonstrating superior performance compared to all six 40

models on FD. Notably, our AutoNet-LCN model achieves 41

performance comparable to transformer-based models. For 42

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 13

64

13

input

18

gâteau 0

64

18

gâteau 1

32

18

gâteau 2

16

18

gâteau 3

8

18

gâteau 4

4

10

output

in
pu
t

B
N co

nv

m
ax
po
ol
in
g

so
ft
m
ax

Conv0 Conv4 Conv12 Conv16 Conv28 Conv32 Conv40 Conv44 Conv52

Figure 6: The auto-generated Leaky-LCN for SAD: nrepeat = 14, nmaxpool = 5, c = k = 18. The AutoNet algorithm
searched the Leaky-LCN model with both max-pooling layer and no max-pooling layer for the skip connection.

64

144

input

18

gâteau 0

64

18

gâteau 1

32

18

gâteau 2

16

18

gâteau 3

8

18

gâteau 4

4

2

output

in
pu
t

co
nv

m
ax
po
ol
in
g

so
ft
m
ax

Figure 7: The auto-generated Leaky-LCN for FD: nrepeat = 4, nmaxpool = 5, c = k = 18. No batch normalisation nor skip
connection was needed. The output is a 2-unit time distributed softmax layer.

instance, Table 15 demonstrates that our AutoNet efficiently1

identifies optimal models with significantly fewer parame-2

ters compared to transformer-based models. In particular,3

our AutoNet-LCN models have only 4.93% and 1.69% of4

the parameters of the largest transformer-based models on5

the two datasets respectively, underscoring the efficiency of6

our proposed AutoNet in discovering optimal models for7

classification tasks.8

6 DISCUSSION9

One of the major contributions of this study is that our10

proposed LCN presents a novel paradigm to determine the11

hyperparameters of CNN. Central to the LCN theorem is the12

choice of nf and fw. In this study, the kernel size fw is set13

to be equal to nf . Theoretically, fw should be independently14

optimised to maximise the total number of parameters in15

each layer, subject to nf (nfk + 1) ≤ m. However, for long16

single-lead signals, such as those in PhysioNet, k would17

end up being unreasonably large (for example fw > 300).18

Thus, we kept fw to be the same as nf . This also implicitly19

expresses our view that the parameters in the kernels and 20

channel dimensions are not fundamentally different. 21

The resulting LCN in our study typically has less than 5% 22

of parameters than the state-of-the-art models, indicating 23

at least O(nθ) saving in memory and computational com- 24

plexity. The LCN may also make second-order algorithms 25

feasible, as many second-order models need O(n2
θ) (con- 26

jugate gradient descent, BFGS) or O(n3
θ) (Newton method) 27

complexity. If we optimise the parameters layer-by-layer, the 28

computational complexity will be further reduced to be less 29

than O(m2), where m is the number of training examples. 30

Our future work will focus investigating the behaviour of 31

convex optimisation in LCN networks. 32

This study uses multiple ECG datasets for experimental 33

validation, each presenting unique challenges. The ICBEB 34

dataset contains the most classes but has the fewest number 35

of training examples per class. The PhysioNet dataset ex- 36

hibits the highest ratio of noise and comprises only single- 37

lead ECGs. The CKB dataset has ECGs with the shortest 38

14 TPAMI SUBMISSION

signal duration. When comparing performance on test sets1

across the three datasets, the lowest performance was ob-2

served with the CKB dataset. This suggests that the bottle-3

neck of performance lies with the amount of information4

contained in each training example. It indicates that LCN5

can effectively utilise most of the training set. Furthermore,6

it is promising to observe that LCN performs well even7

with few training examples per class, which is often a8

limiting factor for deep learning models. Additionally, the9

simple sample weighting method effectively addresses class10

skewness, and the LCN models demonstrate minimal bias11

towards the larger classes.12

It is worth noting the advantages of machine learning mod-13

els with fewer parameters, such as reduced computational14

cost, and less model complexity, which in turn makes the15

model less sensitive to statistical fluctuation or noises in16

the input data. However, many neural networks in litera-17

ture are over-parametrised, and it is hypothesised that the18

over-parametrised model would generalise better than the19

under-parametrised model [61], [62]. In fact, our generated20

