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Gaps & Aims

Research gaps for forecasting the water level in Urban Drainage Systems (UDS)

*** Water Level forecasting (depth): Inaccuracy high for more than 90 min. ahead
+*»* Classification forecasting (flood or non-flood): Inaccuracy high for more than 120 min.

¢ Lack of proper addressing time-series real-time operation

Research aim

Novel multi-stacking model integrating different decision tree frameworks by developing
various weak learner data mining techniques and associated model performance indicators in

the process of time-series blending of pre-trained stacked ensemble models.
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Event Identification Method
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State Captured data
Rainfall intensity ~ Water depth

(S1): Dry weather, non-flood event (Ry): - (Wy): -

(S2): Sudden rising flow, non-flood event (Ry): - (Wp): +

(S3): Ineffective precipitation, non-flood event (Ro): + (Wy): -

(S4): Flood event (Ry): + (Wy): +

-: No rainfall, no change for water depth
+: Rainfall, net change (increase or decrease) for water depth

“The Role of Event Identification in Translating Performance Assessment of Time-Series Real-Time Urban Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., 15" UWL Doctorial Conference, London, UK, 2021.
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Rainfall feature extraction

similarity

similar duration of current event

Group feature raii;(atlrlaf(:aetdu re Description Transf;;natlon Unit/class
Current rainfall ~ Duration Time period of between the onset and end of the Numerical min
characteristics precipitation
Depth Maximum water depth if all rainfall cumulated in Numerical mm
saturated impervious surface
Intensity The ratio of total depth to the duration Numerical mm/hr
Peak depth Maximum rainfall intensity Numerical mm
Antecedent Occurrence Previous rainfall occurred until maximum previous Binary 0:No
precipitation history period equalled to time of concentration 1:Yes
Average The average rainfall intensity of previous rainfall Numerical mm/hr
intensity occurred until maximum previous period equalled to
time of concentration
Time Season A different class of humid temperate climate Class 1:Dry
occurrence 2:Mild
3:Rainy
Long-term Average of past 10 years' rainfall intensity for a Numerical mm/hr
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Developing base models

¢ Discriminant analysis (DA)

¢ Decision tree (DT)

¢ Gaussian process regression (GPR)
*» K-nearest neighbourhood (KNN)
*» Naive bayes (NB)

¢ Supervised vector machine (SVM)
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Developing base models

Table 2. Selected key performance indicators used for performance assessment of WLDMs

Code Description Formula
TPR  Model sensitivity in recalling actual flood condition, i.e., accuracy of flood P %100
class TP+FN
TNR  Model specificity in selecting actual non-flood condition, i.e., accuracy of non- ™ <100
flood class TNHEP
ACC  Probability in that the model forecasting is correct, i.e., interested in forecasting TPHTN 100
the right classes without caring about the type of the class or class distribution !
MCC  Highlighting correlation and agreement between observed and predicted classes TPXTN—FPXFN
(TP+FP)X(TP+FN)X(TN+FP)x(TN+F}
DP Determining the likelihood of correct flood and non-flood conditions Y3 PR 1 TNR
X [ (1 TNR) (1 TPR)]
Fy Revealing the best trade-off between overflow and not-flood forecasting by 2XTPRXPPV
score interpretation as a weighted average between PPV and TPR TPRAPEY
CKR  Measuring the concordance between ACC, TPR, and TNR ACC—[TPRX(A-TPR)+TNRX(1—TNR)]
1—[TPRX(1—TPR)+TNRx(1—TPR)]
ACC: ACCuracy of true classification CKR: Cohen’s Kappa Rate DP: Discriminant Power F1-score: Harmonic mean
MCC: Matthews Correlation Coefficient PPV: Positive Predictive Value TNR: True Negative Rate TPR: Total Positive Rate
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Data warehouse

Library of developed WLDM models
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Developing multi-staked ensemble models

Hybrid staked model
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Case study description
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Key

. Colne catchment area

=== Rivers and Catchments
Ruislip gauging station

. Eastcote gauging station

. Willow Bank gauging station

Q Ruislip urban catchment area
@Heathmw rainfall monitoring station
Iver Heath rainfall monitoring station
@RAF Northolt rainfall monitoring station [ =215
D Urban areas

Smart model

Key ,
— Ruislip UDS :
Ruislip catchment

@)
Geographical map and hydrological data of the pilot study: (a) location of stations and layout of catchment, (b) Characteristics of

recorded rainfalls and (c) layout of Ruislip UDS and catchment
11
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Hybrid Model

Smart Model

B Miss rate - Under estimation=FN/total events
m Hit rate=(TP+TN)/total events

| Miss rate - Over estimation=FP/total events
OFlood forecasting=TP/(TP+FN)
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Conclusions

*Comparison to best performed model in 5 hrs. ahead

(01 Multi-step performance

2% improvement in miss rate
14% hit rate enhancement

()2 Flood detection performance
13.5% improvement in flood detection accuracy

(03 Future works

Integrating proposed categorised type model with numeral type water level
forecasting in the concept of real-time early flood warning systems



@ Acknowledgement O e

www.ealing.gov.uk

Thanks for your attention!

Academic and Research team
& Funding Bodies

Q&A?

UNIVERSITY OF UNIVIRS T Or
g WEST LONDON rE}QEEFER

The Career University




	Slide 1
	Slide 2: Outline
	Slide 3: Urban flood Occurrence
	Slide 4: Gaps & Aims
	Slide 5: Event Identification Method
	Slide 6: Rainfall feature extraction
	Slide 7: Developing base models
	Slide 8: Developing base models
	Slide 9: Data warehouse
	Slide 10: Developing multi-staked ensemble models
	Slide 11: Case study description
	Slide 12: Performance of the time-series ensemble models 
	Slide 13
	Slide 14

