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Non-disjoint strong external difference families can have any
number of sets

Sophie Huczynska and Siaw-Lynn Ng

Abstract. Strong external difference families (SEDFs) are much-studied
combinatorial objects motivated by an information security application.
A well-known conjecture states that only one abelian SEDF with more
than 2 sets exists. We show that if the disjointness condition is replaced
by non-disjointness, then abelian SEDFs can be constructed with more
than 2 sets (indeed any number of sets). We demonstrate that the non-
disjoint analogue has striking differences to, and connections with, the
classical SEDF and arises naturally via another coding application.
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1. Introduction. Difference families are long-studied combinatorial objects,
with many applications. A family of (not necessarily disjoint) k-sets in a group
G is a difference family if the multiset of pairwise internal differences (between
distinct elements of each set) comprises each non-identity element of G λ times.
External difference families (EDFs) were introduced in [10], motivated by the
information security problem of constructing optimal secret sharing schemes;
the mathematical link between EDFs and algebraic manipulation detection
(AMD) codes was formalized in [11]. EDFs are a generalisation of difference
families, in which the pairwise external differences (between distinct sets) are
considered; the inter-set differences correspond to possible manipulations of
an encoded message. The sets are disjoint (to ensure unique decoding) and
the multiset of external differences comprises each non-identity element of G
λ times (the identity is ignored as it would correspond to “no manipulation”).
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An EDF is an optimal example of a weak AMD code [11]. There is a
stronger security model (strong AMD code) which motivates the definition of
a strong external difference family (SEDF) [11]. An SEDF is an EDF such
that, for any set in the family, the pairwise differences between elements of
this set and those of all other sets in the family comprise each non-identity
element λ times. An SEDF is an EDF, but not every EDF is an SEDF.

Many constructions for SEDFs exist in the combinatorial literature (see
[1,3,5,13]). Surprisingly, all known infinite families have two sets, and just one
example is known with more than two sets (having 11 sets in a group of size
243, obtained independently in [5] and [13]). It is conjectured in [6] that no
other abelian SEDF exists with more than two sets; many theoretical results
and computational searches support this (e.g. [5–8]). It is also notable that the
only known infinite families with fixed λ have λ = 1.

We introduce the non-disjoint analogue of the SEDF (the sets are not dis-
joint and the multiset condition requires λ occurences of every group element),
and exhibit an abelian infinite family whose members can have any number of
sets. We also obtain infinite families of two-set non-disjoint SEDFs with any
fixed frequency value λ ∈ N. For λ = 1, we show that our two-set construction
corresponds to a known two-set construction for classical SEDFs, and indicate
why our non-disjoint constructions do not yield classical SEDFs with λ > 1 or
more than two sets. Our proofs use sequences (which for prime-power length
relate to the support of first-order Reed-Muller codes).

The type of non-disjoint SEDFs which we construct satisfies a stronger
condition on their external difference properties, namely that the multiset of
external differences between any pair of distinct sets in the family comprises
each element of G precisely λ times. We call these pairwise strong external dif-
ference families (PSEDFs). Each PSEDF is a non-disjoint SEDF but not vice
versa. We demonstrate that PSEDFs are useful and indeed optimal for a dif-
ferent application in communications theory, that of optical orthogonal codes
and conflict-avoiding codes [2,12]. Here, the external differences between sets
correspond to cross-correlation of binary sequences; there is no requirement
for disjointness and the identity is treated in the same way as any other group
element (since collision with the zero-shift of another sequence is just as sig-
nificant as collision with any other shift).

2. Background. All groups are written additively. For two sets A,B in a group
G, define the multisets Δ(A,B) = {a−b : a ∈ A, b ∈ B} and Δ(A) = {a1−a2 :
a1, a2 ∈ A, a1 �= a2}. The notation λA denotes the multiset consisting of λ
copies of a set A. A translate of a set A is denoted by t + A = {t + a : a ∈ A}.

The existing definition of an SEDF is as follows.

Definition 2.1. Let G be a group of order v and let m > 1. A family of disjoint
k-sets {A1, . . . , Am} in G is a (v,m, k, λ)-SEDF if, for each 1 ≤ i ≤ m, the
multiset equation

⋃
j �=i Δ(Ai, Aj) = λ(G\{0}) holds.
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Example 2.2. ({0, 1, . . . , k − 1}, {k, 2k, . . . , k2}) is a (k2 + 1, 2, k, 1)-SEDF in
Zk2+1 [11].