AutoNet-LCN models are also over-parametrised. We note21

that this study proposed a new concept of layer-wise convex22

networks to develop deep learning models. We constrained23

the number of parameters in each layer of the network,24

rather than enforcing the whole neural networks to be25

over-parameterised as pointed out in [62]. However, the26

neural networks generated using our proposed AutoNet27

are still over-parameterised, which is consistent with the28

implications that over-parameterisation in neural networks29

can be beneficial [61], [62].30

Our proposed LCN theorem was inspired by the “first31

principle” that each training example should contribute one32

“piece” of information to characterise one parameter in33

developing deep neural networks. Instead of formulating34

a black-box optimisation function as presented in many35

existing NAS frameworks [13], [14], [16], [21], [22], we36

leverage function approximation and information theory37

to introduce the LCN theorem. This theorem allows us to38

examine the relationships among the number of weights,39

biases, training data samples, activation functions, and the40

model architecture. Based on the LCN theorem, we devel-41

oped a NAS framework (AutoNet-LCN) comprising two42

algorithms (Algorithms 1 and 2). This framework enables43

automatic search for optimal (or near-optimal) deep neural44

networks, rather than relying on the cost-expensive trial-45

and-error process or exhaustive search as used in many NAS46

frameworks.47

We demonstrated the promising performance of our pro-48

posed NAS on three ECG datasets, and additionally evalu-49

ated its effectiveness on two non-ECG datasets. In all these50

experiments, our AutoNet-LCN model achieved superior or51

comparable performance to the state-of-the-art while having52

fewer model parameters. However, there is no universal53

approach to guide the design of deep learning models for54

arbitrary classification tasks, given the diversity in layer55

modules and optimization strategies. Furthermore, besides56

the experiments presented in this study, there are various57

types of datasets available for further validation [30], [31],58

[63]. This motivates us to further explore the potential of59

our proposed AutoNet-LCN model for broader tasks and 60

applications in our next step research. 61

In this study, we focused on searching for optimal deep neu- 62

ral networks with CNN as model backbone. We acknowl- 63

edge that transformer-based models have demonstrated 64

promising performance across various tasks in the literature 65

[54], [56], [57], [59], [64]. Although our proposed AutoNet- 66

LCN cannot be directly applied for parameter optimiza- 67

tion in these transformer-based models, the concept of our 68

proposed AutoNet algorithm, with performance monitoring 69

and adaptive building blocks, has the potential to improve 70

the performance of these transformer-based models. One 71

notable strength of our proposed AutoNet is its compu- 72

tational efficiency, with model training completing in less 73

than 2 hours. In contrast, transformer-based models often 74

have high computation costs. For instance, the HeartBEiT 75

model, with 86 million parameters for processing 5 or 10- 76

second ECGs, requires about 6 hours per epoch and around 77

2.5 months to train the model, which is impractical in 78

resource-limited settings [65]. Our future research will focus 79

on improving the performance of our AutoNet-LCN model 80

for regression tasks and utilising NAS for optimizing other 81

machine learning models, e.g., transformer-based models. 82

7 CONCLUSION 83

This work has a theoretical contribution to the neural ar- 84

chitecture search through the introduction of a novel Layer- 85

Wise Convex (LCN) Theorem. Applying our theory to the 86

practical task of ECG classification, we proposed a new 87

AutoNet algorithm for searching the optimal network. Val- 88

idated on five diverse datasets, our AutoNet demonstrates 89

its versatility by searching the optimal network architecture 90

customised for each dataset. Remarkably, these generated 91

architectures exhibit no more than 5% of the parameters 92

found in state-of-the-art machine learning models. This 93

research paves the way for efficient and effective method- 94

ologies on searching neural architectures for classification 95

tasks. 96

REFERENCES 97

[1] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, 98

