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Urban flood Occurrence
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Research gaps for forecasting the water level in Urban Drainage Systems (UDS)

❖Water Level forecasting (depth): Inaccuracy high for more than 90 min. ahead

❖Classification forecasting (flood or non-flood): Inaccuracy high for more than 120 min. 

❖Lack of proper addressing time-series real-time operation

Research aim

Novel multi-stacking model integrating different decision tree frameworks by developing

various weak learner data mining techniques and associated model performance indicators in

the process of time-series blending of pre-trained stacked ensemble models.

Gaps & Aims
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 Key:  

State 
 Captured data 

 Rainfall intensity  Water depth  

(S1): Dry weather, non-flood event  (R1): -   (W1): - 

(S2): Sudden rising flow, non-flood event  (R1): -  (W2): + 

(S3): Ineffective precipitation, non-flood event   (R2): +  (W1): - 

(S4): Flood event  (R2): +  (W2): + 

-: No rainfall, no change for water depth       

+: Rainfall, net change (increase or decrease) for water depth  

 
“The Role of Event Identification in Translating Performance Assessment of Time-Series Real-Time Urban Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., 15th UWL Doctorial Conference, London, UK, 2021.

Event Identification Method
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Group feature 
 Extracted 

rainfall feature 

 
Description  

Transformation 

key 
 Unit/class 

Current rainfall 

characteristics 

 Duration  Time period of between the onset and end of the 

precipitation 

 Numerical  min 

 Depth   Maximum water depth if all rainfall cumulated in 

saturated impervious surface 

 Numerical  mm 

 Intensity   The ratio of total depth to the duration  Numerical  mm/hr 

 Peak depth   Maximum rainfall intensity  Numerical  mm 

Antecedent 

precipitation history 

 Occurrence  Previous rainfall occurred until maximum previous 

period equalled to time of concentration 

 Binary  0:No 

1:Yes 

 Average 

intensity 

 The average rainfall intensity of previous rainfall 

occurred until maximum previous period equalled to 

time of concentration 

 Numerical  mm/hr 

Time 

 occurrence 

 Season  A different class of humid temperate climate  Class  1:Dry 

2:Mild 

3:Rainy 

 Long-term 

similarity 

 Average of past 10 years' rainfall intensity for a 

similar duration of current event  

 Numerical  mm/hr 

 

Rainfall feature extraction

6



❖ Discriminant analysis (DA)

❖ Decision tree (DT)

❖ Gaussian process regression (GPR)

❖ K-nearest neighbourhood (KNN)

❖ Naive bayes (NB) 

❖ Supervised vector machine (SVM) 

Developing base models
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Developing base models
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Table 2. Selected key performance indicators used for performance assessment of WLDMs  1 

Code  Description  Formula 

TPR  Model sensitivity in recalling actual flood condition, i.e., accuracy of flood 

class 

 TP

TP+FN
 × 100  

TNR  Model specificity in selecting actual non-flood condition, i.e., accuracy of non-

flood class 

 TN

TN+FP
 × 100   

ACC  Probability in that the model forecasting is correct, i.e., interested in forecasting 

the right classes without caring about the type of the class or class distribution 

 TP+TN

n
 × 100   

MCC  Highlighting correlation and agreement between observed and predicted classes  TP×TN−FP×FN

 (TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
  

DP  Determining the likelihood of correct flood and non-flood conditions   3

𝜋
× [log(

𝑇𝑃𝑅

1−𝑇𝑁𝑅
) + log(

𝑇𝑁𝑅

1−𝑇𝑃𝑅
)]  

F1 

score 

 Revealing the best trade-off between overflow and not-flood forecasting by 

interpretation as a weighted average between PPV and TPR 

 2×TPR×PPV

TPR+PPV
  

CKR  Measuring the concordance between ACC, TPR, and TNR  ACC−[TPR×(1−TPR)+TNR×(1−TNR)]

1−[TPR× 1−TPR +TNR× 1−TPR ]
  

 

ACC: ACCuracy of true classification CKR: Cohen’s Kappa Rate DP: Discriminant Power F1-score: Harmonic mean 

MCC: Matthews Correlation Coefficient PPV: Positive Predictive Value TNR: True Negative Rate TPR: Total Positive Rate 
 2 
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Structure of performance data cube 
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Developing multi-staked ensemble models
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Geographical map and hydrological data of the pilot study: (a) location of stations and layout of catchment, (b) Characteristics of 

recorded rainfalls and (c) layout of Ruislip UDS and catchment

Case study description
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Conclusions

Multi-step performance
2% improvement in miss rate
14% hit rate enhancement

01

Flood detection performance
13.5% improvement in flood detection accuracy

02

Future works
Integrating proposed categorised type model with numeral type water level 
forecasting in the concept of real-time early flood warning systems

03

*Comparison to best performed model in 5 hrs. ahead
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