The following is a summary of known existence results for abelian SEDFs.

Proposition 2.3. A (v,m, k, λ)-SEDF exists in G in the following cases:
(i) (v,m, k, λ) = (k2 + 1, 2, k, 1), G = Zk2+1 [11];
(ii) (v,m, k, λ) = (v, 2, v−1

2 , v−1
4 ), v ≡ 1 (mod 4), G contains a (v, v−1

2 , v−5
4 ,

v−1
4 ) partial difference set [4];

(iii) (v,m, k, λ) = (q, 2, q−1
4 , q−1

16 ), q = 16t2 + 1 a prime power (necessarily
prime by Catalan’s conjecture), t ∈ Z, G = (GF (q),+) [1];

(iv) (v,m, k, λ) = (p, 2, p−1
6 , p−1

36 ), p = 108t2 + 1 is prime, t ∈ Z, G =
(GF (p),+) [1].

There are very many non-existence results for SEDFs in abelian groups
with more than two sets [6]; we summarize some key ones:

Proposition 2.4. Let G be abelian. No nontrivial (v,m, k, λ)-SEDF with m > 2
exists if:
(i) m ∈ {3, 4} [8]; or
(ii) λ ∈ {1, 2} [4,11]; or
(iii) v is a product of distinct primes and gcd(mk, v) = 1 [1]; or
(iv) G is cyclic of prime power order [6]; or
(v) v is a product of at most three (not necessarily distinct) primes, except

possibly when G = C3
p and p is a prime greater than 3 × 1012 [6]; or

(vi) G has order p2 [7].

Other non-existence conditions for m > 2 include: λ ≥ k [4]; λ > 1 and
λ(k−1)(m−2)
(λ−1)k(m−1) > 1 [4]; gcd(k, v − 1) = 1 [5] and v − 1 is squarefree [3]. In [7], a
result is given for groups of order pq for p sufficiently large.

We adapt the classical definition of SEDF in Definition 2.1 by removing
the disjointness condition, so the identity becomes a valid external difference.
For consistency, we require that the identity occurs at the same frequency as
the other group elements. This in fact means the sets must be non-disjoint,
so this structure is genuinely distinct from the classical SEDF, i.e., it is the
non-disjoint analogue rather than a generalisation.

Definition 2.5. Let G be a group of order v and let m > 1. We say that a
family of k-sets {A1, . . . , Am} in G is a non-disjoint (v,m, k, λ)-SEDF if, for
each 1 ≤ i ≤ m, the multiset equation

⋃
j �=i Δ(Ai, Aj) = λG holds.

Observe that the absence of the identity element in the classical SEDF is
a consequence of the disjointness.

A non-disjoint SEDF consisting of two sets {A,B} satisfies the condition
that Δ(A,B) = Δ(B,A) = λG. This motivates the following definition of a
non-disjoint structure with a stronger condition on its external differences.

Definition 2.6. Let G be a group of order v and let m > 1. We say a family of
k-sets {A1, . . . , Am} in G is a (v,m, k, λ)-PSEDF if, for each 1 ≤ i �= j ≤ m,
the multiset Δ(Ai, Aj) comprises λ copies of each element of G.
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Theorem 2.7. (i) A (v,m, k, λ)-PSEDF is a non-disjoint (v,m, k, (m−1)λ)-
SEDF.

(ii) A non-disjoint (v, 2, k, λ)-SEDF is a (v, 2, k, λ)-PSEDF.

Lemma 2.8. (i) For a non-disjoint (v,m, k, λ)-SEDF, λv = k2(m − 1).
(ii) For a (v,m, k, λ)-PSEDF, λv = k2.

Example 2.9. In Z18, the sets {0, 1, 2, 3, 4, 5} and {0, 1, 6, 7, 12, 13} form an
(18, 2, 6, 2)-PSEDF which is a non-disjoint (18, 2, 6, 2)-SEDF.

A classical (v,m, k, 1)-SEDF exists in an abelian group if and only if m = 2
and v = k2 + 1 or k = 1 and m = v [11]. An analogous result holds for non-
disjoint SEDFs (for these, by Lemma 2.8(i), k = 1 cannot occur).