M. P. Turakhia, and A. Y. Ng, “Cardiologist-level arrhythmia de- 99

tection and classification in ambulatory electrocardiograms using 100

a deep neural network,” Nature Medicine, vol. 25, no. 1, p. 65, 2019. 101

[2] L. Lu, T. Zhu, A. H. Ribeiro, L. Clifton, E. Zhao, J. Zhou, A. L. P. 102

Ribeiro, Y.-T. Zhang, and D. A. Clifton, “Decoding 2.3 million 103

ECGs: Interpretable deep learning for advancing cardiovascular 104

diagnosis and mortality risk stratification,” European Heart Journal 105

- Digital Health, 2024. 106

[3] A. H. Ribeiro, M. H. Ribeiro, G. M. Paixão, D. M. Oliveira, P. R. 107

Gomes, J. A. Canazart, M. P. Ferreira, C. R. Andersson, P. W. 108

Macfarlane, W. Meira Jr, et al., “Automatic diagnosis of the 12- 109

lead ECG using a deep neural network,” Nature Communications, 110

vol. 11, no. 1, p. 1760, 2020. 111

[4] R. Zhou, L. Lu, Z. Liu, T. Xiang, Z. Liang, D. A. Clifton, Y. Dong, 112

and Y.-T. Zhang, “Semi-supervised learning for multi-label cardio- 113

vascular diseases prediction: A multi-dataset study,” IEEE Trans- 114

actions on Pattern Analysis and Machine Intelligence, pp. 1–17, 2023. 115

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 15

[5] W. Li, Y. M. Tang, K. M. Yu, and S. To, “SLC-GAN: An automated1

myocardial infarction detection model based on generative adver-2

sarial networks and convolutional neural networks with single-3

lead electrocardiogram synthesis,” Information Sciences, vol. 589,4

pp. 738–750, 2022.5

[6] Z. Liu, T. Zhu, L. Lu, Y.-t. Zhang, and D. A. Clifton, “Intelligent6

electrocardiogram acquisition via ubiquitous photoplethysmogra-7

phy monitoring,” IEEE Journal of Biomedical and Health Informatics,8

2023.9

[7] T. Pokaprakarn, R. R. Kitzmiller, R. Moorman, D. E. Lake, A. K.10

Krishnamurthy, and M. R. Kosorok, “Sequence to sequence ECG11

cardiac rhythm classification using convolutional recurrent neural12

networks,” IEEE Journal of Biomedical and Health Informatics, vol. 26,13

no. 2, pp. 572–580, 2021.14

[8] G. Wang, C. Zhang, Y. Liu, H. Yang, D. Fu, H. Wang, and P. Zhang,15

“A global and updatable ECG beat classification system based16

on recurrent neural networks and active learning,” Information17

Sciences, vol. 501, pp. 523–542, 2019.18

[9] E. Eldele, M. Ragab, Z. Chen, M. Wu, C.-K. Kwoh, X. Li, and19

C. Guan, “Self-supervised contrastive representation learning for20

semi-supervised time-series classification,” IEEE Transactions on21

Pattern Analysis and Machine Intelligence, 2023.22

[10] W. Zhang, L. Yang, S. Geng, and S. Hong, “Self-supervised time se-23

ries representation learning via cross reconstruction transformer,”24

IEEE Transactions on Neural Networks and Learning Systems, 2023.25

[11] H. Maennel, I. M. Alabdulmohsin, I. O. Tolstikhin, R. Baldock,26

O. Bousquet, S. Gelly, and D. Keysers, “What do neural networks27

learn when trained with random labels?,” Advances in Neural28

Information Processing Systems, vol. 33, pp. 19693–19704, 2020.29

[12] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,30

M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya,31

et al., “A review of uncertainty quantification in deep learn-32

ing: Techniques, applications and challenges,” Information Fusion,33

vol. 76, pp. 243–297, 2021.34

[13] Y. Li, M. Dong, Y. Wang, and C. Xu, “Neural architecture search35

via proxy validation,” IEEE Transactions on Pattern Analysis and36

Machine Intelligence, vol. 45, no. 6, pp. 7595–7610, 2023.37

[14] Z. Chen, G. Qiu, P. Li, L. Zhu, X. Yang, and B. Sheng, “MNGNAS:38

Distilling adaptive combination of multiple searched networks for39

one-shot neural architecture search,” IEEE Transactions on Pattern40

Analysis and Machine Intelligence, pp. 1–20, 2023.41

[15] Z. Liu, H. Tang, S. Zhao, K. Shao, and S. Han, “PVNAS: 3D42

neural architecture search with point-voxel convolution,” IEEE43

Transactions on Pattern Analysis and Machine Intelligence, vol. 44,44

no. 11, pp. 8552–8568, 2022.45

[16] M. Zhang, H. Li, S. Pan, X. Chang, C. Zhou, Z. Ge, and S. Su, “One-46

shot neural architecture search: Maximising diversity to overcome47

catastrophic forgetting,” IEEE Transactions on Pattern Analysis and48

Machine Intelligence, vol. 43, no. 9, pp. 2921–2935, 2021.49

[17] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural net-50

work architectures using reinforcement learning,” in International51

Conference on Learning Representations, 2016.52

