

Real-time Flood Overflow Forecasting in Urban Drainage Systems by Using Time-series Multistacking of Data Mining Techniques

Farzad Piadeh¹, Kourosh Behzadian¹, Albert S. Chen², Luiza C. Campos³, Joseph P. Rizzuto¹

¹ School of Computing and Engineering, University of West London, UK

² Centre for Water Systems, Faculty of Environment, Science and Economy, University of Exeter, UK

³ Department of Civil, Environmental and Geomatic Engineering, University College London, UK

Dr Kourosh Behzadian

Associate Professor, University of West London BSc, MSc, PhD, CEng, FICE, FCIWEM, C.WEM, FHEA <u>kourosh.behzadian@uwl.ac.uk</u>

Outline

Introduction

Concepts, necessity and gap finding

Methodology

Defining proposed approaches

>case study/Results

Verifying proposed approach by real case study

➤ Conclusions

>Key findings and future works

Urban flood Occurrence

Research gaps for forecasting the water level in Urban Drainage Systems (UDS)

- Water Level forecasting (depth): Inaccuracy high for more than 90 min. ahead
- Classification forecasting (flood or non-flood): Inaccuracy high for more than 120 min.
- Lack of proper addressing time-series real-time operation

Research aim

Novel multi-stacking model integrating different decision tree frameworks by developing various weak learner data mining techniques and associated model performance indicators in the process of time-series blending of pre-trained stacked ensemble models.

Event Identification Method

+: Rainfall, net change (increase or decrease) for water depth

Rainfall feature extraction

Group feature	Extracted rainfall feature	Description	Transformation key	Unit/class
Current rainfall characteristics	Duration	Time period of between the onset and end of the precipitation	Numerical	min
	Depth	Maximum water depth if all rainfall cumulated in saturated impervious surface	Numerical	mm
	Intensity	The ratio of total depth to the duration	Numerical	mm/hr
	Peak depth	Maximum rainfall intensity	Numerical	mm
Antecedent precipitation history	Occurrence	Previous rainfall occurred until maximum previous period equalled to time of concentration	Binary	0:No 1:Yes
	Average intensity	The average rainfall intensity of previous rainfall occurred until maximum previous period equalled to time of concentration	Numerical	mm/hr
Time occurrence	Season	A different class of humid temperate climate	Class	1:Dry 2:Mild 3:Rainy
	Long-term similarity	Average of past 10 years' rainfall intensity for a similar duration of current event	Numerical	mm/hr

Developing base models

- ***** Discriminant analysis (DA)
- ***** Decision tree (DT)
- Gaussian process regression (GPR)
- ***** K-nearest neighbourhood (KNN)
- ***** Naive bayes (NB)
- ***** Supervised vector machine (SVM)

Developing base models

Table 2. Selected key performance indicators used for performance assessment of WLDMs							
Code	Description			Formula			
TPR	Model sensitivity in recalling class	g actual flood condition, i.e., acc	uracy of flood	$\frac{\mathrm{TP}}{\mathrm{TP+FN}} \times 100$			
TNR	Model specificity in selecting flood class	g actual non-flood condition, i.e.	, accuracy of non-	$\frac{\text{TN}}{\text{TN}+\text{FP}} \times 100$			
ACC	Probability in that the model the right classes without cari	$\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{n}} \times 100$					
MCC	Highlighting correlation and	TP×TN-FP×FN /(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN					
DP	Determining the likelihood o	$\frac{\sqrt{3}}{\pi} \times \left[\log(\frac{TPR}{1-TNR}) + \log(\frac{TNR}{1-TPR})\right]$					
F ₁	Revealing the best trade-off between overflow and not-flood forecasting by			<u>2×TPR×PPV</u>			
score	interpretation as a weighted a	TPR+PPV					
CKR	Measuring the concordance l	$\frac{ACC-[TPR\times(1-TPR)+TNR\times(1-TNR)]}{1-[TPR\times(1-TPR)+TNR\times(1-TPR)]}$					
ACC: ACCuracy of true classification MCC: Matthews Correlation Coefficient		CKR: Cohen's Kappa Rate PPV: Positive Predictive Value	DP: Discriminant Power TNR: True Negative Rat	F ₁ -score: Harmonic mean TPR: Total Positive Rate			

Data warehouse

UNIVERSITY OF

WEST LONDON

WEST LONDON Developing multi-staked ensemble models

Hybrid staked model

Case study description

Benchmark methods TPR –based Voting-based Bayesian weighting-based Hybrid model Smart model

(a) Geographical map and hydrological data of the pilot study: (a) location of stations and layout of catchment, (b) Characteristics of recorded rainfalls and (c) layout of Ruislip UDS and catchment

UNIVERSITY OF **Performance of the time-series ensemble models** WEST LONDON

■ Hit rate=(TP+TN)/total events

Miss rate - Over estimation=FP/total events

 \bigcirc Flood forecasting=TP/(TP+FN)

*Comparison to best performed model in 5 hrs. ahead

01 Multi-step performance

2% improvement in miss rate 14% hit rate enhancement

02 Flood detection performance

13.5% improvement in flood detection accuracy

03 Future works

Integrating proposed categorised type model with numeral type water level forecasting in the concept of real-time early flood warning systems

Thanks for your attention!

Academic and Research team & Funding Bodies

UC

Q&A?