Theorem 2.10. In an abelian group G, a non-disjoint (v,m, k, 1)-SEDF exists
if and only if m = 2 and v = k2.

Proof. Suppose A1, . . . , Am is a non-disjoint (v,m, k, 1)-SEDF with m ≥ 3.
We have k ≥ 2. Then

⋃
i�=j Δ(Ai, Aj) = mG; removing all differences to/from

A1,
⋃

1 �=i�=j �=1 Δ(Ai, Aj) = (m − 2)G. Let x, y ∈ A1, x �= y. Then x − y must
occur in Δ(Ai, Aj) for some 1 �= i �= j �= 1, i.e., x − y = u − v(�= 0) for some
u ∈ Ai, v ∈ Aj , i �= j. But then x−u = y − v occurs twice in

⋃
k �=1 Δ(A1, Ak),

a contradiction. Hence m = 2. Theorem 3.1 establishes the reverse. �

When working in cyclic groups, we will use the following well-known corre-
spondence with binary sequences (for background on sequences, see [9, Section
5.4]). A binary sequence of length v is a sequence X = x0 . . . xv−1 where each
xi ∈ {0, 1}. We also denote this by X = (xi)v−1

i=0 . We call a contiguous subse-
quence xδxδ+1 . . . xδ+r−1 of X a substring of X of length r. We take indices
(and hence addition of indices) modulo v unless otherwise stated. The weight
of a binary sequence is the number of occurrences of the symbol 1 in the
sequence. We call X + s = (xi+s)v−1

i=0 a (cyclic) shift of X by s places.

Definition 2.11. (i) For a k-subset A of Zv = {0, . . . , v − 1}, we associate a
binary sequence XA = (xi)v−1

i=0 of weight k whose ith entry xi is 1 if i ∈ A
and 0 if i �∈ A.

(ii) For a binary sequence XA = (xi)v−1
i=0 of weight k, we associate a k-subset

A of Zv, comprising all elements i ∈ {0, . . . , v − 1} such that xi = 1.

In Z7, the set A = {1, 2, 4} corresponds to the sequence 0110100.
Using this correspondence, we have the following useful relationship.

Proposition 2.12. Let XA = (xi)v−1
i=0 , XB = (yi)v−1

i=0 (xi, yi ∈ {0, 1}), with
indices taken modulo v, be the sequences corresponding to k-subsets A and B
in Zv. Then:
(i) For δ ∈ {0, . . . , v − 1}, ∑v−1

t=0 xtyt+δ equals the number of occurrences of
δ in Δ(B,A).

(ii)
∑v−1

t=0 xtyt+δ = λ for all 0 ≤ δ ≤ v − 1 if and only if Δ(B,A) = λZv
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Proof. For fixed δ ∈ {0, . . . , v − 1}, the sum
∑v−1

t=0 xtyt+δ counts the number
of positions t such that xt = 1 = yt+δ. This is the number of t ∈ Zv such that
t ∈ A and t + δ ∈ B, i.e., the number of times δ occurs in Δ(B,A). �

We end the section with some further sequence terminology. Let X be a
sequence. Following [9], we define a run of X to be a substring of X consisting
of consecutive 0s or consecutive 1s which is neither preceded nor succeeded
by the same symbol. We call a run of 0s a gap and a run of 1s a block. For
example, in the length-9 sequence 111100010, 1111 is a substring which is a
block of length 4, and 000 is a substring which is a gap of length 3.

3. Constructions for PSEDFs. In this section, we present results for PSEDFs
and non-disjoint SEDFs which demonstrate their differences and similarities
with classical SEDFs. We use binary sequences. For a sequence X = (xi)v−1

i=0 ,
indices are taken modulo v.

We first construct infinite two-set families of non-disjoint SEDFs for any
λ-value. For classical SEDFs, all known families with fixed λ have λ = 1.

Theorem 3.1. If v|k2 and k|v, then

(i) there exists an infinite family of (v, 2, k, k2

v )-PSEDFs in Zv;
(ii) there exists an infinite family of non-disjoint (v, 2, k, k2

v )-SEDFs in Zv.
The sets of the PSEDF (and SEDF) are AX = {0, 1, 2, . . . , k − 1} and AY =
{
ak, ak + 1, . . . , ak + λ − 1 : a = 0, 1, . . . ,

(
v
k − 1

)}
where λ = k2

v .