[18] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-53

wise neural network architecture generation,” in Proceedings of54

the IEEE Conference on Computer Vision and Pattern Recognition,55

pp. 2423–2432, 2018.56

[19] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and57

K. Kavukcuoglu, “Hierarchical representations for efficient58

architecture search,” in International Conference on Learning59

Representations, 2018.60

[20] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.61

Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in62

International Conference on Machine Learning, pp. 2902–2911, PMLR,63

2017.64

[21] R. Hosseini and P. Xie, “Saliency-aware neural architecture65

search,” Advances in Neural Information Processing Systems, vol. 35,66

pp. 14743–14757, 2022.67

[22] Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, and 68

V. N. Boddeti, “Neural architecture transfer,” IEEE Transactions on 69

Pattern Analysis and Machine Intelligence, vol. 43, no. 9, pp. 2971– 70

2989, 2021. 71

[23] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable archi- 72

tecture search,” in International Conference on Learning Representa- 73

tions, 2018. 74

[24] Y. Shen, Y. Li, J. Zheng, W. Zhang, P. Yao, J. Li, S. Yang, J. Liu, 75

and B. Cui, “ProxyBO: Accelerating neural architecture search via 76

bayesian optimization with zero-cost proxies,” in Proceedings of the 77

AAAI Conference on Artificial Intelligence, vol. 37, pp. 9792–9801, 78

2023. 79

[25] C. Peng, A. Myronenko, A. Hatamizadeh, V. Nath, M. M. R. 80

Siddiquee, Y. He, D. Xu, R. Chellappa, and D. Yang, “Hyper- 81

SegNAS: Bridging one-shot neural architecture search with 3D 82

medical image segmentation using hypernet,” in Proceedings of the 83

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 84

pp. 20741–20751, 2022. 85

[26] X. Zhang, H. Xu, H. Mo, J. Tan, C. Yang, L. Wang, and W. Ren, 86

“DCNAS: Densely connected neural architecture search for se- 87

mantic image segmentation,” in Proceedings of the IEEE/CVF Con- 88

ference on Computer Vision and Pattern Recognition, pp. 13956–13967, 89

2021. 90

[27] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and 91

L. Fei-Fei, “Auto-DeepLab: Hierarchical neural architecture search 92

for semantic image segmentation,” in Proceedings of the IEEE/CVF 93

Conference on Computer Vision and Pattern Recognition, pp. 82–92, 94

2019. 95

[28] L. Yao, H. Xu, W. Zhang, X. Liang, and Z. Li, “SM-NAS: Structural- 96

to-modular neural architecture search for object detection,” in 97

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 98

pp. 12661–12668, 2020. 99

[29] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun, “Det- 100

NAS: Backbone search for object detection,” Advances in Neural 101

Information Processing Systems, vol. 32, 2019. 102

[30] G. Kong, C. Li, H. Peng, Z. Han, and H. Qiao, “EEG-based sleep 103

stage classification via neural architecture search,” IEEE Trans- 104

actions on Neural Systems and Rehabilitation Engineering, vol. 31, 105

pp. 1075–1085, 2023. 106

[31] S. Wang, H. Tang, B. Wang, and J. Mo, “A novel approach to 107

detecting muscle fatigue based on sEMG by using neural archi- 108

tecture search framework,” IEEE Transactions on Neural Networks 109

and Learning Systems, 2021. 110

[32] Z. Liu, H. Wang, Y. Gao, and S. Shi, “Automatic attention learning 111

using neural architecture search for detection of cardiac abnor- 112

mality in 12-lead ECG,” IEEE Transactions on Instrumentation and 113

Measurement, vol. 70, pp. 1–12, 2021. 114

[33] J. Lv, Q. Ye, Y. Sun, J. Zhao, and J. Lv, “Heart-darts: classification 115

of heartbeats using differentiable architecture search,” in 2021 116

International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 117

IEEE, 2021. 118

[34] H. Rakhshani, H. I. Fawaz, L. Idoumghar, G. Forestier, J. Lepagnot, 119

J. Weber, M. Brévilliers, and P.-A. Muller, “Neural architecture 120

search for time series classification,” in 2020 International Joint 121

Conference on Neural Networks (IJCNN), pp. 1–8, IEEE, 2020. 122

[35] Y. Guan, Y. An, J. Xu, N. Liu, and J. Wang, “HA-ResNet: Residual 123

neural network with hidden attention for ECG arrhythmia de- 124

tection using two-dimensional signal,” IEEE/ACM Transactions on 125

Computational Biology and Bioinformatics, 2022. 126

[36] P. Bachtiger, C. F. Petri, F. E. Scott, S. R. Park, M. A. Kelshiker, H. K. 127

Sahemey, B. Dumea, R. Alquero, P. S. Padam, I. R. Hatrick, et al., 128

“Point-of-care screening for heart failure with reduced ejection 129

fraction using artificial intelligence during ECG-enabled stetho- 130

scope examination in London, UK: a prospective, observational, 131

multicentre study,” The Lancet Digital Health, vol. 4, no. 2, pp. e117– 132

e125, 2022. 133

16 TPAMI SUBMISSION

[37] E. M. Lima, A. H. Ribeiro, G. M. Paixão, M. H. Ribeiro, M. M.1

Pinto-Filho, P. R. Gomes, D. M. Oliveira, E. C. Sabino, B. B. Dun-2

can, L. Giatti, et al., “Deep neural network-estimated electrocar-3

diographic age as a mortality predictor,” Nature Communications,4

vol. 12, no. 1, p. 5117, 2021.5

[38] G. D. Clifford, C. Liu, B. Moody, L.-w. H. Lehman, I. Silva, Q. Li,6

A. Johnson, and R. G. Mark, “AF classification from a short single7

lead ECG recording: The physionet computing in cardiology chal-8

lenge 2017,” Proceedings of Computing in Cardiology, vol. 44, p. 1,9

2017.10

[39] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep11

network training by reducing internal covariate shift,” arXiv12

preprint arXiv:1502.03167, 2015.13

[40] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedfor-14

ward networks are universal approximators,” Neural Networks,15

vol. 2, no. 5, pp. 359–366, 1989.16

[41] G. Cybenko, “Approximation by superpositions of a sigmoidal17

function,” Mathematics of Control, Signals and Systems, vol. 2, no. 4,18

pp. 303–314, 1989.19

[42] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer20

feedforward networks with a nonpolynomial activation function21

can approximate any function,” Neural Networks, vol. 6, no. 6,22

pp. 861–867, 1993.23

[43] K. Hornik, M. Stinchcombe, and H. White, “Universal approxima-24

tion of an unknown mapping and its derivatives using multilayer25

feedforward networks,” Neural Networks, vol. 3, no. 5, pp. 551–560,26

1990.27

[44] B. Hanin, “Which neural net architectures give rise to exploding28

and vanishing gradients?,” Advances in neural information process-29

ing systems, vol. 31, 2018.30

[45] F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma,31

S. Wei, Z. He, et al., “An open access database for evaluating the32

algorithms of electrocardiogram rhythm and morphology abnor-33

mality detection,” Journal of Medical Imaging and Health Informatics,34

vol. 8, no. 7, pp. 1368–1373, 2018.35

[46] Z. Chen, J. Chen, R. Collins, Y. Guo, R. Peto, F. Wu, and L. Li,36

“China Kadoorie Biobank of 0.5 million people: survey methods,37

baseline characteristics and long-term follow-up,” International38

Journal of Epidemiology, vol. 40, no. 6, pp. 1652–1666, 2011.39

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-40

tion,” International Conference on Learning Representations, vol. 500,41

2015.42

[48] D. J. Berndt and J. Clifford, “Using dynamic time warping to43

find patterns in time series,” in Proceedings of the 3rd International44

Conference on Knowledge Discovery and Data Mining, pp. 359–370,45

1994.46

[49] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting47

system,” in Proceedings of the 22nd ACM SIGKDD Conference on48

Knowledge Discovery and Data Mining, pp. 785–794, 2016.49

[50] A. Dempster, F. Petitjean, and G. I. Webb, “ROCKET: exceptionally50

fast and accurate time series classification using random convolu-51

tional kernels,” Data Mining and Knowledge Discovery, vol. 34, no. 5,52

pp. 1454–1495, 2020.53

[51] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”54

Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.55

[52] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and56

short-term temporal patterns with deep neural networks,” in The57

41st international ACM SIGIR Conference on Research & Development58