Proof. Let λ = k2

v . As k ≤ v, we have λ ≤ k. The sequences corresponding to
the sets AX , AY are

X =

k
︷ ︸︸ ︷
11 . . . 1

k
︷ ︸︸ ︷
00 . . . 0 . . .

k
︷ ︸︸ ︷
00 . . . 0, Y =

k
︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

λ

0 . . . 0

k
︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

λ

0 . . . 0 . . .

k
︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

λ

0 . . . 0 .

Here X is a block of length k, then a gap of length v−k, while Y comprises
a block of length λ, then a gap of length k − λ, repeated v

k times.
Write X = (xt), Y = (yt). Let δ ∈ {0, . . . , v − 1}. Consider

∑v−1
t=0 xtyt+δ.

We see that
∑v−1

t=0 xtyt+δ =
∑k−1

t=0 xtyt+δ, since xt = 0 for t = k, . . . , v − 1, so
we need only consider the length-k substring Yδ = yδy1+δ . . . yk−1+δ of Y . The
value of

∑k−1
t=0 xtyt+δ is exactly the number of 1s in Yδ. By construction, if any

length-k substring W of Y starts with some s ≤ λ 1s, it is followed by a gap
of length k − λ, which is then followed by a block of length λ − s. If it starts
with some s ≤ k − λ 0s, it is followed by a block of length λ, which is then
followed by a gap of length k − λ − s. In either case, there are always λ 1s in
W . Hence

∑v−1
t=0 xtyt+δ =

∑k−1
t=0 xtyt+δ = λ. This applies to any δ, and hence

by Proposition 2.12, {AX , AY } is a non-disjoint (v, 2, k, k2

v )-PSEDF. �

Corollary 3.2. (i) For any a, r ∈ N, there exists a (ra2, 2, ra, r)-PSEDF in
Zra2 .

(i) Let λ ∈ N. Then in Zλa2 , there exists a non-disjoint (λa2, 2, λa, λ)-SEDF
for all a ∈ N.
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(iii) When λ = 1, the sets {0, 1, . . . , k − 1}, {0, k, 2k, . . . , (k − 1)k} form a
non-disjoint (k2, 2, k, 1)-SEDF in Zk2 .

Note the similarity between the non-disjoint SEDFs of Corollary 3.2(iii)
and the SEDFs of Example 2.2; this will be explored subsequently.

Example 3.3. (i) In Z9, the sets {0, 1, 2} and {0, 3, 6} form a (9, 2, 3, 1)-
PSEDF corresponding to sequences {111000000, 100100100}.

(ii) In Z8, the sets {0, 1, 2, 3} and {0, 1, 4, 5} form an (8, 2, 4, 2)-PSEDF cor-
responding to sequences {11110000, 11001100}.

We have the following generalisation of Theorem 3.1.

Theorem 3.4. Suppose v|k2 and k|v. Let X = (xt)v−1
i=0 be defined by xi = 1 for

0 ≤ i ≤ k−1 and xi = 0 for k ≤ i ≤ v−1. If Y = (yt)v−1
t=0 is any sequence such

that (yt+k) = (yt) and y0 . . . yk−1 has weight λ = k2

v , then {X,Y } corresponds
to a (v, 2, k, k2

v )-PSEDF in Zv and a non-disjoint (v, 2, k, k2

v )-SEDF in Zv.

We next show non-disjoint SEDFs exist with any number of sets.

Theorem 3.5. Let N > 1. There exists a (2N , N, 2N−1, 2N−2)-PSEDF in Z2N .

Proof. For 1 ≤ i ≤ N , define the binary sequence Xi = (xt)v−1
t=0 as follows:

x0 = · · · = x2i−1−1 = 1,

x2i−1 = · · · = x2i−1 = 0,

xt = xt+2i , t ≥ 2i.

So, for each Xi, we have

Xi = 1 . . . 1︸ ︷︷ ︸
2i−1

0 . . . 0︸ ︷︷ ︸
2i−1

11 . . . 100 . . . 0︸ ︷︷ ︸
2i

. . . 11 . . . 100 . . . 0︸ ︷︷ ︸
2i

.