in Information Retrieval, pp. 95–104, 2018.59

[53] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised scal-60

able representation learning for multivariate time series,” Advances61

in Neural Information Processing Systems, vol. 32, 2019.62

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.63

Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”64

Advances in Neural Information Processing Systems, vol. 30, 2017.65

[55] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient 66

transformer,” International Conference on Learning Representations, 67

2020. 68

[56] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and 69

W. Zhang, “Informer: Beyond efficient transformer for long se- 70

quence time-series forecasting,” in Proceedings of the AAAI Confer- 71

ence on Artificial Intelligence, vol. 35, pp. 11106–11115, 2021. 72

[57] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar, 73

“Pyraformer: Low-complexity pyramidal attention for long-range 74

time series modeling and forecasting,” in International Conference 75

on Learning Representations, 2021. 76

[58] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long, “TimesNet: 77

Temporal 2D-variation modeling for general time series analysis,” 78

in The Eleventh International Conference on Learning Representations, 79

2022. 80

[59] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “FEDformer: 81

Frequency enhanced decomposed transformer for long-term se- 82

ries forecasting,” in International Conference on Machine Learning, 83

pp. 27268–27286, 2022. 84

[60] H. Wu, J. Wu, J. Xu, J. Wang, and M. Long, “Flowformer: Lin- 85

earizing transformers with conservation flows,” in International 86

Conference on Machine Learning, pp. 24226–24242, PMLR, 2022. 87

[61] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern 88

machine-learning practice and the classical bias–variance trade- 89

off,” Proceedings of the National Academy of Sciences, vol. 116, no. 32, 90

pp. 15849–15854, 2019. 91

[62] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization 92

in overparameterized neural networks, going beyond two layers,” 93

Advances in Neural Information Processing Systems, vol. 32, 2019. 94

[63] J. Yan, L. Lu, D. Zhao, and G. Wang, “Diagnosis of bearing 95

incipient faults using fuzzy logic based methodology,” in 2010 96

Seventh International Conference on Fuzzy Systems and Knowledge 97

Discovery, vol. 3, pp. 1229–1233, IEEE, 2010. 98

[64] F. Liu, T. Zhu, X. Wu, B. Yang, C. You, C. Wang, L. Lu, Z. Liu, 99

Y. Zheng, X. Sun, et al., “A medical multimodal large language 100

model for future pandemics,” npj Digital Medicine, vol. 6, no. 1, 101

p. 226, 2023. 102

[65] A. Vaid, J. Jiang, A. Sawant, S. Lerakis, E. Argulian, Y. Ahuja, 103

J. Lampert, A. Charney, H. Greenspan, J. Narula, et al., “A foun- 104

dational vision transformer improves diagnostic performance for 105

electrocardiograms,” npj Digital Medicine, vol. 6, no. 1, p. 108, 2023. 106

Yanting Shen studied PhD in machine learning 107

at the Department of Engineering Science, Uni- 108

versity of Oxford, following B.Eng in biomedical 109

engineering from Peking University. Following 110

her graduation from Oxford, she held positions 111

as a Machine Learning Scientist at AIG and Se- 112

nior Data Scientist at Curve OS; Subsequently, 113

she joined JPMorgan Chase as a Data Scientist 114

Senior Associate, and now she is a Senior Ma- 115

chine Learning Engineer at Comcast NBCUni- 116

versal. Her interests include end-to-end machine 117

learning research and engineering in healthcare, finance, and media, as 118

well as LLM infrastructure for large-scale applications. 119

SHEN ET AL.: AUTONET-GENERATED DEEP LAYER-WISE CONVEX NETWORKS FOR ECG CLASSIFICATION 17

Lei Lu is a Lecturer in Health Data Science1

and AI at King’s College London, and a Vis-2

iting Research Fellow at University of Oxford.3

He obtained his PhD from the Harbin Institute4

of Technology in China, complemented by two-5

year visiting research at the University of British6

Columbia in Canada. Lei had his postdoctoral7

research at the University of Melbourne in Aus-8

tralia, then he joined the Institute of Biomedical9

Engineering at University of Oxford as a Senior10

Research Associate. Lei’s work focuses on clin-11

ical machine learning and computational informatics. He received the12

IET J.A. Lodge award in 2021, which presents to one early-career13

researcher annually with distinction.14

Tingting Zhu received the B.Sc. degree in elec-15

trical engineering from the University of Malta,16

the M.Sc. degree in biomedical engineering from17

the University College London, and the D.Phil.18

degree in information engineering and biomed-19

ical engineering from the University of Oxford,20

in 2016. She is currently an Associate Profes-21

sor at the Department of Engineering Science,22

University of Oxford. Her research interests in-23

clude investigating the development of machine24

learning for understanding complex patient data,25

with a special emphasis on Bayesian inference, deep learning, and26

applications involving the developing world.27

Xinshao Wang is a principal ML researcher of28

Terminal Industries, working on advancing and29

customising multi-modal large vision-language30

models and autoregressive generative models.31

He was a senior ML researcher of Zenith Ai and32

a visiting scholar of University of Oxford. He was33

a postdoctoral researcher at the Department of34

Engineering Science, University of Oxford after35

finishing his PhD at the Queens University of36

Belfast, UK. Xinshao Wang has been working on37

core deep learning techniques with applications38

to computer vision, natural language processing, disease prediction39

based on electronic health records, and protein engineering. Concretely,40

he has been working on the following research topics: (1) Deep metric41

learning: to learn discriminative and robust representations for diverse42

downstream tasks, e.g., object retrieval and clustering; (2) Robust43

deep learning: robust learning and inference under adverse conditions,44

e.g., noisy labels, missing labels (semi-supervised learning), out-of-45

distribution training examples, sample imbalance, etc; (3) Computer46

vision: video/set-based person re-identification; image/video classifica-47

tion/retrieval/clustering; object detection and recognition; image synthe-48

sis and generation; (4) AI healthcare: electrocardiogram classification;49

(5) ML-assisted gene and protein engineering; (6) advancing and cus-50

tomising multi-modal large vision-language models and autoregressive51

generative models.52

53

Lei Clifton is currently the team leader and54

principal medical statistician of the Translational55

Epidemiology Unit, Nuffield Department of Pop-56

ulation Health, Oxford University. She holds a57

PhD in Statistical Machine Learning from the58

University of Manchester, after completing her59

BSc and MSc degrees in Electrical Engineering60

at the Beijing Institute of Technology. Lei’s re-61

search interest is at the intersection of machine62

learning and medical statistics, for both non-63

communicable and infectious diseases.64

65

Zhengming Chen is a Professor qualified in 66

medicine at Shanghai Medical University in 1983 67

(now Fudan University), and gained his DPhil 68

in Epidemiology at the University of Oxford in 69

1993. He was appointed as Professor of Epi- 70