Xi consists of a block of length 2i−1, followed by a gap of length 2i−1,
and this length-2i substring is repeated 2N−i times. By construction, since
xt = xt+2i for t ≥ 2i, every substring of length 2i has an equal number of 1s
and 0s, i.e., has weight 2i−1. Therefore any substring of length r, where 2i|r,
has weight r

2 . In particular, a substring of length 2j , j ≥ i, has weight 2j−1.
We claim that these sequences Xi (1 ≤ i ≤ N) correspond to sets Ai

(1 ≤ i ≤ N) which form a PSEDF in Z2N with the given parameters. We
determine Δ(Ai, Aj) for 1 ≤ i �= j ≤ N ; by symmetry we may assume i < j.

Let Xi = (zt), Xj = (yt), with i < j. Let δ ∈ {0, 1, . . . , v−1}. We determine

S =
∑v−1

t=0 ytzt+δ. Observe that S = 2N−j × ∑2j−1
t=0 ytzt+δ since zt = zt+2j

and yt = yt+2j (t ≥ 2j). Moreover, since y2j−1 = · · · = y2j−1 = 0, S =
2N−j × ∑2j−1−1

t=0 ytzt+δ. Since, from above, any substring of Xi of length 2j−1

has weight equal to half its length, we have S = 2N−j × 2j−1

2 = 2N−2. Since Xi

and Xj (i < j) were arbitrary (and using symmetry), we have that Δ(Aj , Ai) =
2N−2 for all i �= j. Hence by Proposition 2.12, the sequences correspond to a
(2N , N, 2N−1, 2N−2)-PSEDF in Z2N as required. �
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The above theorem demonstrates a significant difference between the clas-
sical SEDF and its non-disjoint analogue:
Corollary 3.6. For any N > 1, there exists a non-disjoint (2N , N, 2N−1, (N −
1)2N−2)-SEDF, i.e., a non-disjoint SEDF with N sets.
Example 3.7. (i) In Z8, the sets {0, 2, 4, 6}, {0, 1, 4, 5}, and {0, 1, 2, 3} form

a (8, 3, 4, 2)-PSEDF and non-disjoint (8, 3, 4, 4)-SEDF, corresponding to
sequences 10101010, 11001100, and 11110000.

(ii) In Z16, the sets {0, 2, 4, 6, 8, 10, 12, 14}, {0, 1, 4, 5, 8, 9, 12, 13},
{0, 1, 2, 3, 8, 9, 10, 11}, and {0, 1, 2, 3, 4, 5, 6, 7} form a (16, 4, 8, 4)-PSEDF
and non-disjoint (16, 4, 8, 12)-SEDF.

4. Relationship to classical SEDFs. We next explain the similarity between
the family of non-disjoint SEDFs in Corollary 3.2(iii) and the family of SEDFs
in Example 2.2.
Proposition 4.1. Let v|k2 and k|v. As subsets of Zv+1, the sets of the non-
disjoint (v, 2, k, k2

v )-SEDF in Zv of Theorem 3.1, AX′ = {0, 1, 2, . . . , k − 1},
AY ′ =

{
ak, ak + 1, . . . , ak + λ − 1 : a = 0, 1, . . . ,

(
v
k − 1

)}
(λ = k2

v ), satisfy

Δ(AX′ , AY ′) = λ(G\{v − k + 1, . . . , v − k + λ})
+(λ − 1){v − k + 1, . . . , v − k + λ}.

Proof. Take the two length-v sequences X,Y which correspond to the sets
AX and AY in Theorem 3.1. By appending an additional 0 at the end of
each sequence, the new length-(v + 1) sequences X ′, Y ′ correspond to the sets
AX′ , AY ′ in Zk2+1. X ′ is a block of length k followed by a gap of length v−k+1,
while Y is a block of length λ = k2/v followed by a gap of length k − λ, which
is repeated v/k times, except that the final gap now has length k−λ+1. Write
X ′ = (x′

t), Y ′ = (y′
t).

Let δ ∈ {0, . . . , v}. Consider S =
∑v

t=0 x′
ty

′
t+δ. As before, S =

∑k−1
t=0 x′

ty
′
t+δ,

since x′
t = 0 for t = k, . . . , v, so we need only consider the length-k substring

Y ′
δ = y′

δy
′
1+δ . . . y′

k−1+δ of Y ′. The value of
∑k−1

t=0 x′
ty

′
t+δ is exactly the number

of 1s in Y ′
δ , i.e., its weight.