demiology by the University of Oxford in 2006. 71

He is now the Director of the China Programs 72

at the Oxford University’s Clinical Trial Service 73

Unit and Epidemiological Studies Unit (CTSU) 74

and co-executive director of the China Oxford 75

Centre for International Health Research. His 76

main researches focus on the environmental and genetic causes of 77

chronic disease, evidence-based medicine and evaluation of widely 78

practicable treatments for chronic diseases (such as IHD, stroke and 79

cancer) as well as efficient strategies for chronic disease control in 80

developing countries. Over the past 20 years, he has led several large 81

randomised trials in heart disease (eg, COMMIT/CCS-2), stroke (eg, 82

CAST) and cancer and 3 cohort studies involving >750,000 individuals. 83

Since 2003 he has been the lead principal investigator in the UK for the 84

China Kadoorie Biobank (CKB) prospective study of 0.5 million adults. 85

He leads a research team in Oxford which is responsible for study 86

design and development of procedures and IT systems for the CKB, 87

and for central data management, curation and detailed analyses. He 88

is an honorary professor of Peking Union Medical College and Fudan 89

University in China. 90

Robert Clarke is an Emeritus Professor of Epi- 91

demiology and Public Health Medicine at the 92

Clinical Trial Service Unit and Epidemiological 93

Studies Unit (CTSU), Honorary Consultant in 94

Public Health Medicine and Scientific Director of 95

the MSc in Global Health Science and Epidemi- 96

ology. He qualified in clinical medicine in Ireland 97

and worked for five years in internal medicine 98

and four years in cardiology. After two years in 99

clinical pharmacology at Vanderbilt University, 100

Nashville, USA, he joined CTSU in 1991 and 101

specialised in cardiovascular epidemiology. Over the last three decades 102

in CTSU, his research work has focussed on understanding the causes 103

of stroke and heart disease (ischaemic heart disease and heart failure) 104

in prospective studies, including the China Kadoorie Biobank (CKB). His 105

research work in CKB includes studies of the diagnostic accuracy, prog- 106

nosis, treatment, risk prediction and evaluation of genetic and plasma 107

biomarkers for stroke types and ischaemic heart disease and heart 108

failure in CKB and related studies in the department and international 109

consortia. 110

111

David Clifton is Royal Academy of Engineering 112

Chair of Clinical Machine Learning, NIHR Re- 113

search Professor, and leads the Computational 114

Health Informatics Lab in the Department of En- 115

gineering Science at the University of Oxford. He 116

is Official Fellow in AI & ML at Reuben College, 117

Oxford, Research Fellow of the Royal Academy 118

of Engineering, and Fellow of Fudan University, 119

China. 120

121

	Introduction
	Notations
	Layer-Wise Convex Networks
	Motivation
	The Layer-Wise Convex Theorem
	Sketch of Proof
	Relaxation of the LCN Constraints

	AutoNet Algorithm for Searching LCNs
	Timescale Hyperparameter for Sequential Inputs
	An Example of Generating the Baseline LCN Model
	AutoNet for Deep Neural Network Generation
	Step One: Generate the Baseline Model
	Step Two: Develop the Model
	Step Three: Model Averaging

	Experiments and Results
	ECG Datasets
	 ICBEB Dataset
	PhysioNet Dataset
	 CKB Dataset

	Experiment Configuration
	Experimental Validation on ECG Datasets
	Validation on ICBEB Dataset
	Validation on PhysioNet Dataset
	Validation on CKB Dataset

	Additional Validation on Non-ECG Datasets

	Discussion
	Conclusion
	References
	Biographies
	Yanting Shen
	Lei Lu
	Tingting Zhu
	Xinshao Wang
	Lei Clifton
	Zhengming Chen
	Robert Clarke
	David Clifton