We determine Y ′
0 , . . . , Y

′
v . For 0 ≤ δ ≤ v −1, let Yδ = yδy1+δ . . . yk−1+δ, the

substring of the original sequence Y . We have Y ′
v = 0y0 . . . yk−2 = Yv−1, and

for 0 ≤ δ ≤ v − k, Y ′
δ = Yδ.

For the remaining v−k+1 ≤ δ ≤ v−1, write δ = v−k+i, 1 ≤ i ≤ k−1. In
Y , the substring Yv−k+i = yv−k+iyv−k+i+1 . . . yi−2yi−1. The substring Y ′

v−k+i

is obtained from Yv−k+i by inserting a 0 between its (k−1− i)th and (k− i)th
entries (yv−1 and y0), then deleting its final entry yi−1. Overall

Y ′
v−k+i = yv−k+iyv−k+i+1 . . . yv−10y0 . . . yi−2

with the entries after the zero being present only for 2 ≤ i ≤ k − 1. Hence
the overall change in symbols, going from Yv−k+i to Y ′

v−k+i (1 ≤ i ≤ k − 1),
is to replace yi−1 by 0. Now, by construction y0 = · · · = yλ−1 = 1 and
yλ = · · · yk−1 = 0. So, from the substrings Y ′

v−k+i with 1 ≤ i ≤ k − 1, only
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those with i − 1 ∈ {0, . . . , λ − 1} undergo a change in weight (a reduction by
1 to weight λ − 1); the rest have weight λ.

Hence by Proposition 2.12, Δ(AY ′ , AX′) (and by symmetry Δ(AX′ , AY ′))
comprises λ copies of Zv+1\{v − k + 1, . . . , v − k + λ} and λ − 1 copies of
{v − k + 1, . . . , v − k + λ}. �

Theorem 4.2. (i) The non-disjoint (k2, 2, k, 1)-SEDF in Zk2 of Theorem 3.1
may be converted by set-translation to a classical (k2 + 1, 2, k, 1)-SEDF
in Zk2+1.

(ii) Non-disjoint SEDFs of Theorem 3.1 with λ > 1 cannot be so converted.

Proof. By Proposition 4.1, in Zk2+1 the sets AX′ = {0, 1, . . . , k − 1}, AY ′ =
{0, k, 2k, . . . , (k − 1)k} satisfy Δ(AX′ , AY ′) = G\{v − k + 1}. Take the cyclic
shift Y ′′ = Y ′+(v−k+1) of Y ′. The set in Zk2+1 corresponding to this new se-
quence is AY ′′ = {k, 2k, . . . , k2}, the translate k+AY ′ of AY ′ . The pair {X,Y ′′}
corresponds to sets AX , AY ′′ which are disjoint and satisfy Δ(AX , AY ′′) =
λ(G\{0}) with λ = 1. This is the (k2, 2, k, 1)-SEDF in Zk2+1 of Example 2.2.
For (ii), observe that the sets of Theorem 3.1 can be made disjoint by transla-
tion in Zv+1 only if the sequence Y ′ has a gap of at least the size of the block
in X ′. This is possible only if k − λ + 1 ≥ k, i.e., λ ≤ 1. �

Similarly, it is not possible to convert the non-disjoint SEDFs of Theo-
rem 3.5 to classical SEDFs in Z2N+1, except when N = 2 (giving the (5, 2, 2, 1)-
SEDF {0, 1}, {2, 4} in Z5). For N > 2, appending 0 gives a structure with more
than two frequencies and disjointness is impossible.

5. Motivation from communications systems. While classical SEDFs arise from
AMD codes, non-disjoint SEDFs and PSEDFs have a different communications
motivation. Optical orthogonal codes (OOCs) are sets of binary sequences with
good auto- and cross-correlation properties for use in optical multi-access com-
munication. The auto-correlation of a sequence X measures how much it col-
lides with its shifts; its cross-correlation with sequence Y measures how much
X collides with the shifts of Y (two sequences collide in position i if both have
1s in the ith position).

Definition 5.1. Let v, w, λa, λc be non-negative integers with v ≥ 2, w ≥ 1.
Let C = {X0, . . . , XN−1} be a family of N binary sequences of length v and
weight w. Then C is a (v, w, λa, λc)-OOC of size N ≥ 1 if, writing X = (xi)v−1

i=0 ,
Y = (yi)v−1

i=0 (indices modulo v):

(i)
∑v−1

t=0 xtxt+δ ≤ λa for any X ∈ C, 0 < δ ≤ v − 1, and
(ii)

∑v−1
t=0 xtyt+δ ≤ λc for any X,Y ∈ C, 0 ≤ δ ≤ v − 1,

i.e., if auto-correlation values are at most λa and cross-correlation values are
at most λc.

Although called “codes”, OOCs are used as sets of periodic sequences, with
Xi being repeated. A correlation value gets a contribution of 1 precisely if both
sequences have a 1 in the same position. In using OOCs for communication,
information can be sent only when there is a 1 in the sequence; if two sequences
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are used and there is a 1 in both sequences, then interference occurs, which
can result in errors in both received signals. So a key design principle is to
have low cross-correlation values. For more on OOCs, see [2].

By Definition 2.11, OOCs can be reformulated as subsets of Zv. Let {X0, . . . ,
XN−1} be a (v, w, λa, λc)-OOC. For each sequence Xi, let Ai be the set of in-
tegers modulo v denoting the positions of the 1s. Then Ai ⊆ Zv, |Ai| = w for
all 0 ≤ i ≤ N − 1, and we have the conditions:

(i) |Ai ∩ (Ai + δ)| ≤ λa for all δ ∈ Zv\{0}, i.e., any non-zero δ occurs in
Δ(Ai) at most λa times.

(ii) |Ai ∩ (Aj + δ)| ≤ λc for all δ ∈ Zv, i.e., any δ occurs in Δ(Ai, Aj) at most
λc times.

An OOC with λc = 1 and no auto-correlation requirement is a conflict-
avoiding code (CAC); see [12]. CACs are equivalently defined by the condi-
tion that {Δ(A1), . . . ,Δ(An)} are pairwise disjoint (distinct x1, x2 ∈ Ai and
y1, y2 ∈ Aj (i �= j) with x1 − x2 = y1 − y2 implies two distinct expressions for
x1 − y1 in Δ(Ai, Aj), and conversely).

Proposition 5.2. If C is a (v, w, λa, λc)-OOC with |C| ≥ 2, then λc ≥ w2

v .

Proof. Let C = {A0, . . . , AN−1} as subsets of Zv. Let F = {((x, y), δ) : x−y =
δ, x ∈ Ai, y ∈ Aj} for some Ai, Aj , Ai �= Aj . There are w values of x and w
values of y, and for each pair of (x, y), there is a unique δ = x−y, so |F | = w2.
On the other hand, there are v possible values of δ, and at most λc pairs of
(x, y) such that x − y = δ. So |F | ≤ vλc. �

The lower bound is met when every δ occurs exactly w2/v times as an
external difference. If λc = w2/v for an OOC, then, since all cross-correlation
values are at most λc and at least w2/v, we must have the cross-correlation
equal to w2/v for all pairs of sequences, i.e., Δ(Ai, Aj) = λcZv for all Ai �= Aj .
Hence OOCs with cross-correlation values meeting the lower bound are in fact
PSEDFs in Zv, and the PSEDFs in Section 3 give examples of these OOCs.
In general, (v,m, k, λ)-PSEDFs in Zv are (v, k, λa, λ)-OOCs for some λa, and
(v, k, λa, λc)-OOCs are (v,m, k, λc)-PSEDFs if all cross-correlation values of
the OOCs equal λc. The extensions of PSEDFs from Proposition 4.1 will give
(v + 1, k, λa, λc)-OOCs with λc = 	 k2

v+1
, also best-possible.
In OOC applications, auto-correlation aids synchronisation; minimising λa

is not a goal [2]. It is upper-bounded by the weight w of the sequences; this
bound is attained if a sequence (xi)v−1

i=0 satisfies (xi+r)v−1
i=0 = (xi)v−1

i=0 for some
0 < r < v. In Theorem 3.1, λa = k since Y satisfies (yt+k) = (yt) where
0 < k < v; in Proposition 4.1, Y ′ has auto-correlation values strictly less than
k, while X ′ has auto-correlation exactly k − 1, so λa = k − 1.
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